2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
39 #include "qom/object.h"
43 #define RDMA_RESOLVE_TIMEOUT_MS 10000
45 /* Do not merge data if larger than this. */
46 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
47 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
49 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
52 * This is only for non-live state being migrated.
53 * Instead of RDMA_WRITE messages, we use RDMA_SEND
54 * messages for that state, which requires a different
55 * delivery design than main memory.
57 #define RDMA_SEND_INCREMENT 32768
60 * Maximum size infiniband SEND message
62 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
63 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
65 #define RDMA_CONTROL_VERSION_CURRENT 1
67 * Capabilities for negotiation.
69 #define RDMA_CAPABILITY_PIN_ALL 0x01
72 * Add the other flags above to this list of known capabilities
73 * as they are introduced.
75 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
78 * A work request ID is 64-bits and we split up these bits
81 * bits 0-15 : type of control message, 2^16
82 * bits 16-29: ram block index, 2^14
83 * bits 30-63: ram block chunk number, 2^34
85 * The last two bit ranges are only used for RDMA writes,
86 * in order to track their completion and potentially
87 * also track unregistration status of the message.
89 #define RDMA_WRID_TYPE_SHIFT 0UL
90 #define RDMA_WRID_BLOCK_SHIFT 16UL
91 #define RDMA_WRID_CHUNK_SHIFT 30UL
93 #define RDMA_WRID_TYPE_MASK \
94 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
96 #define RDMA_WRID_BLOCK_MASK \
97 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
99 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
102 * RDMA migration protocol:
103 * 1. RDMA Writes (data messages, i.e. RAM)
104 * 2. IB Send/Recv (control channel messages)
108 RDMA_WRID_RDMA_WRITE
= 1,
109 RDMA_WRID_SEND_CONTROL
= 2000,
110 RDMA_WRID_RECV_CONTROL
= 4000,
114 * Work request IDs for IB SEND messages only (not RDMA writes).
115 * This is used by the migration protocol to transmit
116 * control messages (such as device state and registration commands)
118 * We could use more WRs, but we have enough for now.
128 * SEND/RECV IB Control Messages.
131 RDMA_CONTROL_NONE
= 0,
133 RDMA_CONTROL_READY
, /* ready to receive */
134 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
135 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
136 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
137 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
138 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
139 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
140 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
141 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
142 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
147 * Memory and MR structures used to represent an IB Send/Recv work request.
148 * This is *not* used for RDMA writes, only IB Send/Recv.
151 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
152 struct ibv_mr
*control_mr
; /* registration metadata */
153 size_t control_len
; /* length of the message */
154 uint8_t *control_curr
; /* start of unconsumed bytes */
155 } RDMAWorkRequestData
;
158 * Negotiate RDMA capabilities during connection-setup time.
165 static void caps_to_network(RDMACapabilities
*cap
)
167 cap
->version
= htonl(cap
->version
);
168 cap
->flags
= htonl(cap
->flags
);
171 static void network_to_caps(RDMACapabilities
*cap
)
173 cap
->version
= ntohl(cap
->version
);
174 cap
->flags
= ntohl(cap
->flags
);
178 * Representation of a RAMBlock from an RDMA perspective.
179 * This is not transmitted, only local.
180 * This and subsequent structures cannot be linked lists
181 * because we're using a single IB message to transmit
182 * the information. It's small anyway, so a list is overkill.
184 typedef struct RDMALocalBlock
{
186 uint8_t *local_host_addr
; /* local virtual address */
187 uint64_t remote_host_addr
; /* remote virtual address */
190 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
191 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
192 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
193 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
194 int index
; /* which block are we */
195 unsigned int src_index
; /* (Only used on dest) */
198 unsigned long *transit_bitmap
;
199 unsigned long *unregister_bitmap
;
203 * Also represents a RAMblock, but only on the dest.
204 * This gets transmitted by the dest during connection-time
205 * to the source VM and then is used to populate the
206 * corresponding RDMALocalBlock with
207 * the information needed to perform the actual RDMA.
209 typedef struct QEMU_PACKED RDMADestBlock
{
210 uint64_t remote_host_addr
;
213 uint32_t remote_rkey
;
217 static const char *control_desc(unsigned int rdma_control
)
219 static const char *strs
[] = {
220 [RDMA_CONTROL_NONE
] = "NONE",
221 [RDMA_CONTROL_ERROR
] = "ERROR",
222 [RDMA_CONTROL_READY
] = "READY",
223 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
224 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
225 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
226 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
227 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
228 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
229 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
230 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
231 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
234 if (rdma_control
> RDMA_CONTROL_UNREGISTER_FINISHED
) {
235 return "??BAD CONTROL VALUE??";
238 return strs
[rdma_control
];
242 static uint64_t htonll(uint64_t v
)
244 union { uint32_t lv
[2]; uint64_t llv
; } u
;
245 u
.lv
[0] = htonl(v
>> 32);
246 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
252 static uint64_t ntohll(uint64_t v
)
254 union { uint32_t lv
[2]; uint64_t llv
; } u
;
256 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
260 static void dest_block_to_network(RDMADestBlock
*db
)
262 db
->remote_host_addr
= htonll(db
->remote_host_addr
);
263 db
->offset
= htonll(db
->offset
);
264 db
->length
= htonll(db
->length
);
265 db
->remote_rkey
= htonl(db
->remote_rkey
);
268 static void network_to_dest_block(RDMADestBlock
*db
)
270 db
->remote_host_addr
= ntohll(db
->remote_host_addr
);
271 db
->offset
= ntohll(db
->offset
);
272 db
->length
= ntohll(db
->length
);
273 db
->remote_rkey
= ntohl(db
->remote_rkey
);
277 * Virtual address of the above structures used for transmitting
278 * the RAMBlock descriptions at connection-time.
279 * This structure is *not* transmitted.
281 typedef struct RDMALocalBlocks
{
283 bool init
; /* main memory init complete */
284 RDMALocalBlock
*block
;
288 * Main data structure for RDMA state.
289 * While there is only one copy of this structure being allocated right now,
290 * this is the place where one would start if you wanted to consider
291 * having more than one RDMA connection open at the same time.
293 typedef struct RDMAContext
{
297 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
300 * This is used by *_exchange_send() to figure out whether or not
301 * the initial "READY" message has already been received or not.
302 * This is because other functions may potentially poll() and detect
303 * the READY message before send() does, in which case we need to
304 * know if it completed.
306 int control_ready_expected
;
308 /* number of outstanding writes */
311 /* store info about current buffer so that we can
312 merge it with future sends */
313 uint64_t current_addr
;
314 uint64_t current_length
;
315 /* index of ram block the current buffer belongs to */
317 /* index of the chunk in the current ram block */
323 * infiniband-specific variables for opening the device
324 * and maintaining connection state and so forth.
326 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
327 * cm_id->verbs, cm_id->channel, and cm_id->qp.
329 struct rdma_cm_id
*cm_id
; /* connection manager ID */
330 struct rdma_cm_id
*listen_id
;
333 struct ibv_context
*verbs
;
334 struct rdma_event_channel
*channel
;
335 struct ibv_qp
*qp
; /* queue pair */
336 struct ibv_comp_channel
*recv_comp_channel
; /* recv completion channel */
337 struct ibv_comp_channel
*send_comp_channel
; /* send completion channel */
338 struct ibv_pd
*pd
; /* protection domain */
339 struct ibv_cq
*recv_cq
; /* recvieve completion queue */
340 struct ibv_cq
*send_cq
; /* send completion queue */
343 * If a previous write failed (perhaps because of a failed
344 * memory registration, then do not attempt any future work
345 * and remember the error state.
352 * Description of ram blocks used throughout the code.
354 RDMALocalBlocks local_ram_blocks
;
355 RDMADestBlock
*dest_blocks
;
357 /* Index of the next RAMBlock received during block registration */
358 unsigned int next_src_index
;
361 * Migration on *destination* started.
362 * Then use coroutine yield function.
363 * Source runs in a thread, so we don't care.
365 int migration_started_on_destination
;
367 int total_registrations
;
370 int unregister_current
, unregister_next
;
371 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
373 GHashTable
*blockmap
;
375 /* the RDMAContext for return path */
376 struct RDMAContext
*return_path
;
380 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
381 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA
, QIO_CHANNEL_RDMA
)
385 struct QIOChannelRDMA
{
388 RDMAContext
*rdmaout
;
390 bool blocking
; /* XXX we don't actually honour this yet */
394 * Main structure for IB Send/Recv control messages.
395 * This gets prepended at the beginning of every Send/Recv.
397 typedef struct QEMU_PACKED
{
398 uint32_t len
; /* Total length of data portion */
399 uint32_t type
; /* which control command to perform */
400 uint32_t repeat
; /* number of commands in data portion of same type */
404 static void control_to_network(RDMAControlHeader
*control
)
406 control
->type
= htonl(control
->type
);
407 control
->len
= htonl(control
->len
);
408 control
->repeat
= htonl(control
->repeat
);
411 static void network_to_control(RDMAControlHeader
*control
)
413 control
->type
= ntohl(control
->type
);
414 control
->len
= ntohl(control
->len
);
415 control
->repeat
= ntohl(control
->repeat
);
419 * Register a single Chunk.
420 * Information sent by the source VM to inform the dest
421 * to register an single chunk of memory before we can perform
422 * the actual RDMA operation.
424 typedef struct QEMU_PACKED
{
426 uint64_t current_addr
; /* offset into the ram_addr_t space */
427 uint64_t chunk
; /* chunk to lookup if unregistering */
429 uint32_t current_index
; /* which ramblock the chunk belongs to */
431 uint64_t chunks
; /* how many sequential chunks to register */
434 static bool rdma_errored(RDMAContext
*rdma
)
436 if (rdma
->errored
&& !rdma
->error_reported
) {
437 error_report("RDMA is in an error state waiting migration"
439 rdma
->error_reported
= true;
441 return rdma
->errored
;
444 static void register_to_network(RDMAContext
*rdma
, RDMARegister
*reg
)
446 RDMALocalBlock
*local_block
;
447 local_block
= &rdma
->local_ram_blocks
.block
[reg
->current_index
];
449 if (local_block
->is_ram_block
) {
451 * current_addr as passed in is an address in the local ram_addr_t
452 * space, we need to translate this for the destination
454 reg
->key
.current_addr
-= local_block
->offset
;
455 reg
->key
.current_addr
+= rdma
->dest_blocks
[reg
->current_index
].offset
;
457 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
458 reg
->current_index
= htonl(reg
->current_index
);
459 reg
->chunks
= htonll(reg
->chunks
);
462 static void network_to_register(RDMARegister
*reg
)
464 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
465 reg
->current_index
= ntohl(reg
->current_index
);
466 reg
->chunks
= ntohll(reg
->chunks
);
469 typedef struct QEMU_PACKED
{
470 uint32_t value
; /* if zero, we will madvise() */
471 uint32_t block_idx
; /* which ram block index */
472 uint64_t offset
; /* Address in remote ram_addr_t space */
473 uint64_t length
; /* length of the chunk */
476 static void compress_to_network(RDMAContext
*rdma
, RDMACompress
*comp
)
478 comp
->value
= htonl(comp
->value
);
480 * comp->offset as passed in is an address in the local ram_addr_t
481 * space, we need to translate this for the destination
483 comp
->offset
-= rdma
->local_ram_blocks
.block
[comp
->block_idx
].offset
;
484 comp
->offset
+= rdma
->dest_blocks
[comp
->block_idx
].offset
;
485 comp
->block_idx
= htonl(comp
->block_idx
);
486 comp
->offset
= htonll(comp
->offset
);
487 comp
->length
= htonll(comp
->length
);
490 static void network_to_compress(RDMACompress
*comp
)
492 comp
->value
= ntohl(comp
->value
);
493 comp
->block_idx
= ntohl(comp
->block_idx
);
494 comp
->offset
= ntohll(comp
->offset
);
495 comp
->length
= ntohll(comp
->length
);
499 * The result of the dest's memory registration produces an "rkey"
500 * which the source VM must reference in order to perform
501 * the RDMA operation.
