hw/char/cmsdk-apb-uart.c: Correctly clear INTSTATUS bits on writes
[qemu/kevin.git] / exec.c
blob02b1efebb7c39dad224795ce0e0c97c45287318f
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
102 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
106 #define RAM_UF_ZEROPAGE (1 << 3)
107 #endif
109 #ifdef TARGET_PAGE_BITS_VARY
110 int target_page_bits;
111 bool target_page_bits_decided;
112 #endif
114 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
115 /* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
117 __thread CPUState *current_cpu;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
121 int use_icount;
123 uintptr_t qemu_host_page_size;
124 intptr_t qemu_host_page_mask;
126 bool set_preferred_target_page_bits(int bits)
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
131 * a particular size.
133 #ifdef TARGET_PAGE_BITS_VARY
134 assert(bits >= TARGET_PAGE_BITS_MIN);
135 if (target_page_bits == 0 || target_page_bits > bits) {
136 if (target_page_bits_decided) {
137 return false;
139 target_page_bits = bits;
141 #endif
142 return true;
145 #if !defined(CONFIG_USER_ONLY)
147 static void finalize_target_page_bits(void)
149 #ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits == 0) {
151 target_page_bits = TARGET_PAGE_BITS_MIN;
153 target_page_bits_decided = true;
154 #endif
157 typedef struct PhysPageEntry PhysPageEntry;
159 struct PhysPageEntry {
160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
161 uint32_t skip : 6;
162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
163 uint32_t ptr : 26;
166 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
168 /* Size of the L2 (and L3, etc) page tables. */
169 #define ADDR_SPACE_BITS 64
171 #define P_L2_BITS 9
172 #define P_L2_SIZE (1 << P_L2_BITS)
174 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
176 typedef PhysPageEntry Node[P_L2_SIZE];
178 typedef struct PhysPageMap {
179 struct rcu_head rcu;
181 unsigned sections_nb;
182 unsigned sections_nb_alloc;
183 unsigned nodes_nb;
184 unsigned nodes_nb_alloc;
185 Node *nodes;
186 MemoryRegionSection *sections;
187 } PhysPageMap;
189 struct AddressSpaceDispatch {
190 MemoryRegionSection *mru_section;
191 /* This is a multi-level map on the physical address space.
192 * The bottom level has pointers to MemoryRegionSections.
194 PhysPageEntry phys_map;
195 PhysPageMap map;
198 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
199 typedef struct subpage_t {
200 MemoryRegion iomem;
201 FlatView *fv;
202 hwaddr base;
203 uint16_t sub_section[];
204 } subpage_t;
206 #define PHYS_SECTION_UNASSIGNED 0
207 #define PHYS_SECTION_NOTDIRTY 1
208 #define PHYS_SECTION_ROM 2
209 #define PHYS_SECTION_WATCH 3
211 static void io_mem_init(void);
212 static void memory_map_init(void);
213 static void tcg_commit(MemoryListener *listener);
215 static MemoryRegion io_mem_watch;
218 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
219 * @cpu: the CPU whose AddressSpace this is
220 * @as: the AddressSpace itself
221 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
222 * @tcg_as_listener: listener for tracking changes to the AddressSpace
224 struct CPUAddressSpace {
225 CPUState *cpu;
226 AddressSpace *as;
227 struct AddressSpaceDispatch *memory_dispatch;
228 MemoryListener tcg_as_listener;
231 struct DirtyBitmapSnapshot {
232 ram_addr_t start;
233 ram_addr_t end;
234 unsigned long dirty[];
237 #endif
239 #if !defined(CONFIG_USER_ONLY)
241 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
243 static unsigned alloc_hint = 16;
244 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
245 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
246 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
247 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
248 alloc_hint = map->nodes_nb_alloc;
252 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
254 unsigned i;
255 uint32_t ret;
256 PhysPageEntry e;
257 PhysPageEntry *p;
259 ret = map->nodes_nb++;
260 p = map->nodes[ret];
261 assert(ret != PHYS_MAP_NODE_NIL);
262 assert(ret != map->nodes_nb_alloc);
264 e.skip = leaf ? 0 : 1;
265 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
266 for (i = 0; i < P_L2_SIZE; ++i) {
267 memcpy(&p[i], &e, sizeof(e));
269 return ret;
272 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
273 hwaddr *index, hwaddr *nb, uint16_t leaf,
274 int level)
276 PhysPageEntry *p;
277 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
279 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
280 lp->ptr = phys_map_node_alloc(map, level == 0);
282 p = map->nodes[lp->ptr];
283 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
285 while (*nb && lp < &p[P_L2_SIZE]) {
286 if ((*index & (step - 1)) == 0 && *nb >= step) {
287 lp->skip = 0;
288 lp->ptr = leaf;
289 *index += step;
290 *nb -= step;
291 } else {
292 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
294 ++lp;
298 static void phys_page_set(AddressSpaceDispatch *d,
299 hwaddr index, hwaddr nb,
300 uint16_t leaf)
302 /* Wildly overreserve - it doesn't matter much. */
303 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
305 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
308 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
309 * and update our entry so we can skip it and go directly to the destination.
311 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
313 unsigned valid_ptr = P_L2_SIZE;
314 int valid = 0;
315 PhysPageEntry *p;
316 int i;
318 if (lp->ptr == PHYS_MAP_NODE_NIL) {
319 return;
322 p = nodes[lp->ptr];
323 for (i = 0; i < P_L2_SIZE; i++) {
324 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
325 continue;
328 valid_ptr = i;
329 valid++;
330 if (p[i].skip) {
331 phys_page_compact(&p[i], nodes);
335 /* We can only compress if there's only one child. */
336 if (valid != 1) {
337 return;
340 assert(valid_ptr < P_L2_SIZE);
342 /* Don't compress if it won't fit in the # of bits we have. */
343 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
344 return;
347 lp->ptr = p[valid_ptr].ptr;
348 if (!p[valid_ptr].skip) {
349 /* If our only child is a leaf, make this a leaf. */
350 /* By design, we should have made this node a leaf to begin with so we
351 * should never reach here.
352 * But since it's so simple to handle this, let's do it just in case we
353 * change this rule.
355 lp->skip = 0;
356 } else {
357 lp->skip += p[valid_ptr].skip;
361 void address_space_dispatch_compact(AddressSpaceDispatch *d)
363 if (d->phys_map.skip) {
364 phys_page_compact(&d->phys_map, d->map.nodes);
368 static inline bool section_covers_addr(const MemoryRegionSection *section,
369 hwaddr addr)
371 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
372 * the section must cover the entire address space.
374 return int128_gethi(section->size) ||
375 range_covers_byte(section->offset_within_address_space,
376 int128_getlo(section->size), addr);
379 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
381 PhysPageEntry lp = d->phys_map, *p;
382 Node *nodes = d->map.nodes;
383 MemoryRegionSection *sections = d->map.sections;
384 hwaddr index = addr >> TARGET_PAGE_BITS;
385 int i;
387 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
388 if (lp.ptr == PHYS_MAP_NODE_NIL) {
389 return &sections[PHYS_SECTION_UNASSIGNED];
391 p = nodes[lp.ptr];
392 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
395 if (section_covers_addr(&sections[lp.ptr], addr)) {
396 return &sections[lp.ptr];
397 } else {
398 return &sections[PHYS_SECTION_UNASSIGNED];
402 bool memory_region_is_unassigned(MemoryRegion *mr)
404 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
405 && mr != &io_mem_watch;
408 /* Called from RCU critical section */
409 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
410 hwaddr addr,
411 bool resolve_subpage)
413 MemoryRegionSection *section = atomic_read(&d->mru_section);
414 subpage_t *subpage;
416 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
417 !section_covers_addr(section, addr)) {
418 section = phys_page_find(d, addr);
419 atomic_set(&d->mru_section, section);
421 if (resolve_subpage && section->mr->subpage) {
422 subpage = container_of(section->mr, subpage_t, iomem);
423 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
425 return section;
428 /* Called from RCU critical section */
429 static MemoryRegionSection *
430 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
431 hwaddr *plen, bool resolve_subpage)
433 MemoryRegionSection *section;
434 MemoryRegion *mr;
435 Int128 diff;
437 section = address_space_lookup_region(d, addr, resolve_subpage);
438 /* Compute offset within MemoryRegionSection */
439 addr -= section->offset_within_address_space;
441 /* Compute offset within MemoryRegion */
442 *xlat = addr + section->offset_within_region;
444 mr = section->mr;
446 /* MMIO registers can be expected to perform full-width accesses based only
447 * on their address, without considering adjacent registers that could
448 * decode to completely different MemoryRegions. When such registers
449 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
450 * regions overlap wildly. For this reason we cannot clamp the accesses
451 * here.
453 * If the length is small (as is the case for address_space_ldl/stl),
454 * everything works fine. If the incoming length is large, however,
455 * the caller really has to do the clamping through memory_access_size.
457 if (memory_region_is_ram(mr)) {
458 diff = int128_sub(section->size, int128_make64(addr));
459 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
461 return section;
465 * flatview_do_translate - translate an address in FlatView
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
480 * This function is called from RCU critical section
482 static MemoryRegionSection flatview_do_translate(FlatView *fv,
483 hwaddr addr,
484 hwaddr *xlat,
485 hwaddr *plen_out,
486 hwaddr *page_mask_out,
487 bool is_write,
488 bool is_mmio,
489 AddressSpace **target_as)
491 IOMMUTLBEntry iotlb;
492 MemoryRegionSection *section;
493 IOMMUMemoryRegion *iommu_mr;
494 IOMMUMemoryRegionClass *imrc;
495 hwaddr page_mask = (hwaddr)(-1);
496 hwaddr plen = (hwaddr)(-1);
498 if (plen_out) {
499 plen = *plen_out;
502 for (;;) {
503 section = address_space_translate_internal(
504 flatview_to_dispatch(fv), addr, &addr,
505 &plen, is_mmio);
507 iommu_mr = memory_region_get_iommu(section->mr);
508 if (!iommu_mr) {
509 break;
511 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
513 iotlb = imrc->translate(iommu_mr, addr, is_write ?
514 IOMMU_WO : IOMMU_RO);
515 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
516 | (addr & iotlb.addr_mask));
517 page_mask &= iotlb.addr_mask;
518 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
519 if (!(iotlb.perm & (1 << is_write))) {
520 goto translate_fail;
523 fv = address_space_to_flatview(iotlb.target_as);
524 *target_as = iotlb.target_as;
527 *xlat = addr;
529 if (page_mask == (hwaddr)(-1)) {
530 /* Not behind an IOMMU, use default page size. */
531 page_mask = ~TARGET_PAGE_MASK;
534 if (page_mask_out) {
535 *page_mask_out = page_mask;
538 if (plen_out) {
539 *plen_out = plen;
542 return *section;
544 translate_fail:
545 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
548 /* Called from RCU critical section */
549 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
550 bool is_write)
552 MemoryRegionSection section;
553 hwaddr xlat, page_mask;
556 * This can never be MMIO, and we don't really care about plen,
557 * but page mask.
559 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
560 NULL, &page_mask, is_write, false, &as);
562 /* Illegal translation */
563 if (section.mr == &io_mem_unassigned) {
564 goto iotlb_fail;
567 /* Convert memory region offset into address space offset */
568 xlat += section.offset_within_address_space -
569 section.offset_within_region;
571 return (IOMMUTLBEntry) {
572 .target_as = as,
573 .iova = addr & ~page_mask,
574 .translated_addr = xlat & ~page_mask,
575 .addr_mask = page_mask,
576 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
577 .perm = IOMMU_RW,
580 iotlb_fail:
581 return (IOMMUTLBEntry) {0};
584 /* Called from RCU critical section */
585 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
586 hwaddr *plen, bool is_write)
588 MemoryRegion *mr;
589 MemoryRegionSection section;
590 AddressSpace *as = NULL;
592 /* This can be MMIO, so setup MMIO bit. */
593 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
594 is_write, true, &as);
595 mr = section.mr;
597 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
598 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
599 *plen = MIN(page, *plen);
602 return mr;
605 /* Called from RCU critical section */
606 MemoryRegionSection *
607 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
608 hwaddr *xlat, hwaddr *plen)
610 MemoryRegionSection *section;
611 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
613 section = address_space_translate_internal(d, addr, xlat, plen, false);
615 assert(!memory_region_is_iommu(section->mr));
616 return section;
618 #endif
620 #if !defined(CONFIG_USER_ONLY)
622 static int cpu_common_post_load(void *opaque, int version_id)
624 CPUState *cpu = opaque;
626 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
627 version_id is increased. */
628 cpu->interrupt_request &= ~0x01;
629 tlb_flush(cpu);
631 /* loadvm has just updated the content of RAM, bypassing the
632 * usual mechanisms that ensure we flush TBs for writes to
633 * memory we've translated code from. So we must flush all TBs,
634 * which will now be stale.
