target/arm: Move hflags code into the tcg directory
[qemu/kevin.git] / hw / arm / virt.c
blobac626b3bef74f22703119c1c23fd17a744e2abc7
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/irq.h"
67 #include "kvm_arm.h"
68 #include "hw/firmware/smbios.h"
69 #include "qapi/visitor.h"
70 #include "qapi/qapi-visit-common.h"
71 #include "standard-headers/linux/input.h"
72 #include "hw/arm/smmuv3.h"
73 #include "hw/acpi/acpi.h"
74 #include "target/arm/internals.h"
75 #include "hw/mem/memory-device.h"
76 #include "hw/mem/pc-dimm.h"
77 #include "hw/mem/nvdimm.h"
78 #include "hw/acpi/generic_event_device.h"
79 #include "hw/virtio/virtio-mem-pci.h"
80 #include "hw/virtio/virtio-iommu.h"
81 #include "hw/char/pl011.h"
82 #include "qemu/guest-random.h"
84 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
85 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
86 void *data) \
87 { \
88 MachineClass *mc = MACHINE_CLASS(oc); \
89 virt_machine_##major##_##minor##_options(mc); \
90 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
91 if (latest) { \
92 mc->alias = "virt"; \
93 } \
94 } \
95 static const TypeInfo machvirt_##major##_##minor##_info = { \
96 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
97 .parent = TYPE_VIRT_MACHINE, \
98 .class_init = virt_##major##_##minor##_class_init, \
99 }; \
100 static void machvirt_machine_##major##_##minor##_init(void) \
102 type_register_static(&machvirt_##major##_##minor##_info); \
104 type_init(machvirt_machine_##major##_##minor##_init);
106 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
107 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
108 #define DEFINE_VIRT_MACHINE(major, minor) \
109 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
112 /* Number of external interrupt lines to configure the GIC with */
113 #define NUM_IRQS 256
115 #define PLATFORM_BUS_NUM_IRQS 64
117 /* Legacy RAM limit in GB (< version 4.0) */
118 #define LEGACY_RAMLIMIT_GB 255
119 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
121 /* Addresses and sizes of our components.
122 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
123 * 128MB..256MB is used for miscellaneous device I/O.
124 * 256MB..1GB is reserved for possible future PCI support (ie where the
125 * PCI memory window will go if we add a PCI host controller).
126 * 1GB and up is RAM (which may happily spill over into the
127 * high memory region beyond 4GB).
128 * This represents a compromise between how much RAM can be given to
129 * a 32 bit VM and leaving space for expansion and in particular for PCI.
130 * Note that devices should generally be placed at multiples of 0x10000,
131 * to accommodate guests using 64K pages.
133 static const MemMapEntry base_memmap[] = {
134 /* Space up to 0x8000000 is reserved for a boot ROM */
135 [VIRT_FLASH] = { 0, 0x08000000 },
136 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
137 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
138 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
139 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
140 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
141 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
142 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
143 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
144 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
145 /* This redistributor space allows up to 2*64kB*123 CPUs */
146 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
147 [VIRT_UART] = { 0x09000000, 0x00001000 },
148 [VIRT_RTC] = { 0x09010000, 0x00001000 },
149 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
150 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
151 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
152 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
153 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
154 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
155 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
156 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
157 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
158 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
159 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
160 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
161 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
162 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
163 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
164 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
165 /* Actual RAM size depends on initial RAM and device memory settings */
166 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
170 * Highmem IO Regions: This memory map is floating, located after the RAM.
171 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
172 * top of the RAM, so that its base get the same alignment as the size,
173 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
174 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
175 * Note the extended_memmap is sized so that it eventually also includes the
176 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
177 * index of base_memmap).
179 * The memory map for these Highmem IO Regions can be in legacy or compact
180 * layout, depending on 'compact-highmem' property. With legacy layout, the
181 * PA space for one specific region is always reserved, even if the region
182 * has been disabled or doesn't fit into the PA space. However, the PA space
183 * for the region won't be reserved in these circumstances with compact layout.
185 static MemMapEntry extended_memmap[] = {
186 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
187 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
188 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
189 /* Second PCIe window */
190 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
193 static const int a15irqmap[] = {
194 [VIRT_UART] = 1,
195 [VIRT_RTC] = 2,
196 [VIRT_PCIE] = 3, /* ... to 6 */
197 [VIRT_GPIO] = 7,
198 [VIRT_SECURE_UART] = 8,
199 [VIRT_ACPI_GED] = 9,
200 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
201 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
202 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
203 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
206 static const char *valid_cpus[] = {
207 ARM_CPU_TYPE_NAME("cortex-a7"),
208 ARM_CPU_TYPE_NAME("cortex-a15"),
209 ARM_CPU_TYPE_NAME("cortex-a35"),
210 ARM_CPU_TYPE_NAME("cortex-a53"),
211 ARM_CPU_TYPE_NAME("cortex-a55"),
212 ARM_CPU_TYPE_NAME("cortex-a57"),
213 ARM_CPU_TYPE_NAME("cortex-a72"),
214 ARM_CPU_TYPE_NAME("cortex-a76"),
215 ARM_CPU_TYPE_NAME("a64fx"),
216 ARM_CPU_TYPE_NAME("neoverse-n1"),
217 ARM_CPU_TYPE_NAME("host"),
218 ARM_CPU_TYPE_NAME("max"),
221 static bool cpu_type_valid(const char *cpu)
223 int i;
225 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
226 if (strcmp(cpu, valid_cpus[i]) == 0) {
227 return true;
230 return false;
233 static void create_randomness(MachineState *ms, const char *node)
235 struct {
236 uint64_t kaslr;
237 uint8_t rng[32];
238 } seed;
240 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
241 return;
243 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
244 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
247 static void create_fdt(VirtMachineState *vms)
249 MachineState *ms = MACHINE(vms);
250 int nb_numa_nodes = ms->numa_state->num_nodes;
251 void *fdt = create_device_tree(&vms->fdt_size);
253 if (!fdt) {
254 error_report("create_device_tree() failed");
255 exit(1);
258 ms->fdt = fdt;
260 /* Header */
261 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
262 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
263 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
264 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
266 /* /chosen must exist for load_dtb to fill in necessary properties later */
267 qemu_fdt_add_subnode(fdt, "/chosen");
268 if (vms->dtb_randomness) {
269 create_randomness(ms, "/chosen");
272 if (vms->secure) {
273 qemu_fdt_add_subnode(fdt, "/secure-chosen");
274 if (vms->dtb_randomness) {
275 create_randomness(ms, "/secure-chosen");
279 /* Clock node, for the benefit of the UART. The kernel device tree
280 * binding documentation claims the PL011 node clock properties are
281 * optional but in practice if you omit them the kernel refuses to
282 * probe for the device.
284 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
285 qemu_fdt_add_subnode(fdt, "/apb-pclk");
286 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
287 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
288 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
289 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
290 "clk24mhz");
291 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
293 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
294 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
295 uint32_t *matrix = g_malloc0(size);
296 int idx, i, j;
298 for (i = 0; i < nb_numa_nodes; i++) {
299 for (j = 0; j < nb_numa_nodes; j++) {
300 idx = (i * nb_numa_nodes + j) * 3;
301 matrix[idx + 0] = cpu_to_be32(i);
302 matrix[idx + 1] = cpu_to_be32(j);
303 matrix[idx + 2] =
304 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
308 qemu_fdt_add_subnode(fdt, "/distance-map");
309 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
310 "numa-distance-map-v1");
311 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
312 matrix, size);
313 g_free(matrix);
317 static void fdt_add_timer_nodes(const VirtMachineState *vms)
319 /* On real hardware these interrupts are level-triggered.
320 * On KVM they were edge-triggered before host kernel version 4.4,
321 * and level-triggered afterwards.
322 * On emulated QEMU they are level-triggered.
324 * Getting the DTB info about them wrong is awkward for some
325 * guest kernels:
326 * pre-4.8 ignore the DT and leave the interrupt configured
327 * with whatever the GIC reset value (or the bootloader) left it at
328 * 4.8 before rc6 honour the incorrect data by programming it back
329 * into the GIC, causing problems
330 * 4.8rc6 and later ignore the DT and always write "level triggered"
331 * into the GIC
333 * For backwards-compatibility, virt-2.8 and earlier will continue
334 * to say these are edge-triggered, but later machines will report
335 * the correct information.
337 ARMCPU *armcpu;
338 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
339 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
340 MachineState *ms = MACHINE(vms);
342 if (vmc->claim_edge_triggered_timers) {
343 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
346 if (vms->gic_version == VIRT_GIC_VERSION_2) {
347 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
348 GIC_FDT_IRQ_PPI_CPU_WIDTH,
349 (1 << MACHINE(vms)->smp.cpus) - 1);
352 qemu_fdt_add_subnode(ms->fdt, "/timer");
354 armcpu = ARM_CPU(qemu_get_cpu(0));
355 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
356 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
357 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
358 compat, sizeof(compat));
359 } else {
360 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
361 "arm,armv7-timer");
363 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
364 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
365 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
366 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
367 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
368 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
371 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
373 int cpu;
374 int addr_cells = 1;
375 const MachineState *ms = MACHINE(vms);
376 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
377 int smp_cpus = ms->smp.cpus;
380 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
381 * On ARM v8 64-bit systems value should be set to 2,
382 * that corresponds to the MPIDR_EL1 register size.
383 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
384 * in the system, #address-cells can be set to 1, since
385 * MPIDR_EL1[63:32] bits are not used for CPUs
386 * identification.
388 * Here we actually don't know whether our system is 32- or 64-bit one.
389 * The simplest way to go is to examine affinity IDs of all our CPUs. If
390 * at least one of them has Aff3 populated, we set #address-cells to 2.
392 for (cpu = 0; cpu < smp_cpus; cpu++) {
393 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
395 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
396 addr_cells = 2;
397 break;
401 qemu_fdt_add_subnode(ms->fdt, "/cpus");
402 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
403 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
405 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
406 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
407 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
408 CPUState *cs = CPU(armcpu);
410 qemu_fdt_add_subnode(ms->fdt, nodename);
411 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
412 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
413 armcpu->dtb_compatible);
415 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
416 qemu_fdt_setprop_string(ms->fdt, nodename,
417 "enable-method", "psci");
420 if (addr_cells == 2) {
421 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
422 armcpu->mp_affinity);
423 } else {
424 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
425 armcpu->mp_affinity);
428 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
429 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
430 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
433 if (!vmc->no_cpu_topology) {
434 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
435 qemu_fdt_alloc_phandle(ms->fdt));
438 g_free(nodename);
441 if (!vmc->no_cpu_topology) {
443 * Add vCPU topology description through fdt node cpu-map.
445 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
446 * In a SMP system, the hierarchy of CPUs can be defined through
447 * four entities that are used to describe the layout of CPUs in
448 * the system: socket/cluster/core/thread.
450 * A socket node represents the boundary of system physical package
451 * and its child nodes must be one or more cluster nodes. A system
452 * can contain several layers of clustering within a single physical
453 * package and cluster nodes can be contained in parent cluster nodes.
455 * Note: currently we only support one layer of clustering within
456 * each physical package.