503 typedef struct QEMU_PACKED
{
507 } RDMARegisterResult
;
509 static void result_to_network(RDMARegisterResult
*result
)
511 result
->rkey
= htonl(result
->rkey
);
512 result
->host_addr
= htonll(result
->host_addr
);
515 static void network_to_result(RDMARegisterResult
*result
)
517 result
->rkey
= ntohl(result
->rkey
);
518 result
->host_addr
= ntohll(result
->host_addr
);
521 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
522 uint8_t *data
, RDMAControlHeader
*resp
,
524 int (*callback
)(RDMAContext
*rdma
,
528 static inline uint64_t ram_chunk_index(const uint8_t *start
,
531 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
534 static inline uint8_t *ram_chunk_start(const RDMALocalBlock
*rdma_ram_block
,
537 return (uint8_t *)(uintptr_t)(rdma_ram_block
->local_host_addr
+
538 (i
<< RDMA_REG_CHUNK_SHIFT
));
541 static inline uint8_t *ram_chunk_end(const RDMALocalBlock
*rdma_ram_block
,
544 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
545 (1UL << RDMA_REG_CHUNK_SHIFT
);
547 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
548 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
554 static void rdma_add_block(RDMAContext
*rdma
, const char *block_name
,
556 ram_addr_t block_offset
, uint64_t length
)
558 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
559 RDMALocalBlock
*block
;
560 RDMALocalBlock
*old
= local
->block
;
562 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
+ 1);
564 if (local
->nb_blocks
) {
565 if (rdma
->blockmap
) {
566 for (int x
= 0; x
< local
->nb_blocks
; x
++) {
567 g_hash_table_remove(rdma
->blockmap
,
568 (void *)(uintptr_t)old
[x
].offset
);
569 g_hash_table_insert(rdma
->blockmap
,
570 (void *)(uintptr_t)old
[x
].offset
,
574 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
578 block
= &local
->block
[local
->nb_blocks
];
580 block
->block_name
= g_strdup(block_name
);
581 block
->local_host_addr
= host_addr
;
582 block
->offset
= block_offset
;
583 block
->length
= length
;
584 block
->index
= local
->nb_blocks
;
585 block
->src_index
= ~0U; /* Filled in by the receipt of the block list */
586 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
587 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
588 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
589 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
590 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
591 block
->remote_keys
= g_new0(uint32_t, block
->nb_chunks
);
593 block
->is_ram_block
= local
->init
? false : true;
595 if (rdma
->blockmap
) {
596 g_hash_table_insert(rdma
->blockmap
, (void *)(uintptr_t)block_offset
, block
);
599 trace_rdma_add_block(block_name
, local
->nb_blocks
,
600 (uintptr_t) block
->local_host_addr
,
601 block
->offset
, block
->length
,
602 (uintptr_t) (block
->local_host_addr
+ block
->length
),
603 BITS_TO_LONGS(block
->nb_chunks
) *
604 sizeof(unsigned long) * 8,
611 * Memory regions need to be registered with the device and queue pairs setup
612 * in advanced before the migration starts. This tells us where the RAM blocks
613 * are so that we can register them individually.
615 static int qemu_rdma_init_one_block(RAMBlock
*rb
, void *opaque
)
617 const char *block_name
= qemu_ram_get_idstr(rb
);
618 void *host_addr
= qemu_ram_get_host_addr(rb
);
619 ram_addr_t block_offset
= qemu_ram_get_offset(rb
);
620 ram_addr_t length
= qemu_ram_get_used_length(rb
);
621 rdma_add_block(opaque
, block_name
, host_addr
, block_offset
, length
);
626 * Identify the RAMBlocks and their quantity. They will be references to
627 * identify chunk boundaries inside each RAMBlock and also be referenced
628 * during dynamic page registration.
630 static void qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
632 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
635 assert(rdma
->blockmap
== NULL
);
636 memset(local
, 0, sizeof *local
);
637 ret
= foreach_not_ignored_block(qemu_rdma_init_one_block
, rdma
);
639 trace_qemu_rdma_init_ram_blocks(local
->nb_blocks
);
640 rdma
->dest_blocks
= g_new0(RDMADestBlock
,
641 rdma
->local_ram_blocks
.nb_blocks
);
646 * Note: If used outside of cleanup, the caller must ensure that the destination
647 * block structures are also updated
649 static void rdma_delete_block(RDMAContext
*rdma
, RDMALocalBlock
*block
)
651 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
652 RDMALocalBlock
*old
= local
->block
;
654 if (rdma
->blockmap
) {
655 g_hash_table_remove(rdma
->blockmap
, (void *)(uintptr_t)block
->offset
);
658 for (int j
= 0; j
< block
->nb_chunks
; j
++) {
659 if (!block
->pmr
[j
]) {
662 ibv_dereg_mr(block
->pmr
[j
]);
663 rdma
->total_registrations
--;
670 ibv_dereg_mr(block
->mr
);
671 rdma
->total_registrations
--;
675 g_free(block
->transit_bitmap
);
676 block
->transit_bitmap
= NULL
;
678 g_free(block
->unregister_bitmap
);
679 block
->unregister_bitmap
= NULL
;
681 g_free(block
->remote_keys
);
682 block
->remote_keys
= NULL
;
684 g_free(block
->block_name
);
685 block
->block_name
= NULL
;
687 if (rdma
->blockmap
) {
688 for (int x
= 0; x
< local
->nb_blocks
; x
++) {
689 g_hash_table_remove(rdma
->blockmap
,
690 (void *)(uintptr_t)old
[x
].offset
);
694 if (local
->nb_blocks
> 1) {
696 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
- 1);
699 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
702 if (block
->index
< (local
->nb_blocks
- 1)) {
703 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
704 sizeof(RDMALocalBlock
) *
705 (local
->nb_blocks
- (block
->index
+ 1)));
706 for (int x
= block
->index
; x
< local
->nb_blocks
- 1; x
++) {
707 local
->block
[x
].index
--;
711 assert(block
== local
->block
);
715 trace_rdma_delete_block(block
, (uintptr_t)block
->local_host_addr
,
716 block
->offset
, block
->length
,
717 (uintptr_t)(block
->local_host_addr
+ block
->length
),
718 BITS_TO_LONGS(block
->nb_chunks
) *
719 sizeof(unsigned long) * 8, block
->nb_chunks
);
725 if (local
->nb_blocks
&& rdma
->blockmap
) {
726 for (int x
= 0; x
< local
->nb_blocks
; x
++) {
727 g_hash_table_insert(rdma
->blockmap
,
728 (void *)(uintptr_t)local
->block
[x
].offset
,
735 * Trace RDMA device open, with device details.
737 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
739 struct ibv_port_attr port
;
741 if (ibv_query_port(verbs
, 1, &port
)) {
742 trace_qemu_rdma_dump_id_failed(who
);
746 trace_qemu_rdma_dump_id(who
,
748 verbs
->device
->dev_name
,
749 verbs
->device
->dev_path
,
750 verbs
->device
->ibdev_path
,
752 port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
? "Infiniband"
753 : port
.link_layer
== IBV_LINK_LAYER_ETHERNET
? "Ethernet"
758 * Trace RDMA gid addressing information.
759 * Useful for understanding the RDMA device hierarchy in the kernel.
761 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
765 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
766 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
767 trace_qemu_rdma_dump_gid(who
, sgid
, dgid
);
771 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
772 * We will try the next addrinfo struct, and fail if there are
773 * no other valid addresses to bind against.
775 * If user is listening on '[::]', then we will not have a opened a device
776 * yet and have no way of verifying if the device is RoCE or not.
778 * In this case, the source VM will throw an error for ALL types of
779 * connections (both IPv4 and IPv6) if the destination machine does not have
780 * a regular infiniband network available for use.
782 * The only way to guarantee that an error is thrown for broken kernels is
783 * for the management software to choose a *specific* interface at bind time
784 * and validate what time of hardware it is.
786 * Unfortunately, this puts the user in a fix:
788 * If the source VM connects with an IPv4 address without knowing that the
789 * destination has bound to '[::]' the migration will unconditionally fail
790 * unless the management software is explicitly listening on the IPv4
791 * address while using a RoCE-based device.
793 * If the source VM connects with an IPv6 address, then we're OK because we can
794 * throw an error on the source (and similarly on the destination).
796 * But in mixed environments, this will be broken for a while until it is fixed
799 * We do provide a *tiny* bit of help in this function: We can list all of the
800 * devices in the system and check to see if all the devices are RoCE or
803 * If we detect that we have a *pure* RoCE environment, then we can safely
804 * thrown an error even if the management software has specified '[::]' as the
807 * However, if there is are multiple hetergeneous devices, then we cannot make
808 * this assumption and the user just has to be sure they know what they are
811 * Patches are being reviewed on linux-rdma.
813 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context
*verbs
, Error
**errp
)
815 /* This bug only exists in linux, to our knowledge. */
817 struct ibv_port_attr port_attr
;
820 * Verbs are only NULL if management has bound to '[::]'.
822 * Let's iterate through all the devices and see if there any pure IB
823 * devices (non-ethernet).
825 * If not, then we can safely proceed with the migration.
826 * Otherwise, there are no guarantees until the bug is fixed in linux.
830 struct ibv_device
**dev_list
= ibv_get_device_list(&num_devices
);
831 bool roce_found
= false;
832 bool ib_found
= false;
834 for (int x
= 0; x
< num_devices
; x
++) {
835 verbs
= ibv_open_device(dev_list
[x
]);
837 * ibv_open_device() is not documented to set errno. If
838 * it does, it's somebody else's doc bug. If it doesn't,
839 * the use of errno below is wrong.
840 * TODO Find out whether ibv_open_device() sets errno.
843 if (errno
== EPERM
) {
846 error_setg_errno(errp
, errno
,
847 "could not open RDMA device context");
852 if (ibv_query_port(verbs
, 1, &port_attr
)) {
853 ibv_close_device(verbs
);
855 "RDMA ERROR: Could not query initial IB port");
859 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
861 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
865 ibv_close_device(verbs
);
871 warn_report("migrations may fail:"
872 " IPv6 over RoCE / iWARP in linux"
873 " is broken. But since you appear to have a"
874 " mixed RoCE / IB environment, be sure to only"
875 " migrate over the IB fabric until the kernel "
878 error_setg(errp
, "RDMA ERROR: "
879 "You only have RoCE / iWARP devices in your systems"
880 " and your management software has specified '[::]'"
881 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
890 * If we have a verbs context, that means that some other than '[::]' was
891 * used by the management software for binding. In which case we can
892 * actually warn the user about a potentially broken kernel.
895 /* IB ports start with 1, not 0 */
896 if (ibv_query_port(verbs
, 1, &port_attr
)) {
897 error_setg(errp
, "RDMA ERROR: Could not query initial IB port");
901 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
902 error_setg(errp
, "RDMA ERROR: "
903 "Linux kernel's RoCE / iWARP does not support IPv6 "
904 "(but patches on linux-rdma in progress)");
914 * Figure out which RDMA device corresponds to the requested IP hostname
915 * Also create the initial connection manager identifiers for opening
918 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
922 struct rdma_addrinfo
*res
;
924 struct rdma_cm_event
*cm_event
;
925 char ip
[40] = "unknown";
927 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
928 error_setg(errp
, "RDMA ERROR: RDMA hostname has not been set");
932 /* create CM channel */
933 rdma
->channel
= rdma_create_event_channel();
934 if (!rdma
->channel
) {
935 error_setg(errp
, "RDMA ERROR: could not create CM channel");
940 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
942 error_setg(errp
, "RDMA ERROR: could not create channel id");
943 goto err_resolve_create_id
;
946 snprintf(port_str
, 16, "%d", rdma
->port
);
949 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
951 error_setg(errp
, "RDMA ERROR: could not rdma_getaddrinfo address %s",
953 goto err_resolve_get_addr
;
956 /* Try all addresses, saving the first error in @err */
957 for (struct rdma_addrinfo
*e
= res
; e
!= NULL
; e
= e
->ai_next
) {
958 Error
**local_errp
= err
? NULL
: &err
;
960 inet_ntop(e
->ai_family
,
961 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
962 trace_qemu_rdma_resolve_host_trying(rdma
->host
, ip
);
964 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
965 RDMA_RESOLVE_TIMEOUT_MS
);
967 if (e
->ai_family
== AF_INET6
) {
968 ret
= qemu_rdma_broken_ipv6_kernel(rdma
->cm_id
->verbs
,
979 rdma_freeaddrinfo(res
);
981 error_propagate(errp
, err
);
983 error_setg(errp
, "RDMA ERROR: could not resolve address %s",
986 goto err_resolve_get_addr
;
989 rdma_freeaddrinfo(res
);
990 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
992 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
994 error_setg(errp
, "RDMA ERROR: could not perform event_addr_resolved");
995 goto err_resolve_get_addr
;
998 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
1000 "RDMA ERROR: result not equal to event_addr_resolved %s",
1001 rdma_event_str(cm_event
->event
));
1002 rdma_ack_cm_event(cm_event
);
1003 goto err_resolve_get_addr
;
1005 rdma_ack_cm_event(cm_event
);
1008 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
1010 error_setg(errp
, "RDMA ERROR: could not resolve rdma route");
1011 goto err_resolve_get_addr
;
1014 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1016 error_setg(errp
, "RDMA ERROR: could not perform event_route_resolved");
1017 goto err_resolve_get_addr
;
1019 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
1020 error_setg(errp
, "RDMA ERROR: "
1021 "result not equal to event_route_resolved: %s",
1022 rdma_event_str(cm_event
->event
));
1023 rdma_ack_cm_event(cm_event
);
1024 goto err_resolve_get_addr
;
1026 rdma_ack_cm_event(cm_event
);
1027 rdma
->verbs
= rdma
->cm_id
->verbs
;
1028 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
1029 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
1032 err_resolve_get_addr
:
1033 rdma_destroy_id(rdma
->cm_id
);
1035 err_resolve_create_id
:
1036 rdma_destroy_event_channel(rdma
->channel
);
1037 rdma
->channel
= NULL
;
1042 * Create protection domain and completion queues
1044 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
, Error
**errp
)
1047 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
1049 error_setg(errp
, "failed to allocate protection domain");
1053 /* create receive completion channel */
1054 rdma
->recv_comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1055 if (!rdma
->recv_comp_channel
) {
1056 error_setg(errp
, "failed to allocate receive completion channel");
1057 goto err_alloc_pd_cq
;
1061 * Completion queue can be filled by read work requests.
