hw/arm: Use MachineClass->default_nic in the sbsa-ref machine
[qemu/kevin.git] / softmmu / physmem.c
blob9d7e172260f1370b9d5d0f1e5bd3bd8bb487b0c3
1 /*
2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "hw/xen/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
68 #include "qemu/pmem.h"
70 #include "migration/vmstate.h"
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
77 #include "monitor/monitor.h"
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
83 //#define DEBUG_SUBPAGE
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
86 * are protected by the ramlist lock.
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
96 static MemoryRegion io_mem_unassigned;
98 typedef struct PhysPageEntry PhysPageEntry;
100 struct PhysPageEntry {
101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102 uint32_t skip : 6;
103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104 uint32_t ptr : 26;
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
109 /* Size of the L2 (and L3, etc) page tables. */
110 #define ADDR_SPACE_BITS 64
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
117 typedef PhysPageEntry Node[P_L2_SIZE];
119 typedef struct PhysPageMap {
120 struct rcu_head rcu;
122 unsigned sections_nb;
123 unsigned sections_nb_alloc;
124 unsigned nodes_nb;
125 unsigned nodes_nb_alloc;
126 Node *nodes;
127 MemoryRegionSection *sections;
128 } PhysPageMap;
130 struct AddressSpaceDispatch {
131 MemoryRegionSection *mru_section;
132 /* This is a multi-level map on the physical address space.
133 * The bottom level has pointers to MemoryRegionSections.
135 PhysPageEntry phys_map;
136 PhysPageMap map;
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141 MemoryRegion iomem;
142 FlatView *fv;
143 hwaddr base;
144 uint16_t sub_section[];
145 } subpage_t;
147 #define PHYS_SECTION_UNASSIGNED 0
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156 * @cpu: the CPU whose AddressSpace this is
157 * @as: the AddressSpace itself
158 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159 * @tcg_as_listener: listener for tracking changes to the AddressSpace
161 struct CPUAddressSpace {
162 CPUState *cpu;
163 AddressSpace *as;
164 struct AddressSpaceDispatch *memory_dispatch;
165 MemoryListener tcg_as_listener;
168 struct DirtyBitmapSnapshot {
169 ram_addr_t start;
170 ram_addr_t end;
171 unsigned long dirty[];
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
176 static unsigned alloc_hint = 16;
177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180 alloc_hint = map->nodes_nb_alloc;
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
186 unsigned i;
187 uint32_t ret;
188 PhysPageEntry e;
189 PhysPageEntry *p;
191 ret = map->nodes_nb++;
192 p = map->nodes[ret];
193 assert(ret != PHYS_MAP_NODE_NIL);
194 assert(ret != map->nodes_nb_alloc);
196 e.skip = leaf ? 0 : 1;
197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198 for (i = 0; i < P_L2_SIZE; ++i) {
199 memcpy(&p[i], &e, sizeof(e));
201 return ret;
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205 hwaddr *index, uint64_t *nb, uint16_t leaf,
206 int level)
208 PhysPageEntry *p;
209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212 lp->ptr = phys_map_node_alloc(map, level == 0);
214 p = map->nodes[lp->ptr];
215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
217 while (*nb && lp < &p[P_L2_SIZE]) {
218 if ((*index & (step - 1)) == 0 && *nb >= step) {
219 lp->skip = 0;
220 lp->ptr = leaf;
221 *index += step;
222 *nb -= step;
223 } else {
224 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
226 ++lp;
230 static void phys_page_set(AddressSpaceDispatch *d,
231 hwaddr index, uint64_t nb,
232 uint16_t leaf)
234 /* Wildly overreserve - it doesn't matter much. */
235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241 * and update our entry so we can skip it and go directly to the destination.
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
245 unsigned valid_ptr = P_L2_SIZE;
246 int valid = 0;
247 PhysPageEntry *p;
248 int i;
250 if (lp->ptr == PHYS_MAP_NODE_NIL) {
251 return;
254 p = nodes[lp->ptr];
255 for (i = 0; i < P_L2_SIZE; i++) {
256 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257 continue;
260 valid_ptr = i;
261 valid++;
262 if (p[i].skip) {
263 phys_page_compact(&p[i], nodes);
267 /* We can only compress if there's only one child. */
268 if (valid != 1) {
269 return;
272 assert(valid_ptr < P_L2_SIZE);
274 /* Don't compress if it won't fit in the # of bits we have. */
275 if (P_L2_LEVELS >= (1 << 6) &&
276 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277 return;
280 lp->ptr = p[valid_ptr].ptr;
281 if (!p[valid_ptr].skip) {
282 /* If our only child is a leaf, make this a leaf. */
283 /* By design, we should have made this node a leaf to begin with so we
284 * should never reach here.
285 * But since it's so simple to handle this, let's do it just in case we
286 * change this rule.
288 lp->skip = 0;
289 } else {
290 lp->skip += p[valid_ptr].skip;
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
296 if (d->phys_map.skip) {
297 phys_page_compact(&d->phys_map, d->map.nodes);
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302 hwaddr addr)
304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305 * the section must cover the entire address space.
