arm: Add header to host common definition for nRF51 SOC peripherals
[qemu/kevin.git] / memory.c
blobd14c6dec1d2e1a75658823d6b6daadd542a0c7f2
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "qapi/visitor.h"
23 #include "qemu/bitops.h"
24 #include "qemu/error-report.h"
25 #include "qom/object.h"
26 #include "trace-root.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/sysemu.h"
32 #include "hw/qdev-properties.h"
33 #include "migration/vmstate.h"
35 //#define DEBUG_UNASSIGNED
37 static unsigned memory_region_transaction_depth;
38 static bool memory_region_update_pending;
39 static bool ioeventfd_update_pending;
40 static bool global_dirty_log = false;
42 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
43 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
45 static QTAILQ_HEAD(, AddressSpace) address_spaces
46 = QTAILQ_HEAD_INITIALIZER(address_spaces);
48 static GHashTable *flat_views;
50 typedef struct AddrRange AddrRange;
53 * Note that signed integers are needed for negative offsetting in aliases
54 * (large MemoryRegion::alias_offset).
56 struct AddrRange {
57 Int128 start;
58 Int128 size;
61 static AddrRange addrrange_make(Int128 start, Int128 size)
63 return (AddrRange) { start, size };
66 static bool addrrange_equal(AddrRange r1, AddrRange r2)
68 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
71 static Int128 addrrange_end(AddrRange r)
73 return int128_add(r.start, r.size);
76 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
78 int128_addto(&range.start, delta);
79 return range;
82 static bool addrrange_contains(AddrRange range, Int128 addr)
84 return int128_ge(addr, range.start)
85 && int128_lt(addr, addrrange_end(range));
88 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
90 return addrrange_contains(r1, r2.start)
91 || addrrange_contains(r2, r1.start);
94 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
96 Int128 start = int128_max(r1.start, r2.start);
97 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
98 return addrrange_make(start, int128_sub(end, start));
101 enum ListenerDirection { Forward, Reverse };
103 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
104 do { \
105 MemoryListener *_listener; \
107 switch (_direction) { \
108 case Forward: \
109 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
110 if (_listener->_callback) { \
111 _listener->_callback(_listener, ##_args); \
114 break; \
115 case Reverse: \
116 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
117 memory_listeners, link) { \
118 if (_listener->_callback) { \
119 _listener->_callback(_listener, ##_args); \
122 break; \
123 default: \
124 abort(); \
126 } while (0)
128 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
129 do { \
130 MemoryListener *_listener; \
131 struct memory_listeners_as *list = &(_as)->listeners; \
133 switch (_direction) { \
134 case Forward: \
135 QTAILQ_FOREACH(_listener, list, link_as) { \
136 if (_listener->_callback) { \
137 _listener->_callback(_listener, _section, ##_args); \
140 break; \
141 case Reverse: \
142 QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
143 link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
148 break; \
149 default: \
150 abort(); \
152 } while (0)
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
156 do { \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
160 } while(0)
162 struct CoalescedMemoryRange {
163 AddrRange addr;
164 QTAILQ_ENTRY(CoalescedMemoryRange) link;
167 struct MemoryRegionIoeventfd {
168 AddrRange addr;
169 bool match_data;
170 uint64_t data;
171 EventNotifier *e;
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175 MemoryRegionIoeventfd *b)
177 if (int128_lt(a->addr.start, b->addr.start)) {
178 return true;
179 } else if (int128_gt(a->addr.start, b->addr.start)) {
180 return false;
181 } else if (int128_lt(a->addr.size, b->addr.size)) {
182 return true;
183 } else if (int128_gt(a->addr.size, b->addr.size)) {
184 return false;
185 } else if (a->match_data < b->match_data) {
186 return true;
187 } else if (a->match_data > b->match_data) {
188 return false;
189 } else if (a->match_data) {
190 if (a->data < b->data) {
191 return true;
192 } else if (a->data > b->data) {
193 return false;
196 if (a->e < b->e) {
197 return true;
198 } else if (a->e > b->e) {
199 return false;
201 return false;
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205 MemoryRegionIoeventfd *b)
207 return !memory_region_ioeventfd_before(a, b)
208 && !memory_region_ioeventfd_before(b, a);
211 /* Range of memory in the global map. Addresses are absolute. */
212 struct FlatRange {
213 MemoryRegion *mr;
214 hwaddr offset_in_region;
215 AddrRange addr;
216 uint8_t dirty_log_mask;
217 bool romd_mode;
218 bool readonly;
219 bool nonvolatile;
222 #define FOR_EACH_FLAT_RANGE(var, view) \
223 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
225 static inline MemoryRegionSection
226 section_from_flat_range(FlatRange *fr, FlatView *fv)
228 return (MemoryRegionSection) {
229 .mr = fr->mr,
230 .fv = fv,
231 .offset_within_region = fr->offset_in_region,
232 .size = fr->addr.size,
233 .offset_within_address_space = int128_get64(fr->addr.start),
234 .readonly = fr->readonly,
235 .nonvolatile = fr->nonvolatile,
239 static bool flatrange_equal(FlatRange *a, FlatRange *b)
241 return a->mr == b->mr
242 && addrrange_equal(a->addr, b->addr)
243 && a->offset_in_region == b->offset_in_region
244 && a->romd_mode == b->romd_mode
245 && a->readonly == b->readonly
246 && a->nonvolatile == b->nonvolatile;
249 static FlatView *flatview_new(MemoryRegion *mr_root)
251 FlatView *view;
253 view = g_new0(FlatView, 1);
254 view->ref = 1;
255 view->root = mr_root;
256 memory_region_ref(mr_root);
257 trace_flatview_new(view, mr_root);
259 return view;
262 /* Insert a range into a given position. Caller is responsible for maintaining
263 * sorting order.
265 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
267 if (view->nr == view->nr_allocated) {
268 view->nr_allocated = MAX(2 * view->nr, 10);
269 view->ranges = g_realloc(view->ranges,
270 view->nr_allocated * sizeof(*view->ranges));
272 memmove(view->ranges + pos + 1, view->ranges + pos,
273 (view->nr - pos) * sizeof(FlatRange));
274 view->ranges[pos] = *range;
275 memory_region_ref(range->mr);
276 ++view->nr;
279 static void flatview_destroy(FlatView *view)
281 int i;
283 trace_flatview_destroy(view, view->root);
284 if (view->dispatch) {
285 address_space_dispatch_free(view->dispatch);
287 for (i = 0; i < view->nr; i++) {
288 memory_region_unref(view->ranges[i].mr);
290 g_free(view->ranges);
291 memory_region_unref(view->root);
292 g_free(view);
295 static bool flatview_ref(FlatView *view)
297 return atomic_fetch_inc_nonzero(&view->ref) > 0;
300 void flatview_unref(FlatView *view)
302 if (atomic_fetch_dec(&view->ref) == 1) {
303 trace_flatview_destroy_rcu(view, view->root);
304 assert(view->root);
305 call_rcu(view, flatview_destroy, rcu);
309 static bool can_merge(FlatRange *r1, FlatRange *r2)
311 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
312 && r1->mr == r2->mr
313 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
314 r1->addr.size),
315 int128_make64(r2->offset_in_region))
316 && r1->dirty_log_mask == r2->dirty_log_mask
317 && r1->romd_mode == r2->romd_mode
318 && r1->readonly == r2->readonly
319 && r1->nonvolatile == r2->nonvolatile;
322 /* Attempt to simplify a view by merging adjacent ranges */
323 static void flatview_simplify(FlatView *view)
325 unsigned i, j;
327 i = 0;
328 while (i < view->nr) {
329 j = i + 1;
330 while (j < view->nr
331 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
332 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
333 ++j;
335 ++i;
336 memmove(&view->ranges[i], &view->ranges[j],
337 (view->nr - j) * sizeof(view->ranges[j]));
338 view->nr -= j - i;
342 static bool memory_region_big_endian(MemoryRegion *mr)
344 #ifdef TARGET_WORDS_BIGENDIAN
345 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
346 #else
347 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
348 #endif
351 static bool memory_region_wrong_endianness(MemoryRegion *mr)
353 #ifdef TARGET_WORDS_BIGENDIAN
354 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
355 #else
356 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
357 #endif
360 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
362 if (memory_region_wrong_endianness(mr)) {
363 switch (size) {
364 case 1:
365 break;
366 case 2:
367 *data = bswap16(*data);
368 break;
369 case 4:
370 *data = bswap32(*data);
371 break;
372 case 8:
373 *data = bswap64(*data);
374 break;
375 default:
376 abort();
381 static inline void memory_region_shift_read_access(uint64_t *value,
382 signed shift,
383 uint64_t mask,
384 uint64_t tmp)
386 if (shift >= 0) {
387 *value |= (tmp & mask) << shift;
388 } else {
389 *value |= (tmp & mask) >> -shift;
393 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
394 signed shift,
395 uint64_t mask)
397 uint64_t tmp;
399 if (shift >= 0) {
400 tmp = (*value >> shift) & mask;
401 } else {
402 tmp = (*value << -shift) & mask;
405 return tmp;
408 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
410 MemoryRegion *root;
411 hwaddr abs_addr = offset;
413 abs_addr += mr->addr;
414 for (root = mr; root->container; ) {
415 root = root->container;
416 abs_addr += root->addr;
419 return abs_addr;
422 static int get_cpu_index(void)
424 if (current_cpu) {
425 return current_cpu->cpu_index;
427 return -1;
430 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
431 hwaddr addr,
432 uint64_t *value,
433 unsigned size,
434 signed shift,
435 uint64_t mask,
436 MemTxAttrs attrs)
438 uint64_t tmp;
440 tmp = mr->ops->read(mr->opaque, addr, size);
441 if (mr->subpage) {
442 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
443 } else if (mr == &io_mem_notdirty) {
444 /* Accesses to code which has previously been translated into a TB show
