multifd: multifd_queue_page only needs the qemufile
[qemu/kevin.git] / target / ppc / mem_helper.c
blobe8e2a8ac2ac9695e6db33f94069d65777a86059e
1 /*
2 * PowerPC memory access emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/helper-proto.h"
26 #include "helper_regs.h"
27 #include "exec/cpu_ldst.h"
28 #include "tcg/tcg.h"
29 #include "internal.h"
30 #include "qemu/atomic128.h"
32 /* #define DEBUG_OP */
34 static inline bool needs_byteswap(const CPUPPCState *env)
36 #if defined(TARGET_WORDS_BIGENDIAN)
37 return msr_le;
38 #else
39 return !msr_le;
40 #endif
43 /*****************************************************************************/
44 /* Memory load and stores */
46 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
47 target_long arg)
49 #if defined(TARGET_PPC64)
50 if (!msr_is_64bit(env, env->msr)) {
51 return (uint32_t)(addr + arg);
52 } else
53 #endif
55 return addr + arg;
59 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
61 for (; reg < 32; reg++) {
62 if (needs_byteswap(env)) {
63 env->gpr[reg] = bswap32(cpu_ldl_data_ra(env, addr, GETPC()));
64 } else {
65 env->gpr[reg] = cpu_ldl_data_ra(env, addr, GETPC());
67 addr = addr_add(env, addr, 4);
71 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
73 for (; reg < 32; reg++) {
74 if (needs_byteswap(env)) {
75 cpu_stl_data_ra(env, addr, bswap32((uint32_t)env->gpr[reg]),
76 GETPC());
77 } else {
78 cpu_stl_data_ra(env, addr, (uint32_t)env->gpr[reg], GETPC());
80 addr = addr_add(env, addr, 4);
84 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
85 uint32_t reg, uintptr_t raddr)
87 int sh;
89 for (; nb > 3; nb -= 4) {
90 env->gpr[reg] = cpu_ldl_data_ra(env, addr, raddr);
91 reg = (reg + 1) % 32;
92 addr = addr_add(env, addr, 4);
94 if (unlikely(nb > 0)) {
95 env->gpr[reg] = 0;
96 for (sh = 24; nb > 0; nb--, sh -= 8) {
97 env->gpr[reg] |= cpu_ldub_data_ra(env, addr, raddr) << sh;
98 addr = addr_add(env, addr, 1);
103 void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
105 do_lsw(env, addr, nb, reg, GETPC());
109 * PPC32 specification says we must generate an exception if rA is in
110 * the range of registers to be loaded. In an other hand, IBM says
111 * this is valid, but rA won't be loaded. For now, I'll follow the
112 * spec...
114 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
115 uint32_t ra, uint32_t rb)
117 if (likely(xer_bc != 0)) {
118 int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
119 if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
120 lsw_reg_in_range(reg, num_used_regs, rb))) {
121 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
122 POWERPC_EXCP_INVAL |
123 POWERPC_EXCP_INVAL_LSWX, GETPC());
124 } else {
125 do_lsw(env, addr, xer_bc, reg, GETPC());
130 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
131 uint32_t reg)
133 int sh;
135 for (; nb > 3; nb -= 4) {
136 cpu_stl_data_ra(env, addr, env->gpr[reg], GETPC());
137 reg = (reg + 1) % 32;
138 addr = addr_add(env, addr, 4);
140 if (unlikely(nb > 0)) {
141 for (sh = 24; nb > 0; nb--, sh -= 8) {
142 cpu_stb_data_ra(env, addr, (env->gpr[reg] >> sh) & 0xFF, GETPC());
143 addr = addr_add(env, addr, 1);
148 static void dcbz_common(CPUPPCState *env, target_ulong addr,
149 uint32_t opcode, bool epid, uintptr_t retaddr)
151 target_ulong mask, dcbz_size = env->dcache_line_size;
152 uint32_t i;
153 void *haddr;
154 int mmu_idx = epid ? PPC_TLB_EPID_STORE : env->dmmu_idx;
156 #if defined(TARGET_PPC64)
157 /* Check for dcbz vs dcbzl on 970 */
158 if (env->excp_model == POWERPC_EXCP_970 &&
159 !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
160 dcbz_size = 32;
162 #endif
164 /* Align address */
165 mask = ~(dcbz_size - 1);
166 addr &= mask;
168 /* Check reservation */
169 if ((env->reserve_addr & mask) == (addr & mask)) {
170 env->reserve_addr = (target_ulong)-1ULL;
173 /* Try fast path translate */
174 haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, mmu_idx);
175 if (haddr) {
176 memset(haddr, 0, dcbz_size);
177 } else {
178 /* Slow path */
179 for (i = 0; i < dcbz_size; i += 8) {
180 cpu_stq_mmuidx_ra(env, addr + i, 0, mmu_idx, retaddr);
185 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
187 dcbz_common(env, addr, opcode, false, GETPC());
190 void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode)
192 dcbz_common(env, addr, opcode, true, GETPC());
195 void helper_icbi(CPUPPCState *env, target_ulong addr)
197 addr &= ~(env->dcache_line_size - 1);
199 * Invalidate one cache line :
200 * PowerPC specification says this is to be treated like a load
201 * (not a fetch) by the MMU. To be sure it will be so,
202 * do the load "by hand".