458 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
460 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
461 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
462 char *map_path;
464 if (ms->smp.threads > 1) {
465 map_path = g_strdup_printf(
466 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
467 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
468 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
469 (cpu / ms->smp.threads) % ms->smp.cores,
470 cpu % ms->smp.threads);
471 } else {
472 map_path = g_strdup_printf(
473 "/cpus/cpu-map/socket%d/cluster%d/core%d",
474 cpu / (ms->smp.clusters * ms->smp.cores),
475 (cpu / ms->smp.cores) % ms->smp.clusters,
476 cpu % ms->smp.cores);
478 qemu_fdt_add_path(ms->fdt, map_path);
479 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
481 g_free(map_path);
482 g_free(cpu_path);
487 static void fdt_add_its_gic_node(VirtMachineState *vms)
489 char *nodename;
490 MachineState *ms = MACHINE(vms);
492 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
493 nodename = g_strdup_printf("/intc/its@%" PRIx64,
494 vms->memmap[VIRT_GIC_ITS].base);
495 qemu_fdt_add_subnode(ms->fdt, nodename);
496 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
497 "arm,gic-v3-its");
498 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
499 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
500 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
501 2, vms->memmap[VIRT_GIC_ITS].base,
502 2, vms->memmap[VIRT_GIC_ITS].size);
503 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
504 g_free(nodename);
507 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
509 MachineState *ms = MACHINE(vms);
510 char *nodename;
512 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
513 vms->memmap[VIRT_GIC_V2M].base);
514 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
515 qemu_fdt_add_subnode(ms->fdt, nodename);
516 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
517 "arm,gic-v2m-frame");
518 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
519 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
520 2, vms->memmap[VIRT_GIC_V2M].base,
521 2, vms->memmap[VIRT_GIC_V2M].size);
522 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
523 g_free(nodename);
526 static void fdt_add_gic_node(VirtMachineState *vms)
528 MachineState *ms = MACHINE(vms);
529 char *nodename;
531 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
532 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
534 nodename = g_strdup_printf("/intc@%" PRIx64,
535 vms->memmap[VIRT_GIC_DIST].base);
536 qemu_fdt_add_subnode(ms->fdt, nodename);
537 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
538 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
539 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
540 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
541 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
542 if (vms->gic_version != VIRT_GIC_VERSION_2) {
543 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
545 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
546 "arm,gic-v3");
548 qemu_fdt_setprop_cell(ms->fdt, nodename,
549 "#redistributor-regions", nb_redist_regions);
551 if (nb_redist_regions == 1) {
552 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
553 2, vms->memmap[VIRT_GIC_DIST].base,
554 2, vms->memmap[VIRT_GIC_DIST].size,
555 2, vms->memmap[VIRT_GIC_REDIST].base,
556 2, vms->memmap[VIRT_GIC_REDIST].size);
557 } else {
558 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
559 2, vms->memmap[VIRT_GIC_DIST].base,
560 2, vms->memmap[VIRT_GIC_DIST].size,
561 2, vms->memmap[VIRT_GIC_REDIST].base,
562 2, vms->memmap[VIRT_GIC_REDIST].size,
563 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
564 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
567 if (vms->virt) {
568 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
569 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
570 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
572 } else {
573 /* 'cortex-a15-gic' means 'GIC v2' */
574 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
575 "arm,cortex-a15-gic");
576 if (!vms->virt) {
577 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
578 2, vms->memmap[VIRT_GIC_DIST].base,
579 2, vms->memmap[VIRT_GIC_DIST].size,
580 2, vms->memmap[VIRT_GIC_CPU].base,
581 2, vms->memmap[VIRT_GIC_CPU].size);
582 } else {
583 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
584 2, vms->memmap[VIRT_GIC_DIST].base,
585 2, vms->memmap[VIRT_GIC_DIST].size,
586 2, vms->memmap[VIRT_GIC_CPU].base,
587 2, vms->memmap[VIRT_GIC_CPU].size,
588 2, vms->memmap[VIRT_GIC_HYP].base,
589 2, vms->memmap[VIRT_GIC_HYP].size,
590 2, vms->memmap[VIRT_GIC_VCPU].base,
591 2, vms->memmap[VIRT_GIC_VCPU].size);
592 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
593 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
594 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
598 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
599 g_free(nodename);
602 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
604 ARMCPU *armcpu = ARM_CPU(first_cpu);
605 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
606 MachineState *ms = MACHINE(vms);
608 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
609 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
610 return;
613 if (vms->gic_version == VIRT_GIC_VERSION_2) {
614 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
615 GIC_FDT_IRQ_PPI_CPU_WIDTH,
616 (1 << MACHINE(vms)->smp.cpus) - 1);
619 qemu_fdt_add_subnode(ms->fdt, "/pmu");
620 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
621 const char compat[] = "arm,armv8-pmuv3";
622 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
623 compat, sizeof(compat));
624 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
625 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
629 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
631 DeviceState *dev;
632 MachineState *ms = MACHINE(vms);
633 int irq = vms->irqmap[VIRT_ACPI_GED];
634 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
636 if (ms->ram_slots) {
637 event |= ACPI_GED_MEM_HOTPLUG_EVT;
640 if (ms->nvdimms_state->is_enabled) {
641 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
644 dev = qdev_new(TYPE_ACPI_GED);
645 qdev_prop_set_uint32(dev, "ged-event", event);
647 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
648 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
649 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
651 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
653 return dev;
656 static void create_its(VirtMachineState *vms)
658 const char *itsclass = its_class_name();
659 DeviceState *dev;
661 if (!strcmp(itsclass, "arm-gicv3-its")) {
662 if (!vms->tcg_its) {
663 itsclass = NULL;
667 if (!itsclass) {
668 /* Do nothing if not supported */
669 return;
672 dev = qdev_new(itsclass);
674 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
675 &error_abort);
676 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
677 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
679 fdt_add_its_gic_node(vms);
680 vms->msi_controller = VIRT_MSI_CTRL_ITS;
683 static void create_v2m(VirtMachineState *vms)
685 int i;
686 int irq = vms->irqmap[VIRT_GIC_V2M];
687 DeviceState *dev;
689 dev = qdev_new("arm-gicv2m");
690 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
691 qdev_prop_set_uint32(dev, "base-spi", irq);
692 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
693 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
695 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
696 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
697 qdev_get_gpio_in(vms->gic, irq + i));
700 fdt_add_v2m_gic_node(vms);
701 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
704 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
706 MachineState *ms = MACHINE(vms);
707 /* We create a standalone GIC */
708 SysBusDevice *gicbusdev;
709 const char *gictype;
710 int i;
711 unsigned int smp_cpus = ms->smp.cpus;
712 uint32_t nb_redist_regions = 0;
713 int revision;
715 if (vms->gic_version == VIRT_GIC_VERSION_2) {
716 gictype = gic_class_name();
717 } else {
718 gictype = gicv3_class_name();
721 switch (vms->gic_version) {
722 case VIRT_GIC_VERSION_2:
723 revision = 2;
724 break;
725 case VIRT_GIC_VERSION_3:
726 revision = 3;
727 break;
728 case VIRT_GIC_VERSION_4:
729 revision = 4;
730 break;
731 default:
732 g_assert_not_reached();
734 vms->gic = qdev_new(gictype);
735 qdev_prop_set_uint32(vms->gic, "revision", revision);
736 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
737 /* Note that the num-irq property counts both internal and external
738 * interrupts; there are always 32 of the former (mandated by GIC spec).
740 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
741 if (!kvm_irqchip_in_kernel()) {
742 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
745 if (vms->gic_version != VIRT_GIC_VERSION_2) {
746 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
747 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
749 nb_redist_regions = virt_gicv3_redist_region_count(vms);
751 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
752 nb_redist_regions);
753 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
755 if (!kvm_irqchip_in_kernel()) {
756 if (vms->tcg_its) {
757 object_property_set_link(OBJECT(vms->gic), "sysmem",
758 OBJECT(mem), &error_fatal);
759 qdev_prop_set_bit(vms->gic, "has-lpi", true);
763 if (nb_redist_regions == 2) {
764 uint32_t redist1_capacity =
765 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
767 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
768 MIN(smp_cpus - redist0_count, redist1_capacity));
770 } else {
771 if (!kvm_irqchip_in_kernel()) {
772 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
773 vms->virt);
776 gicbusdev = SYS_BUS_DEVICE(vms->gic);
777 sysbus_realize_and_unref(gicbusdev, &error_fatal);
778 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
779 if (vms->gic_version != VIRT_GIC_VERSION_2) {
780 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
781 if (nb_redist_regions == 2) {
782 sysbus_mmio_map(gicbusdev, 2,
783 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
785 } else {
786 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
787 if (vms->virt) {
788 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
789 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
793 /* Wire the outputs from each CPU's generic timer and the GICv3
794 * maintenance interrupt signal to the appropriate GIC PPI inputs,
795 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
797 for (i = 0; i < smp_cpus; i++) {
798 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
799 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
800 int irq;
801 /* Mapping from the output timer irq lines from the CPU to the
802 * GIC PPI inputs we use for the virt board.