636 tb_flush(cpu);
638 return 0;
641 static int cpu_common_pre_load(void *opaque)
643 CPUState *cpu = opaque;
645 cpu->exception_index = -1;
647 return 0;
650 static bool cpu_common_exception_index_needed(void *opaque)
652 CPUState *cpu = opaque;
654 return tcg_enabled() && cpu->exception_index != -1;
657 static const VMStateDescription vmstate_cpu_common_exception_index = {
658 .name = "cpu_common/exception_index",
659 .version_id = 1,
660 .minimum_version_id = 1,
661 .needed = cpu_common_exception_index_needed,
662 .fields = (VMStateField[]) {
663 VMSTATE_INT32(exception_index, CPUState),
664 VMSTATE_END_OF_LIST()
668 static bool cpu_common_crash_occurred_needed(void *opaque)
670 CPUState *cpu = opaque;
672 return cpu->crash_occurred;
675 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
676 .name = "cpu_common/crash_occurred",
677 .version_id = 1,
678 .minimum_version_id = 1,
679 .needed = cpu_common_crash_occurred_needed,
680 .fields = (VMStateField[]) {
681 VMSTATE_BOOL(crash_occurred, CPUState),
682 VMSTATE_END_OF_LIST()
686 const VMStateDescription vmstate_cpu_common = {
687 .name = "cpu_common",
688 .version_id = 1,
689 .minimum_version_id = 1,
690 .pre_load = cpu_common_pre_load,
691 .post_load = cpu_common_post_load,
692 .fields = (VMStateField[]) {
693 VMSTATE_UINT32(halted, CPUState),
694 VMSTATE_UINT32(interrupt_request, CPUState),
695 VMSTATE_END_OF_LIST()
697 .subsections = (const VMStateDescription*[]) {
698 &vmstate_cpu_common_exception_index,
699 &vmstate_cpu_common_crash_occurred,
700 NULL
704 #endif
706 CPUState *qemu_get_cpu(int index)
708 CPUState *cpu;
710 CPU_FOREACH(cpu) {
711 if (cpu->cpu_index == index) {
712 return cpu;
716 return NULL;
719 #if !defined(CONFIG_USER_ONLY)
720 void cpu_address_space_init(CPUState *cpu, int asidx,
721 const char *prefix, MemoryRegion *mr)
723 CPUAddressSpace *newas;
724 AddressSpace *as = g_new0(AddressSpace, 1);
725 char *as_name;
727 assert(mr);
728 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
729 address_space_init(as, mr, as_name);
730 g_free(as_name);
732 /* Target code should have set num_ases before calling us */
733 assert(asidx < cpu->num_ases);
735 if (asidx == 0) {
736 /* address space 0 gets the convenience alias */
737 cpu->as = as;
740 /* KVM cannot currently support multiple address spaces. */
741 assert(asidx == 0 || !kvm_enabled());
743 if (!cpu->cpu_ases) {
744 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
747 newas = &cpu->cpu_ases[asidx];
748 newas->cpu = cpu;
749 newas->as = as;
750 if (tcg_enabled()) {
751 newas->tcg_as_listener.commit = tcg_commit;
752 memory_listener_register(&newas->tcg_as_listener, as);
756 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
758 /* Return the AddressSpace corresponding to the specified index */
759 return cpu->cpu_ases[asidx].as;
761 #endif
763 void cpu_exec_unrealizefn(CPUState *cpu)
765 CPUClass *cc = CPU_GET_CLASS(cpu);
767 cpu_list_remove(cpu);
769 if (cc->vmsd != NULL) {
770 vmstate_unregister(NULL, cc->vmsd, cpu);
772 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
773 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
777 Property cpu_common_props[] = {
778 #ifndef CONFIG_USER_ONLY
779 /* Create a memory property for softmmu CPU object,
780 * so users can wire up its memory. (This can't go in qom/cpu.c
781 * because that file is compiled only once for both user-mode
782 * and system builds.) The default if no link is set up is to use
783 * the system address space.
785 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
786 MemoryRegion *),
787 #endif
788 DEFINE_PROP_END_OF_LIST(),
791 void cpu_exec_initfn(CPUState *cpu)
793 cpu->as = NULL;
794 cpu->num_ases = 0;
796 #ifndef CONFIG_USER_ONLY
797 cpu->thread_id = qemu_get_thread_id();
798 cpu->memory = system_memory;
799 object_ref(OBJECT(cpu->memory));
800 #endif
803 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
805 CPUClass *cc = CPU_GET_CLASS(cpu);
806 static bool tcg_target_initialized;
808 cpu_list_add(cpu);
810 if (tcg_enabled() && !tcg_target_initialized) {
811 tcg_target_initialized = true;
812 cc->tcg_initialize();
815 #ifndef CONFIG_USER_ONLY
816 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
817 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
819 if (cc->vmsd != NULL) {
820 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
822 #endif
825 const char *parse_cpu_model(const char *cpu_model)
827 ObjectClass *oc;
828 CPUClass *cc;
829 gchar **model_pieces;
830 const char *cpu_type;
832 model_pieces = g_strsplit(cpu_model, ",", 2);
834 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
835 if (oc == NULL) {
836 error_report("unable to find CPU model '%s'", model_pieces[0]);
837 g_strfreev(model_pieces);
838 exit(EXIT_FAILURE);
841 cpu_type = object_class_get_name(oc);
842 cc = CPU_CLASS(oc);
843 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
844 g_strfreev(model_pieces);
845 return cpu_type;
848 #if defined(CONFIG_USER_ONLY)
849 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
851 mmap_lock();
852 tb_lock();
853 tb_invalidate_phys_page_range(pc, pc + 1, 0);
854 tb_unlock();
855 mmap_unlock();
857 #else
858 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
860 MemTxAttrs attrs;
861 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
862 int asidx = cpu_asidx_from_attrs(cpu, attrs);
863 if (phys != -1) {
864 /* Locks grabbed by tb_invalidate_phys_addr */
865 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
866 phys | (pc & ~TARGET_PAGE_MASK));
869 #endif
871 #if defined(CONFIG_USER_ONLY)
872 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
877 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
878 int flags)
880 return -ENOSYS;
883 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
887 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
888 int flags, CPUWatchpoint **watchpoint)
890 return -ENOSYS;
892 #else
893 /* Add a watchpoint. */
894 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
895 int flags, CPUWatchpoint **watchpoint)
897 CPUWatchpoint *wp;
899 /* forbid ranges which are empty or run off the end of the address space */
900 if (len == 0 || (addr + len - 1) < addr) {
901 error_report("tried to set invalid watchpoint at %"
902 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
903 return -EINVAL;
905 wp = g_malloc(sizeof(*wp));
907 wp->vaddr = addr;
908 wp->len = len;
909 wp->flags = flags;
911 /* keep all GDB-injected watchpoints in front */
912 if (flags & BP_GDB) {
913 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
914 } else {
915 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
918 tlb_flush_page(cpu, addr);
920 if (watchpoint)
921 *watchpoint = wp;
922 return 0;
925 /* Remove a specific watchpoint. */
926 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
927 int flags)
929 CPUWatchpoint *wp;
931 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
932 if (addr == wp->vaddr && len == wp->len
933 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
934 cpu_watchpoint_remove_by_ref(cpu, wp);
935 return 0;
938 return -ENOENT;
941 /* Remove a specific watchpoint by reference. */
942 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
944 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
946 tlb_flush_page(cpu, watchpoint->vaddr);
948 g_free(watchpoint);
951 /* Remove all matching watchpoints. */
952 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
954 CPUWatchpoint *wp, *next;
956 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
957 if (wp->flags & mask) {
958 cpu_watchpoint_remove_by_ref(cpu, wp);
963 /* Return true if this watchpoint address matches the specified
964 * access (ie the address range covered by the watchpoint overlaps
965 * partially or completely with the address range covered by the
966 * access).
968 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
969 vaddr addr,
970 vaddr len)
972 /* We know the lengths are non-zero, but a little caution is
973 * required to avoid errors in the case where the range ends
974 * exactly at the top of the address space and so addr + len
975 * wraps round to zero.
977 vaddr wpend = wp->vaddr + wp->len - 1;
978 vaddr addrend = addr + len - 1;
980 return !(addr > wpend || wp->vaddr > addrend);
983 #endif
985 /* Add a breakpoint. */
986 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
987 CPUBreakpoint **breakpoint)
989 CPUBreakpoint *bp;
991 bp = g_malloc(sizeof(*bp));
993 bp->pc = pc;
994 bp->flags = flags;
996 /* keep all GDB-injected breakpoints in front */
997 if (flags & BP_GDB) {
998 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
999 } else {
1000 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1003 breakpoint_invalidate(cpu, pc);
1005 if (breakpoint) {
1006 *breakpoint = bp;
1008 return 0;
1011 /* Remove a specific breakpoint. */
1012 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1014 CPUBreakpoint *bp;
1016 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1017 if (bp->pc == pc && bp->flags == flags) {
1018 cpu_breakpoint_remove_by_ref(cpu, bp);
1019 return 0;
1022 return -ENOENT;
1025 /* Remove a specific breakpoint by reference. */
1026 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1028 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1030 breakpoint_invalidate(cpu, breakpoint->pc);
1032 g_free(breakpoint);
1035 /* Remove all matching breakpoints. */
1036 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1038 CPUBreakpoint *bp, *next;
1040 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1041 if (bp->flags & mask) {
1042 cpu_breakpoint_remove_by_ref(cpu, bp);
1047 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1048 CPU loop after each instruction */
1049 void cpu_single_step(CPUState *cpu, int enabled)
1051 if (cpu->singlestep_enabled != enabled) {
1052 cpu->singlestep_enabled = enabled;
1053 if (kvm_enabled()) {
1054 kvm_update_guest_debug(cpu, 0);
1055 } else {
1056 /* must flush all the translated code to avoid inconsistencies */
1057 /* XXX: only flush what is necessary */
1058 tb_flush(cpu);
1063 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1065 va_list ap;
1066 va_list ap2;
1068 va_start(ap, fmt);
1069 va_copy(ap2, ap);
1070 fprintf(stderr, "qemu: fatal: ");
1071 vfprintf(stderr, fmt, ap);
1072 fprintf(stderr, "\n");
1073 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1074 if (qemu_log_separate()) {
1075 qemu_log_lock();
1076 qemu_log("qemu: fatal: ");
1077 qemu_log_vprintf(fmt, ap2);
1078 qemu_log("\n");
1079 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1080 qemu_log_flush();
1081 qemu_log_unlock();
1082 qemu_log_close();
1084 va_end(ap2);
1085 va_end(ap);
1086 replay_finish();
1087 #if defined(CONFIG_USER_ONLY)
1089 struct sigaction act;
1090 sigfillset(&act.sa_mask);
1091 act.sa_handler = SIG_DFL;
1092 sigaction(SIGABRT, &act, NULL);
1094 #endif
1095 abort();
1098 #if !defined(CONFIG_USER_ONLY)
1099 /* Called from RCU critical section */
1100 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1102 RAMBlock *block;
1104 block = atomic_rcu_read(&ram_list.mru_block);
1105 if (block && addr - block->offset < block->max_length) {
1106 return block;
1108 RAMBLOCK_FOREACH(block) {
1109 if (addr - block->offset < block->max_length) {
1110 goto found;
1114 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1115 abort();
1117 found:
1118 /* It is safe to write mru_block outside the iothread lock. This
1119 * is what happens:
1121 * mru_block = xxx
1122 * rcu_read_unlock()
1123 * xxx removed from list
1124 * rcu_read_lock()
1125 * read mru_block
1126 * mru_block = NULL;
1127 * call_rcu(reclaim_ramblock, xxx);
1128 * rcu_read_unlock()
1130 * atomic_rcu_set is not needed here. The block was already published
1131 * when it was placed into the list. Here we're just making an extra
1132 * copy of the pointer.