1063 rdma
->recv_cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1064 NULL
, rdma
->recv_comp_channel
, 0);
1065 if (!rdma
->recv_cq
) {
1066 error_setg(errp
, "failed to allocate receive completion queue");
1067 goto err_alloc_pd_cq
;
1070 /* create send completion channel */
1071 rdma
->send_comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1072 if (!rdma
->send_comp_channel
) {
1073 error_setg(errp
, "failed to allocate send completion channel");
1074 goto err_alloc_pd_cq
;
1077 rdma
->send_cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1078 NULL
, rdma
->send_comp_channel
, 0);
1079 if (!rdma
->send_cq
) {
1080 error_setg(errp
, "failed to allocate send completion queue");
1081 goto err_alloc_pd_cq
;
1088 ibv_dealloc_pd(rdma
->pd
);
1090 if (rdma
->recv_comp_channel
) {
1091 ibv_destroy_comp_channel(rdma
->recv_comp_channel
);
1093 if (rdma
->send_comp_channel
) {
1094 ibv_destroy_comp_channel(rdma
->send_comp_channel
);
1096 if (rdma
->recv_cq
) {
1097 ibv_destroy_cq(rdma
->recv_cq
);
1098 rdma
->recv_cq
= NULL
;
1101 rdma
->recv_comp_channel
= NULL
;
1102 rdma
->send_comp_channel
= NULL
;
1108 * Create queue pairs.
1110 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1112 struct ibv_qp_init_attr attr
= { 0 };
1114 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1115 attr
.cap
.max_recv_wr
= 3;
1116 attr
.cap
.max_send_sge
= 1;
1117 attr
.cap
.max_recv_sge
= 1;
1118 attr
.send_cq
= rdma
->send_cq
;
1119 attr
.recv_cq
= rdma
->recv_cq
;
1120 attr
.qp_type
= IBV_QPT_RC
;
1122 if (rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
) < 0) {
1126 rdma
->qp
= rdma
->cm_id
->qp
;
1130 /* Check whether On-Demand Paging is supported by RDAM device */
1131 static bool rdma_support_odp(struct ibv_context
*dev
)
1133 struct ibv_device_attr_ex attr
= {0};
1135 if (ibv_query_device_ex(dev
, NULL
, &attr
)) {
1139 if (attr
.odp_caps
.general_caps
& IBV_ODP_SUPPORT
) {
1147 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1148 * The responder mr registering with ODP will sent RNR NAK back to
1149 * the requester in the face of the page fault.
1151 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd
*pd
, uint64_t addr
,
1152 uint32_t len
, uint32_t lkey
,
1153 const char *name
, bool wr
)
1155 #ifdef HAVE_IBV_ADVISE_MR
1157 int advice
= wr
? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE
:
1158 IBV_ADVISE_MR_ADVICE_PREFETCH
;
1159 struct ibv_sge sg_list
= {.lkey
= lkey
, .addr
= addr
, .length
= len
};
1161 ret
= ibv_advise_mr(pd
, advice
,
1162 IBV_ADVISE_MR_FLAG_FLUSH
, &sg_list
, 1);
1163 /* ignore the error */
1164 trace_qemu_rdma_advise_mr(name
, len
, addr
, strerror(ret
));
1168 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
, Error
**errp
)
1171 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1173 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1174 int access
= IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
;
1176 local
->block
[i
].mr
=
1177 ibv_reg_mr(rdma
->pd
,
1178 local
->block
[i
].local_host_addr
,
1179 local
->block
[i
].length
, access
1182 * ibv_reg_mr() is not documented to set errno. If it does,
1183 * it's somebody else's doc bug. If it doesn't, the use of
1184 * errno below is wrong.
1185 * TODO Find out whether ibv_reg_mr() sets errno.
1187 if (!local
->block
[i
].mr
&&
1188 errno
== ENOTSUP
&& rdma_support_odp(rdma
->verbs
)) {
1189 access
|= IBV_ACCESS_ON_DEMAND
;
1190 /* register ODP mr */
1191 local
->block
[i
].mr
=
1192 ibv_reg_mr(rdma
->pd
,
1193 local
->block
[i
].local_host_addr
,
1194 local
->block
[i
].length
, access
);
1195 trace_qemu_rdma_register_odp_mr(local
->block
[i
].block_name
);
1197 if (local
->block
[i
].mr
) {
1198 qemu_rdma_advise_prefetch_mr(rdma
->pd
,
1199 (uintptr_t)local
->block
[i
].local_host_addr
,
1200 local
->block
[i
].length
,
1201 local
->block
[i
].mr
->lkey
,
1202 local
->block
[i
].block_name
,
1207 if (!local
->block
[i
].mr
) {
1208 error_setg_errno(errp
, errno
,
1209 "Failed to register local dest ram block!");
1212 rdma
->total_registrations
++;
1218 for (i
--; i
>= 0; i
--) {
1219 ibv_dereg_mr(local
->block
[i
].mr
);
1220 local
->block
[i
].mr
= NULL
;
1221 rdma
->total_registrations
--;
1229 * Find the ram block that corresponds to the page requested to be
1230 * transmitted by QEMU.
1232 * Once the block is found, also identify which 'chunk' within that
1233 * block that the page belongs to.
1235 static void qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1236 uintptr_t block_offset
,
1239 uint64_t *block_index
,
1240 uint64_t *chunk_index
)
1242 uint64_t current_addr
= block_offset
+ offset
;
1243 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1244 (void *) block_offset
);
1246 assert(current_addr
>= block
->offset
);
1247 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1249 *block_index
= block
->index
;
1250 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1251 block
->local_host_addr
+ (current_addr
- block
->offset
));
1255 * Register a chunk with IB. If the chunk was already registered
1256 * previously, then skip.
1258 * Also return the keys associated with the registration needed
1259 * to perform the actual RDMA operation.
1261 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1262 RDMALocalBlock
*block
, uintptr_t host_addr
,
1263 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1264 uint8_t *chunk_start
, uint8_t *chunk_end
)
1268 *lkey
= block
->mr
->lkey
;
1271 *rkey
= block
->mr
->rkey
;
1276 /* allocate memory to store chunk MRs */
1278 block
->pmr
= g_new0(struct ibv_mr
*, block
->nb_chunks
);
1282 * If 'rkey', then we're the destination, so grant access to the source.
1284 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1286 if (!block
->pmr
[chunk
]) {
1287 uint64_t len
= chunk_end
- chunk_start
;
1288 int access
= rkey
? IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
:
1291 trace_qemu_rdma_register_and_get_keys(len
, chunk_start
);
1293 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
, chunk_start
, len
, access
);
1295 * ibv_reg_mr() is not documented to set errno. If it does,
1296 * it's somebody else's doc bug. If it doesn't, the use of
1297 * errno below is wrong.
1298 * TODO Find out whether ibv_reg_mr() sets errno.
1300 if (!block
->pmr
[chunk
] &&
1301 errno
== ENOTSUP
&& rdma_support_odp(rdma
->verbs
)) {
1302 access
|= IBV_ACCESS_ON_DEMAND
;
1303 /* register ODP mr */
1304 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
, chunk_start
, len
, access
);
1305 trace_qemu_rdma_register_odp_mr(block
->block_name
);
1307 if (block
->pmr
[chunk
]) {
1308 qemu_rdma_advise_prefetch_mr(rdma
->pd
, (uintptr_t)chunk_start
,
1309 len
, block
->pmr
[chunk
]->lkey
,
1310 block
->block_name
, rkey
);
1315 if (!block
->pmr
[chunk
]) {
1318 rdma
->total_registrations
++;
1321 *lkey
= block
->pmr
[chunk
]->lkey
;
1324 *rkey
= block
->pmr
[chunk
]->rkey
;
1330 * Register (at connection time) the memory used for control
1333 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1335 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1336 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1337 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1338 if (rdma
->wr_data
[idx
].control_mr
) {
1339 rdma
->total_registrations
++;
1346 * Perform a non-optimized memory unregistration after every transfer
1347 * for demonstration purposes, only if pin-all is not requested.
1349 * Potential optimizations:
1350 * 1. Start a new thread to run this function continuously
1352 - and for receipt of unregister messages
1354 * 3. Use workload hints.
1356 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1360 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1362 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1364 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1366 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1367 RDMALocalBlock
*block
=
1368 &(rdma
->local_ram_blocks
.block
[index
]);
1369 RDMARegister reg
= { .current_index
= index
};
1370 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1372 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1373 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1377 trace_qemu_rdma_unregister_waiting_proc(chunk
,
1378 rdma
->unregister_current
);
1380 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1381 rdma
->unregister_current
++;
1383 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1384 rdma
->unregister_current
= 0;
1389 * Unregistration is speculative (because migration is single-threaded
1390 * and we cannot break the protocol's inifinband message ordering).
1391 * Thus, if the memory is currently being used for transmission,
1392 * then abort the attempt to unregister and try again
1393 * later the next time a completion is received for this memory.
1395 clear_bit(chunk
, block
->unregister_bitmap
);
1397 if (test_bit(chunk
, block
->transit_bitmap
)) {
1398 trace_qemu_rdma_unregister_waiting_inflight(chunk
);
1402 trace_qemu_rdma_unregister_waiting_send(chunk
);
1404 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1405 block
->pmr
[chunk
] = NULL
;
1406 block
->remote_keys
[chunk
] = 0;
1409 error_report("unregistration chunk failed: %s",
1413 rdma
->total_registrations
--;
1415 reg
.key
.chunk
= chunk
;
1416 register_to_network(rdma
, ®
);
1417 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1418 &resp
, NULL
, NULL
, &err
);
1420 error_report_err(err
);
1424 trace_qemu_rdma_unregister_waiting_complete(chunk
);
1430 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1433 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1435 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1436 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1442 * Consult the connection manager to see a work request
1443 * (of any kind) has completed.
1444 * Return the work request ID that completed.
1446 static int qemu_rdma_poll(RDMAContext
*rdma
, struct ibv_cq
*cq
,
1447 uint64_t *wr_id_out
, uint32_t *byte_len
)
1453 ret
= ibv_poll_cq(cq
, 1, &wc
);
1456 *wr_id_out
= RDMA_WRID_NONE
;
1464 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1466 if (wc
.status
!= IBV_WC_SUCCESS
) {
1470 if (rdma
->control_ready_expected
&&
1471 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1472 trace_qemu_rdma_poll_recv(wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
,
1474 rdma
->control_ready_expected
= 0;
1477 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1479 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1481 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1482 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1484 trace_qemu_rdma_poll_write(wr_id
, rdma
->nb_sent
,
1485 index
, chunk
, block
->local_host_addr
,
1486 (void *)(uintptr_t)block
->remote_host_addr
);
1488 clear_bit(chunk
, block
->transit_bitmap
);
1490 if (rdma
->nb_sent
> 0) {
1494 trace_qemu_rdma_poll_other(wr_id
, rdma
->nb_sent
);
1497 *wr_id_out
= wc
.wr_id
;
1499 *byte_len
= wc
.byte_len
;
1505 /* Wait for activity on the completion channel.
1506 * Returns 0 on success, none-0 on error.
1508 static int qemu_rdma_wait_comp_channel(RDMAContext
*rdma
,
1509 struct ibv_comp_channel
*comp_channel
)
1511 struct rdma_cm_event
*cm_event
;
1514 * Coroutine doesn't start until migration_fd_process_incoming()
1515 * so don't yield unless we know we're running inside of a coroutine.
1517 if (rdma
->migration_started_on_destination
&&
1518 migration_incoming_get_current()->state
== MIGRATION_STATUS_ACTIVE
) {
1519 yield_until_fd_readable(comp_channel
->fd
);
1521 /* This is the source side, we're in a separate thread
1522 * or destination prior to migration_fd_process_incoming()
1523 * after postcopy, the destination also in a separate thread.
1524 * we can't yield; so we have to poll the fd.
1525 * But we need to be able to handle 'cancel' or an error
1526 * without hanging forever.