445 * up in the MMIO path, as accesses to the io_mem_notdirty
446 * MemoryRegion. */
447 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
448 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
449 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
450 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
452 memory_region_shift_read_access(value, shift, mask, tmp);
453 return MEMTX_OK;
456 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
457 hwaddr addr,
458 uint64_t *value,
459 unsigned size,
460 signed shift,
461 uint64_t mask,
462 MemTxAttrs attrs)
464 uint64_t tmp = 0;
465 MemTxResult r;
467 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
468 if (mr->subpage) {
469 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
470 } else if (mr == &io_mem_notdirty) {
471 /* Accesses to code which has previously been translated into a TB show
472 * up in the MMIO path, as accesses to the io_mem_notdirty
473 * MemoryRegion. */
474 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
475 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
476 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
477 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
479 memory_region_shift_read_access(value, shift, mask, tmp);
480 return r;
483 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
484 hwaddr addr,
485 uint64_t *value,
486 unsigned size,
487 signed shift,
488 uint64_t mask,
489 MemTxAttrs attrs)
491 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
493 if (mr->subpage) {
494 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
495 } else if (mr == &io_mem_notdirty) {
496 /* Accesses to code which has previously been translated into a TB show
497 * up in the MMIO path, as accesses to the io_mem_notdirty
498 * MemoryRegion. */
499 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
500 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
501 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
502 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
504 mr->ops->write(mr->opaque, addr, tmp, size);
505 return MEMTX_OK;
508 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
509 hwaddr addr,
510 uint64_t *value,
511 unsigned size,
512 signed shift,
513 uint64_t mask,
514 MemTxAttrs attrs)
516 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
518 if (mr->subpage) {
519 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
520 } else if (mr == &io_mem_notdirty) {
521 /* Accesses to code which has previously been translated into a TB show
522 * up in the MMIO path, as accesses to the io_mem_notdirty
523 * MemoryRegion. */
524 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
525 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
526 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
527 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
529 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
532 static MemTxResult access_with_adjusted_size(hwaddr addr,
533 uint64_t *value,
534 unsigned size,
535 unsigned access_size_min,
536 unsigned access_size_max,
537 MemTxResult (*access_fn)
538 (MemoryRegion *mr,
539 hwaddr addr,
540 uint64_t *value,
541 unsigned size,
542 signed shift,
543 uint64_t mask,
544 MemTxAttrs attrs),
545 MemoryRegion *mr,
546 MemTxAttrs attrs)
548 uint64_t access_mask;
549 unsigned access_size;
550 unsigned i;
551 MemTxResult r = MEMTX_OK;
553 if (!access_size_min) {
554 access_size_min = 1;
556 if (!access_size_max) {
557 access_size_max = 4;
560 /* FIXME: support unaligned access? */
561 access_size = MAX(MIN(size, access_size_max), access_size_min);
562 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
563 if (memory_region_big_endian(mr)) {
564 for (i = 0; i < size; i += access_size) {
565 r |= access_fn(mr, addr + i, value, access_size,
566 (size - access_size - i) * 8, access_mask, attrs);
568 } else {
569 for (i = 0; i < size; i += access_size) {
570 r |= access_fn(mr, addr + i, value, access_size, i * 8,
571 access_mask, attrs);
574 return r;
577 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
579 AddressSpace *as;
581 while (mr->container) {
582 mr = mr->container;
584 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
585 if (mr == as->root) {
586 return as;
589 return NULL;
592 /* Render a memory region into the global view. Ranges in @view obscure
593 * ranges in @mr.
595 static void render_memory_region(FlatView *view,
596 MemoryRegion *mr,
597 Int128 base,
598 AddrRange clip,
599 bool readonly,
600 bool nonvolatile)
602 MemoryRegion *subregion;
603 unsigned i;
604 hwaddr offset_in_region;
605 Int128 remain;
606 Int128 now;
607 FlatRange fr;
608 AddrRange tmp;
610 if (!mr->enabled) {
611 return;
614 int128_addto(&base, int128_make64(mr->addr));
615 readonly |= mr->readonly;
616 nonvolatile |= mr->nonvolatile;
618 tmp = addrrange_make(base, mr->size);
620 if (!addrrange_intersects(tmp, clip)) {
621 return;
624 clip = addrrange_intersection(tmp, clip);
626 if (mr->alias) {
627 int128_subfrom(&base, int128_make64(mr->alias->addr));
628 int128_subfrom(&base, int128_make64(mr->alias_offset));
629 render_memory_region(view, mr->alias, base, clip,
630 readonly, nonvolatile);
631 return;
634 /* Render subregions in priority order. */
635 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
636 render_memory_region(view, subregion, base, clip,
637 readonly, nonvolatile);
640 if (!mr->terminates) {
641 return;
644 offset_in_region = int128_get64(int128_sub(clip.start, base));
645 base = clip.start;
646 remain = clip.size;
648 fr.mr = mr;
649 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
650 fr.romd_mode = mr->romd_mode;
651 fr.readonly = readonly;
652 fr.nonvolatile = nonvolatile;
654 /* Render the region itself into any gaps left by the current view. */
655 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
656 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
657 continue;
659 if (int128_lt(base, view->ranges[i].addr.start)) {
660 now = int128_min(remain,
661 int128_sub(view->ranges[i].addr.start, base));
662 fr.offset_in_region = offset_in_region;
663 fr.addr = addrrange_make(base, now);
664 flatview_insert(view, i, &fr);
665 ++i;
666 int128_addto(&base, now);
667 offset_in_region += int128_get64(now);
668 int128_subfrom(&remain, now);
670 now = int128_sub(int128_min(int128_add(base, remain),
671 addrrange_end(view->ranges[i].addr)),
672 base);
673 int128_addto(&base, now);
674 offset_in_region += int128_get64(now);
675 int128_subfrom(&remain, now);
677 if (int128_nz(remain)) {
678 fr.offset_in_region = offset_in_region;
679 fr.addr = addrrange_make(base, remain);
680 flatview_insert(view, i, &fr);
684 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
686 while (mr->enabled) {
687 if (mr->alias) {
688 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
689 /* The alias is included in its entirety. Use it as
690 * the "real" root, so that we can share more FlatViews.
692 mr = mr->alias;
693 continue;
695 } else if (!mr->terminates) {
696 unsigned int found = 0;
697 MemoryRegion *child, *next = NULL;
698 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
699 if (child->enabled) {
700 if (++found > 1) {
701 next = NULL;
702 break;
704 if (!child->addr && int128_ge(mr->size, child->size)) {
705 /* A child is included in its entirety. If it's the only
706 * enabled one, use it in the hope of finding an alias down the
707 * way. This will also let us share FlatViews.
709 next = child;
713 if (found == 0) {
714 return NULL;
716 if (next) {
717 mr = next;
718 continue;
722 return mr;
725 return NULL;
728 /* Render a memory topology into a list of disjoint absolute ranges. */
729 static FlatView *generate_memory_topology(MemoryRegion *mr)
731 int i;
732 FlatView *view;
734 view = flatview_new(mr);
736 if (mr) {
737 render_memory_region(view, mr, int128_zero(),
738 addrrange_make(int128_zero(), int128_2_64()),
739 false, false);
741 flatview_simplify(view);
743 view->dispatch = address_space_dispatch_new(view);
744 for (i = 0; i < view->nr; i++) {
745 MemoryRegionSection mrs =
746 section_from_flat_range(&view->ranges[i], view);
747 flatview_add_to_dispatch(view, &mrs);
749 address_space_dispatch_compact(view->dispatch);
750 g_hash_table_replace(flat_views, mr, view);
752 return view;
755 static void address_space_add_del_ioeventfds(AddressSpace *as,
756 MemoryRegionIoeventfd *fds_new,
757 unsigned fds_new_nb,
758 MemoryRegionIoeventfd *fds_old,
759 unsigned fds_old_nb)
761 unsigned iold, inew;
762 MemoryRegionIoeventfd *fd;
763 MemoryRegionSection section;
765 /* Generate a symmetric difference of the old and new fd sets, adding
766 * and deleting as necessary.
769 iold = inew = 0;
770 while (iold < fds_old_nb || inew < fds_new_nb) {
771 if (iold < fds_old_nb
772 && (inew == fds_new_nb
773 || memory_region_ioeventfd_before(&fds_old[iold],
774 &fds_new[inew]))) {
775 fd = &fds_old[iold];
776 section = (MemoryRegionSection) {
777 .fv = address_space_to_flatview(as),
778 .offset_within_address_space = int128_get64(fd->addr.start),
779 .size = fd->addr.size,
781 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
782 fd->match_data, fd->data, fd->e);
783 ++iold;
784 } else if (inew < fds_new_nb
785 && (iold == fds_old_nb
786 || memory_region_ioeventfd_before(&fds_new[inew],
787 &fds_old[iold]))) {
788 fd = &fds_new[inew];
789 section = (MemoryRegionSection) {
790 .fv = address_space_to_flatview(as),
791 .offset_within_address_space = int128_get64(fd->addr.start),
792 .size = fd->addr.size,
794 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
795 fd->match_data, fd->data, fd->e);
796 ++inew;
797 } else {
798 ++iold;
799 ++inew;
804 FlatView *address_space_get_flatview(AddressSpace *as)
806 FlatView *view;
808 rcu_read_lock();
809 do {
810 view = address_space_to_flatview(as);
811 /* If somebody has replaced as->current_map concurrently,
812 * flatview_ref returns false.