1134 ram_list.mru_block = block;
1135 return block;
1138 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1140 CPUState *cpu;
1141 ram_addr_t start1;
1142 RAMBlock *block;
1143 ram_addr_t end;
1145 end = TARGET_PAGE_ALIGN(start + length);
1146 start &= TARGET_PAGE_MASK;
1148 rcu_read_lock();
1149 block = qemu_get_ram_block(start);
1150 assert(block == qemu_get_ram_block(end - 1));
1151 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1152 CPU_FOREACH(cpu) {
1153 tlb_reset_dirty(cpu, start1, length);
1155 rcu_read_unlock();
1158 /* Note: start and end must be within the same ram block. */
1159 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1160 ram_addr_t length,
1161 unsigned client)
1163 DirtyMemoryBlocks *blocks;
1164 unsigned long end, page;
1165 bool dirty = false;
1167 if (length == 0) {
1168 return false;
1171 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1172 page = start >> TARGET_PAGE_BITS;
1174 rcu_read_lock();
1176 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1178 while (page < end) {
1179 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1180 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1181 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1183 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1184 offset, num);
1185 page += num;
1188 rcu_read_unlock();
1190 if (dirty && tcg_enabled()) {
1191 tlb_reset_dirty_range_all(start, length);
1194 return dirty;
1197 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1198 (ram_addr_t start, ram_addr_t length, unsigned client)
1200 DirtyMemoryBlocks *blocks;
1201 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1202 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1203 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1204 DirtyBitmapSnapshot *snap;
1205 unsigned long page, end, dest;
1207 snap = g_malloc0(sizeof(*snap) +
1208 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1209 snap->start = first;
1210 snap->end = last;
1212 page = first >> TARGET_PAGE_BITS;
1213 end = last >> TARGET_PAGE_BITS;
1214 dest = 0;
1216 rcu_read_lock();
1218 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1220 while (page < end) {
1221 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1222 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1223 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1225 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1226 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1227 offset >>= BITS_PER_LEVEL;
1229 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1230 blocks->blocks[idx] + offset,
1231 num);
1232 page += num;
1233 dest += num >> BITS_PER_LEVEL;
1236 rcu_read_unlock();
1238 if (tcg_enabled()) {
1239 tlb_reset_dirty_range_all(start, length);
1242 return snap;
1245 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1246 ram_addr_t start,
1247 ram_addr_t length)
1249 unsigned long page, end;
1251 assert(start >= snap->start);
1252 assert(start + length <= snap->end);
1254 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1255 page = (start - snap->start) >> TARGET_PAGE_BITS;
1257 while (page < end) {
1258 if (test_bit(page, snap->dirty)) {
1259 return true;
1261 page++;
1263 return false;
1266 /* Called from RCU critical section */
1267 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1268 MemoryRegionSection *section,
1269 target_ulong vaddr,
1270 hwaddr paddr, hwaddr xlat,
1271 int prot,
1272 target_ulong *address)
1274 hwaddr iotlb;
1275 CPUWatchpoint *wp;
1277 if (memory_region_is_ram(section->mr)) {
1278 /* Normal RAM. */
1279 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1280 if (!section->readonly) {
1281 iotlb |= PHYS_SECTION_NOTDIRTY;
1282 } else {
1283 iotlb |= PHYS_SECTION_ROM;
1285 } else {
1286 AddressSpaceDispatch *d;
1288 d = flatview_to_dispatch(section->fv);
1289 iotlb = section - d->map.sections;
1290 iotlb += xlat;
1293 /* Make accesses to pages with watchpoints go via the
1294 watchpoint trap routines. */
1295 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1296 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1297 /* Avoid trapping reads of pages with a write breakpoint. */
1298 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1299 iotlb = PHYS_SECTION_WATCH + paddr;
1300 *address |= TLB_MMIO;
1301 break;
1306 return iotlb;
1308 #endif /* defined(CONFIG_USER_ONLY) */
1310 #if !defined(CONFIG_USER_ONLY)
1312 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1313 uint16_t section);
1314 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1316 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1317 qemu_anon_ram_alloc;
1320 * Set a custom physical guest memory alloator.
1321 * Accelerators with unusual needs may need this. Hopefully, we can
1322 * get rid of it eventually.
1324 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1326 phys_mem_alloc = alloc;
1329 static uint16_t phys_section_add(PhysPageMap *map,
1330 MemoryRegionSection *section)
1332 /* The physical section number is ORed with a page-aligned
1333 * pointer to produce the iotlb entries. Thus it should
1334 * never overflow into the page-aligned value.
1336 assert(map->sections_nb < TARGET_PAGE_SIZE);
1338 if (map->sections_nb == map->sections_nb_alloc) {
1339 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1340 map->sections = g_renew(MemoryRegionSection, map->sections,
1341 map->sections_nb_alloc);
1343 map->sections[map->sections_nb] = *section;
1344 memory_region_ref(section->mr);
1345 return map->sections_nb++;
1348 static void phys_section_destroy(MemoryRegion *mr)
1350 bool have_sub_page = mr->subpage;
1352 memory_region_unref(mr);
1354 if (have_sub_page) {
1355 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1356 object_unref(OBJECT(&subpage->iomem));
1357 g_free(subpage);
1361 static void phys_sections_free(PhysPageMap *map)
1363 while (map->sections_nb > 0) {
1364 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1365 phys_section_destroy(section->mr);
1367 g_free(map->sections);
1368 g_free(map->nodes);
1371 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1373 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1374 subpage_t *subpage;
1375 hwaddr base = section->offset_within_address_space
1376 & TARGET_PAGE_MASK;
1377 MemoryRegionSection *existing = phys_page_find(d, base);
1378 MemoryRegionSection subsection = {
1379 .offset_within_address_space = base,
1380 .size = int128_make64(TARGET_PAGE_SIZE),
1382 hwaddr start, end;
1384 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1386 if (!(existing->mr->subpage)) {
1387 subpage = subpage_init(fv, base);
1388 subsection.fv = fv;
1389 subsection.mr = &subpage->iomem;
1390 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1391 phys_section_add(&d->map, &subsection));
1392 } else {
1393 subpage = container_of(existing->mr, subpage_t, iomem);
1395 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1396 end = start + int128_get64(section->size) - 1;
1397 subpage_register(subpage, start, end,
1398 phys_section_add(&d->map, section));
1402 static void register_multipage(FlatView *fv,
1403 MemoryRegionSection *section)
1405 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1406 hwaddr start_addr = section->offset_within_address_space;
1407 uint16_t section_index = phys_section_add(&d->map, section);
1408 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1409 TARGET_PAGE_BITS));
1411 assert(num_pages);
1412 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1415 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1417 MemoryRegionSection now = *section, remain = *section;
1418 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1420 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1421 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1422 - now.offset_within_address_space;
1424 now.size = int128_min(int128_make64(left), now.size);
1425 register_subpage(fv, &now);
1426 } else {
1427 now.size = int128_zero();
1429 while (int128_ne(remain.size, now.size)) {
1430 remain.size = int128_sub(remain.size, now.size);
1431 remain.offset_within_address_space += int128_get64(now.size);
1432 remain.offset_within_region += int128_get64(now.size);
1433 now = remain;
1434 if (int128_lt(remain.size, page_size)) {
1435 register_subpage(fv, &now);
1436 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1437 now.size = page_size;
1438 register_subpage(fv, &now);
1439 } else {
1440 now.size = int128_and(now.size, int128_neg(page_size));
1441 register_multipage(fv, &now);
1446 void qemu_flush_coalesced_mmio_buffer(void)
1448 if (kvm_enabled())
1449 kvm_flush_coalesced_mmio_buffer();
1452 void qemu_mutex_lock_ramlist(void)
1454 qemu_mutex_lock(&ram_list.mutex);
1457 void qemu_mutex_unlock_ramlist(void)
1459 qemu_mutex_unlock(&ram_list.mutex);
1462 void ram_block_dump(Monitor *mon)
1464 RAMBlock *block;
1465 char *psize;
1467 rcu_read_lock();
1468 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1469 "Block Name", "PSize", "Offset", "Used", "Total");
1470 RAMBLOCK_FOREACH(block) {
1471 psize = size_to_str(block->page_size);
1472 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1473 " 0x%016" PRIx64 "\n", block->idstr, psize,
1474 (uint64_t)block->offset,
1475 (uint64_t)block->used_length,
1476 (uint64_t)block->max_length);
1477 g_free(psize);
1479 rcu_read_unlock();
1482 #ifdef __linux__
1484 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1485 * may or may not name the same files / on the same filesystem now as
1486 * when we actually open and map them. Iterate over the file
1487 * descriptors instead, and use qemu_fd_getpagesize().
1489 static int find_max_supported_pagesize(Object *obj, void *opaque)
1491 char *mem_path;
1492 long *hpsize_min = opaque;
1494 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1495 mem_path = object_property_get_str(obj, "mem-path", NULL);
1496 if (mem_path) {
1497 long hpsize = qemu_mempath_getpagesize(mem_path);
1498 g_free(mem_path);
1499 if (hpsize < *hpsize_min) {
1500 *hpsize_min = hpsize;
1502 } else {
1503 *hpsize_min = getpagesize();
1507 return 0;
1510 long qemu_getrampagesize(void)
1512 long hpsize = LONG_MAX;
1513 long mainrampagesize;
1514 Object *memdev_root;
1516 if (mem_path) {
1517 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1518 } else {
1519 mainrampagesize = getpagesize();
1522 /* it's possible we have memory-backend objects with
1523 * hugepage-backed RAM. these may get mapped into system
1524 * address space via -numa parameters or memory hotplug
1525 * hooks. we want to take these into account, but we
1526 * also want to make sure these supported hugepage
1527 * sizes are applicable across the entire range of memory
1528 * we may boot from, so we take the min across all
1529 * backends, and assume normal pages in cases where a
1530 * backend isn't backed by hugepages.
1532 memdev_root = object_resolve_path("/objects", NULL);
1533 if (memdev_root) {
1534 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1536 if (hpsize == LONG_MAX) {
1537 /* No additional memory regions found ==> Report main RAM page size */
1538 return mainrampagesize;
1541 /* If NUMA is disabled or the NUMA nodes are not backed with a
1542 * memory-backend, then there is at least one node using "normal" RAM,
1543 * so if its page size is smaller we have got to report that size instead.
