9p/proxy: Fix export_flags
[qemu/kevin.git] / hw / ppc / spapr_drc.c
blobe373d342eb8450d7ed4e0c539b813fe683bf6ad7
1 /*
2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
4 * Copyright IBM Corp. 2014
6 * Authors:
7 * Michael Roth <mdroth@linux.vnet.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "cpu.h"
17 #include "qemu/cutils.h"
18 #include "hw/ppc/spapr_drc.h"
19 #include "qom/object.h"
20 #include "migration/vmstate.h"
21 #include "qapi/visitor.h"
22 #include "qemu/error-report.h"
23 #include "hw/ppc/spapr.h" /* for RTAS return codes */
24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
25 #include "hw/ppc/spapr_nvdimm.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/reset.h"
28 #include "trace.h"
30 #define DRC_CONTAINER_PATH "/dr-connector"
31 #define DRC_INDEX_TYPE_SHIFT 28
32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
34 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
38 return 1 << drck->typeshift;
41 uint32_t spapr_drc_index(SpaprDrc *drc)
43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
45 /* no set format for a drc index: it only needs to be globally
46 * unique. this is how we encode the DRC type on bare-metal
47 * however, so might as well do that here
49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
50 | (drc->id & DRC_INDEX_ID_MASK);
53 static uint32_t drc_isolate_physical(SpaprDrc *drc)
55 switch (drc->state) {
56 case SPAPR_DRC_STATE_PHYSICAL_POWERON:
57 return RTAS_OUT_SUCCESS; /* Nothing to do */
58 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
59 break; /* see below */
60 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
61 return RTAS_OUT_PARAM_ERROR; /* not allowed */
62 default:
63 g_assert_not_reached();
66 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
68 if (drc->unplug_requested) {
69 uint32_t drc_index = spapr_drc_index(drc);
70 trace_spapr_drc_set_isolation_state_finalizing(drc_index);
71 spapr_drc_detach(drc);
74 return RTAS_OUT_SUCCESS;
77 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
79 switch (drc->state) {
80 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
81 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
82 return RTAS_OUT_SUCCESS; /* Nothing to do */
83 case SPAPR_DRC_STATE_PHYSICAL_POWERON:
84 break; /* see below */
85 default:
86 g_assert_not_reached();
89 /* cannot unisolate a non-existent resource, and, or resources
90 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
91 * 13.5.3.5)
93 if (!drc->dev) {
94 return RTAS_OUT_NO_SUCH_INDICATOR;
97 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
98 drc->ccs_offset = drc->fdt_start_offset;
99 drc->ccs_depth = 0;
101 return RTAS_OUT_SUCCESS;
104 static uint32_t drc_isolate_logical(SpaprDrc *drc)
106 switch (drc->state) {
107 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
108 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
109 return RTAS_OUT_SUCCESS; /* Nothing to do */
110 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
111 break; /* see below */
112 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
113 return RTAS_OUT_PARAM_ERROR; /* not allowed */
114 default:
115 g_assert_not_reached();
119 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
120 * belong to a DIMM device that is marked for removal.
122 * Currently the guest userspace tool drmgr that drives the memory
123 * hotplug/unplug will just try to remove a set of 'removable' LMBs
124 * in response to a hot unplug request that is based on drc-count.
125 * If the LMB being removed doesn't belong to a DIMM device that is
126 * actually being unplugged, fail the isolation request here.