1528 while (!rdma
->errored
&& !rdma
->received_error
) {
1530 pfds
[0].fd
= comp_channel
->fd
;
1531 pfds
[0].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1532 pfds
[0].revents
= 0;
1534 pfds
[1].fd
= rdma
->channel
->fd
;
1535 pfds
[1].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1536 pfds
[1].revents
= 0;
1538 /* 0.1s timeout, should be fine for a 'cancel' */
1539 switch (qemu_poll_ns(pfds
, 2, 100 * 1000 * 1000)) {
1541 case 1: /* fd active */
1542 if (pfds
[0].revents
) {
1546 if (pfds
[1].revents
) {
1547 if (rdma_get_cm_event(rdma
->channel
, &cm_event
) < 0) {
1551 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
1552 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
1553 rdma_ack_cm_event(cm_event
);
1556 rdma_ack_cm_event(cm_event
);
1560 case 0: /* Timeout, go around again */
1563 default: /* Error of some type -
1564 * I don't trust errno from qemu_poll_ns
1569 if (migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) {
1570 /* Bail out and let the cancellation happen */
1576 if (rdma
->received_error
) {
1579 return -rdma
->errored
;
1582 static struct ibv_comp_channel
*to_channel(RDMAContext
*rdma
, uint64_t wrid
)
1584 return wrid
< RDMA_WRID_RECV_CONTROL
? rdma
->send_comp_channel
:
1585 rdma
->recv_comp_channel
;
1588 static struct ibv_cq
*to_cq(RDMAContext
*rdma
, uint64_t wrid
)
1590 return wrid
< RDMA_WRID_RECV_CONTROL
? rdma
->send_cq
: rdma
->recv_cq
;
1594 * Block until the next work request has completed.
1596 * First poll to see if a work request has already completed,
1599 * If we encounter completed work requests for IDs other than
1600 * the one we're interested in, then that's generally an error.
1602 * The only exception is actual RDMA Write completions. These
1603 * completions only need to be recorded, but do not actually
1604 * need further processing.
1606 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
,
1607 uint64_t wrid_requested
,
1610 int num_cq_events
= 0, ret
;
1613 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1614 struct ibv_comp_channel
*ch
= to_channel(rdma
, wrid_requested
);
1615 struct ibv_cq
*poll_cq
= to_cq(rdma
, wrid_requested
);
1617 if (ibv_req_notify_cq(poll_cq
, 0)) {
1621 while (wr_id
!= wrid_requested
) {
1622 ret
= qemu_rdma_poll(rdma
, poll_cq
, &wr_id_in
, byte_len
);
1627 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1629 if (wr_id
== RDMA_WRID_NONE
) {
1632 if (wr_id
!= wrid_requested
) {
1633 trace_qemu_rdma_block_for_wrid_miss(wrid_requested
, wr_id
);
1637 if (wr_id
== wrid_requested
) {
1642 ret
= qemu_rdma_wait_comp_channel(rdma
, ch
);
1644 goto err_block_for_wrid
;
1647 ret
= ibv_get_cq_event(ch
, &cq
, &cq_ctx
);
1649 goto err_block_for_wrid
;
1654 if (ibv_req_notify_cq(cq
, 0)) {
1655 goto err_block_for_wrid
;
1658 while (wr_id
!= wrid_requested
) {
1659 ret
= qemu_rdma_poll(rdma
, poll_cq
, &wr_id_in
, byte_len
);
1661 goto err_block_for_wrid
;
1664 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1666 if (wr_id
== RDMA_WRID_NONE
) {
1669 if (wr_id
!= wrid_requested
) {
1670 trace_qemu_rdma_block_for_wrid_miss(wrid_requested
, wr_id
);
1674 if (wr_id
== wrid_requested
) {
1675 goto success_block_for_wrid
;
1679 success_block_for_wrid
:
1680 if (num_cq_events
) {
1681 ibv_ack_cq_events(cq
, num_cq_events
);
1686 if (num_cq_events
) {
1687 ibv_ack_cq_events(cq
, num_cq_events
);
1690 rdma
->errored
= true;
1695 * Post a SEND message work request for the control channel
1696 * containing some data and block until the post completes.
1698 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1699 RDMAControlHeader
*head
,
1703 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1704 struct ibv_send_wr
*bad_wr
;
1705 struct ibv_sge sge
= {
1706 .addr
= (uintptr_t)(wr
->control
),
1707 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1708 .lkey
= wr
->control_mr
->lkey
,
1710 struct ibv_send_wr send_wr
= {
1711 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1712 .opcode
= IBV_WR_SEND
,
1713 .send_flags
= IBV_SEND_SIGNALED
,
1718 trace_qemu_rdma_post_send_control(control_desc(head
->type
));
1721 * We don't actually need to do a memcpy() in here if we used
1722 * the "sge" properly, but since we're only sending control messages
1723 * (not RAM in a performance-critical path), then its OK for now.
1725 * The copy makes the RDMAControlHeader simpler to manipulate
1726 * for the time being.
1728 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1729 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1730 control_to_network((void *) wr
->control
);
1733 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1737 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
1740 error_setg(errp
, "Failed to use post IB SEND for control");
1744 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1746 error_setg(errp
, "rdma migration: send polling control error");
1754 * Post a RECV work request in anticipation of some future receipt
1755 * of data on the control channel.
1757 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
,
1760 struct ibv_recv_wr
*bad_wr
;
1761 struct ibv_sge sge
= {
1762 .addr
= (uintptr_t)(rdma
->wr_data
[idx
].control
),
1763 .length
= RDMA_CONTROL_MAX_BUFFER
,
1764 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1767 struct ibv_recv_wr recv_wr
= {
1768 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1774 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1775 error_setg(errp
, "error posting control recv");
1783 * Block and wait for a RECV control channel message to arrive.
1785 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1786 RDMAControlHeader
*head
, uint32_t expecting
, int idx
,
1790 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1794 error_setg(errp
, "rdma migration: recv polling control error!");
1798 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1799 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1801 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting
));
1803 if (expecting
== RDMA_CONTROL_NONE
) {
1804 trace_qemu_rdma_exchange_get_response_none(control_desc(head
->type
),
1806 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1807 error_setg(errp
, "Was expecting a %s (%d) control message"
1808 ", but got: %s (%d), length: %d",
1809 control_desc(expecting
), expecting
,
1810 control_desc(head
->type
), head
->type
, head
->len
);
1811 if (head
->type
== RDMA_CONTROL_ERROR
) {
1812 rdma
->received_error
= true;
1816 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1817 error_setg(errp
, "too long length: %d", head
->len
);
1820 if (sizeof(*head
) + head
->len
!= byte_len
) {
1821 error_setg(errp
, "Malformed length: %d byte_len %d",
1822 head
->len
, byte_len
);
1830 * When a RECV work request has completed, the work request's
1831 * buffer is pointed at the header.
1833 * This will advance the pointer to the data portion
1834 * of the control message of the work request's buffer that
1835 * was populated after the work request finished.
1837 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1838 RDMAControlHeader
*head
)
1840 rdma
->wr_data
[idx
].control_len
= head
->len
;
1841 rdma
->wr_data
[idx
].control_curr
=
1842 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1846 * This is an 'atomic' high-level operation to deliver a single, unified
1847 * control-channel message.
1849 * Additionally, if the user is expecting some kind of reply to this message,
1850 * they can request a 'resp' response message be filled in by posting an
1851 * additional work request on behalf of the user and waiting for an additional
1854 * The extra (optional) response is used during registration to us from having
1855 * to perform an *additional* exchange of message just to provide a response by
1856 * instead piggy-backing on the acknowledgement.
1858 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1859 uint8_t *data
, RDMAControlHeader
*resp
,
1861 int (*callback
)(RDMAContext
*rdma
,
1868 * Wait until the dest is ready before attempting to deliver the message
1869 * by waiting for a READY message.
1871 if (rdma
->control_ready_expected
) {
1872 RDMAControlHeader resp_ignored
;
1874 ret
= qemu_rdma_exchange_get_response(rdma
, &resp_ignored
,
1876 RDMA_WRID_READY
, errp
);
1883 * If the user is expecting a response, post a WR in anticipation of it.
1886 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
, errp
);
1893 * Post a WR to replace the one we just consumed for the READY message.
1895 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, errp
);
1901 * Deliver the control message that was requested.
1903 ret
= qemu_rdma_post_send_control(rdma
, data
, head
, errp
);
1910 * If we're expecting a response, block and wait for it.
1914 trace_qemu_rdma_exchange_send_issue_callback();
1915 ret
= callback(rdma
, errp
);
1921 trace_qemu_rdma_exchange_send_waiting(control_desc(resp
->type
));
1922 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1923 resp
->type
, RDMA_WRID_DATA
,
1930 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1932 *resp_idx
= RDMA_WRID_DATA
;
1934 trace_qemu_rdma_exchange_send_received(control_desc(resp
->type
));
1937 rdma
->control_ready_expected
= 1;
1943 * This is an 'atomic' high-level operation to receive a single, unified
1944 * control-channel message.
1946 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1947 uint32_t expecting
, Error
**errp
)
1949 RDMAControlHeader ready
= {
1951 .type
= RDMA_CONTROL_READY
,
1957 * Inform the source that we're ready to receive a message.
1959 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
, errp
);
1966 * Block and wait for the message.
1968 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
1969 expecting
, RDMA_WRID_READY
, errp
);
1975 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
1978 * Post a new RECV work request to replace the one we just consumed.
1980 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, errp
);
1989 * Write an actual chunk of memory using RDMA.
1991 * If we're using dynamic registration on the dest-side, we have to
1992 * send a registration command first.
1994 static int qemu_rdma_write_one(RDMAContext
*rdma
,
1995 int current_index
, uint64_t current_addr
,
1996 uint64_t length
, Error
**errp
)
1999 struct ibv_send_wr send_wr
= { 0 };
2000 struct ibv_send_wr
*bad_wr
;
2001 int reg_result_idx
, ret
, count
= 0;
2002 uint64_t chunk
, chunks
;
2003 uint8_t *chunk_start
, *chunk_end
;
2004 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
2006 RDMARegisterResult
*reg_result
;
2007 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
2008 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
2009 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
2014 sge
.addr
= (uintptr_t)(block
->local_host_addr
+
2015 (current_addr
- block
->offset
));
2016 sge
.length
= length
;
2018 chunk
= ram_chunk_index(block
->local_host_addr
,
2019 (uint8_t *)(uintptr_t)sge
.addr
);
2020 chunk_start
= ram_chunk_start(block
, chunk
);
2022 if (block
->is_ram_block
) {
2023 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2025 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2029 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2031 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2036 trace_qemu_rdma_write_one_top(chunks
+ 1,
2038 (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
2040 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
2043 while (test_bit(chunk
, block
->transit_bitmap
)) {
2045 trace_qemu_rdma_write_one_block(count
++, current_index
, chunk
,
2046 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
2048 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2051 error_setg(errp
, "Failed to Wait for previous write to complete "
2052 "block %d chunk %" PRIu64
2053 " current %" PRIu64
" len %" PRIu64
" %d",
2054 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
2059 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
2060 if (!block
->remote_keys
[chunk
]) {
2062 * This chunk has not yet been registered, so first check to see
2063 * if the entire chunk is zero. If so, tell the other size to
2064 * memset() + madvise() the entire chunk without RDMA.
2067 if (buffer_is_zero((void *)(uintptr_t)sge
.addr
, length
)) {
2068 RDMACompress comp
= {
2069 .offset
= current_addr
,
2071 .block_idx
= current_index
,
2075 head
.len
= sizeof(comp
);
2076 head
.type
= RDMA_CONTROL_COMPRESS
;
2078 trace_qemu_rdma_write_one_zero(chunk
, sge
.length
,
2079 current_index
, current_addr
);
2081 compress_to_network(rdma
, &comp
);
2082 ret
= qemu_rdma_exchange_send(rdma
, &head
,
2083 (uint8_t *) &comp
, NULL
, NULL
, NULL
, errp
);
2090 * TODO: Here we are sending something, but we are not
2091 * accounting for anything transferred. The following is wrong:
2093 * stat64_add(&mig_stats.rdma_bytes, sge.length);
2095 * because we are using some kind of compression. I
2096 * would think that head.len would be the more similar
2097 * thing to a correct value.
2099 stat64_add(&mig_stats
.zero_pages
,
2100 sge
.length
/ qemu_target_page_size());
2105 * Otherwise, tell other side to register.