814 } while (!flatview_ref(view));
815 rcu_read_unlock();
816 return view;
819 static void address_space_update_ioeventfds(AddressSpace *as)
821 FlatView *view;
822 FlatRange *fr;
823 unsigned ioeventfd_nb = 0;
824 MemoryRegionIoeventfd *ioeventfds = NULL;
825 AddrRange tmp;
826 unsigned i;
828 view = address_space_get_flatview(as);
829 FOR_EACH_FLAT_RANGE(fr, view) {
830 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
831 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
832 int128_sub(fr->addr.start,
833 int128_make64(fr->offset_in_region)));
834 if (addrrange_intersects(fr->addr, tmp)) {
835 ++ioeventfd_nb;
836 ioeventfds = g_realloc(ioeventfds,
837 ioeventfd_nb * sizeof(*ioeventfds));
838 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
839 ioeventfds[ioeventfd_nb-1].addr = tmp;
844 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
845 as->ioeventfds, as->ioeventfd_nb);
847 g_free(as->ioeventfds);
848 as->ioeventfds = ioeventfds;
849 as->ioeventfd_nb = ioeventfd_nb;
850 flatview_unref(view);
853 static void address_space_update_topology_pass(AddressSpace *as,
854 const FlatView *old_view,
855 const FlatView *new_view,
856 bool adding)
858 unsigned iold, inew;
859 FlatRange *frold, *frnew;
861 /* Generate a symmetric difference of the old and new memory maps.
862 * Kill ranges in the old map, and instantiate ranges in the new map.
864 iold = inew = 0;
865 while (iold < old_view->nr || inew < new_view->nr) {
866 if (iold < old_view->nr) {
867 frold = &old_view->ranges[iold];
868 } else {
869 frold = NULL;
871 if (inew < new_view->nr) {
872 frnew = &new_view->ranges[inew];
873 } else {
874 frnew = NULL;
877 if (frold
878 && (!frnew
879 || int128_lt(frold->addr.start, frnew->addr.start)
880 || (int128_eq(frold->addr.start, frnew->addr.start)
881 && !flatrange_equal(frold, frnew)))) {
882 /* In old but not in new, or in both but attributes changed. */
884 if (!adding) {
885 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
888 ++iold;
889 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
890 /* In both and unchanged (except logging may have changed) */
892 if (adding) {
893 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
894 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
895 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
896 frold->dirty_log_mask,
897 frnew->dirty_log_mask);
899 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
900 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
901 frold->dirty_log_mask,
902 frnew->dirty_log_mask);
906 ++iold;
907 ++inew;
908 } else {
909 /* In new */
911 if (adding) {
912 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
915 ++inew;
920 static void flatviews_init(void)
922 static FlatView *empty_view;
924 if (flat_views) {
925 return;
928 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
929 (GDestroyNotify) flatview_unref);
930 if (!empty_view) {
931 empty_view = generate_memory_topology(NULL);
932 /* We keep it alive forever in the global variable. */
933 flatview_ref(empty_view);
934 } else {
935 g_hash_table_replace(flat_views, NULL, empty_view);
936 flatview_ref(empty_view);
940 static void flatviews_reset(void)
942 AddressSpace *as;
944 if (flat_views) {
945 g_hash_table_unref(flat_views);
946 flat_views = NULL;
948 flatviews_init();
950 /* Render unique FVs */
951 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
952 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
954 if (g_hash_table_lookup(flat_views, physmr)) {
955 continue;
958 generate_memory_topology(physmr);
962 static void address_space_set_flatview(AddressSpace *as)
964 FlatView *old_view = address_space_to_flatview(as);
965 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
966 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
968 assert(new_view);
970 if (old_view == new_view) {
971 return;
974 if (old_view) {
975 flatview_ref(old_view);
978 flatview_ref(new_view);
980 if (!QTAILQ_EMPTY(&as->listeners)) {
981 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
983 if (!old_view2) {
984 old_view2 = &tmpview;
986 address_space_update_topology_pass(as, old_view2, new_view, false);
987 address_space_update_topology_pass(as, old_view2, new_view, true);
990 /* Writes are protected by the BQL. */
991 atomic_rcu_set(&as->current_map, new_view);
992 if (old_view) {
993 flatview_unref(old_view);
996 /* Note that all the old MemoryRegions are still alive up to this
997 * point. This relieves most MemoryListeners from the need to
998 * ref/unref the MemoryRegions they get---unless they use them
999 * outside the iothread mutex, in which case precise reference
1000 * counting is necessary.
1002 if (old_view) {
1003 flatview_unref(old_view);
1007 static void address_space_update_topology(AddressSpace *as)
1009 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1011 flatviews_init();
1012 if (!g_hash_table_lookup(flat_views, physmr)) {
1013 generate_memory_topology(physmr);
1015 address_space_set_flatview(as);
1018 void memory_region_transaction_begin(void)
1020 qemu_flush_coalesced_mmio_buffer();
1021 ++memory_region_transaction_depth;
1024 void memory_region_transaction_commit(void)
1026 AddressSpace *as;
1028 assert(memory_region_transaction_depth);
1029 assert(qemu_mutex_iothread_locked());
1031 --memory_region_transaction_depth;
1032 if (!memory_region_transaction_depth) {
1033 if (memory_region_update_pending) {
1034 flatviews_reset();
1036 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1038 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1039 address_space_set_flatview(as);
1040 address_space_update_ioeventfds(as);
1042 memory_region_update_pending = false;
1043 ioeventfd_update_pending = false;
1044 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1045 } else if (ioeventfd_update_pending) {
1046 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1047 address_space_update_ioeventfds(as);
1049 ioeventfd_update_pending = false;
1054 static void memory_region_destructor_none(MemoryRegion *mr)
1058 static void memory_region_destructor_ram(MemoryRegion *mr)
1060 qemu_ram_free(mr->ram_block);
1063 static bool memory_region_need_escape(char c)
1065 return c == '/' || c == '[' || c == '\\' || c == ']';
1068 static char *memory_region_escape_name(const char *name)
1070 const char *p;
1071 char *escaped, *q;
1072 uint8_t c;
1073 size_t bytes = 0;
1075 for (p = name; *p; p++) {
1076 bytes += memory_region_need_escape(*p) ? 4 : 1;
1078 if (bytes == p - name) {
1079 return g_memdup(name, bytes + 1);
1082 escaped = g_malloc(bytes + 1);
1083 for (p = name, q = escaped; *p; p++) {
1084 c = *p;
1085 if (unlikely(memory_region_need_escape(c))) {
1086 *q++ = '\\';
1087 *q++ = 'x';
1088 *q++ = "0123456789abcdef"[c >> 4];
1089 c = "0123456789abcdef"[c & 15];
1091 *q++ = c;
1093 *q = 0;
1094 return escaped;
1097 static void memory_region_do_init(MemoryRegion *mr,
1098 Object *owner,
1099 const char *name,
1100 uint64_t size)
1102 mr->size = int128_make64(size);
1103 if (size == UINT64_MAX) {
1104 mr->size = int128_2_64();
1106 mr->name = g_strdup(name);
1107 mr->owner = owner;
1108 mr->ram_block = NULL;
1110 if (name) {
1111 char *escaped_name = memory_region_escape_name(name);
1112 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1114 if (!owner) {
1115 owner = container_get(qdev_get_machine(), "/unattached");
1118 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1119 object_unref(OBJECT(mr));
1120 g_free(name_array);
1121 g_free(escaped_name);
1125 void memory_region_init(MemoryRegion *mr,
1126 Object *owner,
1127 const char *name,
1128 uint64_t size)
1130 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1131 memory_region_do_init(mr, owner, name, size);
1134 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1135 void *opaque, Error **errp)
1137 MemoryRegion *mr = MEMORY_REGION(obj);
1138 uint64_t value = mr->addr;
1140 visit_type_uint64(v, name, &value, errp);
1143 static void memory_region_get_container(Object *obj, Visitor *v,
1144 const char *name, void *opaque,
1145 Error **errp)
1147 MemoryRegion *mr = MEMORY_REGION(obj);
1148 gchar *path = (gchar *)"";
1150 if (mr->container) {
1151 path = object_get_canonical_path(OBJECT(mr->container));
1153 visit_type_str(v, name, &path, errp);
1154 if (mr->container) {
1155 g_free(path);
1159 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1160 const char *part)
1162 MemoryRegion *mr = MEMORY_REGION(obj);
1164 return OBJECT(mr->container);
1167 static void memory_region_get_priority(Object *obj, Visitor *v,
1168 const char *name, void *opaque,
1169 Error **errp)
1171 MemoryRegion *mr = MEMORY_REGION(obj);
1172 int32_t value = mr->priority;
1174 visit_type_int32(v, name, &value, errp);
1177 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1178 void *opaque, Error **errp)
1180 MemoryRegion *mr = MEMORY_REGION(obj);
1181 uint64_t value = memory_region_size(mr);
1183 visit_type_uint64(v, name, &value, errp);
1186 static void memory_region_initfn(Object *obj)
1188 MemoryRegion *mr = MEMORY_REGION(obj);
1189 ObjectProperty *op;
1191 mr->ops = &unassigned_mem_ops;
1192 mr->enabled = true;
1193 mr->romd_mode = true;
1194 mr->global_locking = true;
1195 mr->destructor = memory_region_destructor_none;
1196 QTAILQ_INIT(&mr->subregions);
1197 QTAILQ_INIT(&mr->coalesced);
1199 op = object_property_add(OBJECT(mr), "container",
1200 "link<" TYPE_MEMORY_REGION ">",
1201 memory_region_get_container,
1202 NULL, /* memory_region_set_container */
1203 NULL, NULL, &error_abort);
1204 op->resolve = memory_region_resolve_container;
1206 object_property_add(OBJECT(mr), "addr", "uint64",
1207 memory_region_get_addr,
1208 NULL, /* memory_region_set_addr */
1209 NULL, NULL, &error_abort);
1210 object_property_add(OBJECT(mr), "priority", "uint32",
1211 memory_region_get_priority,
1212 NULL, /* memory_region_set_priority */
1213 NULL, NULL, &error_abort);
1214 object_property_add(OBJECT(mr), "size", "uint64",
1215 memory_region_get_size,
1216 NULL, /* memory_region_set_size, */
1217 NULL, NULL, &error_abort);
1220 static void iommu_memory_region_initfn(Object *obj)
1222 MemoryRegion *mr = MEMORY_REGION(obj);
1224 mr->is_iommu = true;
1227 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1228 unsigned size)
1230 #ifdef DEBUG_UNASSIGNED
1231 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1232 #endif
1233 if (current_cpu != NULL) {
1234 bool is_exec = current_cpu->mem_io_access_type == MMU_INST_FETCH;
1235 cpu_unassigned_access(current_cpu, addr, false, is_exec, 0, size);
1237 return 0;
1240 static void unassigned_mem_write(void *opaque, hwaddr addr,
1241 uint64_t val, unsigned size)
1243 #ifdef DEBUG_UNASSIGNED
1244 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1245 #endif
1246 if (current_cpu != NULL) {
1247 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1251 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1252 unsigned size, bool is_write,
1253 MemTxAttrs attrs)
1255 return false;
1258 const MemoryRegionOps unassigned_mem_ops = {