804 const int timer_irq[] = {
805 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
806 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
807 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
808 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
811 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
812 qdev_connect_gpio_out(cpudev, irq,
813 qdev_get_gpio_in(vms->gic,
814 ppibase + timer_irq[irq]));
817 if (vms->gic_version != VIRT_GIC_VERSION_2) {
818 qemu_irq irq = qdev_get_gpio_in(vms->gic,
819 ppibase + ARCH_GIC_MAINT_IRQ);
820 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
821 0, irq);
822 } else if (vms->virt) {
823 qemu_irq irq = qdev_get_gpio_in(vms->gic,
824 ppibase + ARCH_GIC_MAINT_IRQ);
825 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
828 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
829 qdev_get_gpio_in(vms->gic, ppibase
830 + VIRTUAL_PMU_IRQ));
832 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
833 sysbus_connect_irq(gicbusdev, i + smp_cpus,
834 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
835 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
836 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
837 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
838 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
841 fdt_add_gic_node(vms);
843 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
844 create_its(vms);
845 } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
846 create_v2m(vms);
850 static void create_uart(const VirtMachineState *vms, int uart,
851 MemoryRegion *mem, Chardev *chr)
853 char *nodename;
854 hwaddr base = vms->memmap[uart].base;
855 hwaddr size = vms->memmap[uart].size;
856 int irq = vms->irqmap[uart];
857 const char compat[] = "arm,pl011\0arm,primecell";
858 const char clocknames[] = "uartclk\0apb_pclk";
859 DeviceState *dev = qdev_new(TYPE_PL011);
860 SysBusDevice *s = SYS_BUS_DEVICE(dev);
861 MachineState *ms = MACHINE(vms);
863 qdev_prop_set_chr(dev, "chardev", chr);
864 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
865 memory_region_add_subregion(mem, base,
866 sysbus_mmio_get_region(s, 0));
867 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
869 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
870 qemu_fdt_add_subnode(ms->fdt, nodename);
871 /* Note that we can't use setprop_string because of the embedded NUL */
872 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
873 compat, sizeof(compat));
874 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
875 2, base, 2, size);
876 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
877 GIC_FDT_IRQ_TYPE_SPI, irq,
878 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
879 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
880 vms->clock_phandle, vms->clock_phandle);
881 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
882 clocknames, sizeof(clocknames));
884 if (uart == VIRT_UART) {
885 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
886 } else {
887 /* Mark as not usable by the normal world */
888 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
889 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
891 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
892 nodename);
895 g_free(nodename);
898 static void create_rtc(const VirtMachineState *vms)
900 char *nodename;
901 hwaddr base = vms->memmap[VIRT_RTC].base;
902 hwaddr size = vms->memmap[VIRT_RTC].size;
903 int irq = vms->irqmap[VIRT_RTC];
904 const char compat[] = "arm,pl031\0arm,primecell";
905 MachineState *ms = MACHINE(vms);
907 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
909 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
910 qemu_fdt_add_subnode(ms->fdt, nodename);
911 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
912 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
913 2, base, 2, size);
914 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
915 GIC_FDT_IRQ_TYPE_SPI, irq,
916 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
917 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
918 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
919 g_free(nodename);
922 static DeviceState *gpio_key_dev;
923 static void virt_powerdown_req(Notifier *n, void *opaque)
925 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
927 if (s->acpi_dev) {
928 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
929 } else {
930 /* use gpio Pin 3 for power button event */
931 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
935 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
936 uint32_t phandle)
938 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
939 qdev_get_gpio_in(pl061_dev, 3));
941 qemu_fdt_add_subnode(fdt, "/gpio-keys");
942 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
944 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
945 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
946 "label", "GPIO Key Poweroff");
947 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
948 KEY_POWER);
949 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
950 "gpios", phandle, 3, 0);
953 #define SECURE_GPIO_POWEROFF 0
954 #define SECURE_GPIO_RESET 1
956 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
957 uint32_t phandle)
959 DeviceState *gpio_pwr_dev;
961 /* gpio-pwr */
962 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
964 /* connect secure pl061 to gpio-pwr */
965 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
966 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
967 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
968 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
970 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
971 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
972 "gpio-poweroff");
973 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
974 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
975 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
976 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
977 "okay");
979 qemu_fdt_add_subnode(fdt, "/gpio-restart");
980 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
981 "gpio-restart");
982 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
983 "gpios", phandle, SECURE_GPIO_RESET, 0);
984 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
985 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
986 "okay");
989 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
990 MemoryRegion *mem)
992 char *nodename;
993 DeviceState *pl061_dev;
994 hwaddr base = vms->memmap[gpio].base;
995 hwaddr size = vms->memmap[gpio].size;
996 int irq = vms->irqmap[gpio];
997 const char compat[] = "arm,pl061\0arm,primecell";
998 SysBusDevice *s;
999 MachineState *ms = MACHINE(vms);
1001 pl061_dev = qdev_new("pl061");
1002 /* Pull lines down to 0 if not driven by the PL061 */
1003 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1004 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1005 s = SYS_BUS_DEVICE(pl061_dev);
1006 sysbus_realize_and_unref(s, &error_fatal);
1007 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1008 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1010 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1011 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1012 qemu_fdt_add_subnode(ms->fdt, nodename);
1013 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1014 2, base, 2, size);
1015 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1016 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1017 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1018 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1019 GIC_FDT_IRQ_TYPE_SPI, irq,
1020 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1021 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1022 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1023 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1025 if (gpio != VIRT_GPIO) {
1026 /* Mark as not usable by the normal world */
1027 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1028 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1030 g_free(nodename);
1032 /* Child gpio devices */
1033 if (gpio == VIRT_GPIO) {
1034 create_gpio_keys(ms->fdt, pl061_dev, phandle);
1035 } else {
1036 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1040 static void create_virtio_devices(const VirtMachineState *vms)
1042 int i;
1043 hwaddr size = vms->memmap[VIRT_MMIO].size;
1044 MachineState *ms = MACHINE(vms);
1046 /* We create the transports in forwards order. Since qbus_realize()
1047 * prepends (not appends) new child buses, the incrementing loop below will
1048 * create a list of virtio-mmio buses with decreasing base addresses.
1050 * When a -device option is processed from the command line,
1051 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1052 * order. The upshot is that -device options in increasing command line
1053 * order are mapped to virtio-mmio buses with decreasing base addresses.
1055 * When this code was originally written, that arrangement ensured that the
1056 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1057 * the first -device on the command line. (The end-to-end order is a
1058 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1059 * guest kernel's name-to-address assignment strategy.)
1061 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1062 * the message, if not necessarily the code, of commit 70161ff336.
1063 * Therefore the loop now establishes the inverse of the original intent.
1065 * Unfortunately, we can't counteract the kernel change by reversing the
1066 * loop; it would break existing command lines.
1068 * In any case, the kernel makes no guarantee about the stability of
1069 * enumeration order of virtio devices (as demonstrated by it changing
1070 * between kernel versions). For reliable and stable identification
1071 * of disks users must use UUIDs or similar mechanisms.
1073 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1074 int irq = vms->irqmap[VIRT_MMIO] + i;
1075 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1077 sysbus_create_simple("virtio-mmio", base,
1078 qdev_get_gpio_in(vms->gic, irq));
1081 /* We add dtb nodes in reverse order so that they appear in the finished
1082 * device tree lowest address first.
1084 * Note that this mapping is independent of the loop above. The previous
1085 * loop influences virtio device to virtio transport assignment, whereas
1086 * this loop controls how virtio transports are laid out in the dtb.
1088 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1089 char *nodename;
1090 int irq = vms->irqmap[VIRT_MMIO] + i;
1091 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1093 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1094 qemu_fdt_add_subnode(ms->fdt, nodename);
1095 qemu_fdt_setprop_string(ms->fdt, nodename,
1096 "compatible", "virtio,mmio");
1097 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1098 2, base, 2, size);
1099 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1100 GIC_FDT_IRQ_TYPE_SPI, irq,
1101 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1102 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1103 g_free(nodename);
1107 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1109 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1110 const char *name,
1111 const char *alias_prop_name)
1114 * Create a single flash device. We use the same parameters as
1115 * the flash devices on the Versatile Express board.
1117 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1119 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1120 qdev_prop_set_uint8(dev, "width", 4);
1121 qdev_prop_set_uint8(dev, "device-width", 2);
1122 qdev_prop_set_bit(dev, "big-endian", false);
1123 qdev_prop_set_uint16(dev, "id0", 0x89);
1124 qdev_prop_set_uint16(dev, "id1", 0x18);
1125 qdev_prop_set_uint16(dev, "id2", 0x00);
1126 qdev_prop_set_uint16(dev, "id3", 0x00);
1127 qdev_prop_set_string(dev, "name", name);
1128 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1129 object_property_add_alias(OBJECT(vms), alias_prop_name,
1130 OBJECT(dev), "drive");
1131 return PFLASH_CFI01(dev);
1134 static void virt_flash_create(VirtMachineState *vms)
1136 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1137 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1140 static void virt_flash_map1(PFlashCFI01 *flash,
1141 hwaddr base, hwaddr size,
1142 MemoryRegion *sysmem)
1144 DeviceState *dev = DEVICE(flash);
1146 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1147 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1148 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1149 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1151 memory_region_add_subregion(sysmem, base,
1152 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1153 0));
1156 static void virt_flash_map(VirtMachineState *vms,
1157 MemoryRegion *sysmem,
1158 MemoryRegion *secure_sysmem)
1161 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1162 * sysmem is the system memory space. secure_sysmem is the secure view
1163 * of the system, and the first flash device should be made visible only
1164 * there. The second flash device is visible to both secure and nonsecure.
1165 * If sysmem == secure_sysmem this means there is no separate Secure
1166 * address space and both flash devices are generally visible.
1168 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1169 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1171 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1172 secure_sysmem);
1173 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1174 sysmem);
1177 static void virt_flash_fdt(VirtMachineState *vms,
1178 MemoryRegion *sysmem,
1179 MemoryRegion *secure_sysmem)
1181 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1182 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1183 MachineState *ms = MACHINE(vms);
1184 char *nodename;
1186 if (sysmem == secure_sysmem) {
1187 /* Report both flash devices as a single node in the DT */
1188 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1189 qemu_fdt_add_subnode(ms->fdt, nodename);
1190 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1191 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1192 2, flashbase, 2, flashsize,
1193 2, flashbase + flashsize, 2, flashsize);
1194 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1195 g_free(nodename);
1196 } else {
1198 * Report the devices as separate nodes so we can mark one as
1199 * only visible to the secure world.
1201 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1202 qemu_fdt_add_subnode(ms->fdt, nodename);
1203 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1204 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1205 2, flashbase, 2, flashsize);
1206 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1207 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1208 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1209 g_free(nodename);
1211 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1212 qemu_fdt_add_subnode(ms->fdt, nodename);
1213 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1214 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1215 2, flashbase + flashsize, 2, flashsize);
1216 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1217 g_free(nodename);
1221 static bool virt_firmware_init(VirtMachineState *vms,
1222 MemoryRegion *sysmem,
1223 MemoryRegion *secure_sysmem)
1225 int i;
1226 const char *bios_name;
1227 BlockBackend *pflash_blk0;
1229 /* Map legacy -drive if=pflash to machine properties */
1230 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1231 pflash_cfi01_legacy_drive(vms->flash[i],
1232 drive_get(IF_PFLASH, 0, i));
1235 virt_flash_map(vms, sysmem, secure_sysmem);
1237 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1239 bios_name = MACHINE(vms)->firmware;
1240 if (bios_name) {
1241 char *fname;
1242 MemoryRegion *mr;
1243 int image_size;
1245 if (pflash_blk0) {
1246 error_report("The contents of the first flash device may be "
1247 "specified with -bios or with -drive if=pflash... "
1248 "but you cannot use both options at once");
1249 exit(1);
1252 /* Fall back to -bios */
1254 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1255 if (!fname) {
1256 error_report("Could not find ROM image '%s'", bios_name);
1257 exit(1);
1259 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1260 image_size = load_image_mr(fname, mr);
1261 g_free(fname);
1262 if (image_size < 0) {
1263 error_report("Could not load ROM image '%s'", bios_name);
1264 exit(1);
1268 return pflash_blk0 || bios_name;
1271 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1273 MachineState *ms = MACHINE(vms);
1274 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1275 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1276 FWCfgState *fw_cfg;
1277 char *nodename;
1279 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1280 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1282 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1283 qemu_fdt_add_subnode(ms->fdt, nodename);
1284 qemu_fdt_setprop_string(ms->fdt, nodename,
1285 "compatible", "qemu,fw-cfg-mmio");
1286 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1287 2, base, 2, size);
1288 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1289 g_free(nodename);
1290 return fw_cfg;
1293 static void create_pcie_irq_map(const MachineState *ms,
1294 uint32_t gic_phandle,
1295 int first_irq, const char *nodename)
1297 int devfn, pin;
1298 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1299 uint32_t *irq_map = full_irq_map;
1301 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1302 for (pin = 0; pin < 4; pin++) {
1303 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1304 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1305 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1306 int i;
1308 uint32_t map[] = {
1309 devfn << 8, 0, 0, /* devfn */
1310 pin + 1, /* PCI pin */
1311 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1313 /* Convert map to big endian */
1314 for (i = 0; i < 10; i++) {
1315 irq_map[i] = cpu_to_be32(map[i]);
1317 irq_map += 10;
1321 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1322 full_irq_map, sizeof(full_irq_map));
1324 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1325 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1326 0, 0,
1327 0x7 /* PCI irq */);
1330 static void create_smmu(const VirtMachineState *vms,
1331 PCIBus *bus)
1333 char *node;
1334 const char compat[] = "arm,smmu-v3";
1335 int irq = vms->irqmap[VIRT_SMMU];
1336 int i;
1337 hwaddr base = vms->memmap[VIRT_SMMU].base;
1338 hwaddr size = vms->memmap[VIRT_SMMU].size;
1339 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1340 DeviceState *dev;
1341 MachineState *ms = MACHINE(vms);
1343 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1344 return;
1347 dev = qdev_new(TYPE_ARM_SMMUV3);
1349 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1350 &error_abort);
1351 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1352 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1353 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1354 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1355 qdev_get_gpio_in(vms->gic, irq + i));
1358 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1359 qemu_fdt_add_subnode(ms->fdt, node);
1360 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1361 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1363 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1364 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1365 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1366 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1367 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1369 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1370 sizeof(irq_names));
1372 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1374 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1376 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1377 g_free(node);
1380 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1382 const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1383 uint16_t bdf = vms->virtio_iommu_bdf;
1384 MachineState *ms = MACHINE(vms);
1385 char *node;
1387 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1389 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1390 PCI_SLOT(bdf), PCI_FUNC(bdf));
1391 qemu_fdt_add_subnode(ms->fdt, node);
1392 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1393 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1394 1, bdf << 8, 1, 0, 1, 0,
1395 1, 0, 1, 0);
1397 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1398 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1399 g_free(node);
1401 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1402 0x0, vms->iommu_phandle, 0x0, bdf,
1403 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1406 static void create_pcie(VirtMachineState *vms)
1408 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1409 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1410 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1411 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1412 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1413 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1414 hwaddr base_ecam, size_ecam;
1415 hwaddr base = base_mmio;
1416 int nr_pcie_buses;
1417 int irq = vms->irqmap[VIRT_PCIE];
1418 MemoryRegion *mmio_alias;
1419 MemoryRegion *mmio_reg;
1420 MemoryRegion *ecam_alias;
1421 MemoryRegion *ecam_reg;
1422 DeviceState *dev;
1423 char *nodename;
1424 int i, ecam_id;
1425 PCIHostState *pci;
1426 MachineState *ms = MACHINE(vms);
1428 dev = qdev_new(TYPE_GPEX_HOST);
1429 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1431 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1432 base_ecam = vms->memmap[ecam_id].base;
1433 size_ecam = vms->memmap[ecam_id].size;
1434 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1435 /* Map only the first size_ecam bytes of ECAM space */
1436 ecam_alias = g_new0(MemoryRegion, 1);
1437 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1438 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1439 ecam_reg, 0, size_ecam);
1440 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1442 /* Map the MMIO window into system address space so as to expose
1443 * the section of PCI MMIO space which starts at the same base address
1444 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1445 * the window).