2107 reg
.current_index
= current_index
;
2108 if (block
->is_ram_block
) {
2109 reg
.key
.current_addr
= current_addr
;
2111 reg
.key
.chunk
= chunk
;
2113 reg
.chunks
= chunks
;
2115 trace_qemu_rdma_write_one_sendreg(chunk
, sge
.length
, current_index
,
2118 register_to_network(rdma
, ®
);
2119 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
2120 &resp
, ®_result_idx
, NULL
, errp
);
2125 /* try to overlap this single registration with the one we sent. */
2126 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2127 &sge
.lkey
, NULL
, chunk
,
2128 chunk_start
, chunk_end
)) {
2129 error_setg(errp
, "cannot get lkey");
2133 reg_result
= (RDMARegisterResult
*)
2134 rdma
->wr_data
[reg_result_idx
].control_curr
;
2136 network_to_result(reg_result
);
2138 trace_qemu_rdma_write_one_recvregres(block
->remote_keys
[chunk
],
2139 reg_result
->rkey
, chunk
);
2141 block
->remote_keys
[chunk
] = reg_result
->rkey
;
2142 block
->remote_host_addr
= reg_result
->host_addr
;
2144 /* already registered before */
2145 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2146 &sge
.lkey
, NULL
, chunk
,
2147 chunk_start
, chunk_end
)) {
2148 error_setg(errp
, "cannot get lkey!");
2153 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2155 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2157 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2158 &sge
.lkey
, NULL
, chunk
,
2159 chunk_start
, chunk_end
)) {
2160 error_setg(errp
, "cannot get lkey!");
2166 * Encode the ram block index and chunk within this wrid.
2167 * We will use this information at the time of completion
2168 * to figure out which bitmap to check against and then which
2169 * chunk in the bitmap to look for.
2171 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2172 current_index
, chunk
);
2174 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2175 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2176 send_wr
.sg_list
= &sge
;
2177 send_wr
.num_sge
= 1;
2178 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2179 (current_addr
- block
->offset
);
2181 trace_qemu_rdma_write_one_post(chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2185 * ibv_post_send() does not return negative error numbers,
2186 * per the specification they are positive - no idea why.
2188 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2190 if (ret
== ENOMEM
) {
2191 trace_qemu_rdma_write_one_queue_full();
2192 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2194 error_setg(errp
, "rdma migration: failed to make "
2195 "room in full send queue!");
2201 } else if (ret
> 0) {
2202 error_setg_errno(errp
, ret
,
2203 "rdma migration: post rdma write failed");
2207 set_bit(chunk
, block
->transit_bitmap
);
2208 stat64_add(&mig_stats
.normal_pages
, sge
.length
/ qemu_target_page_size());
2210 * We are adding to transferred the amount of data written, but no
2211 * overhead at all. I will assume that RDMA is magicaly and don't
2212 * need to transfer (at least) the addresses where it wants to
2213 * write the pages. Here it looks like it should be something
2215 * sizeof(send_wr) + sge.length
2216 * but this being RDMA, who knows.
2218 stat64_add(&mig_stats
.rdma_bytes
, sge
.length
);
2219 ram_transferred_add(sge
.length
);
2220 rdma
->total_writes
++;
2226 * Push out any unwritten RDMA operations.
2228 * We support sending out multiple chunks at the same time.
2229 * Not all of them need to get signaled in the completion queue.
2231 static int qemu_rdma_write_flush(RDMAContext
*rdma
, Error
**errp
)
2235 if (!rdma
->current_length
) {
2239 ret
= qemu_rdma_write_one(rdma
, rdma
->current_index
, rdma
->current_addr
,
2240 rdma
->current_length
, errp
);
2248 trace_qemu_rdma_write_flush(rdma
->nb_sent
);
2251 rdma
->current_length
= 0;
2252 rdma
->current_addr
= 0;
2257 static inline bool qemu_rdma_buffer_mergeable(RDMAContext
*rdma
,
2258 uint64_t offset
, uint64_t len
)
2260 RDMALocalBlock
*block
;
2264 if (rdma
->current_index
< 0) {
2268 if (rdma
->current_chunk
< 0) {
2272 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2273 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2274 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2276 if (rdma
->current_length
== 0) {
2281 * Only merge into chunk sequentially.
2283 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2287 if (offset
< block
->offset
) {
2291 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2295 if ((host_addr
+ len
) > chunk_end
) {
2303 * We're not actually writing here, but doing three things:
2305 * 1. Identify the chunk the buffer belongs to.
2306 * 2. If the chunk is full or the buffer doesn't belong to the current
2307 * chunk, then start a new chunk and flush() the old chunk.
2308 * 3. To keep the hardware busy, we also group chunks into batches
2309 * and only require that a batch gets acknowledged in the completion
2310 * queue instead of each individual chunk.
2312 static int qemu_rdma_write(RDMAContext
*rdma
,
2313 uint64_t block_offset
, uint64_t offset
,
2314 uint64_t len
, Error
**errp
)
2316 uint64_t current_addr
= block_offset
+ offset
;
2317 uint64_t index
= rdma
->current_index
;
2318 uint64_t chunk
= rdma
->current_chunk
;
2320 /* If we cannot merge it, we flush the current buffer first. */
2321 if (!qemu_rdma_buffer_mergeable(rdma
, current_addr
, len
)) {
2322 if (qemu_rdma_write_flush(rdma
, errp
) < 0) {
2325 rdma
->current_length
= 0;
2326 rdma
->current_addr
= current_addr
;
2328 qemu_rdma_search_ram_block(rdma
, block_offset
,
2329 offset
, len
, &index
, &chunk
);
2330 rdma
->current_index
= index
;
2331 rdma
->current_chunk
= chunk
;
2335 rdma
->current_length
+= len
;
2337 /* flush it if buffer is too large */
2338 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2339 return qemu_rdma_write_flush(rdma
, errp
);
2345 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2349 if (rdma
->cm_id
&& rdma
->connected
) {
2350 if ((rdma
->errored
||
2351 migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) &&
2352 !rdma
->received_error
) {
2353 RDMAControlHeader head
= { .len
= 0,
2354 .type
= RDMA_CONTROL_ERROR
,
2357 warn_report("Early error. Sending error.");
2358 if (qemu_rdma_post_send_control(rdma
, NULL
, &head
, &err
) < 0) {
2359 warn_report_err(err
);
2363 rdma_disconnect(rdma
->cm_id
);
2364 trace_qemu_rdma_cleanup_disconnect();
2365 rdma
->connected
= false;
2368 if (rdma
->channel
) {
2369 qemu_set_fd_handler(rdma
->channel
->fd
, NULL
, NULL
, NULL
);
2371 g_free(rdma
->dest_blocks
);
2372 rdma
->dest_blocks
= NULL
;
2374 for (int i
= 0; i
< RDMA_WRID_MAX
; i
++) {
2375 if (rdma
->wr_data
[i
].control_mr
) {
2376 rdma
->total_registrations
--;
2377 ibv_dereg_mr(rdma
->wr_data
[i
].control_mr
);
2379 rdma
->wr_data
[i
].control_mr
= NULL
;
2382 if (rdma
->local_ram_blocks
.block
) {
2383 while (rdma
->local_ram_blocks
.nb_blocks
) {
2384 rdma_delete_block(rdma
, &rdma
->local_ram_blocks
.block
[0]);
2389 rdma_destroy_qp(rdma
->cm_id
);
2392 if (rdma
->recv_cq
) {
2393 ibv_destroy_cq(rdma
->recv_cq
);
2394 rdma
->recv_cq
= NULL
;
2396 if (rdma
->send_cq
) {
2397 ibv_destroy_cq(rdma
->send_cq
);
2398 rdma
->send_cq
= NULL
;
2400 if (rdma
->recv_comp_channel
) {
2401 ibv_destroy_comp_channel(rdma
->recv_comp_channel
);
2402 rdma
->recv_comp_channel
= NULL
;
2404 if (rdma
->send_comp_channel
) {
2405 ibv_destroy_comp_channel(rdma
->send_comp_channel
);
2406 rdma
->send_comp_channel
= NULL
;
2409 ibv_dealloc_pd(rdma
->pd
);
2413 rdma_destroy_id(rdma
->cm_id
);
2417 /* the destination side, listen_id and channel is shared */
2418 if (rdma
->listen_id
) {
2419 if (!rdma
->is_return_path
) {
2420 rdma_destroy_id(rdma
->listen_id
);
2422 rdma
->listen_id
= NULL
;
2424 if (rdma
->channel
) {
2425 if (!rdma
->is_return_path
) {
2426 rdma_destroy_event_channel(rdma
->channel
);
2428 rdma
->channel
= NULL
;
2432 if (rdma
->channel
) {
2433 rdma_destroy_event_channel(rdma
->channel
);
2434 rdma
->channel
= NULL
;
2441 static int qemu_rdma_source_init(RDMAContext
*rdma
, bool pin_all
, Error
**errp
)
2446 * Will be validated against destination's actual capabilities
2447 * after the connect() completes.
2449 rdma
->pin_all
= pin_all
;
2451 ret
= qemu_rdma_resolve_host(rdma
, errp
);
2453 goto err_rdma_source_init
;
2456 ret
= qemu_rdma_alloc_pd_cq(rdma
, errp
);
2458 goto err_rdma_source_init
;
2461 ret
= qemu_rdma_alloc_qp(rdma
);
2463 error_setg(errp
, "RDMA ERROR: rdma migration: error allocating qp!");
2464 goto err_rdma_source_init
;
2467 qemu_rdma_init_ram_blocks(rdma
);
2469 /* Build the hash that maps from offset to RAMBlock */
2470 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2471 for (int i
= 0; i
< rdma
->local_ram_blocks
.nb_blocks
; i
++) {
2472 g_hash_table_insert(rdma
->blockmap
,
2473 (void *)(uintptr_t)rdma
->local_ram_blocks
.block
[i
].offset
,
2474 &rdma
->local_ram_blocks
.block
[i
]);
2477 for (int i
= 0; i
< RDMA_WRID_MAX
; i
++) {
2478 ret
= qemu_rdma_reg_control(rdma
, i
);
2480 error_setg(errp
, "RDMA ERROR: rdma migration: error "
2481 "registering %d control!", i
);
2482 goto err_rdma_source_init
;
2488 err_rdma_source_init
:
2489 qemu_rdma_cleanup(rdma
);
2493 static int qemu_get_cm_event_timeout(RDMAContext
*rdma
,
2494 struct rdma_cm_event
**cm_event
,
2495 long msec
, Error
**errp
)
2498 struct pollfd poll_fd
= {
2499 .fd
= rdma
->channel
->fd
,
2505 ret
= poll(&poll_fd
, 1, msec
);
2506 } while (ret
< 0 && errno
== EINTR
);
2509 error_setg(errp
, "RDMA ERROR: poll cm event timeout");
2511 } else if (ret
< 0) {
2512 error_setg(errp
, "RDMA ERROR: failed to poll cm event, errno=%i",
2515 } else if (poll_fd
.revents
& POLLIN
) {
2516 if (rdma_get_cm_event(rdma
->channel
, cm_event
) < 0) {
2517 error_setg(errp
, "RDMA ERROR: failed to get cm event");
2522 error_setg(errp
, "RDMA ERROR: no POLLIN event, revent=%x",
2528 static int qemu_rdma_connect(RDMAContext
*rdma
, bool return_path
,
2531 RDMACapabilities cap
= {
2532 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2535 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2537 .private_data
= &cap
,
2538 .private_data_len
= sizeof(cap
),
2540 struct rdma_cm_event
*cm_event
;
2544 * Only negotiate the capability with destination if the user
2545 * on the source first requested the capability.
2547 if (rdma
->pin_all
) {
2548 trace_qemu_rdma_connect_pin_all_requested();
2549 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2552 caps_to_network(&cap
);
2554 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, errp
);
2556 goto err_rdma_source_connect
;
2559 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2561 error_setg_errno(errp
, errno
,
2562 "RDMA ERROR: connecting to destination!");
2563 goto err_rdma_source_connect
;
2567 ret
= qemu_get_cm_event_timeout(rdma
, &cm_event
, 5000, errp
);
2569 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2571 error_setg_errno(errp
, errno
,
2572 "RDMA ERROR: failed to get cm event");
2576 goto err_rdma_source_connect
;
2579 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2580 error_setg(errp
, "RDMA ERROR: connecting to destination!");
2581 rdma_ack_cm_event(cm_event
);
2582 goto err_rdma_source_connect
;
2584 rdma
->connected
= true;
2586 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2587 network_to_caps(&cap
);
2590 * Verify that the *requested* capabilities are supported by the destination
2591 * and disable them otherwise.