1259 .valid.accepts = unassigned_mem_accepts,
1260 .endianness = DEVICE_NATIVE_ENDIAN,
1263 static uint64_t memory_region_ram_device_read(void *opaque,
1264 hwaddr addr, unsigned size)
1266 MemoryRegion *mr = opaque;
1267 uint64_t data = (uint64_t)~0;
1269 switch (size) {
1270 case 1:
1271 data = *(uint8_t *)(mr->ram_block->host + addr);
1272 break;
1273 case 2:
1274 data = *(uint16_t *)(mr->ram_block->host + addr);
1275 break;
1276 case 4:
1277 data = *(uint32_t *)(mr->ram_block->host + addr);
1278 break;
1279 case 8:
1280 data = *(uint64_t *)(mr->ram_block->host + addr);
1281 break;
1284 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1286 return data;
1289 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1290 uint64_t data, unsigned size)
1292 MemoryRegion *mr = opaque;
1294 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1296 switch (size) {
1297 case 1:
1298 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1299 break;
1300 case 2:
1301 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1302 break;
1303 case 4:
1304 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1305 break;
1306 case 8:
1307 *(uint64_t *)(mr->ram_block->host + addr) = data;
1308 break;
1312 static const MemoryRegionOps ram_device_mem_ops = {
1313 .read = memory_region_ram_device_read,
1314 .write = memory_region_ram_device_write,
1315 .endianness = DEVICE_HOST_ENDIAN,
1316 .valid = {
1317 .min_access_size = 1,
1318 .max_access_size = 8,
1319 .unaligned = true,
1321 .impl = {
1322 .min_access_size = 1,
1323 .max_access_size = 8,
1324 .unaligned = true,
1328 bool memory_region_access_valid(MemoryRegion *mr,
1329 hwaddr addr,
1330 unsigned size,
1331 bool is_write,
1332 MemTxAttrs attrs)
1334 int access_size_min, access_size_max;
1335 int access_size, i;
1337 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1338 return false;
1341 if (!mr->ops->valid.accepts) {
1342 return true;
1345 access_size_min = mr->ops->valid.min_access_size;
1346 if (!mr->ops->valid.min_access_size) {
1347 access_size_min = 1;
1350 access_size_max = mr->ops->valid.max_access_size;
1351 if (!mr->ops->valid.max_access_size) {
1352 access_size_max = 4;
1355 access_size = MAX(MIN(size, access_size_max), access_size_min);
1356 for (i = 0; i < size; i += access_size) {
1357 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1358 is_write, attrs)) {
1359 return false;
1363 return true;
1366 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1367 hwaddr addr,
1368 uint64_t *pval,
1369 unsigned size,
1370 MemTxAttrs attrs)
1372 *pval = 0;
1374 if (mr->ops->read) {
1375 return access_with_adjusted_size(addr, pval, size,
1376 mr->ops->impl.min_access_size,
1377 mr->ops->impl.max_access_size,
1378 memory_region_read_accessor,
1379 mr, attrs);
1380 } else {
1381 return access_with_adjusted_size(addr, pval, size,
1382 mr->ops->impl.min_access_size,
1383 mr->ops->impl.max_access_size,
1384 memory_region_read_with_attrs_accessor,
1385 mr, attrs);
1389 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1390 hwaddr addr,
1391 uint64_t *pval,
1392 unsigned size,
1393 MemTxAttrs attrs)
1395 MemTxResult r;
1397 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1398 *pval = unassigned_mem_read(mr, addr, size);
1399 return MEMTX_DECODE_ERROR;
1402 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1403 adjust_endianness(mr, pval, size);
1404 return r;
1407 /* Return true if an eventfd was signalled */
1408 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1409 hwaddr addr,
1410 uint64_t data,
1411 unsigned size,
1412 MemTxAttrs attrs)
1414 MemoryRegionIoeventfd ioeventfd = {
1415 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1416 .data = data,
1418 unsigned i;
1420 for (i = 0; i < mr->ioeventfd_nb; i++) {
1421 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1422 ioeventfd.e = mr->ioeventfds[i].e;
1424 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1425 event_notifier_set(ioeventfd.e);
1426 return true;
1430 return false;
1433 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1434 hwaddr addr,
1435 uint64_t data,
1436 unsigned size,
1437 MemTxAttrs attrs)
1439 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1440 unassigned_mem_write(mr, addr, data, size);
1441 return MEMTX_DECODE_ERROR;
1444 adjust_endianness(mr, &data, size);
1446 if ((!kvm_eventfds_enabled()) &&
1447 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1448 return MEMTX_OK;
1451 if (mr->ops->write) {
1452 return access_with_adjusted_size(addr, &data, size,
1453 mr->ops->impl.min_access_size,
1454 mr->ops->impl.max_access_size,
1455 memory_region_write_accessor, mr,
1456 attrs);
1457 } else {
1458 return
1459 access_with_adjusted_size(addr, &data, size,
1460 mr->ops->impl.min_access_size,
1461 mr->ops->impl.max_access_size,
1462 memory_region_write_with_attrs_accessor,
1463 mr, attrs);
1467 void memory_region_init_io(MemoryRegion *mr,
1468 Object *owner,
1469 const MemoryRegionOps *ops,
1470 void *opaque,
1471 const char *name,
1472 uint64_t size)
1474 memory_region_init(mr, owner, name, size);
1475 mr->ops = ops ? ops : &unassigned_mem_ops;
1476 mr->opaque = opaque;
1477 mr->terminates = true;
1480 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1481 Object *owner,
1482 const char *name,
1483 uint64_t size,
1484 Error **errp)
1486 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1489 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1490 Object *owner,
1491 const char *name,
1492 uint64_t size,
1493 bool share,
1494 Error **errp)
1496 Error *err = NULL;
1497 memory_region_init(mr, owner, name, size);
1498 mr->ram = true;
1499 mr->terminates = true;
1500 mr->destructor = memory_region_destructor_ram;
1501 mr->ram_block = qemu_ram_alloc(size, share, mr, &err);
1502 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1503 if (err) {
1504 mr->size = int128_zero();
1505 object_unparent(OBJECT(mr));
1506 error_propagate(errp, err);
1510 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1511 Object *owner,
1512 const char *name,
1513 uint64_t size,
1514 uint64_t max_size,
1515 void (*resized)(const char*,
1516 uint64_t length,
1517 void *host),
1518 Error **errp)
1520 Error *err = NULL;
1521 memory_region_init(mr, owner, name, size);
1522 mr->ram = true;
1523 mr->terminates = true;
1524 mr->destructor = memory_region_destructor_ram;
1525 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1526 mr, &err);
1527 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1528 if (err) {
1529 mr->size = int128_zero();
1530 object_unparent(OBJECT(mr));
1531 error_propagate(errp, err);
1535 #ifdef CONFIG_POSIX
1536 void memory_region_init_ram_from_file(MemoryRegion *mr,
1537 struct Object *owner,
1538 const char *name,
1539 uint64_t size,
1540 uint64_t align,
1541 uint32_t ram_flags,
1542 const char *path,
1543 Error **errp)
1545 Error *err = NULL;
1546 memory_region_init(mr, owner, name, size);
1547 mr->ram = true;
1548 mr->terminates = true;
1549 mr->destructor = memory_region_destructor_ram;
1550 mr->align = align;
1551 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, &err);
1552 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1553 if (err) {
1554 mr->size = int128_zero();
1555 object_unparent(OBJECT(mr));
1556 error_propagate(errp, err);
1560 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1561 struct Object *owner,
1562 const char *name,
1563 uint64_t size,
1564 bool share,
1565 int fd,
1566 Error **errp)
1568 Error *err = NULL;
1569 memory_region_init(mr, owner, name, size);
1570 mr->ram = true;
1571 mr->terminates = true;
1572 mr->destructor = memory_region_destructor_ram;
1573 mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
1574 share ? RAM_SHARED : 0,
1575 fd, &err);
1576 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1577 if (err) {
1578 mr->size = int128_zero();
1579 object_unparent(OBJECT(mr));
1580 error_propagate(errp, err);
1583 #endif
1585 void memory_region_init_ram_ptr(MemoryRegion *mr,
1586 Object *owner,
1587 const char *name,
1588 uint64_t size,
1589 void *ptr)
1591 memory_region_init(mr, owner, name, size);
1592 mr->ram = true;
1593 mr->terminates = true;
1594 mr->destructor = memory_region_destructor_ram;
1595 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1597 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1598 assert(ptr != NULL);
1599 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1602 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1603 Object *owner,
1604 const char *name,
1605 uint64_t size,
1606 void *ptr)
1608 memory_region_init_ram_ptr(mr, owner, name, size, ptr);
1609 mr->ram_device = true;
1610 mr->ops = &ram_device_mem_ops;
1611 mr->opaque = mr;
1614 void memory_region_init_alias(MemoryRegion *mr,
1615 Object *owner,
1616 const char *name,
1617 MemoryRegion *orig,
1618 hwaddr offset,
1619 uint64_t size)
1621 memory_region_init(mr, owner, name, size);
1622 mr->alias = orig;
1623 mr->alias_offset = offset;
1626 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1627 struct Object *owner,
1628 const char *name,
1629 uint64_t size,
1630 Error **errp)
1632 Error *err = NULL;
1633 memory_region_init(mr, owner, name, size);
1634 mr->ram = true;
1635 mr->readonly = true;
1636 mr->terminates = true;
1637 mr->destructor = memory_region_destructor_ram;
1638 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1639 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1640 if (err) {
1641 mr->size = int128_zero();
1642 object_unparent(OBJECT(mr));
1643 error_propagate(errp, err);
1647 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1648 Object *owner,
1649 const MemoryRegionOps *ops,
1650 void *opaque,
1651 const char *name,
1652 uint64_t size,
1653 Error **errp)
1655 Error *err = NULL;
1656 assert(ops);
1657 memory_region_init(mr, owner, name, size);
1658 mr->ops = ops;
1659 mr->opaque = opaque;
1660 mr->terminates = true;
1661 mr->rom_device = true;
1662 mr->destructor = memory_region_destructor_ram;
1663 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1664 if (err) {
1665 mr->size = int128_zero();
1666 object_unparent(OBJECT(mr));
1667 error_propagate(errp, err);
1671 void memory_region_init_iommu(void *_iommu_mr,
1672 size_t instance_size,
1673 const char *mrtypename,
1674 Object *owner,
1675 const char *name,
1676 uint64_t size)
1678 struct IOMMUMemoryRegion *iommu_mr;
1679 struct MemoryRegion *mr;
1681 object_initialize(_iommu_mr, instance_size, mrtypename);
1682 mr = MEMORY_REGION(_iommu_mr);
1683 memory_region_do_init(mr, owner, name, size);
1684 iommu_mr = IOMMU_MEMORY_REGION(mr);
1685 mr->terminates = true; /* then re-forwards */
1686 QLIST_INIT(&iommu_mr->iommu_notify);
1687 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1690 static void memory_region_finalize(Object *obj)
1692 MemoryRegion *mr = MEMORY_REGION(obj);
1694 assert(!mr->container);
1696 /* We know the region is not visible in any address space (it
1697 * does not have a container and cannot be a root either because
1698 * it has no references, so we can blindly clear mr->enabled.