307 return int128_gethi(section->size) ||
308 range_covers_byte(section->offset_within_address_space,
309 int128_getlo(section->size), addr);
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
314 PhysPageEntry lp = d->phys_map, *p;
315 Node *nodes = d->map.nodes;
316 MemoryRegionSection *sections = d->map.sections;
317 hwaddr index = addr >> TARGET_PAGE_BITS;
318 int i;
320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321 if (lp.ptr == PHYS_MAP_NODE_NIL) {
322 return &sections[PHYS_SECTION_UNASSIGNED];
324 p = nodes[lp.ptr];
325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
328 if (section_covers_addr(&sections[lp.ptr], addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337 hwaddr addr,
338 bool resolve_subpage)
340 MemoryRegionSection *section = qatomic_read(&d->mru_section);
341 subpage_t *subpage;
343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344 !section_covers_addr(section, addr)) {
345 section = phys_page_find(d, addr);
346 qatomic_set(&d->mru_section, section);
348 if (resolve_subpage && section->mr->subpage) {
349 subpage = container_of(section->mr, subpage_t, iomem);
350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
352 return section;
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358 hwaddr *plen, bool resolve_subpage)
360 MemoryRegionSection *section;
361 MemoryRegion *mr;
362 Int128 diff;
364 section = address_space_lookup_region(d, addr, resolve_subpage);
365 /* Compute offset within MemoryRegionSection */
366 addr -= section->offset_within_address_space;
368 /* Compute offset within MemoryRegion */
369 *xlat = addr + section->offset_within_region;
371 mr = section->mr;
373 /* MMIO registers can be expected to perform full-width accesses based only
374 * on their address, without considering adjacent registers that could
375 * decode to completely different MemoryRegions. When such registers
376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377 * regions overlap wildly. For this reason we cannot clamp the accesses
378 * here.
380 * If the length is small (as is the case for address_space_ldl/stl),
381 * everything works fine. If the incoming length is large, however,
382 * the caller really has to do the clamping through memory_access_size.
384 if (memory_region_is_ram(mr)) {
385 diff = int128_sub(section->size, int128_make64(addr));
386 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
388 return section;
392 * address_space_translate_iommu - translate an address through an IOMMU
393 * memory region and then through the target address space.
395 * @iommu_mr: the IOMMU memory region that we start the translation from
396 * @addr: the address to be translated through the MMU
397 * @xlat: the translated address offset within the destination memory region.
398 * It cannot be %NULL.
399 * @plen_out: valid read/write length of the translated address. It
400 * cannot be %NULL.
401 * @page_mask_out: page mask for the translated address. This
402 * should only be meaningful for IOMMU translated
403 * addresses, since there may be huge pages that this bit
404 * would tell. It can be %NULL if we don't care about it.
405 * @is_write: whether the translation operation is for write
406 * @is_mmio: whether this can be MMIO, set true if it can
407 * @target_as: the address space targeted by the IOMMU
408 * @attrs: transaction attributes
410 * This function is called from RCU critical section. It is the common
411 * part of flatview_do_translate and address_space_translate_cached.
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414 hwaddr *xlat,
415 hwaddr *plen_out,
416 hwaddr *page_mask_out,
417 bool is_write,
418 bool is_mmio,
419 AddressSpace **target_as,
420 MemTxAttrs attrs)
422 MemoryRegionSection *section;
423 hwaddr page_mask = (hwaddr)-1;
425 do {
426 hwaddr addr = *xlat;
427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428 int iommu_idx = 0;
429 IOMMUTLBEntry iotlb;
431 if (imrc->attrs_to_index) {
432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
435 iotlb = imrc->translate(iommu_mr, addr, is_write ?
436 IOMMU_WO : IOMMU_RO, iommu_idx);
438 if (!(iotlb.perm & (1 << is_write))) {
439 goto unassigned;
442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443 | (addr & iotlb.addr_mask));
444 page_mask &= iotlb.addr_mask;
445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446 *target_as = iotlb.target_as;
448 section = address_space_translate_internal(
449 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450 plen_out, is_mmio);
452 iommu_mr = memory_region_get_iommu(section->mr);
453 } while (unlikely(iommu_mr));
455 if (page_mask_out) {
456 *page_mask_out = page_mask;
458 return *section;
460 unassigned:
461 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
465 * flatview_do_translate - translate an address in FlatView
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
479 * @target_as: the address space targeted by the IOMMU
480 * @attrs: memory transaction attributes
482 * This function is called from RCU critical section
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485 hwaddr addr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as,
492 MemTxAttrs attrs)
494 MemoryRegionSection *section;
495 IOMMUMemoryRegion *iommu_mr;
496 hwaddr plen = (hwaddr)(-1);
498 if (!plen_out) {
499 plen_out = &plen;
502 section = address_space_translate_internal(
503 flatview_to_dispatch(fv), addr, xlat,
504 plen_out, is_mmio);
506 iommu_mr = memory_region_get_iommu(section->mr);
507 if (unlikely(iommu_mr)) {
508 return address_space_translate_iommu(iommu_mr, xlat,
509 plen_out, page_mask_out,
510 is_write, is_mmio,
511 target_as, attrs);
513 if (page_mask_out) {
514 /* Not behind an IOMMU, use default page size. */
515 *page_mask_out = ~TARGET_PAGE_MASK;
518 return *section;
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523 bool is_write, MemTxAttrs attrs)
525 MemoryRegionSection section;
526 hwaddr xlat, page_mask;
529 * This can never be MMIO, and we don't really care about plen,
530 * but page mask.