2593 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2594 warn_report("RDMA: Server cannot support pinning all memory. "
2595 "Will register memory dynamically.");
2596 rdma
->pin_all
= false;
2599 trace_qemu_rdma_connect_pin_all_outcome(rdma
->pin_all
);
2601 rdma_ack_cm_event(cm_event
);
2603 rdma
->control_ready_expected
= 1;
2607 err_rdma_source_connect
:
2608 qemu_rdma_cleanup(rdma
);
2612 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2616 struct rdma_cm_id
*listen_id
;
2617 char ip
[40] = "unknown";
2618 struct rdma_addrinfo
*res
, *e
;
2622 for (int i
= 0; i
< RDMA_WRID_MAX
; i
++) {
2623 rdma
->wr_data
[i
].control_len
= 0;
2624 rdma
->wr_data
[i
].control_curr
= NULL
;
2627 if (!rdma
->host
|| !rdma
->host
[0]) {
2628 error_setg(errp
, "RDMA ERROR: RDMA host is not set!");
2629 rdma
->errored
= true;
2632 /* create CM channel */
2633 rdma
->channel
= rdma_create_event_channel();
2634 if (!rdma
->channel
) {
2635 error_setg(errp
, "RDMA ERROR: could not create rdma event channel");
2636 rdma
->errored
= true;
2641 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2643 error_setg(errp
, "RDMA ERROR: could not create cm_id!");
2644 goto err_dest_init_create_listen_id
;
2647 snprintf(port_str
, 16, "%d", rdma
->port
);
2648 port_str
[15] = '\0';
2650 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2652 error_setg(errp
, "RDMA ERROR: could not rdma_getaddrinfo address %s",
2654 goto err_dest_init_bind_addr
;
2657 ret
= rdma_set_option(listen_id
, RDMA_OPTION_ID
, RDMA_OPTION_ID_REUSEADDR
,
2658 &reuse
, sizeof reuse
);
2660 error_setg(errp
, "RDMA ERROR: Error: could not set REUSEADDR option");
2661 goto err_dest_init_bind_addr
;
2664 /* Try all addresses, saving the first error in @err */
2665 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2666 Error
**local_errp
= err
? NULL
: &err
;
2668 inet_ntop(e
->ai_family
,
2669 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2670 trace_qemu_rdma_dest_init_trying(rdma
->host
, ip
);
2671 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2675 if (e
->ai_family
== AF_INET6
) {
2676 ret
= qemu_rdma_broken_ipv6_kernel(listen_id
->verbs
,
2686 rdma_freeaddrinfo(res
);
2689 error_propagate(errp
, err
);
2691 error_setg(errp
, "RDMA ERROR: Error: could not rdma_bind_addr!");
2693 goto err_dest_init_bind_addr
;
2696 rdma
->listen_id
= listen_id
;
2697 qemu_rdma_dump_gid("dest_init", listen_id
);
2700 err_dest_init_bind_addr
:
2701 rdma_destroy_id(listen_id
);
2702 err_dest_init_create_listen_id
:
2703 rdma_destroy_event_channel(rdma
->channel
);
2704 rdma
->channel
= NULL
;
2705 rdma
->errored
= true;
2710 static void qemu_rdma_return_path_dest_init(RDMAContext
*rdma_return_path
,
2713 for (int i
= 0; i
< RDMA_WRID_MAX
; i
++) {
2714 rdma_return_path
->wr_data
[i
].control_len
= 0;
2715 rdma_return_path
->wr_data
[i
].control_curr
= NULL
;
2718 /*the CM channel and CM id is shared*/
2719 rdma_return_path
->channel
= rdma
->channel
;
2720 rdma_return_path
->listen_id
= rdma
->listen_id
;
2722 rdma
->return_path
= rdma_return_path
;
2723 rdma_return_path
->return_path
= rdma
;
2724 rdma_return_path
->is_return_path
= true;
2727 static RDMAContext
*qemu_rdma_data_init(InetSocketAddress
*saddr
, Error
**errp
)
2729 RDMAContext
*rdma
= NULL
;
2731 rdma
= g_new0(RDMAContext
, 1);
2732 rdma
->current_index
= -1;
2733 rdma
->current_chunk
= -1;
2735 rdma
->host
= g_strdup(saddr
->host
);
2736 rdma
->port
= atoi(saddr
->port
);
2741 * QEMUFile interface to the control channel.
2742 * SEND messages for control only.
2743 * VM's ram is handled with regular RDMA messages.
2745 static ssize_t
qio_channel_rdma_writev(QIOChannel
*ioc
,
2746 const struct iovec
*iov
,
2753 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2759 RCU_READ_LOCK_GUARD();
2760 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
2763 error_setg(errp
, "RDMA control channel output is not set");
2767 if (rdma
->errored
) {
2769 "RDMA is in an error state waiting migration to abort!");
2774 * Push out any writes that
2775 * we're queued up for VM's ram.
2777 ret
= qemu_rdma_write_flush(rdma
, errp
);
2779 rdma
->errored
= true;
2783 for (int i
= 0; i
< niov
; i
++) {
2784 size_t remaining
= iov
[i
].iov_len
;
2785 uint8_t * data
= (void *)iov
[i
].iov_base
;
2787 RDMAControlHeader head
= {};
2789 len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2793 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2795 ret
= qemu_rdma_exchange_send(rdma
, &head
,
2796 data
, NULL
, NULL
, NULL
, errp
);
2799 rdma
->errored
= true;
2811 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2812 size_t size
, int idx
)
2816 if (rdma
->wr_data
[idx
].control_len
) {
2817 trace_qemu_rdma_fill(rdma
->wr_data
[idx
].control_len
, size
);
2819 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2820 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2821 rdma
->wr_data
[idx
].control_curr
+= len
;
2822 rdma
->wr_data
[idx
].control_len
-= len
;
2829 * QEMUFile interface to the control channel.
2830 * RDMA links don't use bytestreams, so we have to
2831 * return bytes to QEMUFile opportunistically.
2833 static ssize_t
qio_channel_rdma_readv(QIOChannel
*ioc
,
2834 const struct iovec
*iov
,
2841 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2843 RDMAControlHeader head
;
2848 RCU_READ_LOCK_GUARD();
2849 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
2852 error_setg(errp
, "RDMA control channel input is not set");
2856 if (rdma
->errored
) {
2858 "RDMA is in an error state waiting migration to abort!");
2862 for (int i
= 0; i
< niov
; i
++) {
2863 size_t want
= iov
[i
].iov_len
;
2864 uint8_t *data
= (void *)iov
[i
].iov_base
;
2867 * First, we hold on to the last SEND message we
2868 * were given and dish out the bytes until we run
2871 len
= qemu_rdma_fill(rdma
, data
, want
, 0);
2874 /* Got what we needed, so go to next iovec */
2879 /* If we got any data so far, then don't wait
2880 * for more, just return what we have */
2886 /* We've got nothing at all, so lets wait for
2889 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
,
2893 rdma
->errored
= true;
2898 * SEND was received with new bytes, now try again.
2900 len
= qemu_rdma_fill(rdma
, data
, want
, 0);
2904 /* Still didn't get enough, so lets just return */
2907 return QIO_CHANNEL_ERR_BLOCK
;
2917 * Block until all the outstanding chunks have been delivered by the hardware.
2919 static int qemu_rdma_drain_cq(RDMAContext
*rdma
)
2923 if (qemu_rdma_write_flush(rdma
, &err
) < 0) {
2924 error_report_err(err
);
2928 while (rdma
->nb_sent
) {
2929 if (qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
) < 0) {
2930 error_report("rdma migration: complete polling error!");
2935 qemu_rdma_unregister_waiting(rdma
);
2941 static int qio_channel_rdma_set_blocking(QIOChannel
*ioc
,
2945 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2946 /* XXX we should make readv/writev actually honour this :-) */
2947 rioc
->blocking
= blocking
;
2952 typedef struct QIOChannelRDMASource QIOChannelRDMASource
;
2953 struct QIOChannelRDMASource
{
2955 QIOChannelRDMA
*rioc
;
2956 GIOCondition condition
;
2960 qio_channel_rdma_source_prepare(GSource
*source
,
2963 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2965 GIOCondition cond
= 0;
2968 RCU_READ_LOCK_GUARD();
2969 if (rsource
->condition
== G_IO_IN
) {
2970 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
2972 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
2976 error_report("RDMAContext is NULL when prepare Gsource");
2980 if (rdma
->wr_data
[0].control_len
) {
2985 return cond
& rsource
->condition
;
2989 qio_channel_rdma_source_check(GSource
*source
)
2991 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2993 GIOCondition cond
= 0;
2995 RCU_READ_LOCK_GUARD();
2996 if (rsource
->condition
== G_IO_IN
) {
2997 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
2999 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
3003 error_report("RDMAContext is NULL when check Gsource");
3007 if (rdma
->wr_data
[0].control_len
) {
3012 return cond
& rsource
->condition
;
3016 qio_channel_rdma_source_dispatch(GSource
*source
,
3017 GSourceFunc callback
,
3020 QIOChannelFunc func
= (QIOChannelFunc
)callback
;
3021 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
3023 GIOCondition cond
= 0;
3025 RCU_READ_LOCK_GUARD();
3026 if (rsource
->condition
== G_IO_IN
) {
3027 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
3029 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
3033 error_report("RDMAContext is NULL when dispatch Gsource");
3037 if (rdma
->wr_data
[0].control_len
) {
3042 return (*func
)(QIO_CHANNEL(rsource
->rioc
),
3043 (cond
& rsource
->condition
),
3048 qio_channel_rdma_source_finalize(GSource
*source
)
3050 QIOChannelRDMASource
*ssource
= (QIOChannelRDMASource
*)source
;
3052 object_unref(OBJECT(ssource
->rioc
));
3055 static GSourceFuncs qio_channel_rdma_source_funcs
= {
3056 qio_channel_rdma_source_prepare
,
3057 qio_channel_rdma_source_check
,
3058 qio_channel_rdma_source_dispatch
,
3059 qio_channel_rdma_source_finalize
3062 static GSource
*qio_channel_rdma_create_watch(QIOChannel
*ioc
,
3063 GIOCondition condition
)
3065 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3066 QIOChannelRDMASource
*ssource
;
3069 source
= g_source_new(&qio_channel_rdma_source_funcs
,
3070 sizeof(QIOChannelRDMASource
));
3071 ssource
= (QIOChannelRDMASource
*)source
;
3073 ssource
->rioc
= rioc
;
3074 object_ref(OBJECT(rioc
));
3076 ssource
->condition
= condition
;
3081 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel
*ioc
,
3082 AioContext
*read_ctx
,
3084 AioContext
*write_ctx
,
3085 IOHandler
*io_write
,
3088 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3090 aio_set_fd_handler(read_ctx
, rioc
->rdmain
->recv_comp_channel
->fd
,
3091 io_read
, io_write
, NULL
, NULL
, opaque
);
3092 aio_set_fd_handler(read_ctx
, rioc
->rdmain
->send_comp_channel
->fd
,
3093 io_read
, io_write
, NULL
, NULL
, opaque
);
3095 aio_set_fd_handler(write_ctx
, rioc
->rdmaout
->recv_comp_channel
->fd
,
3096 io_read
, io_write
, NULL
, NULL
, opaque
);
3097 aio_set_fd_handler(write_ctx
, rioc
->rdmaout
->send_comp_channel
->fd
,
3098 io_read
, io_write
, NULL
, NULL
, opaque
);
3102 struct rdma_close_rcu
{
3103 struct rcu_head rcu
;
3104 RDMAContext
*rdmain
;
3105 RDMAContext
*rdmaout
;
3108 /* callback from qio_channel_rdma_close via call_rcu */
3109 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu
*rcu
)
3112 qemu_rdma_cleanup(rcu
->rdmain
);
3116 qemu_rdma_cleanup(rcu
->rdmaout
);
3119 g_free(rcu
->rdmain
);
3120 g_free(rcu
->rdmaout
);
3124 static int qio_channel_rdma_close(QIOChannel
*ioc
,
3127 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3128 RDMAContext
*rdmain
, *rdmaout
;
3129 struct rdma_close_rcu
*rcu
= g_new(struct rdma_close_rcu
, 1);
3131 trace_qemu_rdma_close();
3133 rdmain
= rioc
->rdmain
;
3135 qatomic_rcu_set(&rioc
->rdmain
, NULL
);
3138 rdmaout
= rioc
->rdmaout
;
3140 qatomic_rcu_set(&rioc
->rdmaout
, NULL
);
3143 rcu
->rdmain
= rdmain
;
3144 rcu
->rdmaout
= rdmaout
;
3145 call_rcu(rcu
, qio_channel_rdma_close_rcu
, rcu
);
3151 qio_channel_rdma_shutdown(QIOChannel
*ioc
,
3152 QIOChannelShutdown how
,
3155 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3156 RDMAContext
*rdmain
, *rdmaout
;
3158 RCU_READ_LOCK_GUARD();
3160 rdmain
= qatomic_rcu_read(&rioc
->rdmain
);
3161 rdmaout
= qatomic_rcu_read(&rioc
->rdmain
);
3164 case QIO_CHANNEL_SHUTDOWN_READ
:
3166 rdmain
->errored
= true;
3169 case QIO_CHANNEL_SHUTDOWN_WRITE
:
3171 rdmaout
->errored
= true;
3174 case QIO_CHANNEL_SHUTDOWN_BOTH
:
3177 rdmain
->errored
= true;
3180 rdmaout
->errored
= true;
3191 * This means that 'block_offset' is a full virtual address that does not
3192 * belong to a RAMBlock of the virtual machine and instead
3193 * represents a private malloc'd memory area that the caller wishes to
3197 * Offset is an offset to be added to block_offset and used
3198 * to also lookup the corresponding RAMBlock.