1545 if (hpsize > mainrampagesize &&
1546 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1547 static bool warned;
1548 if (!warned) {
1549 error_report("Huge page support disabled (n/a for main memory).");
1550 warned = true;
1552 return mainrampagesize;
1555 return hpsize;
1557 #else
1558 long qemu_getrampagesize(void)
1560 return getpagesize();
1562 #endif
1564 #ifdef __linux__
1565 static int64_t get_file_size(int fd)
1567 int64_t size = lseek(fd, 0, SEEK_END);
1568 if (size < 0) {
1569 return -errno;
1571 return size;
1574 static int file_ram_open(const char *path,
1575 const char *region_name,
1576 bool *created,
1577 Error **errp)
1579 char *filename;
1580 char *sanitized_name;
1581 char *c;
1582 int fd = -1;
1584 *created = false;
1585 for (;;) {
1586 fd = open(path, O_RDWR);
1587 if (fd >= 0) {
1588 /* @path names an existing file, use it */
1589 break;
1591 if (errno == ENOENT) {
1592 /* @path names a file that doesn't exist, create it */
1593 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1594 if (fd >= 0) {
1595 *created = true;
1596 break;
1598 } else if (errno == EISDIR) {
1599 /* @path names a directory, create a file there */
1600 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1601 sanitized_name = g_strdup(region_name);
1602 for (c = sanitized_name; *c != '\0'; c++) {
1603 if (*c == '/') {
1604 *c = '_';
1608 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1609 sanitized_name);
1610 g_free(sanitized_name);
1612 fd = mkstemp(filename);
1613 if (fd >= 0) {
1614 unlink(filename);
1615 g_free(filename);
1616 break;
1618 g_free(filename);
1620 if (errno != EEXIST && errno != EINTR) {
1621 error_setg_errno(errp, errno,
1622 "can't open backing store %s for guest RAM",
1623 path);
1624 return -1;
1627 * Try again on EINTR and EEXIST. The latter happens when
1628 * something else creates the file between our two open().
1632 return fd;
1635 static void *file_ram_alloc(RAMBlock *block,
1636 ram_addr_t memory,
1637 int fd,
1638 bool truncate,
1639 Error **errp)
1641 void *area;
1643 block->page_size = qemu_fd_getpagesize(fd);
1644 if (block->mr->align % block->page_size) {
1645 error_setg(errp, "alignment 0x%" PRIx64
1646 " must be multiples of page size 0x%zx",
1647 block->mr->align, block->page_size);
1648 return NULL;
1650 block->mr->align = MAX(block->page_size, block->mr->align);
1651 #if defined(__s390x__)
1652 if (kvm_enabled()) {
1653 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1655 #endif
1657 if (memory < block->page_size) {
1658 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1659 "or larger than page size 0x%zx",
1660 memory, block->page_size);
1661 return NULL;
1664 memory = ROUND_UP(memory, block->page_size);
1667 * ftruncate is not supported by hugetlbfs in older
1668 * hosts, so don't bother bailing out on errors.
1669 * If anything goes wrong with it under other filesystems,
1670 * mmap will fail.
1672 * Do not truncate the non-empty backend file to avoid corrupting
1673 * the existing data in the file. Disabling shrinking is not
1674 * enough. For example, the current vNVDIMM implementation stores
1675 * the guest NVDIMM labels at the end of the backend file. If the
1676 * backend file is later extended, QEMU will not be able to find
1677 * those labels. Therefore, extending the non-empty backend file
1678 * is disabled as well.
1680 if (truncate && ftruncate(fd, memory)) {
1681 perror("ftruncate");
1684 area = qemu_ram_mmap(fd, memory, block->mr->align,
1685 block->flags & RAM_SHARED);
1686 if (area == MAP_FAILED) {
1687 error_setg_errno(errp, errno,
1688 "unable to map backing store for guest RAM");
1689 return NULL;
1692 if (mem_prealloc) {
1693 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1694 if (errp && *errp) {
1695 qemu_ram_munmap(area, memory);
1696 return NULL;
1700 block->fd = fd;
1701 return area;
1703 #endif
1705 /* Allocate space within the ram_addr_t space that governs the
1706 * dirty bitmaps.
1707 * Called with the ramlist lock held.
1709 static ram_addr_t find_ram_offset(ram_addr_t size)
1711 RAMBlock *block, *next_block;
1712 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1714 assert(size != 0); /* it would hand out same offset multiple times */
1716 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1717 return 0;
1720 RAMBLOCK_FOREACH(block) {
1721 ram_addr_t candidate, next = RAM_ADDR_MAX;
1723 /* Align blocks to start on a 'long' in the bitmap
1724 * which makes the bitmap sync'ing take the fast path.
1726 candidate = block->offset + block->max_length;
1727 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1729 /* Search for the closest following block
1730 * and find the gap.
1732 RAMBLOCK_FOREACH(next_block) {
1733 if (next_block->offset >= candidate) {
1734 next = MIN(next, next_block->offset);
1738 /* If it fits remember our place and remember the size
1739 * of gap, but keep going so that we might find a smaller
1740 * gap to fill so avoiding fragmentation.
1742 if (next - candidate >= size && next - candidate < mingap) {
1743 offset = candidate;
1744 mingap = next - candidate;
1747 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1750 if (offset == RAM_ADDR_MAX) {
1751 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1752 (uint64_t)size);
1753 abort();
1756 trace_find_ram_offset(size, offset);
1758 return offset;
1761 unsigned long last_ram_page(void)
1763 RAMBlock *block;
1764 ram_addr_t last = 0;
1766 rcu_read_lock();
1767 RAMBLOCK_FOREACH(block) {
1768 last = MAX(last, block->offset + block->max_length);
1770 rcu_read_unlock();
1771 return last >> TARGET_PAGE_BITS;
1774 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1776 int ret;
1778 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1779 if (!machine_dump_guest_core(current_machine)) {
1780 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1781 if (ret) {
1782 perror("qemu_madvise");
1783 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1784 "but dump_guest_core=off specified\n");
1789 const char *qemu_ram_get_idstr(RAMBlock *rb)
1791 return rb->idstr;
1794 bool qemu_ram_is_shared(RAMBlock *rb)
1796 return rb->flags & RAM_SHARED;
1799 /* Note: Only set at the start of postcopy */
1800 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1802 return rb->flags & RAM_UF_ZEROPAGE;
1805 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1807 rb->flags |= RAM_UF_ZEROPAGE;
1810 /* Called with iothread lock held. */
1811 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1813 RAMBlock *block;
1815 assert(new_block);
1816 assert(!new_block->idstr[0]);
1818 if (dev) {
1819 char *id = qdev_get_dev_path(dev);
1820 if (id) {
1821 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1822 g_free(id);
1825 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1827 rcu_read_lock();
1828 RAMBLOCK_FOREACH(block) {
1829 if (block != new_block &&
1830 !strcmp(block->idstr, new_block->idstr)) {
1831 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1832 new_block->idstr);
1833 abort();
1836 rcu_read_unlock();
1839 /* Called with iothread lock held. */
1840 void qemu_ram_unset_idstr(RAMBlock *block)
1842 /* FIXME: arch_init.c assumes that this is not called throughout
1843 * migration. Ignore the problem since hot-unplug during migration
1844 * does not work anyway.
1846 if (block) {
1847 memset(block->idstr, 0, sizeof(block->idstr));
1851 size_t qemu_ram_pagesize(RAMBlock *rb)
1853 return rb->page_size;
1856 /* Returns the largest size of page in use */
1857 size_t qemu_ram_pagesize_largest(void)
1859 RAMBlock *block;
1860 size_t largest = 0;
1862 RAMBLOCK_FOREACH(block) {
1863 largest = MAX(largest, qemu_ram_pagesize(block));
1866 return largest;
1869 static int memory_try_enable_merging(void *addr, size_t len)
1871 if (!machine_mem_merge(current_machine)) {
1872 /* disabled by the user */
1873 return 0;
1876 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1879 /* Only legal before guest might have detected the memory size: e.g. on
1880 * incoming migration, or right after reset.
1882 * As memory core doesn't know how is memory accessed, it is up to
1883 * resize callback to update device state and/or add assertions to detect
1884 * misuse, if necessary.
1886 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1888 assert(block);
1890 newsize = HOST_PAGE_ALIGN(newsize);
1892 if (block->used_length == newsize) {
1893 return 0;
1896 if (!(block->flags & RAM_RESIZEABLE)) {
1897 error_setg_errno(errp, EINVAL,
1898 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1899 " in != 0x" RAM_ADDR_FMT, block->idstr,
1900 newsize, block->used_length);
1901 return -EINVAL;
1904 if (block->max_length < newsize) {
1905 error_setg_errno(errp, EINVAL,
1906 "Length too large: %s: 0x" RAM_ADDR_FMT
1907 " > 0x" RAM_ADDR_FMT, block->idstr,
1908 newsize, block->max_length);
1909 return -EINVAL;
1912 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1913 block->used_length = newsize;
1914 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1915 DIRTY_CLIENTS_ALL);
1916 memory_region_set_size(block->mr, newsize);
1917 if (block->resized) {
1918 block->resized(block->idstr, newsize, block->host);
1920 return 0;
1923 /* Called with ram_list.mutex held */
1924 static void dirty_memory_extend(ram_addr_t old_ram_size,
1925 ram_addr_t new_ram_size)
1927 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1928 DIRTY_MEMORY_BLOCK_SIZE);
1929 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1930 DIRTY_MEMORY_BLOCK_SIZE);
1931 int i;
1933 /* Only need to extend if block count increased */
1934 if (new_num_blocks <= old_num_blocks) {
1935 return;
1938 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1939 DirtyMemoryBlocks *old_blocks;
1940 DirtyMemoryBlocks *new_blocks;
1941 int j;
1943 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1944 new_blocks = g_malloc(sizeof(*new_blocks) +
1945 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1947 if (old_num_blocks) {
1948 memcpy(new_blocks->blocks, old_blocks->blocks,
1949 old_num_blocks * sizeof(old_blocks->blocks[0]));
1952 for (j = old_num_blocks; j < new_num_blocks; j++) {
1953 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1956 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1958 if (old_blocks) {
1959 g_free_rcu(old_blocks, rcu);
1964 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
1966 RAMBlock *block;
1967 RAMBlock *last_block = NULL;
1968 ram_addr_t old_ram_size, new_ram_size;
1969 Error *err = NULL;
1971 old_ram_size = last_ram_page();
1973 qemu_mutex_lock_ramlist();
1974 new_block->offset = find_ram_offset(new_block->max_length);
1976 if (!new_block->host) {
1977 if (xen_enabled()) {
1978 xen_ram_alloc(new_block->offset, new_block->max_length,
1979 new_block->mr, &err);
1980 if (err) {
1981 error_propagate(errp, err);
1982 qemu_mutex_unlock_ramlist();
1983 return;
1985 } else {
1986 new_block->host = phys_mem_alloc(new_block->max_length,
1987 &new_block->mr->align, shared);
1988 if (!new_block->host) {
1989 error_setg_errno(errp, errno,
1990 "cannot set up guest memory '%s'",
1991 memory_region_name(new_block->mr));
1992 qemu_mutex_unlock_ramlist();
1993 return;
1995 memory_try_enable_merging(new_block->host, new_block->max_length);
1999 new_ram_size = MAX(old_ram_size,
2000 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2001 if (new_ram_size > old_ram_size) {
2002 dirty_memory_extend(old_ram_size, new_ram_size);
2004 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2005 * QLIST (which has an RCU-friendly variant) does not have insertion at
2006 * tail, so save the last element in last_block.
2008 RAMBLOCK_FOREACH(block) {
2009 last_block = block;
2010 if (block->max_length < new_block->max_length) {
2011 break;
2014 if (block) {
2015 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2016 } else if (last_block) {
2017 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2018 } else { /* list is empty */
2019 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2021 ram_list.mru_block = NULL;
2023 /* Write list before version */
2024 smp_wmb();
2025 ram_list.version++;
2026 qemu_mutex_unlock_ramlist();
2028 cpu_physical_memory_set_dirty_range(new_block->offset,
2029 new_block->used_length,
2030 DIRTY_CLIENTS_ALL);
2032 if (new_block->host) {
2033 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2034 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2035 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2036 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2037 ram_block_notify_add(new_block->host, new_block->max_length);
2041 #ifdef __linux__
2042 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2043 bool share, int fd,
2044 Error **errp)
2046 RAMBlock *new_block;
2047 Error *local_err = NULL;
2048 int64_t file_size;
2050 if (xen_enabled()) {
2051 error_setg(errp, "-mem-path not supported with Xen");
2052 return NULL;
2055 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2056 error_setg(errp,
2057 "host lacks kvm mmu notifiers, -mem-path unsupported");
2058 return NULL;
2061 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2063 * file_ram_alloc() needs to allocate just like
2064 * phys_mem_alloc, but we haven't bothered to provide
2065 * a hook there.