532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533 NULL, &page_mask, is_write, false, &as,
534 attrs);
536 /* Illegal translation */
537 if (section.mr == &io_mem_unassigned) {
538 goto iotlb_fail;
541 /* Convert memory region offset into address space offset */
542 xlat += section.offset_within_address_space -
543 section.offset_within_region;
545 return (IOMMUTLBEntry) {
546 .target_as = as,
547 .iova = addr & ~page_mask,
548 .translated_addr = xlat & ~page_mask,
549 .addr_mask = page_mask,
550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551 .perm = IOMMU_RW,
554 iotlb_fail:
555 return (IOMMUTLBEntry) {0};
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560 hwaddr *plen, bool is_write,
561 MemTxAttrs attrs)
563 MemoryRegion *mr;
564 MemoryRegionSection section;
565 AddressSpace *as = NULL;
567 /* This can be MMIO, so setup MMIO bit. */
568 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569 is_write, true, &as, attrs);
570 mr = section.mr;
572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574 *plen = MIN(page, *plen);
577 return mr;
580 typedef struct TCGIOMMUNotifier {
581 IOMMUNotifier n;
582 MemoryRegion *mr;
583 CPUState *cpu;
584 int iommu_idx;
585 bool active;
586 } TCGIOMMUNotifier;
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
592 if (!notifier->active) {
593 return;
595 tlb_flush(notifier->cpu);
596 notifier->active = false;
597 /* We leave the notifier struct on the list to avoid reallocating it later.
598 * Generally the number of IOMMUs a CPU deals with will be small.
599 * In any case we can't unregister the iommu notifier from a notify
600 * callback.
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605 IOMMUMemoryRegion *iommu_mr,
606 int iommu_idx)
608 /* Make sure this CPU has an IOMMU notifier registered for this
609 * IOMMU/IOMMU index combination, so that we can flush its TLB
610 * when the IOMMU tells us the mappings we've cached have changed.
612 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613 TCGIOMMUNotifier *notifier = NULL;
614 int i;
616 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619 break;
622 if (i == cpu->iommu_notifiers->len) {
623 /* Not found, add a new entry at the end of the array */
624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625 notifier = g_new0(TCGIOMMUNotifier, 1);
626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
628 notifier->mr = mr;
629 notifier->iommu_idx = iommu_idx;
630 notifier->cpu = cpu;
631 /* Rather than trying to register interest in the specific part
632 * of the iommu's address space that we've accessed and then
633 * expand it later as subsequent accesses touch more of it, we
634 * just register interest in the whole thing, on the assumption
635 * that iommu reconfiguration will be rare.
637 iommu_notifier_init(&notifier->n,
638 tcg_iommu_unmap_notify,
639 IOMMU_NOTIFIER_UNMAP,
641 HWADDR_MAX,
642 iommu_idx);
643 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644 &error_fatal);
647 if (!notifier->active) {
648 notifier->active = true;
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
654 /* Destroy the CPU's notifier list */
655 int i;
656 TCGIOMMUNotifier *notifier;
658 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661 g_free(notifier);
663 g_array_free(cpu->iommu_notifiers, true);
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674 hwaddr *xlat, hwaddr *plen,
675 MemTxAttrs attrs, int *prot)
677 MemoryRegionSection *section;
678 IOMMUMemoryRegion *iommu_mr;
679 IOMMUMemoryRegionClass *imrc;
680 IOMMUTLBEntry iotlb;
681 int iommu_idx;
682 hwaddr addr = orig_addr;
683 AddressSpaceDispatch *d =
684 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
686 for (;;) {
687 section = address_space_translate_internal(d, addr, &addr, plen, false);
689 iommu_mr = memory_region_get_iommu(section->mr);
690 if (!iommu_mr) {
691 break;
694 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
696 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
697 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
698 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
699 * doesn't short-cut its translation table walk.
701 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
702 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
703 | (addr & iotlb.addr_mask));
704 /* Update the caller's prot bits to remove permissions the IOMMU
705 * is giving us a failure response for. If we get down to no
706 * permissions left at all we can give up now.
708 if (!(iotlb.perm & IOMMU_RO)) {
709 *prot &= ~(PAGE_READ | PAGE_EXEC);
711 if (!(iotlb.perm & IOMMU_WO)) {
712 *prot &= ~PAGE_WRITE;
715 if (!*prot) {
716 goto translate_fail;
719 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
722 assert(!memory_region_is_iommu(section->mr));
723 *xlat = addr;
724 return section;
726 translate_fail:
728 * We should be given a page-aligned address -- certainly
729 * tlb_set_page_with_attrs() does so. The page offset of xlat
730 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
731 * The page portion of xlat will be logged by memory_region_access_valid()
732 * when this memory access is rejected, so use the original untranslated
733 * physical address.