1447 mmio_alias = g_new0(MemoryRegion, 1);
1448 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1449 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1450 mmio_reg, base_mmio, size_mmio);
1451 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1453 if (vms->highmem_mmio) {
1454 /* Map high MMIO space */
1455 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1457 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1458 mmio_reg, base_mmio_high, size_mmio_high);
1459 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1460 high_mmio_alias);
1463 /* Map IO port space */
1464 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1466 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1467 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1468 qdev_get_gpio_in(vms->gic, irq + i));
1469 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1472 pci = PCI_HOST_BRIDGE(dev);
1473 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1474 vms->bus = pci->bus;
1475 if (vms->bus) {
1476 for (i = 0; i < nb_nics; i++) {
1477 NICInfo *nd = &nd_table[i];
1479 if (!nd->model) {
1480 nd->model = g_strdup("virtio");
1483 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1487 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1488 qemu_fdt_add_subnode(ms->fdt, nodename);
1489 qemu_fdt_setprop_string(ms->fdt, nodename,
1490 "compatible", "pci-host-ecam-generic");
1491 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1492 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1493 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1494 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1495 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1496 nr_pcie_buses - 1);
1497 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1499 if (vms->msi_phandle) {
1500 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1501 0, vms->msi_phandle, 0, 0x10000);
1504 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1505 2, base_ecam, 2, size_ecam);
1507 if (vms->highmem_mmio) {
1508 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1509 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1510 2, base_pio, 2, size_pio,
1511 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1512 2, base_mmio, 2, size_mmio,
1513 1, FDT_PCI_RANGE_MMIO_64BIT,
1514 2, base_mmio_high,
1515 2, base_mmio_high, 2, size_mmio_high);
1516 } else {
1517 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1518 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1519 2, base_pio, 2, size_pio,
1520 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1521 2, base_mmio, 2, size_mmio);
1524 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1525 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1527 if (vms->iommu) {
1528 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1530 switch (vms->iommu) {
1531 case VIRT_IOMMU_SMMUV3:
1532 create_smmu(vms, vms->bus);
1533 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1534 0x0, vms->iommu_phandle, 0x0, 0x10000);
1535 break;
1536 default:
1537 g_assert_not_reached();
1542 static void create_platform_bus(VirtMachineState *vms)
1544 DeviceState *dev;
1545 SysBusDevice *s;
1546 int i;
1547 MemoryRegion *sysmem = get_system_memory();
1549 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1550 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1551 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1552 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1553 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1554 vms->platform_bus_dev = dev;
1556 s = SYS_BUS_DEVICE(dev);
1557 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1558 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1559 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1562 memory_region_add_subregion(sysmem,
1563 vms->memmap[VIRT_PLATFORM_BUS].base,
1564 sysbus_mmio_get_region(s, 0));
1567 static void create_tag_ram(MemoryRegion *tag_sysmem,
1568 hwaddr base, hwaddr size,
1569 const char *name)
1571 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1573 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1574 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1577 static void create_secure_ram(VirtMachineState *vms,
1578 MemoryRegion *secure_sysmem,
1579 MemoryRegion *secure_tag_sysmem)
1581 MemoryRegion *secram = g_new(MemoryRegion, 1);
1582 char *nodename;
1583 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1584 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1585 MachineState *ms = MACHINE(vms);
1587 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1588 &error_fatal);
1589 memory_region_add_subregion(secure_sysmem, base, secram);
1591 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1592 qemu_fdt_add_subnode(ms->fdt, nodename);
1593 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1594 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1595 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1596 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1598 if (secure_tag_sysmem) {
1599 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1602 g_free(nodename);
1605 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1607 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1608 bootinfo);
1609 MachineState *ms = MACHINE(board);
1612 *fdt_size = board->fdt_size;
1613 return ms->fdt;
1616 static void virt_build_smbios(VirtMachineState *vms)
1618 MachineClass *mc = MACHINE_GET_CLASS(vms);
1619 MachineState *ms = MACHINE(vms);
1620 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1621 uint8_t *smbios_tables, *smbios_anchor;
1622 size_t smbios_tables_len, smbios_anchor_len;
1623 struct smbios_phys_mem_area mem_array;
1624 const char *product = "QEMU Virtual Machine";
1626 if (kvm_enabled()) {
1627 product = "KVM Virtual Machine";
1630 smbios_set_defaults("QEMU", product,
1631 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1632 true, SMBIOS_ENTRY_POINT_TYPE_64);
1634 /* build the array of physical mem area from base_memmap */
1635 mem_array.address = vms->memmap[VIRT_MEM].base;
1636 mem_array.length = ms->ram_size;
1638 smbios_get_tables(ms, &mem_array, 1,
1639 &smbios_tables, &smbios_tables_len,
1640 &smbios_anchor, &smbios_anchor_len,
1641 &error_fatal);
1643 if (smbios_anchor) {
1644 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1645 smbios_tables, smbios_tables_len);
1646 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1647 smbios_anchor, smbios_anchor_len);
1651 static
1652 void virt_machine_done(Notifier *notifier, void *data)
1654 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1655 machine_done);
1656 MachineState *ms = MACHINE(vms);
1657 ARMCPU *cpu = ARM_CPU(first_cpu);
1658 struct arm_boot_info *info = &vms->bootinfo;
1659 AddressSpace *as = arm_boot_address_space(cpu, info);
1662 * If the user provided a dtb, we assume the dynamic sysbus nodes
1663 * already are integrated there. This corresponds to a use case where
1664 * the dynamic sysbus nodes are complex and their generation is not yet
1665 * supported. In that case the user can take charge of the guest dt
1666 * while qemu takes charge of the qom stuff.
1668 if (info->dtb_filename == NULL) {
1669 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1670 vms->memmap[VIRT_PLATFORM_BUS].base,
1671 vms->memmap[VIRT_PLATFORM_BUS].size,
1672 vms->irqmap[VIRT_PLATFORM_BUS]);
1674 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1675 exit(1);
1678 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1680 virt_acpi_setup(vms);
1681 virt_build_smbios(vms);
1684 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1686 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1687 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1689 if (!vmc->disallow_affinity_adjustment) {
1690 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1691 * GIC's target-list limitations. 32-bit KVM hosts currently
1692 * always create clusters of 4 CPUs, but that is expected to
1693 * change when they gain support for gicv3. When KVM is enabled
1694 * it will override the changes we make here, therefore our
1695 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1696 * and to improve SGI efficiency.
1698 if (vms->gic_version == VIRT_GIC_VERSION_2) {
1699 clustersz = GIC_TARGETLIST_BITS;
1700 } else {
1701 clustersz = GICV3_TARGETLIST_BITS;
1704 return arm_cpu_mp_affinity(idx, clustersz);
1707 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1708 int index)
1710 bool *enabled_array[] = {
1711 &vms->highmem_redists,
1712 &vms->highmem_ecam,
1713 &vms->highmem_mmio,
1716 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1717 ARRAY_SIZE(enabled_array));
1718 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1720 return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1723 static void virt_set_high_memmap(VirtMachineState *vms,
1724 hwaddr base, int pa_bits)
1726 hwaddr region_base, region_size;
1727 bool *region_enabled, fits;
1728 int i;
1730 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1731 region_enabled = virt_get_high_memmap_enabled(vms, i);
1732 region_base = ROUND_UP(base, extended_memmap[i].size);
1733 region_size = extended_memmap[i].size;
1735 vms->memmap[i].base = region_base;
1736 vms->memmap[i].size = region_size;
1739 * Check each device to see if it fits in the PA space,
1740 * moving highest_gpa as we go. For compatibility, move
1741 * highest_gpa for disabled fitting devices as well, if
1742 * the compact layout has been disabled.
1744 * For each device that doesn't fit, disable it.
1746 fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1747 *region_enabled &= fits;
1748 if (vms->highmem_compact && !*region_enabled) {
1749 continue;
1752 base = region_base + region_size;
1753 if (fits) {
1754 vms->highest_gpa = base - 1;
1759 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1761 MachineState *ms = MACHINE(vms);
1762 hwaddr base, device_memory_base, device_memory_size, memtop;
1763 int i;
1765 vms->memmap = extended_memmap;
1767 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1768 vms->memmap[i] = base_memmap[i];
1771 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1772 error_report("unsupported number of memory slots: %"PRIu64,
1773 ms->ram_slots);
1774 exit(EXIT_FAILURE);
1778 * !highmem is exactly the same as limiting the PA space to 32bit,
1779 * irrespective of the underlying capabilities of the HW.