128 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
129 && !drc->unplug_requested) {
130 return RTAS_OUT_HW_ERROR;
133 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
135 /* if we're awaiting release, but still in an unconfigured state,
136 * it's likely the guest is still in the process of configuring
137 * the device and is transitioning the devices to an ISOLATED
138 * state as a part of that process. so we only complete the
139 * removal when this transition happens for a device in a
140 * configured state, as suggested by the state diagram from PAPR+
141 * 2.7, 13.4
143 if (drc->unplug_requested) {
144 uint32_t drc_index = spapr_drc_index(drc);
145 trace_spapr_drc_set_isolation_state_finalizing(drc_index);
146 spapr_drc_detach(drc);
148 return RTAS_OUT_SUCCESS;
151 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
153 switch (drc->state) {
154 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
155 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
156 return RTAS_OUT_SUCCESS; /* Nothing to do */
157 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
158 break; /* see below */
159 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
160 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
161 default:
162 g_assert_not_reached();
165 /* Move to AVAILABLE state should have ensured device was present */
166 g_assert(drc->dev);
168 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
169 drc->ccs_offset = drc->fdt_start_offset;
170 drc->ccs_depth = 0;
172 return RTAS_OUT_SUCCESS;
175 static uint32_t drc_set_usable(SpaprDrc *drc)
177 switch (drc->state) {
178 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
179 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
180 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
181 return RTAS_OUT_SUCCESS; /* Nothing to do */
182 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
183 break; /* see below */
184 default:
185 g_assert_not_reached();
188 /* if there's no resource/device associated with the DRC, there's
189 * no way for us to put it in an allocation state consistent with
190 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
191 * result in an RTAS return code of -3 / "no such indicator"
193 if (!drc->dev) {
194 return RTAS_OUT_NO_SUCH_INDICATOR;
196 if (drc->unplug_requested) {
197 /* Don't allow the guest to move a device away from UNUSABLE
198 * state when we want to unplug it */
199 return RTAS_OUT_NO_SUCH_INDICATOR;
202 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
204 return RTAS_OUT_SUCCESS;
207 static uint32_t drc_set_unusable(SpaprDrc *drc)
209 switch (drc->state) {
210 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
211 return RTAS_OUT_SUCCESS; /* Nothing to do */
212 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
213 break; /* see below */
214 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
215 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
216 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
217 default:
218 g_assert_not_reached();
221 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
222 if (drc->unplug_requested) {
223 uint32_t drc_index = spapr_drc_index(drc);
224 trace_spapr_drc_set_allocation_state_finalizing(drc_index);
225 spapr_drc_detach(drc);
228 return RTAS_OUT_SUCCESS;
231 static char *spapr_drc_name(SpaprDrc *drc)
233 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
235 /* human-readable name for a DRC to encode into the DT
236 * description. this is mainly only used within a guest in place
237 * of the unique DRC index.
239 * in the case of VIO/PCI devices, it corresponds to a "location
240 * code" that maps a logical device/function (DRC index) to a
241 * physical (or virtual in the case of VIO) location in the system
242 * by chaining together the "location label" for each
243 * encapsulating component.
245 * since this is more to do with diagnosing physical hardware
246 * issues than guest compatibility, we choose location codes/DRC
247 * names that adhere to the documented format, but avoid encoding
248 * the entire topology information into the label/code, instead
249 * just using the location codes based on the labels for the
250 * endpoints (VIO/PCI adaptor connectors), which is basically just
251 * "C" followed by an integer ID.
253 * DRC names as documented by PAPR+ v2.7, 13.5.2.4
254 * location codes as documented by PAPR+ v2.7, 12.3.1.5
256 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
260 * dr-entity-sense sensor value
261 * returned via get-sensor-state RTAS calls
262 * as expected by state diagram in PAPR+ 2.7, 13.4
263 * based on the current allocation/indicator/power states
264 * for the DR connector.
266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
268 /* this assumes all PCI devices are assigned to a 'live insertion'
269 * power domain, where QEMU manages power state automatically as
270 * opposed to the guest. present, non-PCI resources are unaffected
271 * by power state.