735 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
736 *xlat = orig_addr;
737 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
740 void cpu_address_space_init(CPUState *cpu, int asidx,
741 const char *prefix, MemoryRegion *mr)
743 CPUAddressSpace *newas;
744 AddressSpace *as = g_new0(AddressSpace, 1);
745 char *as_name;
747 assert(mr);
748 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
749 address_space_init(as, mr, as_name);
750 g_free(as_name);
752 /* Target code should have set num_ases before calling us */
753 assert(asidx < cpu->num_ases);
755 if (asidx == 0) {
756 /* address space 0 gets the convenience alias */
757 cpu->as = as;
760 /* KVM cannot currently support multiple address spaces. */
761 assert(asidx == 0 || !kvm_enabled());
763 if (!cpu->cpu_ases) {
764 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
767 newas = &cpu->cpu_ases[asidx];
768 newas->cpu = cpu;
769 newas->as = as;
770 if (tcg_enabled()) {
771 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
772 newas->tcg_as_listener.commit = tcg_commit;
773 newas->tcg_as_listener.name = "tcg";
774 memory_listener_register(&newas->tcg_as_listener, as);
778 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
780 /* Return the AddressSpace corresponding to the specified index */
781 return cpu->cpu_ases[asidx].as;
784 /* Called from RCU critical section */
785 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
787 RAMBlock *block;
789 block = qatomic_rcu_read(&ram_list.mru_block);
790 if (block && addr - block->offset < block->max_length) {
791 return block;
793 RAMBLOCK_FOREACH(block) {
794 if (addr - block->offset < block->max_length) {
795 goto found;
799 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
800 abort();
802 found:
803 /* It is safe to write mru_block outside the iothread lock. This
804 * is what happens:
806 * mru_block = xxx
807 * rcu_read_unlock()
808 * xxx removed from list
809 * rcu_read_lock()
810 * read mru_block
811 * mru_block = NULL;
812 * call_rcu(reclaim_ramblock, xxx);
813 * rcu_read_unlock()
815 * qatomic_rcu_set is not needed here. The block was already published
816 * when it was placed into the list. Here we're just making an extra
817 * copy of the pointer.
819 ram_list.mru_block = block;
820 return block;
823 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
825 CPUState *cpu;
826 ram_addr_t start1;
827 RAMBlock *block;
828 ram_addr_t end;
830 assert(tcg_enabled());
831 end = TARGET_PAGE_ALIGN(start + length);
832 start &= TARGET_PAGE_MASK;
834 RCU_READ_LOCK_GUARD();
835 block = qemu_get_ram_block(start);
836 assert(block == qemu_get_ram_block(end - 1));
837 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
838 CPU_FOREACH(cpu) {
839 tlb_reset_dirty(cpu, start1, length);
843 /* Note: start and end must be within the same ram block. */
844 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
845 ram_addr_t length,
846 unsigned client)
848 DirtyMemoryBlocks *blocks;
849 unsigned long end, page, start_page;
850 bool dirty = false;
851 RAMBlock *ramblock;
852 uint64_t mr_offset, mr_size;
854 if (length == 0) {
855 return false;
858 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
859 start_page = start >> TARGET_PAGE_BITS;
860 page = start_page;
862 WITH_RCU_READ_LOCK_GUARD() {
863 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
864 ramblock = qemu_get_ram_block(start);
865 /* Range sanity check on the ramblock */
866 assert(start >= ramblock->offset &&
867 start + length <= ramblock->offset + ramblock->used_length);
869 while (page < end) {
870 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
871 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
872 unsigned long num = MIN(end - page,
873 DIRTY_MEMORY_BLOCK_SIZE - offset);
875 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
876 offset, num);
877 page += num;
880 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
881 mr_size = (end - start_page) << TARGET_PAGE_BITS;
882 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
885 if (dirty && tcg_enabled()) {
886 tlb_reset_dirty_range_all(start, length);
889 return dirty;
892 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
893 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
895 DirtyMemoryBlocks *blocks;
896 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
897 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
898 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
899 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
900 DirtyBitmapSnapshot *snap;
901 unsigned long page, end, dest;
903 snap = g_malloc0(sizeof(*snap) +
904 ((last - first) >> (TARGET_PAGE_BITS + 3)));
905 snap->start = first;
906 snap->end = last;
908 page = first >> TARGET_PAGE_BITS;
909 end = last >> TARGET_PAGE_BITS;
910 dest = 0;
912 WITH_RCU_READ_LOCK_GUARD() {
913 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
915 while (page < end) {
916 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
917 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
918 unsigned long num = MIN(end - page,
919 DIRTY_MEMORY_BLOCK_SIZE - offset);
921 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
922 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
923 offset >>= BITS_PER_LEVEL;
925 bitmap_copy_and_clear_atomic(snap->dirty + dest,
926 blocks->blocks[idx] + offset,
927 num);
928 page += num;
929 dest += num >> BITS_PER_LEVEL;
933 if (tcg_enabled()) {
934 tlb_reset_dirty_range_all(start, length);
937 memory_region_clear_dirty_bitmap(mr, offset, length);
939 return snap;
942 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
943 ram_addr_t start,
944 ram_addr_t length)
946 unsigned long page, end;
948 assert(start >= snap->start);
949 assert(start + length <= snap->end);
951 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
952 page = (start - snap->start) >> TARGET_PAGE_BITS;
954 while (page < end) {
955 if (test_bit(page, snap->dirty)) {
956 return true;
958 page++;
960 return false;
963 /* Called from RCU critical section */
964 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
965 MemoryRegionSection *section)
967 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
968 return section - d->map.sections;
971 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
972 uint16_t section);
973 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
975 static uint16_t phys_section_add(PhysPageMap *map,
976 MemoryRegionSection *section)
978 /* The physical section number is ORed with a page-aligned
979 * pointer to produce the iotlb entries. Thus it should
980 * never overflow into the page-aligned value.