1781 if (!vms->highmem) {
1782 pa_bits = 32;
1786 * We compute the base of the high IO region depending on the
1787 * amount of initial and device memory. The device memory start/size
1788 * is aligned on 1GiB. We never put the high IO region below 256GiB
1789 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1790 * The device region size assumes 1GiB page max alignment per slot.
1792 device_memory_base =
1793 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1794 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1796 /* Base address of the high IO region */
1797 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1798 if (memtop > BIT_ULL(pa_bits)) {
1799 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1800 pa_bits, memtop - BIT_ULL(pa_bits));
1801 exit(EXIT_FAILURE);
1803 if (base < device_memory_base) {
1804 error_report("maxmem/slots too huge");
1805 exit(EXIT_FAILURE);
1807 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1808 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1811 /* We know for sure that at least the memory fits in the PA space */
1812 vms->highest_gpa = memtop - 1;
1814 virt_set_high_memmap(vms, base, pa_bits);
1816 if (device_memory_size > 0) {
1817 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1818 ms->device_memory->base = device_memory_base;
1819 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1820 "device-memory", device_memory_size);
1824 static VirtGICType finalize_gic_version_do(const char *accel_name,
1825 VirtGICType gic_version,
1826 int gics_supported,
1827 unsigned int max_cpus)
1829 /* Convert host/max/nosel to GIC version number */
1830 switch (gic_version) {
1831 case VIRT_GIC_VERSION_HOST:
1832 if (!kvm_enabled()) {
1833 error_report("gic-version=host requires KVM");
1834 exit(1);
1837 /* For KVM, gic-version=host means gic-version=max */
1838 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1839 gics_supported, max_cpus);
1840 case VIRT_GIC_VERSION_MAX:
1841 if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1842 gic_version = VIRT_GIC_VERSION_4;
1843 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1844 gic_version = VIRT_GIC_VERSION_3;
1845 } else {
1846 gic_version = VIRT_GIC_VERSION_2;
1848 break;
1849 case VIRT_GIC_VERSION_NOSEL:
1850 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1851 max_cpus <= GIC_NCPU) {
1852 gic_version = VIRT_GIC_VERSION_2;
1853 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1855 * in case the host does not support v2 emulation or
1856 * the end-user requested more than 8 VCPUs we now default
1857 * to v3. In any case defaulting to v2 would be broken.
1859 gic_version = VIRT_GIC_VERSION_3;
1860 } else if (max_cpus > GIC_NCPU) {
1861 error_report("%s only supports GICv2 emulation but more than 8 "
1862 "vcpus are requested", accel_name);
1863 exit(1);
1865 break;
1866 case VIRT_GIC_VERSION_2:
1867 case VIRT_GIC_VERSION_3:
1868 case VIRT_GIC_VERSION_4:
1869 break;
1872 /* Check chosen version is effectively supported */
1873 switch (gic_version) {
1874 case VIRT_GIC_VERSION_2:
1875 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1876 error_report("%s does not support GICv2 emulation", accel_name);
1877 exit(1);
1879 break;
1880 case VIRT_GIC_VERSION_3:
1881 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1882 error_report("%s does not support GICv3 emulation", accel_name);
1883 exit(1);
1885 break;
1886 case VIRT_GIC_VERSION_4:
1887 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1888 error_report("%s does not support GICv4 emulation, is virtualization=on?",
1889 accel_name);
1890 exit(1);
1892 break;
1893 default:
1894 error_report("logic error in finalize_gic_version");
1895 exit(1);
1896 break;
1899 return gic_version;
1903 * finalize_gic_version - Determines the final gic_version
1904 * according to the gic-version property
1906 * Default GIC type is v2
1908 static void finalize_gic_version(VirtMachineState *vms)
1910 const char *accel_name = current_accel_name();
1911 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1912 int gics_supported = 0;
1914 /* Determine which GIC versions the current environment supports */
1915 if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1916 int probe_bitmap = kvm_arm_vgic_probe();
1918 if (!probe_bitmap) {
1919 error_report("Unable to determine GIC version supported by host");
1920 exit(1);
1923 if (probe_bitmap & KVM_ARM_VGIC_V2) {
1924 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1926 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1927 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1929 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1930 /* KVM w/o kernel irqchip can only deal with GICv2 */
1931 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1932 accel_name = "KVM with kernel-irqchip=off";
1933 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) {
1934 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1935 if (module_object_class_by_name("arm-gicv3")) {
1936 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1937 if (vms->virt) {
1938 /* GICv4 only makes sense if CPU has EL2 */
1939 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1942 } else {
1943 error_report("Unsupported accelerator, can not determine GIC support");
1944 exit(1);
1948 * Then convert helpers like host/max to concrete GIC versions and ensure
1949 * the desired version is supported
1951 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1952 gics_supported, max_cpus);
1956 * virt_cpu_post_init() must be called after the CPUs have
1957 * been realized and the GIC has been created.
1959 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1961 int max_cpus = MACHINE(vms)->smp.max_cpus;
1962 bool aarch64, pmu, steal_time;
1963 CPUState *cpu;
1965 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1966 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1967 steal_time = object_property_get_bool(OBJECT(first_cpu),
1968 "kvm-steal-time", NULL);
1970 if (kvm_enabled()) {
1971 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1972 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1974 if (steal_time) {
1975 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1976 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1978 /* The memory region size must be a multiple of host page size. */
1979 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1981 if (pvtime_size > pvtime_reg_size) {
1982 error_report("pvtime requires a %" HWADDR_PRId
1983 " byte memory region for %d CPUs,"
1984 " but only %" HWADDR_PRId " has been reserved",
1985 pvtime_size, max_cpus, pvtime_reg_size);
1986 exit(1);
1989 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1990 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1993 CPU_FOREACH(cpu) {
1994 if (pmu) {
1995 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1996 if (kvm_irqchip_in_kernel()) {
1997 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1999 kvm_arm_pmu_init(cpu);
2001 if (steal_time) {
2002 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
2003 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
2006 } else {
2007 if (aarch64 && vms->highmem) {
2008 int requested_pa_size = 64 - clz64(vms->highest_gpa);
2009 int pamax = arm_pamax(ARM_CPU(first_cpu));
2011 if (pamax < requested_pa_size) {
2012 error_report("VCPU supports less PA bits (%d) than "
2013 "requested by the memory map (%d)",
2014 pamax, requested_pa_size);
2015 exit(1);
2021 static void machvirt_init(MachineState *machine)
2023 VirtMachineState *vms = VIRT_MACHINE(machine);
2024 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2025 MachineClass *mc = MACHINE_GET_CLASS(machine);
2026 const CPUArchIdList *possible_cpus;
2027 MemoryRegion *sysmem = get_system_memory();
2028 MemoryRegion *secure_sysmem = NULL;
2029 MemoryRegion *tag_sysmem = NULL;
2030 MemoryRegion *secure_tag_sysmem = NULL;
2031 int n, virt_max_cpus;
2032 bool firmware_loaded;
2033 bool aarch64 = true;
2034 bool has_ged = !vmc->no_ged;
2035 unsigned int smp_cpus = machine->smp.cpus;
2036 unsigned int max_cpus = machine->smp.max_cpus;
2038 if (!cpu_type_valid(machine->cpu_type)) {
2039 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
2040 exit(1);
2043 possible_cpus = mc->possible_cpu_arch_ids(machine);
2046 * In accelerated mode, the memory map is computed earlier in kvm_type()
2047 * to create a VM with the right number of IPA bits.
2049 if (!vms->memmap) {
2050 Object *cpuobj;
2051 ARMCPU *armcpu;
2052 int pa_bits;
2055 * Instanciate a temporary CPU object to find out about what
2056 * we are about to deal with. Once this is done, get rid of
2057 * the object.
2059 cpuobj = object_new(possible_cpus->cpus[0].type);
2060 armcpu = ARM_CPU(cpuobj);
2062 pa_bits = arm_pamax(armcpu);
2064 object_unref(cpuobj);
2066 virt_set_memmap(vms, pa_bits);
2069 /* We can probe only here because during property set
2070 * KVM is not available yet
2072 finalize_gic_version(vms);
2074 if (vms->secure) {
2076 * The Secure view of the world is the same as the NonSecure,
2077 * but with a few extra devices. Create it as a container region
2078 * containing the system memory at low priority; any secure-only
2079 * devices go in at higher priority and take precedence.
2081 secure_sysmem = g_new(MemoryRegion, 1);
2082 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2083 UINT64_MAX);
2084 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2087 firmware_loaded = virt_firmware_init(vms, sysmem,
2088 secure_sysmem ?: sysmem);
2090 /* If we have an EL3 boot ROM then the assumption is that it will
2091 * implement PSCI itself, so disable QEMU's internal implementation
2092 * so it doesn't get in the way. Instead of starting secondary
2093 * CPUs in PSCI powerdown state we will start them all running and
2094 * let the boot ROM sort them out.
2095 * The usual case is that we do use QEMU's PSCI implementation;
2096 * if the guest has EL2 then we will use SMC as the conduit,
2097 * and otherwise we will use HVC (for backwards compatibility and
2098 * because if we're using KVM then we must use HVC).
2100 if (vms->secure && firmware_loaded) {
2101 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2102 } else if (vms->virt) {
2103 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2104 } else {
2105 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2109 * The maximum number of CPUs depends on the GIC version, or on how
2110 * many redistributors we can fit into the memory map (which in turn
2111 * depends on whether this is a GICv3 or v4).
2113 if (vms->gic_version == VIRT_GIC_VERSION_2) {
2114 virt_max_cpus = GIC_NCPU;
2115 } else {
2116 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2117 if (vms->highmem_redists) {
2118 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2122 if (max_cpus > virt_max_cpus) {
2123 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2124 "supported by machine 'mach-virt' (%d)",
2125 max_cpus, virt_max_cpus);
2126 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2127 error_printf("Try 'highmem-redists=on' for more CPUs\n");
2130 exit(1);
2133 if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2134 error_report("mach-virt: %s does not support providing "
2135 "Security extensions (TrustZone) to the guest CPU",
2136 current_accel_name());
2137 exit(1);
2140 if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2141 error_report("mach-virt: %s does not support providing "
2142 "Virtualization extensions to the guest CPU",
2143 current_accel_name());
2144 exit(1);
2147 if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2148 error_report("mach-virt: %s does not support providing "
2149 "MTE to the guest CPU",
2150 current_accel_name());
2151 exit(1);
2154 create_fdt(vms);
2156 assert(possible_cpus->len == max_cpus);
2157 for (n = 0; n < possible_cpus->len; n++) {
2158 Object *cpuobj;
2159 CPUState *cs;
2161 if (n >= smp_cpus) {
2162 break;
2165 cpuobj = object_new(possible_cpus->cpus[n].type);
2166 object_property_set_int(cpuobj, "mp-affinity",
2167 possible_cpus->cpus[n].arch_id, NULL);
2169 cs = CPU(cpuobj);
2170 cs->cpu_index = n;
2172 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2173 &error_fatal);
2175 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2177 if (!vms->secure) {
2178 object_property_set_bool(cpuobj, "has_el3", false, NULL);
2181 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2182 object_property_set_bool(cpuobj, "has_el2", false, NULL);
2185 if (vmc->kvm_no_adjvtime &&
2186 object_property_find(cpuobj, "kvm-no-adjvtime")) {
2187 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2190 if (vmc->no_kvm_steal_time &&
2191 object_property_find(cpuobj, "kvm-steal-time")) {
2192 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2195 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2196 object_property_set_bool(cpuobj, "pmu", false, NULL);
2199 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2200 object_property_set_bool(cpuobj, "lpa2", false, NULL);
2203 if (object_property_find(cpuobj, "reset-cbar")) {
2204 object_property_set_int(cpuobj, "reset-cbar",
2205 vms->memmap[VIRT_CPUPERIPHS].base,
2206 &error_abort);
2209 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2210 &error_abort);
2211 if (vms->secure) {
2212 object_property_set_link(cpuobj, "secure-memory",
2213 OBJECT(secure_sysmem), &error_abort);
2216 if (vms->mte) {
2217 /* Create the memory region only once, but link to all cpus. */
2218 if (!tag_sysmem) {
2220 * The property exists only if MemTag is supported.