273 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
274 : SPAPR_DR_ENTITY_SENSE_EMPTY;
277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
279 switch (drc->state) {
280 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
281 return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
282 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
283 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
284 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
285 g_assert(drc->dev);
286 return SPAPR_DR_ENTITY_SENSE_PRESENT;
287 default:
288 g_assert_not_reached();
292 static void prop_get_index(Object *obj, Visitor *v, const char *name,
293 void *opaque, Error **errp)
295 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
296 uint32_t value = spapr_drc_index(drc);
297 visit_type_uint32(v, name, &value, errp);
300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
301 void *opaque, Error **errp)
303 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
304 QNull *null = NULL;
305 Error *err = NULL;
306 int fdt_offset_next, fdt_offset, fdt_depth;
307 void *fdt;
309 if (!drc->fdt) {
310 visit_type_null(v, NULL, &null, errp);
311 qobject_unref(null);
312 return;
315 fdt = drc->fdt;
316 fdt_offset = drc->fdt_start_offset;
317 fdt_depth = 0;
319 do {
320 const char *name = NULL;
321 const struct fdt_property *prop = NULL;
322 int prop_len = 0, name_len = 0;
323 uint32_t tag;
325 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
326 switch (tag) {
327 case FDT_BEGIN_NODE:
328 fdt_depth++;
329 name = fdt_get_name(fdt, fdt_offset, &name_len);
330 visit_start_struct(v, name, NULL, 0, &err);
331 if (err) {
332 error_propagate(errp, err);
333 return;
335 break;
336 case FDT_END_NODE:
337 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
338 g_assert(fdt_depth > 0);
339 visit_check_struct(v, &err);
340 visit_end_struct(v, NULL);
341 if (err) {
342 error_propagate(errp, err);
343 return;
345 fdt_depth--;
346 break;
347 case FDT_PROP: {
348 int i;
349 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
350 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
351 visit_start_list(v, name, NULL, 0, &err);
352 if (err) {
353 error_propagate(errp, err);
354 return;
356 for (i = 0; i < prop_len; i++) {
357 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
358 if (err) {
359 error_propagate(errp, err);
360 return;
363 visit_check_list(v, &err);
364 visit_end_list(v, NULL);
365 if (err) {
366 error_propagate(errp, err);
367 return;
369 break;
371 default:
372 error_report("device FDT in unexpected state: %d", tag);
373 abort();
375 fdt_offset = fdt_offset_next;
376 } while (fdt_depth != 0);
379 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
381 trace_spapr_drc_attach(spapr_drc_index(drc));
383 if (drc->dev) {
384 error_setg(errp, "an attached device is still awaiting release");
385 return;
387 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
388 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
390 drc->dev = d;
392 object_property_add_link(OBJECT(drc), "device",
393 object_get_typename(OBJECT(drc->dev)),
394 (Object **)(&drc->dev),
395 NULL, 0, NULL);
398 static void spapr_drc_release(SpaprDrc *drc)
400 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
402 drck->release(drc->dev);
404 drc->unplug_requested = false;
405 g_free(drc->fdt);
406 drc->fdt = NULL;
407 drc->fdt_start_offset = 0;
408 object_property_del(OBJECT(drc), "device", &error_abort);
409 drc->dev = NULL;
412 void spapr_drc_detach(SpaprDrc *drc)
414 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
416 trace_spapr_drc_detach(spapr_drc_index(drc));
418 g_assert(drc->dev);
420 drc->unplug_requested = true;
422 if (drc->state != drck->empty_state) {
423 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
424 return;
427 spapr_drc_release(drc);
430 void spapr_drc_reset(SpaprDrc *drc)
432 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
434 trace_spapr_drc_reset(spapr_drc_index(drc));
436 /* immediately upon reset we can safely assume DRCs whose devices
437 * are pending removal can be safely removed.
439 if (drc->unplug_requested) {
440 spapr_drc_release(drc);
443 if (drc->dev) {
444 /* A device present at reset is ready to go, same as coldplugged */
445 drc->state = drck->ready_state;
447 * Ensure that we are able to send the FDT fragment again
448 * via configure-connector call if the guest requests.
450 drc->ccs_offset = drc->fdt_start_offset;
451 drc->ccs_depth = 0;
452 } else {
453 drc->state = drck->empty_state;
454 drc->ccs_offset = -1;
455 drc->ccs_depth = -1;
459 static bool spapr_drc_unplug_requested_needed(void *opaque)
461 return spapr_drc_unplug_requested(opaque);
464 static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
465 .name = "spapr_drc/unplug_requested",
466 .version_id = 1,
467 .minimum_version_id = 1,
468 .needed = spapr_drc_unplug_requested_needed,
469 .fields = (VMStateField []) {
470 VMSTATE_BOOL(unplug_requested, SpaprDrc),
471 VMSTATE_END_OF_LIST()
475 bool spapr_drc_transient(SpaprDrc *drc)
477 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
480 * If no dev is plugged in there is no need to migrate the DRC state
481 * nor to reset the DRC at CAS.
483 if (!drc->dev) {
484 return false;
488 * We need to reset the DRC at CAS or to migrate the DRC state if it's
489 * not equal to the expected long-term state, which is the same as the
490 * coldplugged initial state, or if an unplug request is pending.