982 assert(map->sections_nb < TARGET_PAGE_SIZE);
984 if (map->sections_nb == map->sections_nb_alloc) {
985 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
986 map->sections = g_renew(MemoryRegionSection, map->sections,
987 map->sections_nb_alloc);
989 map->sections[map->sections_nb] = *section;
990 memory_region_ref(section->mr);
991 return map->sections_nb++;
994 static void phys_section_destroy(MemoryRegion *mr)
996 bool have_sub_page = mr->subpage;
998 memory_region_unref(mr);
1000 if (have_sub_page) {
1001 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1002 object_unref(OBJECT(&subpage->iomem));
1003 g_free(subpage);
1007 static void phys_sections_free(PhysPageMap *map)
1009 while (map->sections_nb > 0) {
1010 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1011 phys_section_destroy(section->mr);
1013 g_free(map->sections);
1014 g_free(map->nodes);
1017 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1019 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1020 subpage_t *subpage;
1021 hwaddr base = section->offset_within_address_space
1022 & TARGET_PAGE_MASK;
1023 MemoryRegionSection *existing = phys_page_find(d, base);
1024 MemoryRegionSection subsection = {
1025 .offset_within_address_space = base,
1026 .size = int128_make64(TARGET_PAGE_SIZE),
1028 hwaddr start, end;
1030 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1032 if (!(existing->mr->subpage)) {
1033 subpage = subpage_init(fv, base);
1034 subsection.fv = fv;
1035 subsection.mr = &subpage->iomem;
1036 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1037 phys_section_add(&d->map, &subsection));
1038 } else {
1039 subpage = container_of(existing->mr, subpage_t, iomem);
1041 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1042 end = start + int128_get64(section->size) - 1;
1043 subpage_register(subpage, start, end,
1044 phys_section_add(&d->map, section));
1048 static void register_multipage(FlatView *fv,
1049 MemoryRegionSection *section)
1051 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1052 hwaddr start_addr = section->offset_within_address_space;
1053 uint16_t section_index = phys_section_add(&d->map, section);
1054 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1055 TARGET_PAGE_BITS));
1057 assert(num_pages);
1058 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1062 * The range in *section* may look like this:
1064 * |s|PPPPPPP|s|
1066 * where s stands for subpage and P for page.
1068 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1070 MemoryRegionSection remain = *section;
1071 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1073 /* register first subpage */
1074 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1075 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1076 - remain.offset_within_address_space;
1078 MemoryRegionSection now = remain;
1079 now.size = int128_min(int128_make64(left), now.size);
1080 register_subpage(fv, &now);
1081 if (int128_eq(remain.size, now.size)) {
1082 return;
1084 remain.size = int128_sub(remain.size, now.size);
1085 remain.offset_within_address_space += int128_get64(now.size);
1086 remain.offset_within_region += int128_get64(now.size);
1089 /* register whole pages */
1090 if (int128_ge(remain.size, page_size)) {
1091 MemoryRegionSection now = remain;
1092 now.size = int128_and(now.size, int128_neg(page_size));
1093 register_multipage(fv, &now);
1094 if (int128_eq(remain.size, now.size)) {
1095 return;
1097 remain.size = int128_sub(remain.size, now.size);
1098 remain.offset_within_address_space += int128_get64(now.size);
1099 remain.offset_within_region += int128_get64(now.size);
1102 /* register last subpage */
1103 register_subpage(fv, &remain);
1106 void qemu_flush_coalesced_mmio_buffer(void)
1108 if (kvm_enabled())
1109 kvm_flush_coalesced_mmio_buffer();
1112 void qemu_mutex_lock_ramlist(void)
1114 qemu_mutex_lock(&ram_list.mutex);
1117 void qemu_mutex_unlock_ramlist(void)
1119 qemu_mutex_unlock(&ram_list.mutex);
1122 GString *ram_block_format(void)
1124 RAMBlock *block;
1125 char *psize;
1126 GString *buf = g_string_new("");
1128 RCU_READ_LOCK_GUARD();
1129 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1130 "Block Name", "PSize", "Offset", "Used", "Total",
1131 "HVA", "RO");
1133 RAMBLOCK_FOREACH(block) {
1134 psize = size_to_str(block->page_size);
1135 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1136 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1137 block->idstr, psize,
1138 (uint64_t)block->offset,
1139 (uint64_t)block->used_length,
1140 (uint64_t)block->max_length,
1141 (uint64_t)(uintptr_t)block->host,
1142 block->mr->readonly ? "ro" : "rw");
1144 g_free(psize);
1147 return buf;
1150 static int find_min_backend_pagesize(Object *obj, void *opaque)
1152 long *hpsize_min = opaque;
1154 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1155 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1156 long hpsize = host_memory_backend_pagesize(backend);
1158 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1159 *hpsize_min = hpsize;
1163 return 0;
1166 static int find_max_backend_pagesize(Object *obj, void *opaque)
1168 long *hpsize_max = opaque;
1170 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1171 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1172 long hpsize = host_memory_backend_pagesize(backend);
1174 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1175 *hpsize_max = hpsize;
1179 return 0;
1183 * TODO: We assume right now that all mapped host memory backends are
1184 * used as RAM, however some might be used for different purposes.