2221 * If it is, we must allocate the ram to back that up.
2223 if (!object_property_find(cpuobj, "tag-memory")) {
2224 error_report("MTE requested, but not supported "
2225 "by the guest CPU");
2226 exit(1);
2229 tag_sysmem = g_new(MemoryRegion, 1);
2230 memory_region_init(tag_sysmem, OBJECT(machine),
2231 "tag-memory", UINT64_MAX / 32);
2233 if (vms->secure) {
2234 secure_tag_sysmem = g_new(MemoryRegion, 1);
2235 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2236 "secure-tag-memory", UINT64_MAX / 32);
2238 /* As with ram, secure-tag takes precedence over tag. */
2239 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2240 tag_sysmem, -1);
2244 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2245 &error_abort);
2246 if (vms->secure) {
2247 object_property_set_link(cpuobj, "secure-tag-memory",
2248 OBJECT(secure_tag_sysmem),
2249 &error_abort);
2253 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2254 object_unref(cpuobj);
2256 fdt_add_timer_nodes(vms);
2257 fdt_add_cpu_nodes(vms);
2259 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2260 machine->ram);
2261 if (machine->device_memory) {
2262 memory_region_add_subregion(sysmem, machine->device_memory->base,
2263 &machine->device_memory->mr);
2266 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2268 create_gic(vms, sysmem);
2270 virt_cpu_post_init(vms, sysmem);
2272 fdt_add_pmu_nodes(vms);
2274 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2276 if (vms->secure) {
2277 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2278 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2281 if (tag_sysmem) {
2282 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2283 machine->ram_size, "mach-virt.tag");
2286 vms->highmem_ecam &= (!firmware_loaded || aarch64);
2288 create_rtc(vms);
2290 create_pcie(vms);
2292 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2293 vms->acpi_dev = create_acpi_ged(vms);
2294 } else {
2295 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2298 if (vms->secure && !vmc->no_secure_gpio) {
2299 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2302 /* connect powerdown request */
2303 vms->powerdown_notifier.notify = virt_powerdown_req;
2304 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2306 /* Create mmio transports, so the user can create virtio backends
2307 * (which will be automatically plugged in to the transports). If
2308 * no backend is created the transport will just sit harmlessly idle.
2310 create_virtio_devices(vms);
2312 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2313 rom_set_fw(vms->fw_cfg);
2315 create_platform_bus(vms);
2317 if (machine->nvdimms_state->is_enabled) {
2318 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2319 .space_id = AML_AS_SYSTEM_MEMORY,
2320 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2321 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2324 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2325 arm_virt_nvdimm_acpi_dsmio,
2326 vms->fw_cfg, OBJECT(vms));
2329 vms->bootinfo.ram_size = machine->ram_size;
2330 vms->bootinfo.board_id = -1;
2331 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2332 vms->bootinfo.get_dtb = machvirt_dtb;
2333 vms->bootinfo.skip_dtb_autoload = true;
2334 vms->bootinfo.firmware_loaded = firmware_loaded;
2335 vms->bootinfo.psci_conduit = vms->psci_conduit;
2336 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2338 vms->machine_done.notify = virt_machine_done;
2339 qemu_add_machine_init_done_notifier(&vms->machine_done);
2342 static bool virt_get_secure(Object *obj, Error **errp)
2344 VirtMachineState *vms = VIRT_MACHINE(obj);
2346 return vms->secure;
2349 static void virt_set_secure(Object *obj, bool value, Error **errp)
2351 VirtMachineState *vms = VIRT_MACHINE(obj);
2353 vms->secure = value;
2356 static bool virt_get_virt(Object *obj, Error **errp)
2358 VirtMachineState *vms = VIRT_MACHINE(obj);
2360 return vms->virt;
2363 static void virt_set_virt(Object *obj, bool value, Error **errp)
2365 VirtMachineState *vms = VIRT_MACHINE(obj);
2367 vms->virt = value;
2370 static bool virt_get_highmem(Object *obj, Error **errp)
2372 VirtMachineState *vms = VIRT_MACHINE(obj);
2374 return vms->highmem;
2377 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2379 VirtMachineState *vms = VIRT_MACHINE(obj);
2381 vms->highmem = value;
2384 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2386 VirtMachineState *vms = VIRT_MACHINE(obj);
2388 return vms->highmem_compact;
2391 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2393 VirtMachineState *vms = VIRT_MACHINE(obj);
2395 vms->highmem_compact = value;
2398 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2400 VirtMachineState *vms = VIRT_MACHINE(obj);
2402 return vms->highmem_redists;
2405 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2407 VirtMachineState *vms = VIRT_MACHINE(obj);
2409 vms->highmem_redists = value;
2412 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2414 VirtMachineState *vms = VIRT_MACHINE(obj);
2416 return vms->highmem_ecam;
2419 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2421 VirtMachineState *vms = VIRT_MACHINE(obj);
2423 vms->highmem_ecam = value;
2426 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2428 VirtMachineState *vms = VIRT_MACHINE(obj);
2430 return vms->highmem_mmio;
2433 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2435 VirtMachineState *vms = VIRT_MACHINE(obj);
2437 vms->highmem_mmio = value;
2441 static bool virt_get_its(Object *obj, Error **errp)
2443 VirtMachineState *vms = VIRT_MACHINE(obj);
2445 return vms->its;
2448 static void virt_set_its(Object *obj, bool value, Error **errp)
2450 VirtMachineState *vms = VIRT_MACHINE(obj);
2452 vms->its = value;
2455 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2457 VirtMachineState *vms = VIRT_MACHINE(obj);
2459 return vms->dtb_randomness;
2462 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2464 VirtMachineState *vms = VIRT_MACHINE(obj);
2466 vms->dtb_randomness = value;
2469 static char *virt_get_oem_id(Object *obj, Error **errp)
2471 VirtMachineState *vms = VIRT_MACHINE(obj);
2473 return g_strdup(vms->oem_id);
2476 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2478 VirtMachineState *vms = VIRT_MACHINE(obj);
2479 size_t len = strlen(value);
2481 if (len > 6) {
2482 error_setg(errp,
2483 "User specified oem-id value is bigger than 6 bytes in size");
2484 return;
2487 strncpy(vms->oem_id, value, 6);
2490 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2492 VirtMachineState *vms = VIRT_MACHINE(obj);
2494 return g_strdup(vms->oem_table_id);
2497 static void virt_set_oem_table_id(Object *obj, const char *value,
2498 Error **errp)
2500 VirtMachineState *vms = VIRT_MACHINE(obj);
2501 size_t len = strlen(value);
2503 if (len > 8) {
2504 error_setg(errp,
2505 "User specified oem-table-id value is bigger than 8 bytes in size");
2506 return;
2508 strncpy(vms->oem_table_id, value, 8);
2512 bool virt_is_acpi_enabled(VirtMachineState *vms)
2514 if (vms->acpi == ON_OFF_AUTO_OFF) {
2515 return false;
2517 return true;
2520 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2521 void *opaque, Error **errp)
2523 VirtMachineState *vms = VIRT_MACHINE(obj);
2524 OnOffAuto acpi = vms->acpi;
2526 visit_type_OnOffAuto(v, name, &acpi, errp);
2529 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2530 void *opaque, Error **errp)
2532 VirtMachineState *vms = VIRT_MACHINE(obj);
2534 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2537 static bool virt_get_ras(Object *obj, Error **errp)
2539 VirtMachineState *vms = VIRT_MACHINE(obj);
2541 return vms->ras;
2544 static void virt_set_ras(Object *obj, bool value, Error **errp)
2546 VirtMachineState *vms = VIRT_MACHINE(obj);
2548 vms->ras = value;
2551 static bool virt_get_mte(Object *obj, Error **errp)
2553 VirtMachineState *vms = VIRT_MACHINE(obj);
2555 return vms->mte;
2558 static void virt_set_mte(Object *obj, bool value, Error **errp)
2560 VirtMachineState *vms = VIRT_MACHINE(obj);
2562 vms->mte = value;
2565 static char *virt_get_gic_version(Object *obj, Error **errp)
2567 VirtMachineState *vms = VIRT_MACHINE(obj);
2568 const char *val;
2570 switch (vms->gic_version) {
2571 case VIRT_GIC_VERSION_4:
2572 val = "4";
2573 break;
2574 case VIRT_GIC_VERSION_3:
2575 val = "3";
2576 break;
2577 default:
2578 val = "2";
2579 break;
2581 return g_strdup(val);
2584 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2586 VirtMachineState *vms = VIRT_MACHINE(obj);
2588 if (!strcmp(value, "4")) {
2589 vms->gic_version = VIRT_GIC_VERSION_4;
2590 } else if (!strcmp(value, "3")) {
2591 vms->gic_version = VIRT_GIC_VERSION_3;
2592 } else if (!strcmp(value, "2")) {
2593 vms->gic_version = VIRT_GIC_VERSION_2;
2594 } else if (!strcmp(value, "host")) {
2595 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2596 } else if (!strcmp(value, "max")) {
2597 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2598 } else {
2599 error_setg(errp, "Invalid gic-version value");
2600 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2604 static char *virt_get_iommu(Object *obj, Error **errp)
2606 VirtMachineState *vms = VIRT_MACHINE(obj);
2608 switch (vms->iommu) {
2609 case VIRT_IOMMU_NONE:
2610 return g_strdup("none");
2611 case VIRT_IOMMU_SMMUV3:
2612 return g_strdup("smmuv3");
2613 default:
2614 g_assert_not_reached();
2618 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2620 VirtMachineState *vms = VIRT_MACHINE(obj);
2622 if (!strcmp(value, "smmuv3")) {
2623 vms->iommu = VIRT_IOMMU_SMMUV3;
2624 } else if (!strcmp(value, "none")) {
2625 vms->iommu = VIRT_IOMMU_NONE;
2626 } else {
2627 error_setg(errp, "Invalid iommu value");
2628 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2632 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2634 VirtMachineState *vms = VIRT_MACHINE(obj);
2636 return vms->default_bus_bypass_iommu;
2639 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2640 Error **errp)
2642 VirtMachineState *vms = VIRT_MACHINE(obj);
2644 vms->default_bus_bypass_iommu = value;
2647 static CpuInstanceProperties
2648 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2650 MachineClass *mc = MACHINE_GET_CLASS(ms);
2651 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2653 assert(cpu_index < possible_cpus->len);
2654 return possible_cpus->cpus[cpu_index].props;
2657 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2659 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2661 return socket_id % ms->numa_state->num_nodes;
2664 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2666 int n;
2667 unsigned int max_cpus = ms->smp.max_cpus;
2668 VirtMachineState *vms = VIRT_MACHINE(ms);
2669 MachineClass *mc = MACHINE_GET_CLASS(vms);
2671 if (ms->possible_cpus) {
2672 assert(ms->possible_cpus->len == max_cpus);
2673 return ms->possible_cpus;
2676 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2677 sizeof(CPUArchId) * max_cpus);
2678 ms->possible_cpus->len = max_cpus;
2679 for (n = 0; n < ms->possible_cpus->len; n++) {
2680 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2681 ms->possible_cpus->cpus[n].arch_id =
2682 virt_cpu_mp_affinity(vms, n);
2684 assert(!mc->smp_props.dies_supported);
2685 ms->possible_cpus->cpus[n].props.has_socket_id = true;
2686 ms->possible_cpus->cpus[n].props.socket_id =
2687 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2688 ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2689 ms->possible_cpus->cpus[n].props.cluster_id =
2690 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2691 ms->possible_cpus->cpus[n].props.has_core_id = true;
2692 ms->possible_cpus->cpus[n].props.core_id =
2693 (n / ms->smp.threads) % ms->smp.cores;
2694 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2695 ms->possible_cpus->cpus[n].props.thread_id =
2696 n % ms->smp.threads;
2698 return ms->possible_cpus;
2701 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2702 Error **errp)
2704 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2705 const MachineState *ms = MACHINE(hotplug_dev);
2706 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2708 if (!vms->acpi_dev) {
2709 error_setg(errp,
2710 "memory hotplug is not enabled: missing acpi-ged device");
2711 return;
2714 if (vms->mte) {
2715 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2716 return;
2719 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2720 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2721 return;
2724 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2727 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2728 DeviceState *dev, Error **errp)
2730 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2731 MachineState *ms = MACHINE(hotplug_dev);
2732 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2734 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2736 if (is_nvdimm) {
2737 nvdimm_plug(ms->nvdimms_state);
2740 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2741 dev, &error_abort);
2744 static void virt_virtio_md_pci_pre_plug(HotplugHandler *hotplug_dev,
2745 DeviceState *dev, Error **errp)
2747 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2748 Error *local_err = NULL;
2750 if (!hotplug_dev2 && dev->hotplugged) {
2752 * Without a bus hotplug handler, we cannot control the plug/unplug
2753 * order. We should never reach this point when hotplugging on ARM.