492 return drc->state != drck->ready_state ||
493 spapr_drc_unplug_requested(drc);
496 static bool spapr_drc_needed(void *opaque)
498 return spapr_drc_transient(opaque);
501 static const VMStateDescription vmstate_spapr_drc = {
502 .name = "spapr_drc",
503 .version_id = 1,
504 .minimum_version_id = 1,
505 .needed = spapr_drc_needed,
506 .fields = (VMStateField []) {
507 VMSTATE_UINT32(state, SpaprDrc),
508 VMSTATE_END_OF_LIST()
510 .subsections = (const VMStateDescription * []) {
511 &vmstate_spapr_drc_unplug_requested,
512 NULL
516 static void realize(DeviceState *d, Error **errp)
518 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
519 Object *root_container;
520 gchar *link_name;
521 gchar *child_name;
522 Error *err = NULL;
524 trace_spapr_drc_realize(spapr_drc_index(drc));
525 /* NOTE: we do this as part of realize/unrealize due to the fact
526 * that the guest will communicate with the DRC via RTAS calls
527 * referencing the global DRC index. By unlinking the DRC
528 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
529 * inaccessible by the guest, since lookups rely on this path
530 * existing in the composition tree
532 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
533 link_name = g_strdup_printf("%x", spapr_drc_index(drc));
534 child_name = object_get_canonical_path_component(OBJECT(drc));
535 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
536 object_property_add_alias(root_container, link_name,
537 drc->owner, child_name, &err);
538 g_free(child_name);
539 g_free(link_name);
540 if (err) {
541 error_propagate(errp, err);
542 return;
544 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
545 drc);
546 trace_spapr_drc_realize_complete(spapr_drc_index(drc));
549 static void unrealize(DeviceState *d, Error **errp)
551 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
552 Object *root_container;
553 gchar *name;
555 trace_spapr_drc_unrealize(spapr_drc_index(drc));
556 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
557 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
558 name = g_strdup_printf("%x", spapr_drc_index(drc));
559 object_property_del(root_container, name, errp);
560 g_free(name);
563 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
564 uint32_t id)
566 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
567 char *prop_name;
569 drc->id = id;
570 drc->owner = owner;
571 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
572 spapr_drc_index(drc));
573 object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort);
574 object_unref(OBJECT(drc));
575 object_property_set_bool(OBJECT(drc), true, "realized", NULL);
576 g_free(prop_name);
578 return drc;
581 static void spapr_dr_connector_instance_init(Object *obj)
583 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
584 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
586 object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
587 object_property_add(obj, "index", "uint32", prop_get_index,
588 NULL, NULL, NULL, NULL);
589 object_property_add(obj, "fdt", "struct", prop_get_fdt,
590 NULL, NULL, NULL, NULL);
591 drc->state = drck->empty_state;
594 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
596 DeviceClass *dk = DEVICE_CLASS(k);
598 dk->realize = realize;
599 dk->unrealize = unrealize;
601 * Reason: it crashes FIXME find and document the real reason
603 dk->user_creatable = false;
606 static bool drc_physical_needed(void *opaque)
608 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
609 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
611 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
612 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
613 return false;
615 return true;
618 static const VMStateDescription vmstate_spapr_drc_physical = {
619 .name = "spapr_drc/physical",
620 .version_id = 1,
621 .minimum_version_id = 1,
622 .needed = drc_physical_needed,
623 .fields = (VMStateField []) {
624 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
625 VMSTATE_END_OF_LIST()
629 static void drc_physical_reset(void *opaque)
631 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
632 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
634 if (drc->dev) {
635 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
636 } else {
637 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
641 static void realize_physical(DeviceState *d, Error **errp)