1699 * memory_region_set_enabled instead could trigger a transaction
1700 * and cause an infinite loop.
1702 mr->enabled = false;
1703 memory_region_transaction_begin();
1704 while (!QTAILQ_EMPTY(&mr->subregions)) {
1705 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1706 memory_region_del_subregion(mr, subregion);
1708 memory_region_transaction_commit();
1710 mr->destructor(mr);
1711 memory_region_clear_coalescing(mr);
1712 g_free((char *)mr->name);
1713 g_free(mr->ioeventfds);
1716 Object *memory_region_owner(MemoryRegion *mr)
1718 Object *obj = OBJECT(mr);
1719 return obj->parent;
1722 void memory_region_ref(MemoryRegion *mr)
1724 /* MMIO callbacks most likely will access data that belongs
1725 * to the owner, hence the need to ref/unref the owner whenever
1726 * the memory region is in use.
1728 * The memory region is a child of its owner. As long as the
1729 * owner doesn't call unparent itself on the memory region,
1730 * ref-ing the owner will also keep the memory region alive.
1731 * Memory regions without an owner are supposed to never go away;
1732 * we do not ref/unref them because it slows down DMA sensibly.
1734 if (mr && mr->owner) {
1735 object_ref(mr->owner);
1739 void memory_region_unref(MemoryRegion *mr)
1741 if (mr && mr->owner) {
1742 object_unref(mr->owner);
1746 uint64_t memory_region_size(MemoryRegion *mr)
1748 if (int128_eq(mr->size, int128_2_64())) {
1749 return UINT64_MAX;
1751 return int128_get64(mr->size);
1754 const char *memory_region_name(const MemoryRegion *mr)
1756 if (!mr->name) {
1757 ((MemoryRegion *)mr)->name =
1758 object_get_canonical_path_component(OBJECT(mr));
1760 return mr->name;
1763 bool memory_region_is_ram_device(MemoryRegion *mr)
1765 return mr->ram_device;
1768 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1770 uint8_t mask = mr->dirty_log_mask;
1771 if (global_dirty_log && mr->ram_block) {
1772 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1774 return mask;
1777 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1779 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1782 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr)
1784 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1785 IOMMUNotifier *iommu_notifier;
1786 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1788 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1789 flags |= iommu_notifier->notifier_flags;
1792 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1793 imrc->notify_flag_changed(iommu_mr,
1794 iommu_mr->iommu_notify_flags,
1795 flags);
1798 iommu_mr->iommu_notify_flags = flags;
1801 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1802 IOMMUNotifier *n)
1804 IOMMUMemoryRegion *iommu_mr;
1806 if (mr->alias) {
1807 memory_region_register_iommu_notifier(mr->alias, n);
1808 return;
1811 /* We need to register for at least one bitfield */
1812 iommu_mr = IOMMU_MEMORY_REGION(mr);
1813 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1814 assert(n->start <= n->end);
1815 assert(n->iommu_idx >= 0 &&
1816 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1818 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1819 memory_region_update_iommu_notify_flags(iommu_mr);
1822 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1824 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1826 if (imrc->get_min_page_size) {
1827 return imrc->get_min_page_size(iommu_mr);
1829 return TARGET_PAGE_SIZE;
1832 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1834 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1835 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1836 hwaddr addr, granularity;
1837 IOMMUTLBEntry iotlb;
1839 /* If the IOMMU has its own replay callback, override */
1840 if (imrc->replay) {
1841 imrc->replay(iommu_mr, n);
1842 return;
1845 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1847 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1848 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1849 if (iotlb.perm != IOMMU_NONE) {
1850 n->notify(n, &iotlb);
1853 /* if (2^64 - MR size) < granularity, it's possible to get an
1854 * infinite loop here. This should catch such a wraparound */
1855 if ((addr + granularity) < addr) {
1856 break;
1861 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr)
1863 IOMMUNotifier *notifier;
1865 IOMMU_NOTIFIER_FOREACH(notifier, iommu_mr) {
1866 memory_region_iommu_replay(iommu_mr, notifier);
1870 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1871 IOMMUNotifier *n)
1873 IOMMUMemoryRegion *iommu_mr;
1875 if (mr->alias) {
1876 memory_region_unregister_iommu_notifier(mr->alias, n);
1877 return;
1879 QLIST_REMOVE(n, node);
1880 iommu_mr = IOMMU_MEMORY_REGION(mr);
1881 memory_region_update_iommu_notify_flags(iommu_mr);
1884 void memory_region_notify_one(IOMMUNotifier *notifier,
1885 IOMMUTLBEntry *entry)
1887 IOMMUNotifierFlag request_flags;
1890 * Skip the notification if the notification does not overlap
1891 * with registered range.
1893 if (notifier->start > entry->iova + entry->addr_mask ||
1894 notifier->end < entry->iova) {
1895 return;
1898 if (entry->perm & IOMMU_RW) {
1899 request_flags = IOMMU_NOTIFIER_MAP;
1900 } else {
1901 request_flags = IOMMU_NOTIFIER_UNMAP;
1904 if (notifier->notifier_flags & request_flags) {
1905 notifier->notify(notifier, entry);
1909 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1910 int iommu_idx,
1911 IOMMUTLBEntry entry)
1913 IOMMUNotifier *iommu_notifier;
1915 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1917 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1918 if (iommu_notifier->iommu_idx == iommu_idx) {
1919 memory_region_notify_one(iommu_notifier, &entry);
1924 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1925 enum IOMMUMemoryRegionAttr attr,
1926 void *data)
1928 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1930 if (!imrc->get_attr) {
1931 return -EINVAL;
1934 return imrc->get_attr(iommu_mr, attr, data);
1937 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1938 MemTxAttrs attrs)
1940 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1942 if (!imrc->attrs_to_index) {
1943 return 0;
1946 return imrc->attrs_to_index(iommu_mr, attrs);
1949 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
1951 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1953 if (!imrc->num_indexes) {
1954 return 1;
1957 return imrc->num_indexes(iommu_mr);
1960 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1962 uint8_t mask = 1 << client;
1963 uint8_t old_logging;
1965 assert(client == DIRTY_MEMORY_VGA);
1966 old_logging = mr->vga_logging_count;
1967 mr->vga_logging_count += log ? 1 : -1;
1968 if (!!old_logging == !!mr->vga_logging_count) {
1969 return;
1972 memory_region_transaction_begin();
1973 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1974 memory_region_update_pending |= mr->enabled;
1975 memory_region_transaction_commit();
1978 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1979 hwaddr size, unsigned client)
1981 assert(mr->ram_block);
1982 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1983 size, client);
1986 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1987 hwaddr size)
1989 assert(mr->ram_block);
1990 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1991 size,
1992 memory_region_get_dirty_log_mask(mr));
1995 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1997 MemoryListener *listener;
1998 AddressSpace *as;
1999 FlatView *view;
2000 FlatRange *fr;
2002 /* If the same address space has multiple log_sync listeners, we
2003 * visit that address space's FlatView multiple times. But because
2004 * log_sync listeners are rare, it's still cheaper than walking each
2005 * address space once.