2754 * However, it's nice to add a safety net, similar to what we have
2755 * on x86.
2757 error_setg(errp, "hotplug of virtio based memory devices not supported"
2758 " on this bus.");
2759 return;
2762 * First, see if we can plug this memory device at all. If that
2763 * succeeds, branch of to the actual hotplug handler.
2765 memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2766 &local_err);
2767 if (!local_err && hotplug_dev2) {
2768 hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2770 error_propagate(errp, local_err);
2773 static void virt_virtio_md_pci_plug(HotplugHandler *hotplug_dev,
2774 DeviceState *dev, Error **errp)
2776 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2777 Error *local_err = NULL;
2780 * Plug the memory device first and then branch off to the actual
2781 * hotplug handler. If that one fails, we can easily undo the memory
2782 * device bits.
2784 memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2785 if (hotplug_dev2) {
2786 hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2787 if (local_err) {
2788 memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2791 error_propagate(errp, local_err);
2794 static void virt_virtio_md_pci_unplug_request(HotplugHandler *hotplug_dev,
2795 DeviceState *dev, Error **errp)
2797 /* We don't support hot unplug of virtio based memory devices */
2798 error_setg(errp, "virtio based memory devices cannot be unplugged.");
2802 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2803 DeviceState *dev, Error **errp)
2805 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2807 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2808 virt_memory_pre_plug(hotplug_dev, dev, errp);
2809 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2810 virt_virtio_md_pci_pre_plug(hotplug_dev, dev, errp);
2811 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2812 hwaddr db_start = 0, db_end = 0;
2813 char *resv_prop_str;
2815 if (vms->iommu != VIRT_IOMMU_NONE) {
2816 error_setg(errp, "virt machine does not support multiple IOMMUs");
2817 return;
2820 switch (vms->msi_controller) {
2821 case VIRT_MSI_CTRL_NONE:
2822 return;
2823 case VIRT_MSI_CTRL_ITS:
2824 /* GITS_TRANSLATER page */
2825 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2826 db_end = base_memmap[VIRT_GIC_ITS].base +
2827 base_memmap[VIRT_GIC_ITS].size - 1;
2828 break;
2829 case VIRT_MSI_CTRL_GICV2M:
2830 /* MSI_SETSPI_NS page */
2831 db_start = base_memmap[VIRT_GIC_V2M].base;
2832 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2833 break;
2835 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2836 db_start, db_end,
2837 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2839 object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
2840 object_property_set_str(OBJECT(dev), "reserved-regions[0]",
2841 resv_prop_str, errp);
2842 g_free(resv_prop_str);
2846 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2847 DeviceState *dev, Error **errp)
2849 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2851 if (vms->platform_bus_dev) {
2852 MachineClass *mc = MACHINE_GET_CLASS(vms);
2854 if (device_is_dynamic_sysbus(mc, dev)) {
2855 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2856 SYS_BUS_DEVICE(dev));
2859 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2860 virt_memory_plug(hotplug_dev, dev, errp);
2863 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2864 virt_virtio_md_pci_plug(hotplug_dev, dev, errp);
2867 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2868 PCIDevice *pdev = PCI_DEVICE(dev);
2870 vms->iommu = VIRT_IOMMU_VIRTIO;
2871 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2872 create_virtio_iommu_dt_bindings(vms);
2876 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2877 DeviceState *dev, Error **errp)
2879 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2881 if (!vms->acpi_dev) {
2882 error_setg(errp,
2883 "memory hotplug is not enabled: missing acpi-ged device");
2884 return;
2887 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2888 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2889 return;
2892 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2893 errp);
2896 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2897 DeviceState *dev, Error **errp)
2899 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2900 Error *local_err = NULL;
2902 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2903 if (local_err) {
2904 goto out;
2907 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2908 qdev_unrealize(dev);
2910 out:
2911 error_propagate(errp, local_err);
2914 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2915 DeviceState *dev, Error **errp)
2917 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2918 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2919 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2920 virt_virtio_md_pci_unplug_request(hotplug_dev, dev, errp);
2921 } else {
2922 error_setg(errp, "device unplug request for unsupported device"
2923 " type: %s", object_get_typename(OBJECT(dev)));
2927 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2928 DeviceState *dev, Error **errp)
2930 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2931 virt_dimm_unplug(hotplug_dev, dev, errp);
2932 } else {
2933 error_setg(errp, "virt: device unplug for unsupported device"
2934 " type: %s", object_get_typename(OBJECT(dev)));
2938 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2939 DeviceState *dev)
2941 MachineClass *mc = MACHINE_GET_CLASS(machine);
2943 if (device_is_dynamic_sysbus(mc, dev) ||
2944 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2945 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI) ||
2946 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2947 return HOTPLUG_HANDLER(machine);
2949 return NULL;
2953 * for arm64 kvm_type [7-0] encodes the requested number of bits
2954 * in the IPA address space
2956 static int virt_kvm_type(MachineState *ms, const char *type_str)
2958 VirtMachineState *vms = VIRT_MACHINE(ms);
2959 int max_vm_pa_size, requested_pa_size;
2960 bool fixed_ipa;
2962 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2964 /* we freeze the memory map to compute the highest gpa */
2965 virt_set_memmap(vms, max_vm_pa_size);
2967 requested_pa_size = 64 - clz64(vms->highest_gpa);
2970 * KVM requires the IPA size to be at least 32 bits.
2972 if (requested_pa_size < 32) {
2973 requested_pa_size = 32;
2976 if (requested_pa_size > max_vm_pa_size) {
2977 error_report("-m and ,maxmem option values "
2978 "require an IPA range (%d bits) larger than "
2979 "the one supported by the host (%d bits)",
2980 requested_pa_size, max_vm_pa_size);
2981 exit(1);
2984 * We return the requested PA log size, unless KVM only supports
2985 * the implicit legacy 40b IPA setting, in which case the kvm_type
2986 * must be 0.
2988 return fixed_ipa ? 0 : requested_pa_size;
2991 static void virt_machine_class_init(ObjectClass *oc, void *data)
2993 MachineClass *mc = MACHINE_CLASS(oc);
2994 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2996 mc->init = machvirt_init;
2997 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2998 * The value may be reduced later when we have more information about the
2999 * configuration of the particular instance.