643 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
644 Error *local_err = NULL;
646 realize(d, &local_err);
647 if (local_err) {
648 error_propagate(errp, local_err);
649 return;
652 vmstate_register(VMSTATE_IF(drcp),
653 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
654 &vmstate_spapr_drc_physical, drcp);
655 qemu_register_reset(drc_physical_reset, drcp);
658 static void unrealize_physical(DeviceState *d, Error **errp)
660 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
661 Error *local_err = NULL;
663 unrealize(d, &local_err);
664 if (local_err) {
665 error_propagate(errp, local_err);
666 return;
669 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
670 qemu_unregister_reset(drc_physical_reset, drcp);
673 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
675 DeviceClass *dk = DEVICE_CLASS(k);
676 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
678 dk->realize = realize_physical;
679 dk->unrealize = unrealize_physical;
680 drck->dr_entity_sense = physical_entity_sense;
681 drck->isolate = drc_isolate_physical;
682 drck->unisolate = drc_unisolate_physical;
683 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
684 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
687 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
689 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
691 drck->dr_entity_sense = logical_entity_sense;
692 drck->isolate = drc_isolate_logical;
693 drck->unisolate = drc_unisolate_logical;
694 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
695 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
698 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
700 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
702 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
703 drck->typename = "CPU";
704 drck->drc_name_prefix = "CPU ";
705 drck->release = spapr_core_release;
706 drck->dt_populate = spapr_core_dt_populate;
709 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
711 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
713 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
714 drck->typename = "28";
715 drck->drc_name_prefix = "C";
716 drck->release = spapr_phb_remove_pci_device_cb;
717 drck->dt_populate = spapr_pci_dt_populate;
720 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
722 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
724 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
725 drck->typename = "MEM";
726 drck->drc_name_prefix = "LMB ";
727 drck->release = spapr_lmb_release;
728 drck->dt_populate = spapr_lmb_dt_populate;
731 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
733 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
735 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
736 drck->typename = "PHB";
737 drck->drc_name_prefix = "PHB ";
738 drck->release = spapr_phb_release;
739 drck->dt_populate = spapr_phb_dt_populate;
742 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
744 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
746 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
747 drck->typename = "PMEM";
748 drck->drc_name_prefix = "PMEM ";
749 drck->release = NULL;
750 drck->dt_populate = spapr_pmem_dt_populate;
753 static const TypeInfo spapr_dr_connector_info = {
754 .name = TYPE_SPAPR_DR_CONNECTOR,
755 .parent = TYPE_DEVICE,
756 .instance_size = sizeof(SpaprDrc),
757 .instance_init = spapr_dr_connector_instance_init,
758 .class_size = sizeof(SpaprDrcClass),
759 .class_init = spapr_dr_connector_class_init,
760 .abstract = true,
763 static const TypeInfo spapr_drc_physical_info = {
764 .name = TYPE_SPAPR_DRC_PHYSICAL,
765 .parent = TYPE_SPAPR_DR_CONNECTOR,
766 .instance_size = sizeof(SpaprDrcPhysical),
767 .class_init = spapr_drc_physical_class_init,
768 .abstract = true,
771 static const TypeInfo spapr_drc_logical_info = {
772 .name = TYPE_SPAPR_DRC_LOGICAL,
773 .parent = TYPE_SPAPR_DR_CONNECTOR,
774 .class_init = spapr_drc_logical_class_init,
775 .abstract = true,
778 static const TypeInfo spapr_drc_cpu_info = {
779 .name = TYPE_SPAPR_DRC_CPU,
780 .parent = TYPE_SPAPR_DRC_LOGICAL,
781 .class_init = spapr_drc_cpu_class_init,
784 static const TypeInfo spapr_drc_pci_info = {
785 .name = TYPE_SPAPR_DRC_PCI,
786 .parent = TYPE_SPAPR_DRC_PHYSICAL,
787 .class_init = spapr_drc_pci_class_init,
790 static const TypeInfo spapr_drc_lmb_info = {
791 .name = TYPE_SPAPR_DRC_LMB,