204 cpu_ldl_data_ra(env, addr, GETPC());
207 void helper_icbiep(CPUPPCState *env, target_ulong addr)
209 #if !defined(CONFIG_USER_ONLY)
210 /* See comments above */
211 addr &= ~(env->dcache_line_size - 1);
212 cpu_ldl_mmuidx_ra(env, addr, PPC_TLB_EPID_LOAD, GETPC());
213 #endif
216 /* XXX: to be tested */
217 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
218 uint32_t ra, uint32_t rb)
220 int i, c, d;
222 d = 24;
223 for (i = 0; i < xer_bc; i++) {
224 c = cpu_ldub_data_ra(env, addr, GETPC());
225 addr = addr_add(env, addr, 1);
226 /* ra (if not 0) and rb are never modified */
227 if (likely(reg != rb && (ra == 0 || reg != ra))) {
228 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
230 if (unlikely(c == xer_cmp)) {
231 break;
233 if (likely(d != 0)) {
234 d -= 8;
235 } else {
236 d = 24;
237 reg++;
238 reg = reg & 0x1F;
241 return i;
244 #ifdef TARGET_PPC64
245 uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
246 uint32_t opidx)
248 Int128 ret;
250 /* We will have raised EXCP_ATOMIC from the translator. */
251 assert(HAVE_ATOMIC128);
252 ret = helper_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
253 env->retxh = int128_gethi(ret);
254 return int128_getlo(ret);
257 uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
258 uint32_t opidx)
260 Int128 ret;
262 /* We will have raised EXCP_ATOMIC from the translator. */
263 assert(HAVE_ATOMIC128);
264 ret = helper_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
265 env->retxh = int128_gethi(ret);
266 return int128_getlo(ret);
269 void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
270 uint64_t lo, uint64_t hi, uint32_t opidx)
272 Int128 val;
274 /* We will have raised EXCP_ATOMIC from the translator. */
275 assert(HAVE_ATOMIC128);
276 val = int128_make128(lo, hi);
277 helper_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
280 void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
281 uint64_t lo, uint64_t hi, uint32_t opidx)
283 Int128 val;
285 /* We will have raised EXCP_ATOMIC from the translator. */
286 assert(HAVE_ATOMIC128);
287 val = int128_make128(lo, hi);
288 helper_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
291 uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
292 uint64_t new_lo, uint64_t new_hi,
293 uint32_t opidx)
295 bool success = false;
297 /* We will have raised EXCP_ATOMIC from the translator. */
298 assert(HAVE_CMPXCHG128);
300 if (likely(addr == env->reserve_addr)) {
301 Int128 oldv, cmpv, newv;
303 cmpv = int128_make128(env->reserve_val2, env->reserve_val);
304 newv = int128_make128(new_lo, new_hi);
305 oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
306 opidx, GETPC());
307 success = int128_eq(oldv, cmpv);
309 env->reserve_addr = -1;
310 return env->so + success * CRF_EQ_BIT;
313 uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
314 uint64_t new_lo, uint64_t new_hi,
315 uint32_t opidx)
317 bool success = false;
319 /* We will have raised EXCP_ATOMIC from the translator. */
320 assert(HAVE_CMPXCHG128);
322 if (likely(addr == env->reserve_addr)) {
323 Int128 oldv, cmpv, newv;
325 cmpv = int128_make128(env->reserve_val2, env->reserve_val);
326 newv = int128_make128(new_lo, new_hi);
327 oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
328 opidx, GETPC());
329 success = int128_eq(oldv, cmpv);
331 env->reserve_addr = -1;
332 return env->so + success * CRF_EQ_BIT;
334 #endif
336 /*****************************************************************************/
337 /* Altivec extension helpers */
338 #if defined(HOST_WORDS_BIGENDIAN)
339 #define HI_IDX 0
340 #define LO_IDX 1
341 #else
342 #define HI_IDX 1
343 #define LO_IDX 0
344 #endif
347 * We use msr_le to determine index ordering in a vector. However,
348 * byteswapping is not simply controlled by msr_le. We also need to
349 * take into account endianness of the target. This is done for the
350 * little-endian PPC64 user-mode target.