1186 long qemu_minrampagesize(void)
1188 long hpsize = LONG_MAX;
1189 Object *memdev_root = object_resolve_path("/objects", NULL);
1191 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1192 return hpsize;
1195 long qemu_maxrampagesize(void)
1197 long pagesize = 0;
1198 Object *memdev_root = object_resolve_path("/objects", NULL);
1200 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1201 return pagesize;
1204 #ifdef CONFIG_POSIX
1205 static int64_t get_file_size(int fd)
1207 int64_t size;
1208 #if defined(__linux__)
1209 struct stat st;
1211 if (fstat(fd, &st) < 0) {
1212 return -errno;
1215 /* Special handling for devdax character devices */
1216 if (S_ISCHR(st.st_mode)) {
1217 g_autofree char *subsystem_path = NULL;
1218 g_autofree char *subsystem = NULL;
1220 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1221 major(st.st_rdev), minor(st.st_rdev));
1222 subsystem = g_file_read_link(subsystem_path, NULL);
1224 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1225 g_autofree char *size_path = NULL;
1226 g_autofree char *size_str = NULL;
1228 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1229 major(st.st_rdev), minor(st.st_rdev));
1231 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1232 return g_ascii_strtoll(size_str, NULL, 0);
1236 #endif /* defined(__linux__) */
1238 /* st.st_size may be zero for special files yet lseek(2) works */
1239 size = lseek(fd, 0, SEEK_END);
1240 if (size < 0) {
1241 return -errno;
1243 return size;
1246 static int64_t get_file_align(int fd)
1248 int64_t align = -1;
1249 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1250 struct stat st;
1252 if (fstat(fd, &st) < 0) {
1253 return -errno;
1256 /* Special handling for devdax character devices */
1257 if (S_ISCHR(st.st_mode)) {
1258 g_autofree char *path = NULL;
1259 g_autofree char *rpath = NULL;
1260 struct daxctl_ctx *ctx;
1261 struct daxctl_region *region;
1262 int rc = 0;
1264 path = g_strdup_printf("/sys/dev/char/%d:%d",
1265 major(st.st_rdev), minor(st.st_rdev));
1266 rpath = realpath(path, NULL);
1267 if (!rpath) {
1268 return -errno;
1271 rc = daxctl_new(&ctx);
1272 if (rc) {
1273 return -1;
1276 daxctl_region_foreach(ctx, region) {
1277 if (strstr(rpath, daxctl_region_get_path(region))) {
1278 align = daxctl_region_get_align(region);
1279 break;
1282 daxctl_unref(ctx);
1284 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1286 return align;
1289 static int file_ram_open(const char *path,
1290 const char *region_name,
1291 bool readonly,
1292 bool *created,
1293 Error **errp)
1295 char *filename;
1296 char *sanitized_name;
1297 char *c;
1298 int fd = -1;
1300 *created = false;
1301 for (;;) {
1302 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1303 if (fd >= 0) {
1304 /* @path names an existing file, use it */
1305 break;
1307 if (errno == ENOENT) {
1308 /* @path names a file that doesn't exist, create it */
1309 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1310 if (fd >= 0) {
1311 *created = true;
1312 break;
1314 } else if (errno == EISDIR) {
1315 /* @path names a directory, create a file there */
1316 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1317 sanitized_name = g_strdup(region_name);
1318 for (c = sanitized_name; *c != '\0'; c++) {
1319 if (*c == '/') {
1320 *c = '_';
1324 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1325 sanitized_name);
1326 g_free(sanitized_name);
1328 fd = mkstemp(filename);
1329 if (fd >= 0) {
1330 unlink(filename);
1331 g_free(filename);
1332 break;
1334 g_free(filename);
1336 if (errno != EEXIST && errno != EINTR) {
1337 error_setg_errno(errp, errno,
1338 "can't open backing store %s for guest RAM",
1339 path);
1340 return -1;
1343 * Try again on EINTR and EEXIST. The latter happens when
1344 * something else creates the file between our two open().
1348 return fd;
1351 static void *file_ram_alloc(RAMBlock *block,
1352 ram_addr_t memory,
1353 int fd,
1354 bool readonly,
1355 bool truncate,
1356 off_t offset,
1357 Error **errp)
1359 uint32_t qemu_map_flags;
1360 void *area;
1362 block->page_size = qemu_fd_getpagesize(fd);
1363 if (block->mr->align % block->page_size) {
1364 error_setg(errp, "alignment 0x%" PRIx64
1365 " must be multiples of page size 0x%zx",
1366 block->mr->align, block->page_size);
1367 return NULL;
1368 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1369 error_setg(errp, "alignment 0x%" PRIx64
1370 " must be a power of two", block->mr->align);
1371 return NULL;
1372 } else if (offset % block->page_size) {
1373 error_setg(errp, "offset 0x%" PRIx64
1374 " must be multiples of page size 0x%zx",
1375 offset, block->page_size);
1376 return NULL;
1378 block->mr->align = MAX(block->page_size, block->mr->align);
1379 #if defined(__s390x__)
1380 if (kvm_enabled()) {
1381 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1383 #endif
1385 if (memory < block->page_size) {
1386 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1387 "or larger than page size 0x%zx",
1388 memory, block->page_size);
1389 return NULL;
1392 memory = ROUND_UP(memory, block->page_size);
1395 * ftruncate is not supported by hugetlbfs in older
1396 * hosts, so don't bother bailing out on errors.
1397 * If anything goes wrong with it under other filesystems,
1398 * mmap will fail.
1400 * Do not truncate the non-empty backend file to avoid corrupting
1401 * the existing data in the file. Disabling shrinking is not
1402 * enough. For example, the current vNVDIMM implementation stores
1403 * the guest NVDIMM labels at the end of the backend file. If the
1404 * backend file is later extended, QEMU will not be able to find
1405 * those labels. Therefore, extending the non-empty backend file
1406 * is disabled as well.