792 .parent = TYPE_SPAPR_DRC_LOGICAL,
793 .class_init = spapr_drc_lmb_class_init,
796 static const TypeInfo spapr_drc_phb_info = {
797 .name = TYPE_SPAPR_DRC_PHB,
798 .parent = TYPE_SPAPR_DRC_LOGICAL,
799 .instance_size = sizeof(SpaprDrc),
800 .class_init = spapr_drc_phb_class_init,
803 static const TypeInfo spapr_drc_pmem_info = {
804 .name = TYPE_SPAPR_DRC_PMEM,
805 .parent = TYPE_SPAPR_DRC_LOGICAL,
806 .class_init = spapr_drc_pmem_class_init,
809 /* helper functions for external users */
811 SpaprDrc *spapr_drc_by_index(uint32_t index)
813 Object *obj;
814 gchar *name;
816 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
817 obj = object_resolve_path(name, NULL);
818 g_free(name);
820 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
823 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
825 SpaprDrcClass *drck
826 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
828 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
829 | (id & DRC_INDEX_ID_MASK));
833 * spapr_dt_drc
835 * @fdt: libfdt device tree
836 * @path: path in the DT to generate properties
837 * @owner: parent Object/DeviceState for which to generate DRC
838 * descriptions for
839 * @drc_type_mask: mask of SpaprDrcType values corresponding
840 * to the types of DRCs to generate entries for
842 * generate OF properties to describe DRC topology/indices to guests
844 * as documented in PAPR+ v2.1, 13.5.2
846 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
848 Object *root_container;
849 ObjectProperty *prop;
850 ObjectPropertyIterator iter;
851 uint32_t drc_count = 0;
852 GArray *drc_indexes, *drc_power_domains;
853 GString *drc_names, *drc_types;
854 int ret;
856 /* the first entry of each properties is a 32-bit integer encoding
857 * the number of elements in the array. we won't know this until
858 * we complete the iteration through all the matching DRCs, but
859 * reserve the space now and set the offsets accordingly so we
860 * can fill them in later.
862 drc_indexes = g_array_new(false, true, sizeof(uint32_t));
863 drc_indexes = g_array_set_size(drc_indexes, 1);
864 drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
865 drc_power_domains = g_array_set_size(drc_power_domains, 1);
866 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
867 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
869 /* aliases for all DRConnector objects will be rooted in QOM
870 * composition tree at DRC_CONTAINER_PATH
872 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
874 object_property_iter_init(&iter, root_container);
875 while ((prop = object_property_iter_next(&iter))) {
876 Object *obj;
877 SpaprDrc *drc;
878 SpaprDrcClass *drck;
879 char *drc_name = NULL;
880 uint32_t drc_index, drc_power_domain;
882 if (!strstart(prop->type, "link<", NULL)) {
883 continue;
886 obj = object_property_get_link(root_container, prop->name, NULL);
887 drc = SPAPR_DR_CONNECTOR(obj);
888 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
890 if (owner && (drc->owner != owner)) {
891 continue;
894 if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
895 continue;
898 drc_count++;
900 /* ibm,drc-indexes */
901 drc_index = cpu_to_be32(spapr_drc_index(drc));
902 g_array_append_val(drc_indexes, drc_index);
904 /* ibm,drc-power-domains */
905 drc_power_domain = cpu_to_be32(-1);
906 g_array_append_val(drc_power_domains, drc_power_domain);
908 /* ibm,drc-names */
909 drc_name = spapr_drc_name(drc);
910 drc_names = g_string_append(drc_names, drc_name);
911 drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
912 g_free(drc_name);
914 /* ibm,drc-types */
915 drc_types = g_string_append(drc_types, drck->typename);
916 drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
919 /* now write the drc count into the space we reserved at the
920 * beginning of the arrays previously
922 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
923 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
924 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
925 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
927 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
928 drc_indexes->data,
929 drc_indexes->len * sizeof(uint32_t));
930 if (ret) {
931 error_report("Couldn't create ibm,drc-indexes property");
932 goto out;
935 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
936 drc_power_domains->data,
937 drc_power_domains->len * sizeof(uint32_t));