3200 * @size : Number of bytes to transfer
3202 * @pages_sent : User-specificed pointer to indicate how many pages were
3203 * sent. Usually, this will not be more than a few bytes of
3204 * the protocol because most transfers are sent asynchronously.
3206 static int qemu_rdma_save_page(QEMUFile
*f
, ram_addr_t block_offset
,
3207 ram_addr_t offset
, size_t size
)
3209 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3214 RCU_READ_LOCK_GUARD();
3215 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3221 if (rdma_errored(rdma
)) {
3228 * Add this page to the current 'chunk'. If the chunk
3229 * is full, or the page doesn't belong to the current chunk,
3230 * an actual RDMA write will occur and a new chunk will be formed.
3232 ret
= qemu_rdma_write(rdma
, block_offset
, offset
, size
, &err
);
3234 error_report_err(err
);
3239 * Drain the Completion Queue if possible, but do not block,
3242 * If nothing to poll, the end of the iteration will do this
3243 * again to make sure we don't overflow the request queue.
3246 uint64_t wr_id
, wr_id_in
;
3247 ret
= qemu_rdma_poll(rdma
, rdma
->recv_cq
, &wr_id_in
, NULL
);
3250 error_report("rdma migration: polling error");
3254 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3256 if (wr_id
== RDMA_WRID_NONE
) {
3262 uint64_t wr_id
, wr_id_in
;
3263 ret
= qemu_rdma_poll(rdma
, rdma
->send_cq
, &wr_id_in
, NULL
);
3266 error_report("rdma migration: polling error");
3270 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3272 if (wr_id
== RDMA_WRID_NONE
) {
3277 return RAM_SAVE_CONTROL_DELAYED
;
3280 rdma
->errored
= true;
3284 int rdma_control_save_page(QEMUFile
*f
, ram_addr_t block_offset
,
3285 ram_addr_t offset
, size_t size
)
3287 if (!migrate_rdma() || migration_in_postcopy()) {
3288 return RAM_SAVE_CONTROL_NOT_SUPP
;
3291 int ret
= qemu_rdma_save_page(f
, block_offset
, offset
, size
);
3293 if (ret
!= RAM_SAVE_CONTROL_DELAYED
&&
3294 ret
!= RAM_SAVE_CONTROL_NOT_SUPP
) {
3296 qemu_file_set_error(f
, ret
);
3302 static void rdma_accept_incoming_migration(void *opaque
);
3304 static void rdma_cm_poll_handler(void *opaque
)
3306 RDMAContext
*rdma
= opaque
;
3307 struct rdma_cm_event
*cm_event
;
3308 MigrationIncomingState
*mis
= migration_incoming_get_current();
3310 if (rdma_get_cm_event(rdma
->channel
, &cm_event
) < 0) {
3311 error_report("get_cm_event failed %d", errno
);
3315 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
3316 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
3317 if (!rdma
->errored
&&
3318 migration_incoming_get_current()->state
!=
3319 MIGRATION_STATUS_COMPLETED
) {
3320 error_report("receive cm event, cm event is %d", cm_event
->event
);
3321 rdma
->errored
= true;
3322 if (rdma
->return_path
) {
3323 rdma
->return_path
->errored
= true;
3326 rdma_ack_cm_event(cm_event
);
3327 if (mis
->loadvm_co
) {
3328 qemu_coroutine_enter(mis
->loadvm_co
);
3332 rdma_ack_cm_event(cm_event
);
3335 static int qemu_rdma_accept(RDMAContext
*rdma
)
3338 RDMACapabilities cap
;
3339 struct rdma_conn_param conn_param
= {
3340 .responder_resources
= 2,
3341 .private_data
= &cap
,
3342 .private_data_len
= sizeof(cap
),
3344 RDMAContext
*rdma_return_path
= NULL
;
3345 g_autoptr(InetSocketAddress
) isock
= g_new0(InetSocketAddress
, 1);
3346 struct rdma_cm_event
*cm_event
;
3347 struct ibv_context
*verbs
;
3350 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3352 goto err_rdma_dest_wait
;
3355 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
3356 rdma_ack_cm_event(cm_event
);
3357 goto err_rdma_dest_wait
;
3360 isock
->host
= g_strdup(rdma
->host
);
3361 isock
->port
= g_strdup_printf("%d", rdma
->port
);
3364 * initialize the RDMAContext for return path for postcopy after first
3365 * connection request reached.
3367 if ((migrate_postcopy() || migrate_return_path())
3368 && !rdma
->is_return_path
) {
3369 rdma_return_path
= qemu_rdma_data_init(isock
, NULL
);
3370 if (rdma_return_path
== NULL
) {
3371 rdma_ack_cm_event(cm_event
);
3372 goto err_rdma_dest_wait
;
3375 qemu_rdma_return_path_dest_init(rdma_return_path
, rdma
);
3378 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
3380 network_to_caps(&cap
);
3382 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
3383 error_report("Unknown source RDMA version: %d, bailing...",
3385 rdma_ack_cm_event(cm_event
);
3386 goto err_rdma_dest_wait
;
3390 * Respond with only the capabilities this version of QEMU knows about.
3392 cap
.flags
&= known_capabilities
;
3395 * Enable the ones that we do know about.
3396 * Add other checks here as new ones are introduced.
3398 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
3399 rdma
->pin_all
= true;
3402 rdma
->cm_id
= cm_event
->id
;
3403 verbs
= cm_event
->id
->verbs
;
3405 rdma_ack_cm_event(cm_event
);
3407 trace_qemu_rdma_accept_pin_state(rdma
->pin_all
);
3409 caps_to_network(&cap
);
3411 trace_qemu_rdma_accept_pin_verbsc(verbs
);
3414 rdma
->verbs
= verbs
;
3415 } else if (rdma
->verbs
!= verbs
) {
3416 error_report("ibv context not matching %p, %p!", rdma
->verbs
,
3418 goto err_rdma_dest_wait
;
3421 qemu_rdma_dump_id("dest_init", verbs
);
3423 ret
= qemu_rdma_alloc_pd_cq(rdma
, &err
);
3425 error_report_err(err
);
3426 goto err_rdma_dest_wait
;
3429 ret
= qemu_rdma_alloc_qp(rdma
);
3431 error_report("rdma migration: error allocating qp!");
3432 goto err_rdma_dest_wait
;
3435 qemu_rdma_init_ram_blocks(rdma
);
3437 for (int i
= 0; i
< RDMA_WRID_MAX
; i
++) {
3438 ret
= qemu_rdma_reg_control(rdma
, i
);
3440 error_report("rdma: error registering %d control", i
);
3441 goto err_rdma_dest_wait
;
3445 /* Accept the second connection request for return path */
3446 if ((migrate_postcopy() || migrate_return_path())
3447 && !rdma
->is_return_path
) {
3448 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
3450 (void *)(intptr_t)rdma
->return_path
);
3452 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_cm_poll_handler
,
3456 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
3458 error_report("rdma_accept failed");
3459 goto err_rdma_dest_wait
;
3462 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3464 error_report("rdma_accept get_cm_event failed");
3465 goto err_rdma_dest_wait
;
3468 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
3469 error_report("rdma_accept not event established");
3470 rdma_ack_cm_event(cm_event
);
3471 goto err_rdma_dest_wait
;
3474 rdma_ack_cm_event(cm_event
);
3475 rdma
->connected
= true;
3477 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, &err
);
3479 error_report_err(err
);
3480 goto err_rdma_dest_wait
;
3483 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
3488 rdma
->errored
= true;
3489 qemu_rdma_cleanup(rdma
);
3490 g_free(rdma_return_path
);
3494 static int dest_ram_sort_func(const void *a
, const void *b
)
3496 unsigned int a_index
= ((const RDMALocalBlock
*)a
)->src_index
;
3497 unsigned int b_index
= ((const RDMALocalBlock
*)b
)->src_index
;
3499 return (a_index
< b_index
) ? -1 : (a_index
!= b_index
);
3503 * During each iteration of the migration, we listen for instructions
3504 * by the source VM to perform dynamic page registrations before they
3505 * can perform RDMA operations.
3507 * We respond with the 'rkey'.
3509 * Keep doing this until the source tells us to stop.
3511 int rdma_registration_handle(QEMUFile
*f
)
3513 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
3514 .type
= RDMA_CONTROL_REGISTER_RESULT
,
3517 RDMAControlHeader unreg_resp
= { .len
= 0,
3518 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
3521 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
3523 QIOChannelRDMA
*rioc
;
3526 RDMALocalBlocks
*local
;
3527 RDMAControlHeader head
;
3528 RDMARegister
*reg
, *registers
;
3530 RDMARegisterResult
*reg_result
;
3531 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
3532 RDMALocalBlock
*block
;
3537 if (!migrate_rdma()) {
3541 RCU_READ_LOCK_GUARD();
3542 rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3543 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3549 if (rdma_errored(rdma
)) {
3553 local
= &rdma
->local_ram_blocks
;
3555 trace_rdma_registration_handle_wait();
3557 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
, &err
);
3560 error_report_err(err
);
3564 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
3565 error_report("rdma: Too many requests in this message (%d)."
3566 "Bailing.", head
.repeat
);
3570 switch (head
.type
) {
3571 case RDMA_CONTROL_COMPRESS
:
3572 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
3573 network_to_compress(comp
);
3575 trace_rdma_registration_handle_compress(comp
->length
,
3578 if (comp
->block_idx
>= rdma
->local_ram_blocks
.nb_blocks
) {
3579 error_report("rdma: 'compress' bad block index %u (vs %d)",
3580 (unsigned int)comp
->block_idx
,
3581 rdma
->local_ram_blocks
.nb_blocks
);
3584 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
3586 host_addr
= block
->local_host_addr
+
3587 (comp
->offset
- block
->offset
);
3589 error_report("rdma: Zero page with non-zero (%d) value",
3593 ram_handle_zero(host_addr
, comp
->length
);
3596 case RDMA_CONTROL_REGISTER_FINISHED
:
3597 trace_rdma_registration_handle_finished();
3600 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3601 trace_rdma_registration_handle_ram_blocks();
3603 /* Sort our local RAM Block list so it's the same as the source,
3604 * we can do this since we've filled in a src_index in the list
3605 * as we received the RAMBlock list earlier.
3607 qsort(rdma
->local_ram_blocks
.block
,
3608 rdma
->local_ram_blocks
.nb_blocks
,
3609 sizeof(RDMALocalBlock
), dest_ram_sort_func
);
3610 for (int i
= 0; i
< local
->nb_blocks
; i
++) {
3611 local
->block
[i
].index
= i
;
3614 if (rdma
->pin_all
) {
3615 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
, &err
);
3617 error_report_err(err
);
3623 * Dest uses this to prepare to transmit the RAMBlock descriptions
3624 * to the source VM after connection setup.
3625 * Both sides use the "remote" structure to communicate and update
3626 * their "local" descriptions with what was sent.