2067 error_setg(errp,
2068 "-mem-path not supported with this accelerator");
2069 return NULL;
2072 size = HOST_PAGE_ALIGN(size);
2073 file_size = get_file_size(fd);
2074 if (file_size > 0 && file_size < size) {
2075 error_setg(errp, "backing store %s size 0x%" PRIx64
2076 " does not match 'size' option 0x" RAM_ADDR_FMT,
2077 mem_path, file_size, size);
2078 return NULL;
2081 new_block = g_malloc0(sizeof(*new_block));
2082 new_block->mr = mr;
2083 new_block->used_length = size;
2084 new_block->max_length = size;
2085 new_block->flags = share ? RAM_SHARED : 0;
2086 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2087 if (!new_block->host) {
2088 g_free(new_block);
2089 return NULL;
2092 ram_block_add(new_block, &local_err, share);
2093 if (local_err) {
2094 g_free(new_block);
2095 error_propagate(errp, local_err);
2096 return NULL;
2098 return new_block;
2103 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2104 bool share, const char *mem_path,
2105 Error **errp)
2107 int fd;
2108 bool created;
2109 RAMBlock *block;
2111 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2112 if (fd < 0) {
2113 return NULL;
2116 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2117 if (!block) {
2118 if (created) {
2119 unlink(mem_path);
2121 close(fd);
2122 return NULL;
2125 return block;
2127 #endif
2129 static
2130 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2131 void (*resized)(const char*,
2132 uint64_t length,
2133 void *host),
2134 void *host, bool resizeable, bool share,
2135 MemoryRegion *mr, Error **errp)
2137 RAMBlock *new_block;
2138 Error *local_err = NULL;
2140 size = HOST_PAGE_ALIGN(size);
2141 max_size = HOST_PAGE_ALIGN(max_size);
2142 new_block = g_malloc0(sizeof(*new_block));
2143 new_block->mr = mr;
2144 new_block->resized = resized;
2145 new_block->used_length = size;
2146 new_block->max_length = max_size;
2147 assert(max_size >= size);
2148 new_block->fd = -1;
2149 new_block->page_size = getpagesize();
2150 new_block->host = host;
2151 if (host) {
2152 new_block->flags |= RAM_PREALLOC;
2154 if (resizeable) {
2155 new_block->flags |= RAM_RESIZEABLE;
2157 ram_block_add(new_block, &local_err, share);
2158 if (local_err) {
2159 g_free(new_block);
2160 error_propagate(errp, local_err);
2161 return NULL;
2163 return new_block;
2166 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2167 MemoryRegion *mr, Error **errp)
2169 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2170 false, mr, errp);
2173 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2174 MemoryRegion *mr, Error **errp)
2176 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2177 share, mr, errp);
2180 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2181 void (*resized)(const char*,
2182 uint64_t length,
2183 void *host),
2184 MemoryRegion *mr, Error **errp)
2186 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2187 false, mr, errp);
2190 static void reclaim_ramblock(RAMBlock *block)
2192 if (block->flags & RAM_PREALLOC) {
2194 } else if (xen_enabled()) {
2195 xen_invalidate_map_cache_entry(block->host);
2196 #ifndef _WIN32
2197 } else if (block->fd >= 0) {
2198 qemu_ram_munmap(block->host, block->max_length);
2199 close(block->fd);
2200 #endif
2201 } else {
2202 qemu_anon_ram_free(block->host, block->max_length);
2204 g_free(block);
2207 void qemu_ram_free(RAMBlock *block)
2209 if (!block) {
2210 return;
2213 if (block->host) {
2214 ram_block_notify_remove(block->host, block->max_length);
2217 qemu_mutex_lock_ramlist();
2218 QLIST_REMOVE_RCU(block, next);
2219 ram_list.mru_block = NULL;
2220 /* Write list before version */
2221 smp_wmb();
2222 ram_list.version++;
2223 call_rcu(block, reclaim_ramblock, rcu);
2224 qemu_mutex_unlock_ramlist();
2227 #ifndef _WIN32
2228 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2230 RAMBlock *block;
2231 ram_addr_t offset;
2232 int flags;
2233 void *area, *vaddr;
2235 RAMBLOCK_FOREACH(block) {
2236 offset = addr - block->offset;
2237 if (offset < block->max_length) {
2238 vaddr = ramblock_ptr(block, offset);
2239 if (block->flags & RAM_PREALLOC) {
2241 } else if (xen_enabled()) {
2242 abort();
2243 } else {
2244 flags = MAP_FIXED;
2245 if (block->fd >= 0) {
2246 flags |= (block->flags & RAM_SHARED ?
2247 MAP_SHARED : MAP_PRIVATE);
2248 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2249 flags, block->fd, offset);
2250 } else {
2252 * Remap needs to match alloc. Accelerators that
2253 * set phys_mem_alloc never remap. If they did,
2254 * we'd need a remap hook here.
2256 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2258 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2259 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2260 flags, -1, 0);
2262 if (area != vaddr) {
2263 error_report("Could not remap addr: "
2264 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2265 length, addr);
2266 exit(1);
2268 memory_try_enable_merging(vaddr, length);
2269 qemu_ram_setup_dump(vaddr, length);
2274 #endif /* !_WIN32 */
2276 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2277 * This should not be used for general purpose DMA. Use address_space_map
2278 * or address_space_rw instead. For local memory (e.g. video ram) that the
2279 * device owns, use memory_region_get_ram_ptr.
2281 * Called within RCU critical section.
2283 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2285 RAMBlock *block = ram_block;
2287 if (block == NULL) {
2288 block = qemu_get_ram_block(addr);
2289 addr -= block->offset;
2292 if (xen_enabled() && block->host == NULL) {
2293 /* We need to check if the requested address is in the RAM
2294 * because we don't want to map the entire memory in QEMU.
2295 * In that case just map until the end of the page.
2297 if (block->offset == 0) {
2298 return xen_map_cache(addr, 0, 0, false);
2301 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2303 return ramblock_ptr(block, addr);
2306 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2307 * but takes a size argument.
2309 * Called within RCU critical section.
2311 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2312 hwaddr *size, bool lock)
2314 RAMBlock *block = ram_block;
2315 if (*size == 0) {
2316 return NULL;
2319 if (block == NULL) {
2320 block = qemu_get_ram_block(addr);
2321 addr -= block->offset;
2323 *size = MIN(*size, block->max_length - addr);
2325 if (xen_enabled() && block->host == NULL) {
2326 /* We need to check if the requested address is in the RAM
2327 * because we don't want to map the entire memory in QEMU.
2328 * In that case just map the requested area.
2330 if (block->offset == 0) {
2331 return xen_map_cache(addr, *size, lock, lock);
2334 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2337 return ramblock_ptr(block, addr);
2340 /* Return the offset of a hostpointer within a ramblock */
2341 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2343 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2344 assert((uintptr_t)host >= (uintptr_t)rb->host);
2345 assert(res < rb->max_length);
2347 return res;
2351 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2352 * in that RAMBlock.
2354 * ptr: Host pointer to look up
2355 * round_offset: If true round the result offset down to a page boundary
2356 * *ram_addr: set to result ram_addr
2357 * *offset: set to result offset within the RAMBlock
2359 * Returns: RAMBlock (or NULL if not found)
2361 * By the time this function returns, the returned pointer is not protected
2362 * by RCU anymore. If the caller is not within an RCU critical section and
2363 * does not hold the iothread lock, it must have other means of protecting the
2364 * pointer, such as a reference to the region that includes the incoming
2365 * ram_addr_t.
2367 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2368 ram_addr_t *offset)
2370 RAMBlock *block;
2371 uint8_t *host = ptr;
2373 if (xen_enabled()) {
2374 ram_addr_t ram_addr;
2375 rcu_read_lock();
2376 ram_addr = xen_ram_addr_from_mapcache(ptr);
2377 block = qemu_get_ram_block(ram_addr);
2378 if (block) {
2379 *offset = ram_addr - block->offset;
2381 rcu_read_unlock();
2382 return block;
2385 rcu_read_lock();
2386 block = atomic_rcu_read(&ram_list.mru_block);
2387 if (block && block->host && host - block->host < block->max_length) {
2388 goto found;
2391 RAMBLOCK_FOREACH(block) {
2392 /* This case append when the block is not mapped. */
2393 if (block->host == NULL) {
2394 continue;
2396 if (host - block->host < block->max_length) {
2397 goto found;
2401 rcu_read_unlock();
2402 return NULL;
2404 found:
2405 *offset = (host - block->host);
2406 if (round_offset) {
2407 *offset &= TARGET_PAGE_MASK;
2409 rcu_read_unlock();
2410 return block;
2414 * Finds the named RAMBlock
2416 * name: The name of RAMBlock to find
2418 * Returns: RAMBlock (or NULL if not found)
2420 RAMBlock *qemu_ram_block_by_name(const char *name)
2422 RAMBlock *block;
2424 RAMBLOCK_FOREACH(block) {
2425 if (!strcmp(name, block->idstr)) {
2426 return block;
2430 return NULL;
2433 /* Some of the softmmu routines need to translate from a host pointer
2434 (typically a TLB entry) back to a ram offset. */
2435 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2437 RAMBlock *block;
2438 ram_addr_t offset;
2440 block = qemu_ram_block_from_host(ptr, false, &offset);
2441 if (!block) {
2442 return RAM_ADDR_INVALID;
2445 return block->offset + offset;
2448 /* Called within RCU critical section. */
2449 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2450 CPUState *cpu,
2451 vaddr mem_vaddr,
2452 ram_addr_t ram_addr,
2453 unsigned size)
2455 ndi->cpu = cpu;
2456 ndi->ram_addr = ram_addr;
2457 ndi->mem_vaddr = mem_vaddr;
2458 ndi->size = size;
2459 ndi->locked = false;
2461 assert(tcg_enabled());
2462 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2463 ndi->locked = true;
2464 tb_lock();
2465 tb_invalidate_phys_page_fast(ram_addr, size);
2469 /* Called within RCU critical section. */
2470 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2472 if (ndi->locked) {
2473 tb_unlock();
2476 /* Set both VGA and migration bits for simplicity and to remove
2477 * the notdirty callback faster.
2479 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2480 DIRTY_CLIENTS_NOCODE);
2481 /* we remove the notdirty callback only if the code has been
2482 flushed */
2483 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2484 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2488 /* Called within RCU critical section. */
2489 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2490 uint64_t val, unsigned size)
2492 NotDirtyInfo ndi;
2494 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2495 ram_addr, size);
2497 switch (size) {
2498 case 1:
2499 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2500 break;
2501 case 2:
2502 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2503 break;
2504 case 4:
2505 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2506 break;
2507 case 8:
2508 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2509 break;
2510 default:
2511 abort();
2513 memory_notdirty_write_complete(&ndi);
2516 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2517 unsigned size, bool is_write)
2519 return is_write;
2522 static const MemoryRegionOps notdirty_mem_ops = {
2523 .write = notdirty_mem_write,
2524 .valid.accepts = notdirty_mem_accepts,
2525 .endianness = DEVICE_NATIVE_ENDIAN,
2526 .valid = {
2527 .min_access_size = 1,
2528 .max_access_size = 8,
2529 .unaligned = false,
2531 .impl = {
2532 .min_access_size = 1,
2533 .max_access_size = 8,
2534 .unaligned = false,
2538 /* Generate a debug exception if a watchpoint has been hit. */
2539 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2541 CPUState *cpu = current_cpu;
2542 CPUClass *cc = CPU_GET_CLASS(cpu);
2543 target_ulong vaddr;
2544 CPUWatchpoint *wp;
2546 assert(tcg_enabled());
2547 if (cpu->watchpoint_hit) {
2548 /* We re-entered the check after replacing the TB. Now raise
2549 * the debug interrupt so that is will trigger after the
2550 * current instruction. */
2551 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2552 return;
2554 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2555 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2556 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2557 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2558 && (wp->flags & flags)) {
2559 if (flags == BP_MEM_READ) {
2560 wp->flags |= BP_WATCHPOINT_HIT_READ;
2561 } else {
2562 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2564 wp->hitaddr = vaddr;
2565 wp->hitattrs = attrs;
2566 if (!cpu->watchpoint_hit) {
2567 if (wp->flags & BP_CPU &&
2568 !cc->debug_check_watchpoint(cpu, wp)) {
2569 wp->flags &= ~BP_WATCHPOINT_HIT;
2570 continue;
2572 cpu->watchpoint_hit = wp;
2574 /* Both tb_lock and iothread_mutex will be reset when
2575 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2576 * back into the cpu_exec main loop.