938 if (ret) {
939 error_report("Couldn't finalize ibm,drc-power-domains property");
940 goto out;
943 ret = fdt_setprop(fdt, offset, "ibm,drc-names",
944 drc_names->str, drc_names->len);
945 if (ret) {
946 error_report("Couldn't finalize ibm,drc-names property");
947 goto out;
950 ret = fdt_setprop(fdt, offset, "ibm,drc-types",
951 drc_types->str, drc_types->len);
952 if (ret) {
953 error_report("Couldn't finalize ibm,drc-types property");
954 goto out;
957 out:
958 g_array_free(drc_indexes, true);
959 g_array_free(drc_power_domains, true);
960 g_string_free(drc_names, true);
961 g_string_free(drc_types, true);
963 return ret;
967 * RTAS calls
970 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
972 SpaprDrc *drc = spapr_drc_by_index(idx);
973 SpaprDrcClass *drck;
975 if (!drc) {
976 return RTAS_OUT_NO_SUCH_INDICATOR;
979 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
981 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
983 switch (state) {
984 case SPAPR_DR_ISOLATION_STATE_ISOLATED:
985 return drck->isolate(drc);
987 case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
988 return drck->unisolate(drc);
990 default:
991 return RTAS_OUT_PARAM_ERROR;
995 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
997 SpaprDrc *drc = spapr_drc_by_index(idx);
999 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
1000 return RTAS_OUT_NO_SUCH_INDICATOR;
1003 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
1005 switch (state) {
1006 case SPAPR_DR_ALLOCATION_STATE_USABLE:
1007 return drc_set_usable(drc);
1009 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
1010 return drc_set_unusable(drc);
1012 default:
1013 return RTAS_OUT_PARAM_ERROR;
1017 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1019 SpaprDrc *drc = spapr_drc_by_index(idx);
1021 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1022 return RTAS_OUT_NO_SUCH_INDICATOR;
1024 if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1025 && (state != SPAPR_DR_INDICATOR_ACTIVE)
1026 && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1027 && (state != SPAPR_DR_INDICATOR_ACTION)) {
1028 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1031 trace_spapr_drc_set_dr_indicator(idx, state);
1032 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1033 return RTAS_OUT_SUCCESS;
1036 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1037 uint32_t token,
1038 uint32_t nargs, target_ulong args,
1039 uint32_t nret, target_ulong rets)
1041 uint32_t type, idx, state;
1042 uint32_t ret = RTAS_OUT_SUCCESS;
1044 if (nargs != 3 || nret != 1) {
1045 ret = RTAS_OUT_PARAM_ERROR;
1046 goto out;
1049 type = rtas_ld(args, 0);
1050 idx = rtas_ld(args, 1);
1051 state = rtas_ld(args, 2);
1053 switch (type) {
1054 case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1055 ret = rtas_set_isolation_state(idx, state);
1056 break;
1057 case RTAS_SENSOR_TYPE_DR:
1058 ret = rtas_set_dr_indicator(idx, state);
1059 break;
1060 case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1061 ret = rtas_set_allocation_state(idx, state);
1062 break;
1063 default:
1064 ret = RTAS_OUT_NOT_SUPPORTED;
1067 out:
1068 rtas_st(rets, 0, ret);
1071 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1072 uint32_t token, uint32_t nargs,
1073 target_ulong args, uint32_t nret,
1074 target_ulong rets)
1076 uint32_t sensor_type;
1077 uint32_t sensor_index;
1078 uint32_t sensor_state = 0;
1079 SpaprDrc *drc;
1080 SpaprDrcClass *drck;
1081 uint32_t ret = RTAS_OUT_SUCCESS;
1083 if (nargs != 2 || nret != 2) {
1084 ret = RTAS_OUT_PARAM_ERROR;
1085 goto out;
1088 sensor_type = rtas_ld(args, 0);
1089 sensor_index = rtas_ld(args, 1);
1091 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1092 /* currently only DR-related sensors are implemented */
1093 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1094 sensor_type);
1095 ret = RTAS_OUT_NOT_SUPPORTED;
1096 goto out;
1099 drc = spapr_drc_by_index(sensor_index);
1100 if (!drc) {
1101 trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1102 ret = RTAS_OUT_PARAM_ERROR;
1103 goto out;
1105 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1106 sensor_state = drck->dr_entity_sense(drc);
1108 out:
1109 rtas_st(rets, 0, ret);
1110 rtas_st(rets, 1, sensor_state);
1113 /* configure-connector work area offsets, int32_t units for field
1114 * indexes, bytes for field offset/len values.