353 #define LVE(name, access, swap, element) \
354 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
355 target_ulong addr) \
357 size_t n_elems = ARRAY_SIZE(r->element); \
358 int adjust = HI_IDX * (n_elems - 1); \
359 int sh = sizeof(r->element[0]) >> 1; \
360 int index = (addr & 0xf) >> sh; \
361 if (msr_le) { \
362 index = n_elems - index - 1; \
365 if (needs_byteswap(env)) { \
366 r->element[LO_IDX ? index : (adjust - index)] = \
367 swap(access(env, addr, GETPC())); \
368 } else { \
369 r->element[LO_IDX ? index : (adjust - index)] = \
370 access(env, addr, GETPC()); \
373 #define I(x) (x)
374 LVE(lvebx, cpu_ldub_data_ra, I, u8)
375 LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
376 LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
377 #undef I
378 #undef LVE
380 #define STVE(name, access, swap, element) \
381 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
382 target_ulong addr) \
384 size_t n_elems = ARRAY_SIZE(r->element); \
385 int adjust = HI_IDX * (n_elems - 1); \
386 int sh = sizeof(r->element[0]) >> 1; \
387 int index = (addr & 0xf) >> sh; \
388 if (msr_le) { \
389 index = n_elems - index - 1; \
392 if (needs_byteswap(env)) { \
393 access(env, addr, swap(r->element[LO_IDX ? index : \
394 (adjust - index)]), \
395 GETPC()); \
396 } else { \
397 access(env, addr, r->element[LO_IDX ? index : \
398 (adjust - index)], GETPC()); \
401 #define I(x) (x)
402 STVE(stvebx, cpu_stb_data_ra, I, u8)
403 STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
404 STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
405 #undef I
406 #undef LVE
408 #ifdef TARGET_PPC64
409 #define GET_NB(rb) ((rb >> 56) & 0xFF)
411 #define VSX_LXVL(name, lj) \
412 void helper_##name(CPUPPCState *env, target_ulong addr, \
413 ppc_vsr_t *xt, target_ulong rb) \
415 ppc_vsr_t t; \
416 uint64_t nb = GET_NB(rb); \
417 int i; \
419 t.s128 = int128_zero(); \
420 if (nb) { \
421 nb = (nb >= 16) ? 16 : nb; \
422 if (msr_le && !lj) { \
423 for (i = 16; i > 16 - nb; i--) { \
424 t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC()); \
425 addr = addr_add(env, addr, 1); \
427 } else { \
428 for (i = 0; i < nb; i++) { \
429 t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC()); \
430 addr = addr_add(env, addr, 1); \
434 *xt = t; \
437 VSX_LXVL(lxvl, 0)
438 VSX_LXVL(lxvll, 1)
439 #undef VSX_LXVL
441 #define VSX_STXVL(name, lj) \
442 void helper_##name(CPUPPCState *env, target_ulong addr, \
443 ppc_vsr_t *xt, target_ulong rb) \
445 target_ulong nb = GET_NB(rb); \
446 int i; \
448 if (!nb) { \
449 return; \
452 nb = (nb >= 16) ? 16 : nb; \
453 if (msr_le && !lj) { \
454 for (i = 16; i > 16 - nb; i--) { \
455 cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \
456 addr = addr_add(env, addr, 1); \
458 } else { \
459 for (i = 0; i < nb; i++) { \
460 cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC()); \
461 addr = addr_add(env, addr, 1); \
466 VSX_STXVL(stxvl, 0)
467 VSX_STXVL(stxvll, 1)
468 #undef VSX_STXVL
469 #undef GET_NB
470 #endif /* TARGET_PPC64 */
472 #undef HI_IDX
473 #undef LO_IDX
475 void helper_tbegin(CPUPPCState *env)
478 * As a degenerate implementation, always fail tbegin. The reason
479 * given is "Nesting overflow". The "persistent" bit is set,
480 * providing a hint to the error handler to not retry. The TFIAR
481 * captures the address of the failure, which is this tbegin
482 * instruction. Instruction execution will continue with the next
483 * instruction in memory, which is precisely what we want.
486 env->spr[SPR_TEXASR] =
487 (1ULL << TEXASR_FAILURE_PERSISTENT) |
488 (1ULL << TEXASR_NESTING_OVERFLOW) |
489 (msr_hv << TEXASR_PRIVILEGE_HV) |
490 (msr_pr << TEXASR_PRIVILEGE_PR) |
491 (1ULL << TEXASR_FAILURE_SUMMARY) |
492 (1ULL << TEXASR_TFIAR_EXACT);
493 env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
494 env->spr[SPR_TFHAR] = env->nip + 4;
495 env->crf[0] = 0xB; /* 0b1010 = transaction failure */