3628 for (int i
= 0; i
< local
->nb_blocks
; i
++) {
3629 rdma
->dest_blocks
[i
].remote_host_addr
=
3630 (uintptr_t)(local
->block
[i
].local_host_addr
);
3632 if (rdma
->pin_all
) {
3633 rdma
->dest_blocks
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3636 rdma
->dest_blocks
[i
].offset
= local
->block
[i
].offset
;
3637 rdma
->dest_blocks
[i
].length
= local
->block
[i
].length
;
3639 dest_block_to_network(&rdma
->dest_blocks
[i
]);
3640 trace_rdma_registration_handle_ram_blocks_loop(
3641 local
->block
[i
].block_name
,
3642 local
->block
[i
].offset
,
3643 local
->block
[i
].length
,
3644 local
->block
[i
].local_host_addr
,
3645 local
->block
[i
].src_index
);
3648 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3649 * sizeof(RDMADestBlock
);
3652 ret
= qemu_rdma_post_send_control(rdma
,
3653 (uint8_t *) rdma
->dest_blocks
, &blocks
,
3657 error_report_err(err
);
3662 case RDMA_CONTROL_REGISTER_REQUEST
:
3663 trace_rdma_registration_handle_register(head
.repeat
);
3665 reg_resp
.repeat
= head
.repeat
;
3666 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3668 for (int count
= 0; count
< head
.repeat
; count
++) {
3670 uint8_t *chunk_start
, *chunk_end
;
3672 reg
= ®isters
[count
];
3673 network_to_register(reg
);
3675 reg_result
= &results
[count
];
3677 trace_rdma_registration_handle_register_loop(count
,
3678 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3680 if (reg
->current_index
>= rdma
->local_ram_blocks
.nb_blocks
) {
3681 error_report("rdma: 'register' bad block index %u (vs %d)",
3682 (unsigned int)reg
->current_index
,
3683 rdma
->local_ram_blocks
.nb_blocks
);
3686 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3687 if (block
->is_ram_block
) {
3688 if (block
->offset
> reg
->key
.current_addr
) {
3689 error_report("rdma: bad register address for block %s"
3690 " offset: %" PRIx64
" current_addr: %" PRIx64
,
3691 block
->block_name
, block
->offset
,
3692 reg
->key
.current_addr
);
3695 host_addr
= (block
->local_host_addr
+
3696 (reg
->key
.current_addr
- block
->offset
));
3697 chunk
= ram_chunk_index(block
->local_host_addr
,
3698 (uint8_t *) host_addr
);
3700 chunk
= reg
->key
.chunk
;
3701 host_addr
= block
->local_host_addr
+
3702 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3703 /* Check for particularly bad chunk value */
3704 if (host_addr
< (void *)block
->local_host_addr
) {
3705 error_report("rdma: bad chunk for block %s"
3707 block
->block_name
, reg
->key
.chunk
);
3711 chunk_start
= ram_chunk_start(block
, chunk
);
3712 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3713 /* avoid "-Waddress-of-packed-member" warning */
3714 uint32_t tmp_rkey
= 0;
3715 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3716 (uintptr_t)host_addr
, NULL
, &tmp_rkey
,
3717 chunk
, chunk_start
, chunk_end
)) {
3718 error_report("cannot get rkey");
3721 reg_result
->rkey
= tmp_rkey
;
3723 reg_result
->host_addr
= (uintptr_t)block
->local_host_addr
;
3725 trace_rdma_registration_handle_register_rkey(reg_result
->rkey
);
3727 result_to_network(reg_result
);
3730 ret
= qemu_rdma_post_send_control(rdma
,
3731 (uint8_t *) results
, ®_resp
, &err
);
3734 error_report_err(err
);
3738 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3739 trace_rdma_registration_handle_unregister(head
.repeat
);
3740 unreg_resp
.repeat
= head
.repeat
;
3741 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3743 for (int count
= 0; count
< head
.repeat
; count
++) {
3744 reg
= ®isters
[count
];
3745 network_to_register(reg
);
3747 trace_rdma_registration_handle_unregister_loop(count
,
3748 reg
->current_index
, reg
->key
.chunk
);
3750 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3752 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3753 block
->pmr
[reg
->key
.chunk
] = NULL
;
3756 error_report("rdma unregistration chunk failed: %s",
3761 rdma
->total_registrations
--;
3763 trace_rdma_registration_handle_unregister_success(reg
->key
.chunk
);
3766 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
, &err
);
3769 error_report_err(err
);
3773 case RDMA_CONTROL_REGISTER_RESULT
:
3774 error_report("Invalid RESULT message at dest.");
3777 error_report("Unknown control message %s", control_desc(head
.type
));
3783 rdma
->errored
= true;
3788 * Called during the initial RAM load section which lists the
3789 * RAMBlocks by name. This lets us know the order of the RAMBlocks on
3790 * the source. We've already built our local RAMBlock list, but not
3791 * yet sent the list to the source.
3793 int rdma_block_notification_handle(QEMUFile
*f
, const char *name
)
3798 if (!migrate_rdma()) {
3802 RCU_READ_LOCK_GUARD();
3803 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3804 RDMAContext
*rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3810 /* Find the matching RAMBlock in our local list */
3811 for (curr
= 0; curr
< rdma
->local_ram_blocks
.nb_blocks
; curr
++) {
3812 if (!strcmp(rdma
->local_ram_blocks
.block
[curr
].block_name
, name
)) {
3819 error_report("RAMBlock '%s' not found on destination", name
);
3823 rdma
->local_ram_blocks
.block
[curr
].src_index
= rdma
->next_src_index
;
3824 trace_rdma_block_notification_handle(name
, rdma
->next_src_index
);
3825 rdma
->next_src_index
++;
3830 int rdma_registration_start(QEMUFile
*f
, uint64_t flags
)
3832 if (!migrate_rdma() || migration_in_postcopy()) {
3836 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3837 RCU_READ_LOCK_GUARD();
3838 RDMAContext
*rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3843 if (rdma_errored(rdma
)) {
3847 trace_rdma_registration_start(flags
);
3848 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3849 return qemu_fflush(f
);
3853 * Inform dest that dynamic registrations are done for now.
3854 * First, flush writes, if any.
3856 int rdma_registration_stop(QEMUFile
*f
, uint64_t flags
)
3858 QIOChannelRDMA
*rioc
;
3861 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3864 if (!migrate_rdma() || migration_in_postcopy()) {
3868 RCU_READ_LOCK_GUARD();
3869 rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3870 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3875 if (rdma_errored(rdma
)) {
3880 ret
= qemu_rdma_drain_cq(rdma
);
3886 if (flags
== RAM_CONTROL_SETUP
) {
3887 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3888 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3889 int reg_result_idx
, nb_dest_blocks
;
3891 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3892 trace_rdma_registration_stop_ram();
3895 * Make sure that we parallelize the pinning on both sides.
3896 * For very large guests, doing this serially takes a really
3897 * long time, so we have to 'interleave' the pinning locally
3898 * with the control messages by performing the pinning on this
3899 * side before we receive the control response from the other
3900 * side that the pinning has completed.
3902 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3903 ®_result_idx
, rdma
->pin_all
?
3904 qemu_rdma_reg_whole_ram_blocks
: NULL
,
3907 error_report_err(err
);
3911 nb_dest_blocks
= resp
.len
/ sizeof(RDMADestBlock
);
3914 * The protocol uses two different sets of rkeys (mutually exclusive):
3915 * 1. One key to represent the virtual address of the entire ram block.
3916 * (dynamic chunk registration disabled - pin everything with one rkey.)
3917 * 2. One to represent individual chunks within a ram block.
3918 * (dynamic chunk registration enabled - pin individual chunks.)
3920 * Once the capability is successfully negotiated, the destination transmits
3921 * the keys to use (or sends them later) including the virtual addresses
3922 * and then propagates the remote ram block descriptions to his local copy.
3925 if (local
->nb_blocks
!= nb_dest_blocks
) {
3926 error_report("ram blocks mismatch (Number of blocks %d vs %d)",
3927 local
->nb_blocks
, nb_dest_blocks
);
3928 error_printf("Your QEMU command line parameters are probably "
3929 "not identical on both the source and destination.");
3930 rdma
->errored
= true;
3934 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3935 memcpy(rdma
->dest_blocks
,
3936 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3937 for (int i
= 0; i
< nb_dest_blocks
; i
++) {
3938 network_to_dest_block(&rdma
->dest_blocks
[i
]);
3940 /* We require that the blocks are in the same order */
3941 if (rdma
->dest_blocks
[i
].length
!= local
->block
[i
].length
) {
3942 error_report("Block %s/%d has a different length %" PRIu64
3944 local
->block
[i
].block_name
, i
,
3945 local
->block
[i
].length
,
3946 rdma
->dest_blocks
[i
].length
);
3947 rdma
->errored
= true;
3950 local
->block
[i
].remote_host_addr
=
3951 rdma
->dest_blocks
[i
].remote_host_addr
;
3952 local
->block
[i
].remote_rkey
= rdma
->dest_blocks
[i
].remote_rkey
;
3956 trace_rdma_registration_stop(flags
);
3958 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
3959 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
, &err
);
3962 error_report_err(err
);
3968 rdma
->errored
= true;
3972 static void qio_channel_rdma_finalize(Object
*obj
)
3974 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(obj
);
3976 qemu_rdma_cleanup(rioc
->rdmain
);
3977 g_free(rioc
->rdmain
);
3978 rioc
->rdmain
= NULL
;
3980 if (rioc
->rdmaout
) {
3981 qemu_rdma_cleanup(rioc
->rdmaout
);
3982 g_free(rioc
->rdmaout
);
3983 rioc
->rdmaout
= NULL
;
3987 static void qio_channel_rdma_class_init(ObjectClass
*klass
,
3988 void *class_data G_GNUC_UNUSED
)
3990 QIOChannelClass
*ioc_klass
= QIO_CHANNEL_CLASS(klass
);
3992 ioc_klass
->io_writev
= qio_channel_rdma_writev
;
3993 ioc_klass
->io_readv
= qio_channel_rdma_readv
;
3994 ioc_klass
->io_set_blocking
= qio_channel_rdma_set_blocking
;
3995 ioc_klass
->io_close
= qio_channel_rdma_close
;
3996 ioc_klass
->io_create_watch
= qio_channel_rdma_create_watch
;
3997 ioc_klass
->io_set_aio_fd_handler
= qio_channel_rdma_set_aio_fd_handler
;
3998 ioc_klass
->io_shutdown
= qio_channel_rdma_shutdown
;
4001 static const TypeInfo qio_channel_rdma_info
= {
4002 .parent
= TYPE_QIO_CHANNEL
,
4003 .name
= TYPE_QIO_CHANNEL_RDMA
,
4004 .instance_size
= sizeof(QIOChannelRDMA
),
4005 .instance_finalize
= qio_channel_rdma_finalize
,
4006 .class_init
= qio_channel_rdma_class_init
,
4009 static void qio_channel_rdma_register_types(void)
4011 type_register_static(&qio_channel_rdma_info
);
4014 type_init(qio_channel_rdma_register_types
);
4016 static QEMUFile
*rdma_new_input(RDMAContext
*rdma
)
4018 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
4020 rioc
->file
= qemu_file_new_input(QIO_CHANNEL(rioc
));
4021 rioc
->rdmain
= rdma
;
4022 rioc
->rdmaout
= rdma
->return_path
;
4027 static QEMUFile
*rdma_new_output(RDMAContext
*rdma
)
4029 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
4031 rioc
->file
= qemu_file_new_output(QIO_CHANNEL(rioc
));
4032 rioc
->rdmaout
= rdma
;
4033 rioc
->rdmain
= rdma
->return_path
;
4038 static void rdma_accept_incoming_migration(void *opaque
)
4040 RDMAContext
*rdma
= opaque
;
4043 trace_qemu_rdma_accept_incoming_migration();
4044 if (qemu_rdma_accept(rdma
) < 0) {
4045 error_report("RDMA ERROR: Migration initialization failed");
4049 trace_qemu_rdma_accept_incoming_migration_accepted();
4051 if (rdma
->is_return_path
) {
4055 f
= rdma_new_input(rdma
);
4057 error_report("RDMA ERROR: could not open RDMA for input");
4058 qemu_rdma_cleanup(rdma
);
4062 rdma
->migration_started_on_destination
= 1;
4063 migration_fd_process_incoming(f
);
4066 void rdma_start_incoming_migration(InetSocketAddress
*host_port
,
4069 MigrationState
*s
= migrate_get_current();
4073 trace_rdma_start_incoming_migration();
4075 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4076 if (ram_block_discard_is_required()) {
4077 error_setg(errp
, "RDMA: cannot disable RAM discard");
4081 rdma
= qemu_rdma_data_init(host_port
, errp
);
4086 ret
= qemu_rdma_dest_init(rdma
, errp
);
4091 trace_rdma_start_incoming_migration_after_dest_init();
4093 ret
= rdma_listen(rdma
->listen_id
, 5);
4096 error_setg(errp
, "RDMA ERROR: listening on socket!");
4100 trace_rdma_start_incoming_migration_after_rdma_listen();
4101 s
->rdma_migration
= true;
4102 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
4103 NULL
, (void *)(intptr_t)rdma
);
4107 qemu_rdma_cleanup(rdma
);
4115 void rdma_start_outgoing_migration(void *opaque
,
4116 InetSocketAddress
*host_port
, Error
**errp
)
4118 MigrationState
*s
= opaque
;
4119 RDMAContext
*rdma_return_path
= NULL
;
4123 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4124 if (ram_block_discard_is_required()) {
4125 error_setg(errp
, "RDMA: cannot disable RAM discard");
4129 rdma
= qemu_rdma_data_init(host_port
, errp
);
4134 ret
= qemu_rdma_source_init(rdma
, migrate_rdma_pin_all(), errp
);
4140 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4141 ret
= qemu_rdma_connect(rdma
, false, errp
);
4147 /* RDMA postcopy need a separate queue pair for return path */
4148 if (migrate_postcopy() || migrate_return_path()) {
4149 rdma_return_path
= qemu_rdma_data_init(host_port
, errp
);
4151 if (rdma_return_path
== NULL
) {
4152 goto return_path_err
;
4155 ret
= qemu_rdma_source_init(rdma_return_path
,
4156 migrate_rdma_pin_all(), errp
);
4159 goto return_path_err
;
4162 ret
= qemu_rdma_connect(rdma_return_path
, true, errp
);
4165 goto return_path_err
;
4168 rdma
->return_path
= rdma_return_path
;
4169 rdma_return_path
->return_path
= rdma
;
4170 rdma_return_path
->is_return_path
= true;
4173 trace_rdma_start_outgoing_migration_after_rdma_connect();
4175 s
->to_dst_file
= rdma_new_output(rdma
);
4176 s
->rdma_migration
= true;
4177 migrate_fd_connect(s
, NULL
);
4180 qemu_rdma_cleanup(rdma
);
4183 g_free(rdma_return_path
);