1116 * as documented by PAPR+ v2.7, 13.5.3.5
1118 #define CC_IDX_NODE_NAME_OFFSET 2
1119 #define CC_IDX_PROP_NAME_OFFSET 2
1120 #define CC_IDX_PROP_LEN 3
1121 #define CC_IDX_PROP_DATA_OFFSET 4
1122 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1123 #define CC_WA_LEN 4096
1125 static void configure_connector_st(target_ulong addr, target_ulong offset,
1126 const void *buf, size_t len)
1128 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1129 buf, MIN(len, CC_WA_LEN - offset));
1132 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1133 SpaprMachineState *spapr,
1134 uint32_t token, uint32_t nargs,
1135 target_ulong args, uint32_t nret,
1136 target_ulong rets)
1138 uint64_t wa_addr;
1139 uint64_t wa_offset;
1140 uint32_t drc_index;
1141 SpaprDrc *drc;
1142 SpaprDrcClass *drck;
1143 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1144 int rc;
1146 if (nargs != 2 || nret != 1) {
1147 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1148 return;
1151 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1153 drc_index = rtas_ld(wa_addr, 0);
1154 drc = spapr_drc_by_index(drc_index);
1155 if (!drc) {
1156 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1157 rc = RTAS_OUT_PARAM_ERROR;
1158 goto out;
1161 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1162 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1163 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1164 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1166 * Need to unisolate the device before configuring
1167 * or it should already be in configured state to
1168 * allow configure-connector be called repeatedly.
1170 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1171 goto out;
1174 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1176 if (!drc->fdt) {
1177 Error *local_err = NULL;
1178 void *fdt;
1179 int fdt_size;
1181 fdt = create_device_tree(&fdt_size);
1183 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1184 &local_err)) {
1185 g_free(fdt);
1186 error_free(local_err);
1187 rc = SPAPR_DR_CC_RESPONSE_ERROR;
1188 goto out;
1191 drc->fdt = fdt;
1192 drc->ccs_offset = drc->fdt_start_offset;
1193 drc->ccs_depth = 0;
1196 do {
1197 uint32_t tag;
1198 const char *name;
1199 const struct fdt_property *prop;
1200 int fdt_offset_next, prop_len;
1202 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1204 switch (tag) {
1205 case FDT_BEGIN_NODE:
1206 drc->ccs_depth++;
1207 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1209 /* provide the name of the next OF node */
1210 wa_offset = CC_VAL_DATA_OFFSET;
1211 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1212 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1213 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1214 break;
1215 case FDT_END_NODE:
1216 drc->ccs_depth--;
1217 if (drc->ccs_depth == 0) {
1218 uint32_t drc_index = spapr_drc_index(drc);
1220 /* done sending the device tree, move to configured state */
1221 trace_spapr_drc_set_configured(drc_index);
1222 drc->state = drck->ready_state;
1224 * Ensure that we are able to send the FDT fragment
1225 * again via configure-connector call if the guest requests.
1227 drc->ccs_offset = drc->fdt_start_offset;
1228 drc->ccs_depth = 0;
1229 fdt_offset_next = drc->fdt_start_offset;
1230 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1231 } else {
1232 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1234 break;
1235 case FDT_PROP:
1236 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1237 &prop_len);
1238 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1240 /* provide the name of the next OF property */
1241 wa_offset = CC_VAL_DATA_OFFSET;
1242 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1243 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1245 /* provide the length and value of the OF property. data gets
1246 * placed immediately after NULL terminator of the OF property's
1247 * name string
1249 wa_offset += strlen(name) + 1,
1250 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1251 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1252 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1253 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1254 break;
1255 case FDT_END:
1256 resp = SPAPR_DR_CC_RESPONSE_ERROR;
1257 default:
1258 /* keep seeking for an actionable tag */
1259 break;
1261 if (drc->ccs_offset >= 0) {
1262 drc->ccs_offset = fdt_offset_next;
1264 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1266 rc = resp;
1267 out:
1268 rtas_st(rets, 0, rc);
1271 static void spapr_drc_register_types(void)
1273 type_register_static(&spapr_dr_connector_info);
1274 type_register_static(&spapr_drc_physical_info);
1275 type_register_static(&spapr_drc_logical_info);
1276 type_register_static(&spapr_drc_cpu_info);
1277 type_register_static(&spapr_drc_pci_info);
1278 type_register_static(&spapr_drc_lmb_info);
1279 type_register_static(&spapr_drc_phb_info);
1280 type_register_static(&spapr_drc_pmem_info);
1282 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1283 rtas_set_indicator);
1284 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1285 rtas_get_sensor_state);
1286 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1287 rtas_ibm_configure_connector);
1289 type_init(spapr_drc_register_types)