3001 mc->max_cpus = 512;
3002 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
3003 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
3004 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
3005 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
3006 #ifdef CONFIG_TPM
3007 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
3008 #endif
3009 mc->block_default_type = IF_VIRTIO;
3010 mc->no_cdrom = 1;
3011 mc->pci_allow_0_address = true;
3012 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
3013 mc->minimum_page_bits = 12;
3014 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
3015 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
3016 #ifdef CONFIG_TCG
3017 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
3018 #else
3019 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
3020 #endif
3021 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
3022 mc->kvm_type = virt_kvm_type;
3023 assert(!mc->get_hotplug_handler);
3024 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
3025 hc->pre_plug = virt_machine_device_pre_plug_cb;
3026 hc->plug = virt_machine_device_plug_cb;
3027 hc->unplug_request = virt_machine_device_unplug_request_cb;
3028 hc->unplug = virt_machine_device_unplug_cb;
3029 mc->nvdimm_supported = true;
3030 mc->smp_props.clusters_supported = true;
3031 mc->auto_enable_numa_with_memhp = true;
3032 mc->auto_enable_numa_with_memdev = true;
3033 mc->default_ram_id = "mach-virt.ram";
3035 object_class_property_add(oc, "acpi", "OnOffAuto",
3036 virt_get_acpi, virt_set_acpi,
3037 NULL, NULL);
3038 object_class_property_set_description(oc, "acpi",
3039 "Enable ACPI");
3040 object_class_property_add_bool(oc, "secure", virt_get_secure,
3041 virt_set_secure);
3042 object_class_property_set_description(oc, "secure",
3043 "Set on/off to enable/disable the ARM "
3044 "Security Extensions (TrustZone)");
3046 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
3047 virt_set_virt);
3048 object_class_property_set_description(oc, "virtualization",
3049 "Set on/off to enable/disable emulating a "
3050 "guest CPU which implements the ARM "
3051 "Virtualization Extensions");
3053 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3054 virt_set_highmem);
3055 object_class_property_set_description(oc, "highmem",
3056 "Set on/off to enable/disable using "
3057 "physical address space above 32 bits");
3059 object_class_property_add_bool(oc, "compact-highmem",
3060 virt_get_compact_highmem,
3061 virt_set_compact_highmem);
3062 object_class_property_set_description(oc, "compact-highmem",
3063 "Set on/off to enable/disable compact "
3064 "layout for high memory regions");
3066 object_class_property_add_bool(oc, "highmem-redists",
3067 virt_get_highmem_redists,
3068 virt_set_highmem_redists);
3069 object_class_property_set_description(oc, "highmem-redists",
3070 "Set on/off to enable/disable high "
3071 "memory region for GICv3 or GICv4 "
3072 "redistributor");
3074 object_class_property_add_bool(oc, "highmem-ecam",
3075 virt_get_highmem_ecam,
3076 virt_set_highmem_ecam);
3077 object_class_property_set_description(oc, "highmem-ecam",
3078 "Set on/off to enable/disable high "
3079 "memory region for PCI ECAM");
3081 object_class_property_add_bool(oc, "highmem-mmio",
3082 virt_get_highmem_mmio,
3083 virt_set_highmem_mmio);
3084 object_class_property_set_description(oc, "highmem-mmio",
3085 "Set on/off to enable/disable high "
3086 "memory region for PCI MMIO");
3088 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3089 virt_set_gic_version);
3090 object_class_property_set_description(oc, "gic-version",
3091 "Set GIC version. "
3092 "Valid values are 2, 3, 4, host and max");
3094 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3095 object_class_property_set_description(oc, "iommu",
3096 "Set the IOMMU type. "
3097 "Valid values are none and smmuv3");
3099 object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3100 virt_get_default_bus_bypass_iommu,
3101 virt_set_default_bus_bypass_iommu);
3102 object_class_property_set_description(oc, "default-bus-bypass-iommu",
3103 "Set on/off to enable/disable "
3104 "bypass_iommu for default root bus");
3106 object_class_property_add_bool(oc, "ras", virt_get_ras,
3107 virt_set_ras);
3108 object_class_property_set_description(oc, "ras",
3109 "Set on/off to enable/disable reporting host memory errors "
3110 "to a KVM guest using ACPI and guest external abort exceptions");
3112 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3113 object_class_property_set_description(oc, "mte",
3114 "Set on/off to enable/disable emulating a "
3115 "guest CPU which implements the ARM "
3116 "Memory Tagging Extension");
3118 object_class_property_add_bool(oc, "its", virt_get_its,
3119 virt_set_its);
3120 object_class_property_set_description(oc, "its",
3121 "Set on/off to enable/disable "
3122 "ITS instantiation");
3124 object_class_property_add_bool(oc, "dtb-randomness",
3125 virt_get_dtb_randomness,
3126 virt_set_dtb_randomness);
3127 object_class_property_set_description(oc, "dtb-randomness",
3128 "Set off to disable passing random or "
3129 "non-deterministic dtb nodes to guest");
3131 object_class_property_add_bool(oc, "dtb-kaslr-seed",
3132 virt_get_dtb_randomness,
3133 virt_set_dtb_randomness);
3134 object_class_property_set_description(oc, "dtb-kaslr-seed",
3135 "Deprecated synonym of dtb-randomness");
3137 object_class_property_add_str(oc, "x-oem-id",
3138 virt_get_oem_id,
3139 virt_set_oem_id);
3140 object_class_property_set_description(oc, "x-oem-id",
3141 "Override the default value of field OEMID "
3142 "in ACPI table header."
3143 "The string may be up to 6 bytes in size");
3146 object_class_property_add_str(oc, "x-oem-table-id",
3147 virt_get_oem_table_id,
3148 virt_set_oem_table_id);
3149 object_class_property_set_description(oc, "x-oem-table-id",
3150 "Override the default value of field OEM Table ID "
3151 "in ACPI table header."
3152 "The string may be up to 8 bytes in size");
3156 static void virt_instance_init(Object *obj)
3158 VirtMachineState *vms = VIRT_MACHINE(obj);
3159 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3161 /* EL3 is disabled by default on virt: this makes us consistent
3162 * between KVM and TCG for this board, and it also allows us to
3163 * boot UEFI blobs which assume no TrustZone support.
3165 vms->secure = false;
3167 /* EL2 is also disabled by default, for similar reasons */
3168 vms->virt = false;
3170 /* High memory is enabled by default */
3171 vms->highmem = true;
3172 vms->highmem_compact = !vmc->no_highmem_compact;
3173 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3175 vms->highmem_ecam = !vmc->no_highmem_ecam;
3176 vms->highmem_mmio = true;
3177 vms->highmem_redists = true;
3179 if (vmc->no_its) {
3180 vms->its = false;
3181 } else {
3182 /* Default allows ITS instantiation */
3183 vms->its = true;
3185 if (vmc->no_tcg_its) {
3186 vms->tcg_its = false;
3187 } else {
3188 vms->tcg_its = true;
3192 /* Default disallows iommu instantiation */
3193 vms->iommu = VIRT_IOMMU_NONE;
3195 /* The default root bus is attached to iommu by default */
3196 vms->default_bus_bypass_iommu = false;
3198 /* Default disallows RAS instantiation */
3199 vms->ras = false;
3201 /* MTE is disabled by default. */
3202 vms->mte = false;
3204 /* Supply kaslr-seed and rng-seed by default */
3205 vms->dtb_randomness = true;
3207 vms->irqmap = a15irqmap;
3209 virt_flash_create(vms);
3211 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3212 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3215 static const TypeInfo virt_machine_info = {
3216 .name = TYPE_VIRT_MACHINE,
3217 .parent = TYPE_MACHINE,
3218 .abstract = true,
3219 .instance_size = sizeof(VirtMachineState),
3220 .class_size = sizeof(VirtMachineClass),
3221 .class_init = virt_machine_class_init,
3222 .instance_init = virt_instance_init,
3223 .interfaces = (InterfaceInfo[]) {
3224 { TYPE_HOTPLUG_HANDLER },
3229 static void machvirt_machine_init(void)
3231 type_register_static(&virt_machine_info);
3233 type_init(machvirt_machine_init);
3235 static void virt_machine_8_0_options(MachineClass *mc)
3238 DEFINE_VIRT_MACHINE_AS_LATEST(8, 0)
3240 static void virt_machine_7_2_options(MachineClass *mc)
3242 virt_machine_8_0_options(mc);
3243 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3245 DEFINE_VIRT_MACHINE(7, 2)
3247 static void virt_machine_7_1_options(MachineClass *mc)
3249 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3251 virt_machine_7_2_options(mc);
3252 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3253 /* Compact layout for high memory regions was introduced with 7.2 */
3254 vmc->no_highmem_compact = true;
3256 DEFINE_VIRT_MACHINE(7, 1)
3258 static void virt_machine_7_0_options(MachineClass *mc)
3260 virt_machine_7_1_options(mc);
3261 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3263 DEFINE_VIRT_MACHINE(7, 0)
3265 static void virt_machine_6_2_options(MachineClass *mc)
3267 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3269 virt_machine_7_0_options(mc);
3270 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3271 vmc->no_tcg_lpa2 = true;
3273 DEFINE_VIRT_MACHINE(6, 2)
3275 static void virt_machine_6_1_options(MachineClass *mc)
3277 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3279 virt_machine_6_2_options(mc);
3280 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3281 mc->smp_props.prefer_sockets = true;
3282 vmc->no_cpu_topology = true;
3284 /* qemu ITS was introduced with 6.2 */
3285 vmc->no_tcg_its = true;
3287 DEFINE_VIRT_MACHINE(6, 1)
3289 static void virt_machine_6_0_options(MachineClass *mc)
3291 virt_machine_6_1_options(mc);
3292 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3294 DEFINE_VIRT_MACHINE(6, 0)
3296 static void virt_machine_5_2_options(MachineClass *mc)
3298 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3300 virt_machine_6_0_options(mc);
3301 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3302 vmc->no_secure_gpio = true;
3304 DEFINE_VIRT_MACHINE(5, 2)
3306 static void virt_machine_5_1_options(MachineClass *mc)
3308 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3310 virt_machine_5_2_options(mc);
3311 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3312 vmc->no_kvm_steal_time = true;
3314 DEFINE_VIRT_MACHINE(5, 1)
3316 static void virt_machine_5_0_options(MachineClass *mc)
3318 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3320 virt_machine_5_1_options(mc);
3321 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3322 mc->numa_mem_supported = true;
3323 vmc->acpi_expose_flash = true;
3324 mc->auto_enable_numa_with_memdev = false;
3326 DEFINE_VIRT_MACHINE(5, 0)
3328 static void virt_machine_4_2_options(MachineClass *mc)
3330 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3332 virt_machine_5_0_options(mc);
3333 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3334 vmc->kvm_no_adjvtime = true;
3336 DEFINE_VIRT_MACHINE(4, 2)
3338 static void virt_machine_4_1_options(MachineClass *mc)
3340 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3342 virt_machine_4_2_options(mc);
3343 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3344 vmc->no_ged = true;
3345 mc->auto_enable_numa_with_memhp = false;
3347 DEFINE_VIRT_MACHINE(4, 1)
3349 static void virt_machine_4_0_options(MachineClass *mc)
3351 virt_machine_4_1_options(mc);
3352 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3354 DEFINE_VIRT_MACHINE(4, 0)
3356 static void virt_machine_3_1_options(MachineClass *mc)
3358 virt_machine_4_0_options(mc);
3359 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3361 DEFINE_VIRT_MACHINE(3, 1)
3363 static void virt_machine_3_0_options(MachineClass *mc)
3365 virt_machine_3_1_options(mc);
3366 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3368 DEFINE_VIRT_MACHINE(3, 0)
3370 static void virt_machine_2_12_options(MachineClass *mc)
3372 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3374 virt_machine_3_0_options(mc);
3375 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3376 vmc->no_highmem_ecam = true;
3377 mc->max_cpus = 255;
3379 DEFINE_VIRT_MACHINE(2, 12)
3381 static void virt_machine_2_11_options(MachineClass *mc)
3383 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3385 virt_machine_2_12_options(mc);
3386 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3387 vmc->smbios_old_sys_ver = true;
3389 DEFINE_VIRT_MACHINE(2, 11)
3391 static void virt_machine_2_10_options(MachineClass *mc)
3393 virt_machine_2_11_options(mc);
3394 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3395 /* before 2.11 we never faulted accesses to bad addresses */
3396 mc->ignore_memory_transaction_failures = true;
3398 DEFINE_VIRT_MACHINE(2, 10)
3400 static void virt_machine_2_9_options(MachineClass *mc)
3402 virt_machine_2_10_options(mc);
3403 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3405 DEFINE_VIRT_MACHINE(2, 9)
3407 static void virt_machine_2_8_options(MachineClass *mc)
3409 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3411 virt_machine_2_9_options(mc);
3412 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3413 /* For 2.8 and earlier we falsely claimed in the DT that
3414 * our timers were edge-triggered, not level-triggered.
3416 vmc->claim_edge_triggered_timers = true;
3418 DEFINE_VIRT_MACHINE(2, 8)
3420 static void virt_machine_2_7_options(MachineClass *mc)
3422 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3424 virt_machine_2_8_options(mc);
3425 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3426 /* ITS was introduced with 2.8 */
3427 vmc->no_its = true;
3428 /* Stick with 1K pages for migration compatibility */
3429 mc->minimum_page_bits = 0;
3431 DEFINE_VIRT_MACHINE(2, 7)
3433 static void virt_machine_2_6_options(MachineClass *mc)
3435 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3437 virt_machine_2_7_options(mc);
3438 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3439 vmc->disallow_affinity_adjustment = true;
3440 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3441 vmc->no_pmu = true;
3443 DEFINE_VIRT_MACHINE(2, 6)