2578 tb_lock();
2579 tb_check_watchpoint(cpu);
2580 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2581 cpu->exception_index = EXCP_DEBUG;
2582 cpu_loop_exit(cpu);
2583 } else {
2584 /* Force execution of one insn next time. */
2585 cpu->cflags_next_tb = 1 | curr_cflags();
2586 cpu_loop_exit_noexc(cpu);
2589 } else {
2590 wp->flags &= ~BP_WATCHPOINT_HIT;
2595 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2596 so these check for a hit then pass through to the normal out-of-line
2597 phys routines. */
2598 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2599 unsigned size, MemTxAttrs attrs)
2601 MemTxResult res;
2602 uint64_t data;
2603 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2604 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2606 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2607 switch (size) {
2608 case 1:
2609 data = address_space_ldub(as, addr, attrs, &res);
2610 break;
2611 case 2:
2612 data = address_space_lduw(as, addr, attrs, &res);
2613 break;
2614 case 4:
2615 data = address_space_ldl(as, addr, attrs, &res);
2616 break;
2617 case 8:
2618 data = address_space_ldq(as, addr, attrs, &res);
2619 break;
2620 default: abort();
2622 *pdata = data;
2623 return res;
2626 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2627 uint64_t val, unsigned size,
2628 MemTxAttrs attrs)
2630 MemTxResult res;
2631 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2632 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2634 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2635 switch (size) {
2636 case 1:
2637 address_space_stb(as, addr, val, attrs, &res);
2638 break;
2639 case 2:
2640 address_space_stw(as, addr, val, attrs, &res);
2641 break;
2642 case 4:
2643 address_space_stl(as, addr, val, attrs, &res);
2644 break;
2645 case 8:
2646 address_space_stq(as, addr, val, attrs, &res);
2647 break;
2648 default: abort();
2650 return res;
2653 static const MemoryRegionOps watch_mem_ops = {
2654 .read_with_attrs = watch_mem_read,
2655 .write_with_attrs = watch_mem_write,
2656 .endianness = DEVICE_NATIVE_ENDIAN,
2657 .valid = {
2658 .min_access_size = 1,
2659 .max_access_size = 8,
2660 .unaligned = false,
2662 .impl = {
2663 .min_access_size = 1,
2664 .max_access_size = 8,
2665 .unaligned = false,
2669 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2670 MemTxAttrs attrs, uint8_t *buf, int len);
2671 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2672 const uint8_t *buf, int len);
2673 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2674 bool is_write);
2676 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2677 unsigned len, MemTxAttrs attrs)
2679 subpage_t *subpage = opaque;
2680 uint8_t buf[8];
2681 MemTxResult res;
2683 #if defined(DEBUG_SUBPAGE)
2684 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2685 subpage, len, addr);
2686 #endif
2687 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2688 if (res) {
2689 return res;
2691 switch (len) {
2692 case 1:
2693 *data = ldub_p(buf);
2694 return MEMTX_OK;
2695 case 2:
2696 *data = lduw_p(buf);
2697 return MEMTX_OK;
2698 case 4:
2699 *data = ldl_p(buf);
2700 return MEMTX_OK;
2701 case 8:
2702 *data = ldq_p(buf);
2703 return MEMTX_OK;
2704 default:
2705 abort();
2709 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2710 uint64_t value, unsigned len, MemTxAttrs attrs)
2712 subpage_t *subpage = opaque;
2713 uint8_t buf[8];
2715 #if defined(DEBUG_SUBPAGE)
2716 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2717 " value %"PRIx64"\n",
2718 __func__, subpage, len, addr, value);
2719 #endif
2720 switch (len) {
2721 case 1:
2722 stb_p(buf, value);
2723 break;
2724 case 2:
2725 stw_p(buf, value);
2726 break;
2727 case 4:
2728 stl_p(buf, value);
2729 break;
2730 case 8:
2731 stq_p(buf, value);
2732 break;
2733 default:
2734 abort();
2736 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2739 static bool subpage_accepts(void *opaque, hwaddr addr,
2740 unsigned len, bool is_write)
2742 subpage_t *subpage = opaque;
2743 #if defined(DEBUG_SUBPAGE)
2744 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2745 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2746 #endif
2748 return flatview_access_valid(subpage->fv, addr + subpage->base,
2749 len, is_write);
2752 static const MemoryRegionOps subpage_ops = {
2753 .read_with_attrs = subpage_read,
2754 .write_with_attrs = subpage_write,
2755 .impl.min_access_size = 1,
2756 .impl.max_access_size = 8,
2757 .valid.min_access_size = 1,
2758 .valid.max_access_size = 8,
2759 .valid.accepts = subpage_accepts,
2760 .endianness = DEVICE_NATIVE_ENDIAN,
2763 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2764 uint16_t section)
2766 int idx, eidx;
2768 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2769 return -1;
2770 idx = SUBPAGE_IDX(start);
2771 eidx = SUBPAGE_IDX(end);
2772 #if defined(DEBUG_SUBPAGE)
2773 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2774 __func__, mmio, start, end, idx, eidx, section);
2775 #endif
2776 for (; idx <= eidx; idx++) {
2777 mmio->sub_section[idx] = section;
2780 return 0;
2783 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2785 subpage_t *mmio;
2787 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2788 mmio->fv = fv;
2789 mmio->base = base;
2790 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2791 NULL, TARGET_PAGE_SIZE);
2792 mmio->iomem.subpage = true;
2793 #if defined(DEBUG_SUBPAGE)
2794 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2795 mmio, base, TARGET_PAGE_SIZE);
2796 #endif
2797 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2799 return mmio;
2802 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2804 assert(fv);
2805 MemoryRegionSection section = {
2806 .fv = fv,
2807 .mr = mr,
2808 .offset_within_address_space = 0,
2809 .offset_within_region = 0,
2810 .size = int128_2_64(),
2813 return phys_section_add(map, &section);
2816 static void readonly_mem_write(void *opaque, hwaddr addr,
2817 uint64_t val, unsigned size)
2819 /* Ignore any write to ROM. */
2822 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2823 unsigned size, bool is_write)
2825 return is_write;
2828 /* This will only be used for writes, because reads are special cased
2829 * to directly access the underlying host ram.
2831 static const MemoryRegionOps readonly_mem_ops = {
2832 .write = readonly_mem_write,
2833 .valid.accepts = readonly_mem_accepts,
2834 .endianness = DEVICE_NATIVE_ENDIAN,
2835 .valid = {
2836 .min_access_size = 1,
2837 .max_access_size = 8,
2838 .unaligned = false,
2840 .impl = {
2841 .min_access_size = 1,
2842 .max_access_size = 8,
2843 .unaligned = false,
2847 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2849 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2850 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2851 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2852 MemoryRegionSection *sections = d->map.sections;
2854 return sections[index & ~TARGET_PAGE_MASK].mr;
2857 static void io_mem_init(void)
2859 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
2860 NULL, NULL, UINT64_MAX);
2861 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2862 NULL, UINT64_MAX);
2864 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2865 * which can be called without the iothread mutex.
2867 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2868 NULL, UINT64_MAX);
2869 memory_region_clear_global_locking(&io_mem_notdirty);
2871 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2872 NULL, UINT64_MAX);
2875 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2877 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2878 uint16_t n;
2880 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2881 assert(n == PHYS_SECTION_UNASSIGNED);
2882 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2883 assert(n == PHYS_SECTION_NOTDIRTY);
2884 n = dummy_section(&d->map, fv, &io_mem_rom);
2885 assert(n == PHYS_SECTION_ROM);
2886 n = dummy_section(&d->map, fv, &io_mem_watch);
2887 assert(n == PHYS_SECTION_WATCH);
2889 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2891 return d;
2894 void address_space_dispatch_free(AddressSpaceDispatch *d)
2896 phys_sections_free(&d->map);
2897 g_free(d);
2900 static void tcg_commit(MemoryListener *listener)
2902 CPUAddressSpace *cpuas;
2903 AddressSpaceDispatch *d;
2905 /* since each CPU stores ram addresses in its TLB cache, we must
2906 reset the modified entries */
2907 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2908 cpu_reloading_memory_map();
2909 /* The CPU and TLB are protected by the iothread lock.
2910 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2911 * may have split the RCU critical section.
2913 d = address_space_to_dispatch(cpuas->as);
2914 atomic_rcu_set(&cpuas->memory_dispatch, d);
2915 tlb_flush(cpuas->cpu);
2918 static void memory_map_init(void)
2920 system_memory = g_malloc(sizeof(*system_memory));
2922 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2923 address_space_init(&address_space_memory, system_memory, "memory");
2925 system_io = g_malloc(sizeof(*system_io));
2926 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2927 65536);
2928 address_space_init(&address_space_io, system_io, "I/O");
2931 MemoryRegion *get_system_memory(void)
2933 return system_memory;
2936 MemoryRegion *get_system_io(void)
2938 return system_io;
2941 #endif /* !defined(CONFIG_USER_ONLY) */
2943 /* physical memory access (slow version, mainly for debug) */
2944 #if defined(CONFIG_USER_ONLY)
2945 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2946 uint8_t *buf, int len, int is_write)
2948 int l, flags;
2949 target_ulong page;
2950 void * p;
2952 while (len > 0) {
2953 page = addr & TARGET_PAGE_MASK;
2954 l = (page + TARGET_PAGE_SIZE) - addr;
2955 if (l > len)
2956 l = len;
2957 flags = page_get_flags(page);
2958 if (!(flags & PAGE_VALID))
2959 return -1;
2960 if (is_write) {
2961 if (!(flags & PAGE_WRITE))
2962 return -1;
2963 /* XXX: this code should not depend on lock_user */
2964 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2965 return -1;
2966 memcpy(p, buf, l);
2967 unlock_user(p, addr, l);
2968 } else {
2969 if (!(flags & PAGE_READ))
2970 return -1;
2971 /* XXX: this code should not depend on lock_user */
2972 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2973 return -1;
2974 memcpy(buf, p, l);
2975 unlock_user(p, addr, 0);
2977 len -= l;
2978 buf += l;
2979 addr += l;
2981 return 0;
2984 #else
2986 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2987 hwaddr length)
2989 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2990 addr += memory_region_get_ram_addr(mr);
2992 /* No early return if dirty_log_mask is or becomes 0, because
2993 * cpu_physical_memory_set_dirty_range will still call
2994 * xen_modified_memory.