1408 if (truncate && ftruncate(fd, offset + memory)) {
1409 perror("ftruncate");
1412 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1413 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1414 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1415 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1416 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1417 if (area == MAP_FAILED) {
1418 error_setg_errno(errp, errno,
1419 "unable to map backing store for guest RAM");
1420 return NULL;
1423 block->fd = fd;
1424 block->fd_offset = offset;
1425 return area;
1427 #endif
1429 /* Allocate space within the ram_addr_t space that governs the
1430 * dirty bitmaps.
1431 * Called with the ramlist lock held.
1433 static ram_addr_t find_ram_offset(ram_addr_t size)
1435 RAMBlock *block, *next_block;
1436 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1438 assert(size != 0); /* it would hand out same offset multiple times */
1440 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1441 return 0;
1444 RAMBLOCK_FOREACH(block) {
1445 ram_addr_t candidate, next = RAM_ADDR_MAX;
1447 /* Align blocks to start on a 'long' in the bitmap
1448 * which makes the bitmap sync'ing take the fast path.
1450 candidate = block->offset + block->max_length;
1451 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1453 /* Search for the closest following block
1454 * and find the gap.
1456 RAMBLOCK_FOREACH(next_block) {
1457 if (next_block->offset >= candidate) {
1458 next = MIN(next, next_block->offset);
1462 /* If it fits remember our place and remember the size
1463 * of gap, but keep going so that we might find a smaller
1464 * gap to fill so avoiding fragmentation.
1466 if (next - candidate >= size && next - candidate < mingap) {
1467 offset = candidate;
1468 mingap = next - candidate;
1471 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1474 if (offset == RAM_ADDR_MAX) {
1475 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1476 (uint64_t)size);
1477 abort();
1480 trace_find_ram_offset(size, offset);
1482 return offset;
1485 static unsigned long last_ram_page(void)
1487 RAMBlock *block;
1488 ram_addr_t last = 0;
1490 RCU_READ_LOCK_GUARD();
1491 RAMBLOCK_FOREACH(block) {
1492 last = MAX(last, block->offset + block->max_length);
1494 return last >> TARGET_PAGE_BITS;
1497 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1499 int ret;
1501 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1502 if (!machine_dump_guest_core(current_machine)) {
1503 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1504 if (ret) {
1505 perror("qemu_madvise");
1506 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1507 "but dump_guest_core=off specified\n");
1512 const char *qemu_ram_get_idstr(RAMBlock *rb)
1514 return rb->idstr;
1517 void *qemu_ram_get_host_addr(RAMBlock *rb)
1519 return rb->host;
1522 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1524 return rb->offset;
1527 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1529 return rb->used_length;
1532 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1534 return rb->max_length;
1537 bool qemu_ram_is_shared(RAMBlock *rb)
1539 return rb->flags & RAM_SHARED;
1542 bool qemu_ram_is_noreserve(RAMBlock *rb)
1544 return rb->flags & RAM_NORESERVE;
1547 /* Note: Only set at the start of postcopy */
1548 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1550 return rb->flags & RAM_UF_ZEROPAGE;
1553 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1555 rb->flags |= RAM_UF_ZEROPAGE;
1558 bool qemu_ram_is_migratable(RAMBlock *rb)
1560 return rb->flags & RAM_MIGRATABLE;
1563 void qemu_ram_set_migratable(RAMBlock *rb)
1565 rb->flags |= RAM_MIGRATABLE;
1568 void qemu_ram_unset_migratable(RAMBlock *rb)
1570 rb->flags &= ~RAM_MIGRATABLE;
1573 int qemu_ram_get_fd(RAMBlock *rb)
1575 return rb->fd;
1578 /* Called with iothread lock held. */
1579 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1581 RAMBlock *block;
1583 assert(new_block);
1584 assert(!new_block->idstr[0]);
1586 if (dev) {
1587 char *id = qdev_get_dev_path(dev);
1588 if (id) {
1589 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1590 g_free(id);
1593 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1595 RCU_READ_LOCK_GUARD();
1596 RAMBLOCK_FOREACH(block) {
1597 if (block != new_block &&
1598 !strcmp(block->idstr, new_block->idstr)) {
1599 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1600 new_block->idstr);
1601 abort();
1606 /* Called with iothread lock held. */
1607 void qemu_ram_unset_idstr(RAMBlock *block)
1609 /* FIXME: arch_init.c assumes that this is not called throughout
1610 * migration. Ignore the problem since hot-unplug during migration
1611 * does not work anyway.
1613 if (block) {
1614 memset(block->idstr, 0, sizeof(block->idstr));
1618 size_t qemu_ram_pagesize(RAMBlock *rb)
1620 return rb->page_size;
1623 /* Returns the largest size of page in use */
1624 size_t qemu_ram_pagesize_largest(void)
1626 RAMBlock *block;
1627 size_t largest = 0;
1629 RAMBLOCK_FOREACH(block) {
1630 largest = MAX(largest, qemu_ram_pagesize(block));
1633 return largest;
1636 static int memory_try_enable_merging(void *addr, size_t len)
1638 if (!machine_mem_merge(current_machine)) {
1639 /* disabled by the user */
1640 return 0;
1643 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1647 * Resizing RAM while migrating can result in the migration being canceled.
1648 * Care has to be taken if the guest might have already detected the memory.
1650 * As memory core doesn't know how is memory accessed, it is up to
1651 * resize callback to update device state and/or add assertions to detect
1652 * misuse, if necessary.