2007 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2008 if (!listener->log_sync) {
2009 continue;
2011 as = listener->address_space;
2012 view = address_space_get_flatview(as);
2013 FOR_EACH_FLAT_RANGE(fr, view) {
2014 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2015 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2016 listener->log_sync(listener, &mrs);
2019 flatview_unref(view);
2023 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2024 hwaddr addr,
2025 hwaddr size,
2026 unsigned client)
2028 assert(mr->ram_block);
2029 memory_region_sync_dirty_bitmap(mr);
2030 return cpu_physical_memory_snapshot_and_clear_dirty(
2031 memory_region_get_ram_addr(mr) + addr, size, client);
2034 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2035 hwaddr addr, hwaddr size)
2037 assert(mr->ram_block);
2038 return cpu_physical_memory_snapshot_get_dirty(snap,
2039 memory_region_get_ram_addr(mr) + addr, size);
2042 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2044 if (mr->readonly != readonly) {
2045 memory_region_transaction_begin();
2046 mr->readonly = readonly;
2047 memory_region_update_pending |= mr->enabled;
2048 memory_region_transaction_commit();
2052 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2054 if (mr->nonvolatile != nonvolatile) {
2055 memory_region_transaction_begin();
2056 mr->nonvolatile = nonvolatile;
2057 memory_region_update_pending |= mr->enabled;
2058 memory_region_transaction_commit();
2062 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2064 if (mr->romd_mode != romd_mode) {
2065 memory_region_transaction_begin();
2066 mr->romd_mode = romd_mode;
2067 memory_region_update_pending |= mr->enabled;
2068 memory_region_transaction_commit();
2072 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2073 hwaddr size, unsigned client)
2075 assert(mr->ram_block);
2076 cpu_physical_memory_test_and_clear_dirty(
2077 memory_region_get_ram_addr(mr) + addr, size, client);
2080 int memory_region_get_fd(MemoryRegion *mr)
2082 int fd;
2084 rcu_read_lock();
2085 while (mr->alias) {
2086 mr = mr->alias;
2088 fd = mr->ram_block->fd;
2089 rcu_read_unlock();
2091 return fd;
2094 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2096 void *ptr;
2097 uint64_t offset = 0;
2099 rcu_read_lock();
2100 while (mr->alias) {
2101 offset += mr->alias_offset;
2102 mr = mr->alias;
2104 assert(mr->ram_block);
2105 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2106 rcu_read_unlock();
2108 return ptr;
2111 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2113 RAMBlock *block;
2115 block = qemu_ram_block_from_host(ptr, false, offset);
2116 if (!block) {
2117 return NULL;
2120 return block->mr;
2123 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2125 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2128 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2130 assert(mr->ram_block);
2132 qemu_ram_resize(mr->ram_block, newsize, errp);
2135 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
2137 FlatView *view;
2138 FlatRange *fr;
2139 CoalescedMemoryRange *cmr;
2140 AddrRange tmp;
2141 MemoryRegionSection section;
2143 view = address_space_get_flatview(as);
2144 FOR_EACH_FLAT_RANGE(fr, view) {
2145 if (fr->mr == mr) {
2146 section = (MemoryRegionSection) {
2147 .fv = view,
2148 .offset_within_address_space = int128_get64(fr->addr.start),
2149 .size = fr->addr.size,
2152 MEMORY_LISTENER_CALL(as, coalesced_io_del, Reverse, &section,
2153 int128_get64(fr->addr.start),
2154 int128_get64(fr->addr.size));
2155 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
2156 tmp = addrrange_shift(cmr->addr,
2157 int128_sub(fr->addr.start,
2158 int128_make64(fr->offset_in_region)));
2159 if (!addrrange_intersects(tmp, fr->addr)) {
2160 continue;
2162 tmp = addrrange_intersection(tmp, fr->addr);
2163 MEMORY_LISTENER_CALL(as, coalesced_io_add, Forward, &section,
2164 int128_get64(tmp.start),
2165 int128_get64(tmp.size));
2169 flatview_unref(view);
2172 static void memory_region_update_coalesced_range(MemoryRegion *mr)
2174 AddressSpace *as;
2176 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2177 memory_region_update_coalesced_range_as(mr, as);
2181 void memory_region_set_coalescing(MemoryRegion *mr)
2183 memory_region_clear_coalescing(mr);
2184 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2187 void memory_region_add_coalescing(MemoryRegion *mr,
2188 hwaddr offset,
2189 uint64_t size)
2191 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2193 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2194 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2195 memory_region_update_coalesced_range(mr);
2196 memory_region_set_flush_coalesced(mr);
2199 void memory_region_clear_coalescing(MemoryRegion *mr)
2201 CoalescedMemoryRange *cmr;
2202 bool updated = false;
2204 qemu_flush_coalesced_mmio_buffer();
2205 mr->flush_coalesced_mmio = false;
2207 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2208 cmr = QTAILQ_FIRST(&mr->coalesced);
2209 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2210 g_free(cmr);
2211 updated = true;
2214 if (updated) {
2215 memory_region_update_coalesced_range(mr);
2219 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2221 mr->flush_coalesced_mmio = true;
2224 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2226 qemu_flush_coalesced_mmio_buffer();
2227 if (QTAILQ_EMPTY(&mr->coalesced)) {
2228 mr->flush_coalesced_mmio = false;
2232 void memory_region_clear_global_locking(MemoryRegion *mr)
2234 mr->global_locking = false;
2237 static bool userspace_eventfd_warning;
2239 void memory_region_add_eventfd(MemoryRegion *mr,
2240 hwaddr addr,
2241 unsigned size,
2242 bool match_data,
2243 uint64_t data,
2244 EventNotifier *e)
2246 MemoryRegionIoeventfd mrfd = {
2247 .addr.start = int128_make64(addr),
2248 .addr.size = int128_make64(size),
2249 .match_data = match_data,
2250 .data = data,
2251 .e = e,
2253 unsigned i;
2255 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2256 userspace_eventfd_warning))) {
2257 userspace_eventfd_warning = true;
2258 error_report("Using eventfd without MMIO binding in KVM. "
2259 "Suboptimal performance expected");
2262 if (size) {
2263 adjust_endianness(mr, &mrfd.data, size);
2265 memory_region_transaction_begin();
2266 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2267 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2268 break;
2271 ++mr->ioeventfd_nb;
2272 mr->ioeventfds = g_realloc(mr->ioeventfds,
2273 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2274 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2275 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2276 mr->ioeventfds[i] = mrfd;
2277 ioeventfd_update_pending |= mr->enabled;
2278 memory_region_transaction_commit();
2281 void memory_region_del_eventfd(MemoryRegion *mr,
2282 hwaddr addr,
2283 unsigned size,
2284 bool match_data,
2285 uint64_t data,
2286 EventNotifier *e)
2288 MemoryRegionIoeventfd mrfd = {
2289 .addr.start = int128_make64(addr),
2290 .addr.size = int128_make64(size),
2291 .match_data = match_data,
2292 .data = data,
2293 .e = e,
2295 unsigned i;
2297 if (size) {
2298 adjust_endianness(mr, &mrfd.data, size);
2300 memory_region_transaction_begin();
2301 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2302 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2303 break;
2306 assert(i != mr->ioeventfd_nb);
2307 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2308 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2309 --mr->ioeventfd_nb;
2310 mr->ioeventfds = g_realloc(mr->ioeventfds,
2311 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2312 ioeventfd_update_pending |= mr->enabled;
2313 memory_region_transaction_commit();
2316 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2318 MemoryRegion *mr = subregion->container;
2319 MemoryRegion *other;
2321 memory_region_transaction_begin();
2323 memory_region_ref(subregion);
2324 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2325 if (subregion->priority >= other->priority) {
2326 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2327 goto done;
2330 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2331 done:
2332 memory_region_update_pending |= mr->enabled && subregion->enabled;
2333 memory_region_transaction_commit();
2336 static void memory_region_add_subregion_common(MemoryRegion *mr,
2337 hwaddr offset,
2338 MemoryRegion *subregion)
2340 assert(!subregion->container);
2341 subregion->container = mr;
2342 subregion->addr = offset;
2343 memory_region_update_container_subregions(subregion);
2346 void memory_region_add_subregion(MemoryRegion *mr,
2347 hwaddr offset,
2348 MemoryRegion *subregion)
2350 subregion->priority = 0;
2351 memory_region_add_subregion_common(mr, offset, subregion);
2354 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2355 hwaddr offset,
2356 MemoryRegion *subregion,
2357 int priority)
2359 subregion->priority = priority;
2360 memory_region_add_subregion_common(mr, offset, subregion);
2363 void memory_region_del_subregion(MemoryRegion *mr,
2364 MemoryRegion *subregion)
2366 memory_region_transaction_begin();
2367 assert(subregion->container == mr);
2368 subregion->container = NULL;
2369 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2370 memory_region_unref(subregion);
2371 memory_region_update_pending |= mr->enabled && subregion->enabled;
2372 memory_region_transaction_commit();
2375 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2377 if (enabled == mr->enabled) {
2378 return;
2380 memory_region_transaction_begin();
2381 mr->enabled = enabled;
2382 memory_region_update_pending = true;
2383 memory_region_transaction_commit();
2386 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2388 Int128 s = int128_make64(size);
2390 if (size == UINT64_MAX) {
2391 s = int128_2_64();
2393 if (int128_eq(s, mr->size)) {
2394 return;
2396 memory_region_transaction_begin();
2397 mr->size = s;
2398 memory_region_update_pending = true;
2399 memory_region_transaction_commit();
2402 static void memory_region_readd_subregion(MemoryRegion *mr)
2404 MemoryRegion *container = mr->container;
2406 if (container) {
2407 memory_region_transaction_begin();
2408 memory_region_ref(mr);
2409 memory_region_del_subregion(container, mr);
2410 mr->container = container;
2411 memory_region_update_container_subregions(mr);
2412 memory_region_unref(mr);
2413 memory_region_transaction_commit();
2417 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2419 if (addr != mr->addr) {
2420 mr->addr = addr;
2421 memory_region_readd_subregion(mr);
2425 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2427 assert(mr->alias);
2429 if (offset == mr->alias_offset) {
2430 return;
2433 memory_region_transaction_begin();
2434 mr->alias_offset = offset;
2435 memory_region_update_pending |= mr->enabled;
2436 memory_region_transaction_commit();
2439 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2441 return mr->align;
2444 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2446 const AddrRange *addr = addr_;
2447 const FlatRange *fr = fr_;
2449 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2450 return -1;
2451 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2452 return 1;
2454 return 0;
2457 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2459 return bsearch(&addr, view->ranges, view->nr,
2460 sizeof(FlatRange), cmp_flatrange_addr);
2463 bool memory_region_is_mapped(MemoryRegion *mr)
2465 return mr->container ? true : false;
2468 /* Same as memory_region_find, but it does not add a reference to the
2469 * returned region. It must be called from an RCU critical section.