2996 if (dirty_log_mask) {
2997 dirty_log_mask =
2998 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3000 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3001 assert(tcg_enabled());
3002 tb_lock();
3003 tb_invalidate_phys_range(addr, addr + length);
3004 tb_unlock();
3005 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3007 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3010 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3012 unsigned access_size_max = mr->ops->valid.max_access_size;
3014 /* Regions are assumed to support 1-4 byte accesses unless
3015 otherwise specified. */
3016 if (access_size_max == 0) {
3017 access_size_max = 4;
3020 /* Bound the maximum access by the alignment of the address. */
3021 if (!mr->ops->impl.unaligned) {
3022 unsigned align_size_max = addr & -addr;
3023 if (align_size_max != 0 && align_size_max < access_size_max) {
3024 access_size_max = align_size_max;
3028 /* Don't attempt accesses larger than the maximum. */
3029 if (l > access_size_max) {
3030 l = access_size_max;
3032 l = pow2floor(l);
3034 return l;
3037 static bool prepare_mmio_access(MemoryRegion *mr)
3039 bool unlocked = !qemu_mutex_iothread_locked();
3040 bool release_lock = false;
3042 if (unlocked && mr->global_locking) {
3043 qemu_mutex_lock_iothread();
3044 unlocked = false;
3045 release_lock = true;
3047 if (mr->flush_coalesced_mmio) {
3048 if (unlocked) {
3049 qemu_mutex_lock_iothread();
3051 qemu_flush_coalesced_mmio_buffer();
3052 if (unlocked) {
3053 qemu_mutex_unlock_iothread();
3057 return release_lock;
3060 /* Called within RCU critical section. */
3061 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3062 MemTxAttrs attrs,
3063 const uint8_t *buf,
3064 int len, hwaddr addr1,
3065 hwaddr l, MemoryRegion *mr)
3067 uint8_t *ptr;
3068 uint64_t val;
3069 MemTxResult result = MEMTX_OK;
3070 bool release_lock = false;
3072 for (;;) {
3073 if (!memory_access_is_direct(mr, true)) {
3074 release_lock |= prepare_mmio_access(mr);
3075 l = memory_access_size(mr, l, addr1);
3076 /* XXX: could force current_cpu to NULL to avoid
3077 potential bugs */
3078 switch (l) {
3079 case 8:
3080 /* 64 bit write access */
3081 val = ldq_p(buf);
3082 result |= memory_region_dispatch_write(mr, addr1, val, 8,
3083 attrs);
3084 break;
3085 case 4:
3086 /* 32 bit write access */
3087 val = (uint32_t)ldl_p(buf);
3088 result |= memory_region_dispatch_write(mr, addr1, val, 4,
3089 attrs);
3090 break;
3091 case 2:
3092 /* 16 bit write access */
3093 val = lduw_p(buf);
3094 result |= memory_region_dispatch_write(mr, addr1, val, 2,
3095 attrs);
3096 break;
3097 case 1:
3098 /* 8 bit write access */
3099 val = ldub_p(buf);
3100 result |= memory_region_dispatch_write(mr, addr1, val, 1,
3101 attrs);
3102 break;
3103 default:
3104 abort();
3106 } else {
3107 /* RAM case */
3108 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3109 memcpy(ptr, buf, l);
3110 invalidate_and_set_dirty(mr, addr1, l);
3113 if (release_lock) {
3114 qemu_mutex_unlock_iothread();
3115 release_lock = false;
3118 len -= l;
3119 buf += l;
3120 addr += l;
3122 if (!len) {
3123 break;
3126 l = len;
3127 mr = flatview_translate(fv, addr, &addr1, &l, true);
3130 return result;
3133 /* Called from RCU critical section. */
3134 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3135 const uint8_t *buf, int len)
3137 hwaddr l;
3138 hwaddr addr1;
3139 MemoryRegion *mr;
3140 MemTxResult result = MEMTX_OK;
3142 l = len;
3143 mr = flatview_translate(fv, addr, &addr1, &l, true);
3144 result = flatview_write_continue(fv, addr, attrs, buf, len,
3145 addr1, l, mr);
3147 return result;
3150 /* Called within RCU critical section. */
3151 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3152 MemTxAttrs attrs, uint8_t *buf,
3153 int len, hwaddr addr1, hwaddr l,
3154 MemoryRegion *mr)
3156 uint8_t *ptr;
3157 uint64_t val;
3158 MemTxResult result = MEMTX_OK;
3159 bool release_lock = false;
3161 for (;;) {
3162 if (!memory_access_is_direct(mr, false)) {
3163 /* I/O case */
3164 release_lock |= prepare_mmio_access(mr);
3165 l = memory_access_size(mr, l, addr1);
3166 switch (l) {
3167 case 8:
3168 /* 64 bit read access */
3169 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3170 attrs);
3171 stq_p(buf, val);
3172 break;
3173 case 4:
3174 /* 32 bit read access */
3175 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3176 attrs);
3177 stl_p(buf, val);
3178 break;
3179 case 2:
3180 /* 16 bit read access */
3181 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3182 attrs);
3183 stw_p(buf, val);
3184 break;
3185 case 1:
3186 /* 8 bit read access */
3187 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3188 attrs);
3189 stb_p(buf, val);
3190 break;
3191 default:
3192 abort();
3194 } else {
3195 /* RAM case */
3196 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3197 memcpy(buf, ptr, l);
3200 if (release_lock) {
3201 qemu_mutex_unlock_iothread();
3202 release_lock = false;
3205 len -= l;
3206 buf += l;
3207 addr += l;
3209 if (!len) {
3210 break;
3213 l = len;
3214 mr = flatview_translate(fv, addr, &addr1, &l, false);
3217 return result;
3220 /* Called from RCU critical section. */
3221 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3222 MemTxAttrs attrs, uint8_t *buf, int len)
3224 hwaddr l;
3225 hwaddr addr1;
3226 MemoryRegion *mr;
3228 l = len;
3229 mr = flatview_translate(fv, addr, &addr1, &l, false);
3230 return flatview_read_continue(fv, addr, attrs, buf, len,
3231 addr1, l, mr);
3234 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3235 MemTxAttrs attrs, uint8_t *buf, int len)
3237 MemTxResult result = MEMTX_OK;
3238 FlatView *fv;
3240 if (len > 0) {
3241 rcu_read_lock();
3242 fv = address_space_to_flatview(as);
3243 result = flatview_read(fv, addr, attrs, buf, len);
3244 rcu_read_unlock();
3247 return result;
3250 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3251 MemTxAttrs attrs,
3252 const uint8_t *buf, int len)
3254 MemTxResult result = MEMTX_OK;
3255 FlatView *fv;
3257 if (len > 0) {
3258 rcu_read_lock();
3259 fv = address_space_to_flatview(as);
3260 result = flatview_write(fv, addr, attrs, buf, len);
3261 rcu_read_unlock();
3264 return result;
3267 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3268 uint8_t *buf, int len, bool is_write)
3270 if (is_write) {
3271 return address_space_write(as, addr, attrs, buf, len);
3272 } else {
3273 return address_space_read_full(as, addr, attrs, buf, len);
3277 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3278 int len, int is_write)
3280 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3281 buf, len, is_write);
3284 enum write_rom_type {
3285 WRITE_DATA,
3286 FLUSH_CACHE,
3289 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3290 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3292 hwaddr l;
3293 uint8_t *ptr;
3294 hwaddr addr1;
3295 MemoryRegion *mr;
3297 rcu_read_lock();
3298 while (len > 0) {
3299 l = len;
3300 mr = address_space_translate(as, addr, &addr1, &l, true);
3302 if (!(memory_region_is_ram(mr) ||
3303 memory_region_is_romd(mr))) {
3304 l = memory_access_size(mr, l, addr1);
3305 } else {
3306 /* ROM/RAM case */
3307 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3308 switch (type) {
3309 case WRITE_DATA:
3310 memcpy(ptr, buf, l);
3311 invalidate_and_set_dirty(mr, addr1, l);
3312 break;
3313 case FLUSH_CACHE:
3314 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3315 break;
3318 len -= l;
3319 buf += l;
3320 addr += l;
3322 rcu_read_unlock();
3325 /* used for ROM loading : can write in RAM and ROM */
3326 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3327 const uint8_t *buf, int len)
3329 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3332 void cpu_flush_icache_range(hwaddr start, int len)
3335 * This function should do the same thing as an icache flush that was
3336 * triggered from within the guest. For TCG we are always cache coherent,
3337 * so there is no need to flush anything. For KVM / Xen we need to flush
3338 * the host's instruction cache at least.
3340 if (tcg_enabled()) {
3341 return;
3344 cpu_physical_memory_write_rom_internal(&address_space_memory,
3345 start, NULL, len, FLUSH_CACHE);
3348 typedef struct {
3349 MemoryRegion *mr;
3350 void *buffer;
3351 hwaddr addr;
3352 hwaddr len;
3353 bool in_use;
3354 } BounceBuffer;
3356 static BounceBuffer bounce;
3358 typedef struct MapClient {
3359 QEMUBH *bh;
3360 QLIST_ENTRY(MapClient) link;
3361 } MapClient;
3363 QemuMutex map_client_list_lock;
3364 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3365 = QLIST_HEAD_INITIALIZER(map_client_list);
3367 static void cpu_unregister_map_client_do(MapClient *client)
3369 QLIST_REMOVE(client, link);
3370 g_free(client);
3373 static void cpu_notify_map_clients_locked(void)
3375 MapClient *client;
3377 while (!QLIST_EMPTY(&map_client_list)) {
3378 client = QLIST_FIRST(&map_client_list);
3379 qemu_bh_schedule(client->bh);
3380 cpu_unregister_map_client_do(client);
3384 void cpu_register_map_client(QEMUBH *bh)
3386 MapClient *client = g_malloc(sizeof(*client));
3388 qemu_mutex_lock(&map_client_list_lock);
3389 client->bh = bh;
3390 QLIST_INSERT_HEAD(&map_client_list, client, link);
3391 if (!atomic_read(&bounce.in_use)) {
3392 cpu_notify_map_clients_locked();
3394 qemu_mutex_unlock(&map_client_list_lock);
3397 void cpu_exec_init_all(void)
3399 qemu_mutex_init(&ram_list.mutex);
3400 /* The data structures we set up here depend on knowing the page size,
3401 * so no more changes can be made after this point.
3402 * In an ideal world, nothing we did before we had finished the
3403 * machine setup would care about the target page size, and we could
3404 * do this much later, rather than requiring board models to state
3405 * up front what their requirements are.
3407 finalize_target_page_bits();
3408 io_mem_init();
3409 memory_map_init();
3410 qemu_mutex_init(&map_client_list_lock);
3413 void cpu_unregister_map_client(QEMUBH *bh)
3415 MapClient *client;
3417 qemu_mutex_lock(&map_client_list_lock);
3418 QLIST_FOREACH(client, &map_client_list, link) {
3419 if (client->bh == bh) {
3420 cpu_unregister_map_client_do(client);
3421 break;
3424 qemu_mutex_unlock(&map_client_list_lock);
3427 static void cpu_notify_map_clients(void)
3429 qemu_mutex_lock(&map_client_list_lock);
3430 cpu_notify_map_clients_locked();
3431 qemu_mutex_unlock(&map_client_list_lock);
3434 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3435 bool is_write)
3437 MemoryRegion *mr;
3438 hwaddr l, xlat;
3440 while (len > 0) {
3441 l = len;
3442 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3443 if (!memory_access_is_direct(mr, is_write)) {
3444 l = memory_access_size(mr, l, addr);
3445 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3446 return false;
3450 len -= l;
3451 addr += l;
3453 return true;
3456 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3457 int len, bool is_write)
3459 FlatView *fv;
3460 bool result;
3462 rcu_read_lock();
3463 fv = address_space_to_flatview(as);
3464 result = flatview_access_valid(fv, addr, len, is_write);
3465 rcu_read_unlock();
3466 return result;
3469 static hwaddr
3470 flatview_extend_translation(FlatView *fv, hwaddr addr,
3471 hwaddr target_len,
3472 MemoryRegion *mr, hwaddr base, hwaddr len,
3473 bool is_write)
3475 hwaddr done = 0;
3476 hwaddr xlat;
3477 MemoryRegion *this_mr;
3479 for (;;) {
3480 target_len -= len;
3481 addr += len;
3482 done += len;
3483 if (target_len == 0) {
3484 return done;
3487 len = target_len;
3488 this_mr = flatview_translate(fv, addr, &xlat,
3489 &len, is_write);
3490 if (this_mr != mr || xlat != base + done) {
3491 return done;
3496 /* Map a physical memory region into a host virtual address.
3497 * May map a subset of the requested range, given by and returned in *plen.
3498 * May return NULL if resources needed to perform the mapping are exhausted.
3499 * Use only for reads OR writes - not for read-modify-write operations.
3500 * Use cpu_register_map_client() to know when retrying the map operation is
3501 * likely to succeed.
3503 void *address_space_map(AddressSpace *as,
3504 hwaddr addr,
3505 hwaddr *plen,
3506 bool is_write)
3508 hwaddr len = *plen;
3509 hwaddr l, xlat;
3510 MemoryRegion *mr;
3511 void *ptr;
3512 FlatView *fv;
3514 if (len == 0) {
3515 return NULL;
3518 l = len;
3519 rcu_read_lock();
3520 fv = address_space_to_flatview(as);
3521 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3523 if (!memory_access_is_direct(mr, is_write)) {
3524 if (atomic_xchg(&bounce.in_use, true)) {
3525 rcu_read_unlock();
3526 return NULL;
3528 /* Avoid unbounded allocations */
3529 l = MIN(l, TARGET_PAGE_SIZE);
3530 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3531 bounce.addr = addr;
3532 bounce.len = l;
3534 memory_region_ref(mr);
3535 bounce.mr = mr;
3536 if (!is_write) {
3537 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3538 bounce.buffer, l);
3541 rcu_read_unlock();
3542 *plen = l;
3543 return bounce.buffer;
3547 memory_region_ref(mr);
3548 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3549 l, is_write);
3550 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3551 rcu_read_unlock();
3553 return ptr;
3556 /* Unmaps a memory region previously mapped by address_space_map().
3557 * Will also mark the memory as dirty if is_write == 1. access_len gives
3558 * the amount of memory that was actually read or written by the caller.
3560 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3561 int is_write, hwaddr access_len)
3563 if (buffer != bounce.buffer) {
3564 MemoryRegion *mr;
3565 ram_addr_t addr1;
3567 mr = memory_region_from_host(buffer, &addr1);
3568 assert(mr != NULL);
3569 if (is_write) {
3570 invalidate_and_set_dirty(mr, addr1, access_len);
3572 if (xen_enabled()) {
3573 xen_invalidate_map_cache_entry(buffer);
3575 memory_region_unref(mr);
3576 return;
3578 if (is_write) {
3579 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3580 bounce.buffer, access_len);
3582 qemu_vfree(bounce.buffer);
3583 bounce.buffer = NULL;
3584 memory_region_unref(bounce.mr);
3585 atomic_mb_set(&bounce.in_use, false);
3586 cpu_notify_map_clients();
3589 void *cpu_physical_memory_map(hwaddr addr,
3590 hwaddr *plen,
3591 int is_write)
3593 return address_space_map(&address_space_memory, addr, plen, is_write);
3596 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3597 int is_write, hwaddr access_len)
3599 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3602 #define ARG1_DECL AddressSpace *as
3603 #define ARG1 as
3604 #define SUFFIX
3605 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3606 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3607 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3608 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3609 #define RCU_READ_LOCK(...) rcu_read_lock()
3610 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3611 #include "memory_ldst.inc.c"
3613 int64_t address_space_cache_init(MemoryRegionCache *cache,
3614 AddressSpace *as,
3615 hwaddr addr,
3616 hwaddr len,
3617 bool is_write)
3619 cache->len = len;
3620 cache->as = as;
3621 cache->xlat = addr;
3622 return len;
3625 void address_space_cache_invalidate(MemoryRegionCache *cache,
3626 hwaddr addr,
3627 hwaddr access_len)
3631 void address_space_cache_destroy(MemoryRegionCache *cache)
3633 cache->as = NULL;
3636 #define ARG1_DECL MemoryRegionCache *cache
3637 #define ARG1 cache
3638 #define SUFFIX _cached
3639 #define TRANSLATE(addr, ...) \
3640 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3641 #define IS_DIRECT(mr, is_write) true
3642 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3643 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3644 #define RCU_READ_LOCK() rcu_read_lock()
3645 #define RCU_READ_UNLOCK() rcu_read_unlock()
3646 #include "memory_ldst.inc.c"
3648 /* virtual memory access for debug (includes writing to ROM) */
3649 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3650 uint8_t *buf, int len, int is_write)
3652 int l;
3653 hwaddr phys_addr;
3654 target_ulong page;
3656 cpu_synchronize_state(cpu);
3657 while (len > 0) {
3658 int asidx;
3659 MemTxAttrs attrs;
3661 page = addr & TARGET_PAGE_MASK;
3662 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3663 asidx = cpu_asidx_from_attrs(cpu, attrs);
3664 /* if no physical page mapped, return an error */
3665 if (phys_addr == -1)
3666 return -1;
3667 l = (page + TARGET_PAGE_SIZE) - addr;
3668 if (l > len)
3669 l = len;
3670 phys_addr += (addr & ~TARGET_PAGE_MASK);
3671 if (is_write) {
3672 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3673 phys_addr, buf, l);
3674 } else {
3675 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3676 MEMTXATTRS_UNSPECIFIED,
3677 buf, l, 0);
3679 len -= l;
3680 buf += l;
3681 addr += l;
3683 return 0;
3687 * Allows code that needs to deal with migration bitmaps etc to still be built
3688 * target independent.
3690 size_t qemu_target_page_size(void)
3692 return TARGET_PAGE_SIZE;
3695 int qemu_target_page_bits(void)
3697 return TARGET_PAGE_BITS;
3700 int qemu_target_page_bits_min(void)
3702 return TARGET_PAGE_BITS_MIN;
3704 #endif
3707 * A helper function for the _utterly broken_ virtio device model to find out if
3708 * it's running on a big endian machine. Don't do this at home kids!
3710 bool target_words_bigendian(void);
3711 bool target_words_bigendian(void)
3713 #if defined(TARGET_WORDS_BIGENDIAN)
3714 return true;
3715 #else
3716 return false;
3717 #endif
3720 #ifndef CONFIG_USER_ONLY
3721 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3723 MemoryRegion*mr;
3724 hwaddr l = 1;
3725 bool res;
3727 rcu_read_lock();
3728 mr = address_space_translate(&address_space_memory,
3729 phys_addr, &phys_addr, &l, false);
3731 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3732 rcu_read_unlock();
3733 return res;
3736 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3738 RAMBlock *block;
3739 int ret = 0;
3741 rcu_read_lock();
3742 RAMBLOCK_FOREACH(block) {
3743 ret = func(block->idstr, block->host, block->offset,
3744 block->used_length, opaque);
3745 if (ret) {
3746 break;
3749 rcu_read_unlock();
3750 return ret;
3754 * Unmap pages of memory from start to start+length such that
3755 * they a) read as 0, b) Trigger whatever fault mechanism
3756 * the OS provides for postcopy.
3757 * The pages must be unmapped by the end of the function.
3758 * Returns: 0 on success, none-0 on failure
3761 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3763 int ret = -1;
3765 uint8_t *host_startaddr = rb->host + start;
3767 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3768 error_report("ram_block_discard_range: Unaligned start address: %p",
3769 host_startaddr);
3770 goto err;
3773 if ((start + length) <= rb->used_length) {
3774 bool need_madvise, need_fallocate;
3775 uint8_t *host_endaddr = host_startaddr + length;
3776 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3777 error_report("ram_block_discard_range: Unaligned end address: %p",
3778 host_endaddr);
3779 goto err;
3782 errno = ENOTSUP; /* If we are missing MADVISE etc */
3784 /* The logic here is messy;
3785 * madvise DONTNEED fails for hugepages
3786 * fallocate works on hugepages and shmem
3788 need_madvise = (rb->page_size == qemu_host_page_size);
3789 need_fallocate = rb->fd != -1;
3790 if (need_fallocate) {
3791 /* For a file, this causes the area of the file to be zero'd
3792 * if read, and for hugetlbfs also causes it to be unmapped
3793 * so a userfault will trigger.
3795 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3796 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3797 start, length);
3798 if (ret) {
3799 ret = -errno;
3800 error_report("ram_block_discard_range: Failed to fallocate "
3801 "%s:%" PRIx64 " +%zx (%d)",
3802 rb->idstr, start, length, ret);
3803 goto err;
3805 #else
3806 ret = -ENOSYS;
3807 error_report("ram_block_discard_range: fallocate not available/file"
3808 "%s:%" PRIx64 " +%zx (%d)",
3809 rb->idstr, start, length, ret);
3810 goto err;
3811 #endif
3813 if (need_madvise) {
3814 /* For normal RAM this causes it to be unmapped,
3815 * for shared memory it causes the local mapping to disappear
3816 * and to fall back on the file contents (which we just
3817 * fallocate'd away).
3819 #if defined(CONFIG_MADVISE)
3820 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3821 if (ret) {
3822 ret = -errno;
3823 error_report("ram_block_discard_range: Failed to discard range "
3824 "%s:%" PRIx64 " +%zx (%d)",
3825 rb->idstr, start, length, ret);
3826 goto err;
3828 #else
3829 ret = -ENOSYS;
3830 error_report("ram_block_discard_range: MADVISE not available"
3831 "%s:%" PRIx64 " +%zx (%d)",
3832 rb->idstr, start, length, ret);
3833 goto err;
3834 #endif
3836 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3837 need_madvise, need_fallocate, ret);
3838 } else {
3839 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3840 "/%zx/" RAM_ADDR_FMT")",
3841 rb->idstr, start, length, rb->used_length);
3844 err:
3845 return ret;
3848 #endif
3850 void page_size_init(void)
3852 /* NOTE: we can always suppose that qemu_host_page_size >=
3853 TARGET_PAGE_SIZE */
3854 if (qemu_host_page_size == 0) {
3855 qemu_host_page_size = qemu_real_host_page_size;
3857 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3858 qemu_host_page_size = TARGET_PAGE_SIZE;
3860 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3863 #if !defined(CONFIG_USER_ONLY)
3865 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3866 int start, int end, int skip, int ptr)
3868 if (start == end - 1) {
3869 mon(f, "\t%3d ", start);
3870 } else {
3871 mon(f, "\t%3d..%-3d ", start, end - 1);
3873 mon(f, " skip=%d ", skip);
3874 if (ptr == PHYS_MAP_NODE_NIL) {
3875 mon(f, " ptr=NIL");
3876 } else if (!skip) {
3877 mon(f, " ptr=#%d", ptr);
3878 } else {
3879 mon(f, " ptr=[%d]", ptr);
3881 mon(f, "\n");
3884 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3885 int128_sub((size), int128_one())) : 0)
3887 void mtree_print_dispatch(fprintf_function mon, void *f,
3888 AddressSpaceDispatch *d, MemoryRegion *root)
3890 int i;
3892 mon(f, " Dispatch\n");
3893 mon(f, " Physical sections\n");
3895 for (i = 0; i < d->map.sections_nb; ++i) {
3896 MemoryRegionSection *s = d->map.sections + i;
3897 const char *names[] = { " [unassigned]", " [not dirty]",
3898 " [ROM]", " [watch]" };
3900 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3902 s->offset_within_address_space,
3903 s->offset_within_address_space + MR_SIZE(s->mr->size),
3904 s->mr->name ? s->mr->name : "(noname)",
3905 i < ARRAY_SIZE(names) ? names[i] : "",
3906 s->mr == root ? " [ROOT]" : "",
3907 s == d->mru_section ? " [MRU]" : "",
3908 s->mr->is_iommu ? " [iommu]" : "");
3910 if (s->mr->alias) {
3911 mon(f, " alias=%s", s->mr->alias->name ?
3912 s->mr->alias->name : "noname");
3914 mon(f, "\n");
3917 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3918 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3919 for (i = 0; i < d->map.nodes_nb; ++i) {
3920 int j, jprev;
3921 PhysPageEntry prev;
3922 Node *n = d->map.nodes + i;
3924 mon(f, " [%d]\n", i);
3926 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3927 PhysPageEntry *pe = *n + j;
3929 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3930 continue;
3933 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3935 jprev = j;
3936 prev = *pe;
3939 if (jprev != ARRAY_SIZE(*n)) {
3940 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3945 #endif