2471 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2472 hwaddr addr, uint64_t size)
2474 MemoryRegionSection ret = { .mr = NULL };
2475 MemoryRegion *root;
2476 AddressSpace *as;
2477 AddrRange range;
2478 FlatView *view;
2479 FlatRange *fr;
2481 addr += mr->addr;
2482 for (root = mr; root->container; ) {
2483 root = root->container;
2484 addr += root->addr;
2487 as = memory_region_to_address_space(root);
2488 if (!as) {
2489 return ret;
2491 range = addrrange_make(int128_make64(addr), int128_make64(size));
2493 view = address_space_to_flatview(as);
2494 fr = flatview_lookup(view, range);
2495 if (!fr) {
2496 return ret;
2499 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2500 --fr;
2503 ret.mr = fr->mr;
2504 ret.fv = view;
2505 range = addrrange_intersection(range, fr->addr);
2506 ret.offset_within_region = fr->offset_in_region;
2507 ret.offset_within_region += int128_get64(int128_sub(range.start,
2508 fr->addr.start));
2509 ret.size = range.size;
2510 ret.offset_within_address_space = int128_get64(range.start);
2511 ret.readonly = fr->readonly;
2512 ret.nonvolatile = fr->nonvolatile;
2513 return ret;
2516 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2517 hwaddr addr, uint64_t size)
2519 MemoryRegionSection ret;
2520 rcu_read_lock();
2521 ret = memory_region_find_rcu(mr, addr, size);
2522 if (ret.mr) {
2523 memory_region_ref(ret.mr);
2525 rcu_read_unlock();
2526 return ret;
2529 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2531 MemoryRegion *mr;
2533 rcu_read_lock();
2534 mr = memory_region_find_rcu(container, addr, 1).mr;
2535 rcu_read_unlock();
2536 return mr && mr != container;
2539 void memory_global_dirty_log_sync(void)
2541 memory_region_sync_dirty_bitmap(NULL);
2544 static VMChangeStateEntry *vmstate_change;
2546 void memory_global_dirty_log_start(void)
2548 if (vmstate_change) {
2549 qemu_del_vm_change_state_handler(vmstate_change);
2550 vmstate_change = NULL;
2553 global_dirty_log = true;
2555 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2557 /* Refresh DIRTY_LOG_MIGRATION bit. */
2558 memory_region_transaction_begin();
2559 memory_region_update_pending = true;
2560 memory_region_transaction_commit();
2563 static void memory_global_dirty_log_do_stop(void)
2565 global_dirty_log = false;
2567 /* Refresh DIRTY_LOG_MIGRATION bit. */
2568 memory_region_transaction_begin();
2569 memory_region_update_pending = true;
2570 memory_region_transaction_commit();
2572 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2575 static void memory_vm_change_state_handler(void *opaque, int running,
2576 RunState state)
2578 if (running) {
2579 memory_global_dirty_log_do_stop();
2581 if (vmstate_change) {
2582 qemu_del_vm_change_state_handler(vmstate_change);
2583 vmstate_change = NULL;
2588 void memory_global_dirty_log_stop(void)
2590 if (!runstate_is_running()) {
2591 if (vmstate_change) {
2592 return;
2594 vmstate_change = qemu_add_vm_change_state_handler(
2595 memory_vm_change_state_handler, NULL);
2596 return;
2599 memory_global_dirty_log_do_stop();
2602 static void listener_add_address_space(MemoryListener *listener,
2603 AddressSpace *as)
2605 FlatView *view;
2606 FlatRange *fr;
2608 if (listener->begin) {
2609 listener->begin(listener);
2611 if (global_dirty_log) {
2612 if (listener->log_global_start) {
2613 listener->log_global_start(listener);
2617 view = address_space_get_flatview(as);
2618 FOR_EACH_FLAT_RANGE(fr, view) {
2619 MemoryRegionSection section = section_from_flat_range(fr, view);
2621 if (listener->region_add) {
2622 listener->region_add(listener, &section);
2624 if (fr->dirty_log_mask && listener->log_start) {
2625 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2628 if (listener->commit) {
2629 listener->commit(listener);
2631 flatview_unref(view);
2634 static void listener_del_address_space(MemoryListener *listener,
2635 AddressSpace *as)
2637 FlatView *view;
2638 FlatRange *fr;
2640 if (listener->begin) {
2641 listener->begin(listener);
2643 view = address_space_get_flatview(as);
2644 FOR_EACH_FLAT_RANGE(fr, view) {
2645 MemoryRegionSection section = section_from_flat_range(fr, view);
2647 if (fr->dirty_log_mask && listener->log_stop) {
2648 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2650 if (listener->region_del) {
2651 listener->region_del(listener, &section);
2654 if (listener->commit) {
2655 listener->commit(listener);
2657 flatview_unref(view);
2660 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2662 MemoryListener *other = NULL;
2664 listener->address_space = as;
2665 if (QTAILQ_EMPTY(&memory_listeners)
2666 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2667 memory_listeners)->priority) {
2668 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2669 } else {
2670 QTAILQ_FOREACH(other, &memory_listeners, link) {
2671 if (listener->priority < other->priority) {
2672 break;
2675 QTAILQ_INSERT_BEFORE(other, listener, link);
2678 if (QTAILQ_EMPTY(&as->listeners)
2679 || listener->priority >= QTAILQ_LAST(&as->listeners,
2680 memory_listeners)->priority) {
2681 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2682 } else {
2683 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2684 if (listener->priority < other->priority) {
2685 break;
2688 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2691 listener_add_address_space(listener, as);
2694 void memory_listener_unregister(MemoryListener *listener)
2696 if (!listener->address_space) {
2697 return;
2700 listener_del_address_space(listener, listener->address_space);
2701 QTAILQ_REMOVE(&memory_listeners, listener, link);
2702 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2703 listener->address_space = NULL;
2706 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2708 memory_region_ref(root);
2709 as->root = root;
2710 as->current_map = NULL;
2711 as->ioeventfd_nb = 0;
2712 as->ioeventfds = NULL;
2713 QTAILQ_INIT(&as->listeners);
2714 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2715 as->name = g_strdup(name ? name : "anonymous");
2716 address_space_update_topology(as);
2717 address_space_update_ioeventfds(as);
2720 static void do_address_space_destroy(AddressSpace *as)
2722 assert(QTAILQ_EMPTY(&as->listeners));
2724 flatview_unref(as->current_map);
2725 g_free(as->name);
2726 g_free(as->ioeventfds);
2727 memory_region_unref(as->root);
2730 void address_space_destroy(AddressSpace *as)
2732 MemoryRegion *root = as->root;
2734 /* Flush out anything from MemoryListeners listening in on this */
2735 memory_region_transaction_begin();
2736 as->root = NULL;
2737 memory_region_transaction_commit();
2738 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2740 /* At this point, as->dispatch and as->current_map are dummy
2741 * entries that the guest should never use. Wait for the old
2742 * values to expire before freeing the data.
2744 as->root = root;
2745 call_rcu(as, do_address_space_destroy, rcu);
2748 static const char *memory_region_type(MemoryRegion *mr)
2750 if (memory_region_is_ram_device(mr)) {
2751 return "ramd";
2752 } else if (memory_region_is_romd(mr)) {
2753 return "romd";
2754 } else if (memory_region_is_rom(mr)) {
2755 return "rom";
2756 } else if (memory_region_is_ram(mr)) {
2757 return "ram";
2758 } else {
2759 return "i/o";
2763 typedef struct MemoryRegionList MemoryRegionList;
2765 struct MemoryRegionList {
2766 const MemoryRegion *mr;
2767 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2770 typedef QTAILQ_HEAD(mrqueue, MemoryRegionList) MemoryRegionListHead;
2772 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2773 int128_sub((size), int128_one())) : 0)
2774 #define MTREE_INDENT " "
2776 static void mtree_expand_owner(fprintf_function mon_printf, void *f,
2777 const char *label, Object *obj)
2779 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2781 mon_printf(f, " %s:{%s", label, dev ? "dev" : "obj");
2782 if (dev && dev->id) {
2783 mon_printf(f, " id=%s", dev->id);
2784 } else {
2785 gchar *canonical_path = object_get_canonical_path(obj);
2786 if (canonical_path) {
2787 mon_printf(f, " path=%s", canonical_path);
2788 g_free(canonical_path);
2789 } else {
2790 mon_printf(f, " type=%s", object_get_typename(obj));
2793 mon_printf(f, "}");
2796 static void mtree_print_mr_owner(fprintf_function mon_printf, void *f,
2797 const MemoryRegion *mr)
2799 Object *owner = mr->owner;
2800 Object *parent = memory_region_owner((MemoryRegion *)mr);
2802 if (!owner && !parent) {
2803 mon_printf(f, " orphan");
2804 return;
2806 if (owner) {
2807 mtree_expand_owner(mon_printf, f, "owner", owner);
2809 if (parent && parent != owner) {
2810 mtree_expand_owner(mon_printf, f, "parent", parent);
2814 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2815 const MemoryRegion *mr, unsigned int level,
2816 hwaddr base,
2817 MemoryRegionListHead *alias_print_queue,
2818 bool owner)
2820 MemoryRegionList *new_ml, *ml, *next_ml;
2821 MemoryRegionListHead submr_print_queue;
2822 const MemoryRegion *submr;
2823 unsigned int i;
2824 hwaddr cur_start, cur_end;
2826 if (!mr) {
2827 return;
2830 for (i = 0; i < level; i++) {
2831 mon_printf(f, MTREE_INDENT);
2834 cur_start = base + mr->addr;
2835 cur_end = cur_start + MR_SIZE(mr->size);
2838 * Try to detect overflow of memory region. This should never
2839 * happen normally. When it happens, we dump something to warn the
2840 * user who is observing this.
2842 if (cur_start < base || cur_end < cur_start) {
2843 mon_printf(f, "[DETECTED OVERFLOW!] ");
2846 if (mr->alias) {
2847 MemoryRegionList *ml;
2848 bool found = false;
2850 /* check if the alias is already in the queue */
2851 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2852 if (ml->mr == mr->alias) {
2853 found = true;
2857 if (!found) {
2858 ml = g_new(MemoryRegionList, 1);
2859 ml->mr = mr->alias;
2860 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2862 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2863 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2864 "-" TARGET_FMT_plx "%s",
2865 cur_start, cur_end,
2866 mr->priority,
2867 mr->nonvolatile ? "nv-" : "",
2868 memory_region_type((MemoryRegion *)mr),
2869 memory_region_name(mr),
2870 memory_region_name(mr->alias),
2871 mr->alias_offset,
2872 mr->alias_offset + MR_SIZE(mr->size),
2873 mr->enabled ? "" : " [disabled]");
2874 if (owner) {
2875 mtree_print_mr_owner(mon_printf, f, mr);
2877 } else {
2878 mon_printf(f,
2879 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s%s): %s%s",
2880 cur_start, cur_end,
2881 mr->priority,
2882 mr->nonvolatile ? "nv-" : "",
2883 memory_region_type((MemoryRegion *)mr),
2884 memory_region_name(mr),
2885 mr->enabled ? "" : " [disabled]");
2886 if (owner) {
2887 mtree_print_mr_owner(mon_printf, f, mr);
2890 mon_printf(f, "\n");
2892 QTAILQ_INIT(&submr_print_queue);
2894 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2895 new_ml = g_new(MemoryRegionList, 1);
2896 new_ml->mr = submr;
2897 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2898 if (new_ml->mr->addr < ml->mr->addr ||
2899 (new_ml->mr->addr == ml->mr->addr &&
2900 new_ml->mr->priority > ml->mr->priority)) {
2901 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2902 new_ml = NULL;
2903 break;
2906 if (new_ml) {
2907 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2911 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2912 mtree_print_mr(mon_printf, f, ml->mr, level + 1, cur_start,
2913 alias_print_queue, owner);
2916 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
2917 g_free(ml);
2921 struct FlatViewInfo {
2922 fprintf_function mon_printf;
2923 void *f;
2924 int counter;
2925 bool dispatch_tree;
2926 bool owner;
2929 static void mtree_print_flatview(gpointer key, gpointer value,
2930 gpointer user_data)
2932 FlatView *view = key;
2933 GArray *fv_address_spaces = value;
2934 struct FlatViewInfo *fvi = user_data;
2935 fprintf_function p = fvi->mon_printf;
2936 void *f = fvi->f;
2937 FlatRange *range = &view->ranges[0];
2938 MemoryRegion *mr;
2939 int n = view->nr;
2940 int i;
2941 AddressSpace *as;
2943 p(f, "FlatView #%d\n", fvi->counter);
2944 ++fvi->counter;
2946 for (i = 0; i < fv_address_spaces->len; ++i) {
2947 as = g_array_index(fv_address_spaces, AddressSpace*, i);
2948 p(f, " AS \"%s\", root: %s", as->name, memory_region_name(as->root));
2949 if (as->root->alias) {
2950 p(f, ", alias %s", memory_region_name(as->root->alias));
2952 p(f, "\n");
2955 p(f, " Root memory region: %s\n",
2956 view->root ? memory_region_name(view->root) : "(none)");
2958 if (n <= 0) {
2959 p(f, MTREE_INDENT "No rendered FlatView\n\n");
2960 return;
2963 while (n--) {
2964 mr = range->mr;
2965 if (range->offset_in_region) {
2966 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2967 TARGET_FMT_plx " (prio %d, %s%s): %s @" TARGET_FMT_plx,
2968 int128_get64(range->addr.start),
2969 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2970 mr->priority,
2971 range->nonvolatile ? "nv-" : "",
2972 range->readonly ? "rom" : memory_region_type(mr),
2973 memory_region_name(mr),
2974 range->offset_in_region);
2975 } else {
2976 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2977 TARGET_FMT_plx " (prio %d, %s%s): %s",
2978 int128_get64(range->addr.start),
2979 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2980 mr->priority,
2981 range->nonvolatile ? "nv-" : "",
2982 range->readonly ? "rom" : memory_region_type(mr),
2983 memory_region_name(mr));
2985 if (fvi->owner) {
2986 mtree_print_mr_owner(p, f, mr);
2988 p(f, "\n");
2989 range++;
2992 #if !defined(CONFIG_USER_ONLY)
2993 if (fvi->dispatch_tree && view->root) {
2994 mtree_print_dispatch(p, f, view->dispatch, view->root);
2996 #endif
2998 p(f, "\n");
3001 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3002 gpointer user_data)
3004 FlatView *view = key;
3005 GArray *fv_address_spaces = value;
3007 g_array_unref(fv_address_spaces);
3008 flatview_unref(view);
3010 return true;
3013 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
3014 bool dispatch_tree, bool owner)
3016 MemoryRegionListHead ml_head;
3017 MemoryRegionList *ml, *ml2;
3018 AddressSpace *as;
3020 if (flatview) {
3021 FlatView *view;
3022 struct FlatViewInfo fvi = {
3023 .mon_printf = mon_printf,
3024 .f = f,
3025 .counter = 0,
3026 .dispatch_tree = dispatch_tree,
3027 .owner = owner,
3029 GArray *fv_address_spaces;
3030 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3032 /* Gather all FVs in one table */
3033 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3034 view = address_space_get_flatview(as);
3036 fv_address_spaces = g_hash_table_lookup(views, view);
3037 if (!fv_address_spaces) {
3038 fv_address_spaces = g_array_new(false, false, sizeof(as));
3039 g_hash_table_insert(views, view, fv_address_spaces);
3042 g_array_append_val(fv_address_spaces, as);
3045 /* Print */
3046 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3048 /* Free */
3049 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3050 g_hash_table_unref(views);
3052 return;
3055 QTAILQ_INIT(&ml_head);
3057 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3058 mon_printf(f, "address-space: %s\n", as->name);
3059 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head, owner);
3060 mon_printf(f, "\n");
3063 /* print aliased regions */
3064 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3065 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
3066 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head, owner);
3067 mon_printf(f, "\n");
3070 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3071 g_free(ml);
3075 void memory_region_init_ram(MemoryRegion *mr,
3076 struct Object *owner,
3077 const char *name,
3078 uint64_t size,
3079 Error **errp)
3081 DeviceState *owner_dev;
3082 Error *err = NULL;
3084 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3085 if (err) {
3086 error_propagate(errp, err);
3087 return;
3089 /* This will assert if owner is neither NULL nor a DeviceState.
3090 * We only want the owner here for the purposes of defining a
3091 * unique name for migration. TODO: Ideally we should implement
3092 * a naming scheme for Objects which are not DeviceStates, in
3093 * which case we can relax this restriction.
3095 owner_dev = DEVICE(owner);
3096 vmstate_register_ram(mr, owner_dev);
3099 void memory_region_init_rom(MemoryRegion *mr,
3100 struct Object *owner,
3101 const char *name,
3102 uint64_t size,
3103 Error **errp)
3105 DeviceState *owner_dev;
3106 Error *err = NULL;
3108 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3109 if (err) {
3110 error_propagate(errp, err);
3111 return;
3113 /* This will assert if owner is neither NULL nor a DeviceState.
3114 * We only want the owner here for the purposes of defining a
3115 * unique name for migration. TODO: Ideally we should implement
3116 * a naming scheme for Objects which are not DeviceStates, in
3117 * which case we can relax this restriction.
3119 owner_dev = DEVICE(owner);
3120 vmstate_register_ram(mr, owner_dev);
3123 void memory_region_init_rom_device(MemoryRegion *mr,
3124 struct Object *owner,
3125 const MemoryRegionOps *ops,
3126 void *opaque,
3127 const char *name,
3128 uint64_t size,
3129 Error **errp)
3131 DeviceState *owner_dev;
3132 Error *err = NULL;
3134 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3135 name, size, &err);
3136 if (err) {
3137 error_propagate(errp, err);
3138 return;
3140 /* This will assert if owner is neither NULL nor a DeviceState.
3141 * We only want the owner here for the purposes of defining a
3142 * unique name for migration. TODO: Ideally we should implement
3143 * a naming scheme for Objects which are not DeviceStates, in
3144 * which case we can relax this restriction.
3146 owner_dev = DEVICE(owner);
3147 vmstate_register_ram(mr, owner_dev);
3150 static const TypeInfo memory_region_info = {
3151 .parent = TYPE_OBJECT,
3152 .name = TYPE_MEMORY_REGION,
3153 .instance_size = sizeof(MemoryRegion),
3154 .instance_init = memory_region_initfn,
3155 .instance_finalize = memory_region_finalize,
3158 static const TypeInfo iommu_memory_region_info = {
3159 .parent = TYPE_MEMORY_REGION,
3160 .name = TYPE_IOMMU_MEMORY_REGION,
3161 .class_size = sizeof(IOMMUMemoryRegionClass),
3162 .instance_size = sizeof(IOMMUMemoryRegion),
3163 .instance_init = iommu_memory_region_initfn,
3164 .abstract = true,
3167 static void memory_register_types(void)
3169 type_register_static(&memory_region_info);
3170 type_register_static(&iommu_memory_region_info);
3173 type_init(memory_register_types)