1654 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1656 const ram_addr_t oldsize = block->used_length;
1657 const ram_addr_t unaligned_size = newsize;
1659 assert(block);
1661 newsize = HOST_PAGE_ALIGN(newsize);
1663 if (block->used_length == newsize) {
1665 * We don't have to resize the ram block (which only knows aligned
1666 * sizes), however, we have to notify if the unaligned size changed.
1668 if (unaligned_size != memory_region_size(block->mr)) {
1669 memory_region_set_size(block->mr, unaligned_size);
1670 if (block->resized) {
1671 block->resized(block->idstr, unaligned_size, block->host);
1674 return 0;
1677 if (!(block->flags & RAM_RESIZEABLE)) {
1678 error_setg_errno(errp, EINVAL,
1679 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1680 " != 0x" RAM_ADDR_FMT, block->idstr,
1681 newsize, block->used_length);
1682 return -EINVAL;
1685 if (block->max_length < newsize) {
1686 error_setg_errno(errp, EINVAL,
1687 "Size too large: %s: 0x" RAM_ADDR_FMT
1688 " > 0x" RAM_ADDR_FMT, block->idstr,
1689 newsize, block->max_length);
1690 return -EINVAL;
1693 /* Notify before modifying the ram block and touching the bitmaps. */
1694 if (block->host) {
1695 ram_block_notify_resize(block->host, oldsize, newsize);
1698 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1699 block->used_length = newsize;
1700 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1701 DIRTY_CLIENTS_ALL);
1702 memory_region_set_size(block->mr, unaligned_size);
1703 if (block->resized) {
1704 block->resized(block->idstr, unaligned_size, block->host);
1706 return 0;
1710 * Trigger sync on the given ram block for range [start, start + length]
1711 * with the backing store if one is available.
1712 * Otherwise no-op.
1713 * @Note: this is supposed to be a synchronous op.
1715 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1717 /* The requested range should fit in within the block range */
1718 g_assert((start + length) <= block->used_length);
1720 #ifdef CONFIG_LIBPMEM
1721 /* The lack of support for pmem should not block the sync */
1722 if (ramblock_is_pmem(block)) {
1723 void *addr = ramblock_ptr(block, start);
1724 pmem_persist(addr, length);
1725 return;
1727 #endif
1728 if (block->fd >= 0) {
1730 * Case there is no support for PMEM or the memory has not been
1731 * specified as persistent (or is not one) - use the msync.
1732 * Less optimal but still achieves the same goal
1734 void *addr = ramblock_ptr(block, start);
1735 if (qemu_msync(addr, length, block->fd)) {
1736 warn_report("%s: failed to sync memory range: start: "
1737 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1738 __func__, start, length);
1743 /* Called with ram_list.mutex held */
1744 static void dirty_memory_extend(ram_addr_t old_ram_size,
1745 ram_addr_t new_ram_size)
1747 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1748 DIRTY_MEMORY_BLOCK_SIZE);
1749 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1750 DIRTY_MEMORY_BLOCK_SIZE);
1751 int i;
1753 /* Only need to extend if block count increased */
1754 if (new_num_blocks <= old_num_blocks) {
1755 return;
1758 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1759 DirtyMemoryBlocks *old_blocks;
1760 DirtyMemoryBlocks *new_blocks;
1761 int j;
1763 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1764 new_blocks = g_malloc(sizeof(*new_blocks) +
1765 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1767 if (old_num_blocks) {
1768 memcpy(new_blocks->blocks, old_blocks->blocks,
1769 old_num_blocks * sizeof(old_blocks->blocks[0]));
1772 for (j = old_num_blocks; j < new_num_blocks; j++) {
1773 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1776 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1778 if (old_blocks) {
1779 g_free_rcu(old_blocks, rcu);
1784 static void ram_block_add(RAMBlock *new_block, Error **errp)
1786 const bool noreserve = qemu_ram_is_noreserve(new_block);
1787 const bool shared = qemu_ram_is_shared(new_block);
1788 RAMBlock *block;
1789 RAMBlock *last_block = NULL;
1790 ram_addr_t old_ram_size, new_ram_size;
1791 Error *err = NULL;
1793 old_ram_size = last_ram_page();
1795 qemu_mutex_lock_ramlist();
1796 new_block->offset = find_ram_offset(new_block->max_length);
1798 if (!new_block->host) {
1799 if (xen_enabled()) {
1800 xen_ram_alloc(new_block->offset, new_block->max_length,
1801 new_block->mr, &err);
1802 if (err) {
1803 error_propagate(errp, err);
1804 qemu_mutex_unlock_ramlist();
1805 return;
1807 } else {
1808 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1809 &new_block->mr->align,
1810 shared, noreserve);
1811 if (!new_block->host) {
1812 error_setg_errno(errp, errno,
1813 "cannot set up guest memory '%s'",
1814 memory_region_name(new_block->mr));
1815 qemu_mutex_unlock_ramlist();
1816 return;
1818 memory_try_enable_merging(new_block->host, new_block->max_length);
1822 new_ram_size = MAX(old_ram_size,
1823 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1824 if (new_ram_size > old_ram_size) {
1825 dirty_memory_extend(old_ram_size, new_ram_size);
1827 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1828 * QLIST (which has an RCU-friendly variant) does not have insertion at
1829 * tail, so save the last element in last_block.
1831 RAMBLOCK_FOREACH(block) {
1832 last_block = block;
1833 if (block->max_length < new_block->max_length) {
1834 break;
1837 if (block) {
1838 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1839 } else if (last_block) {
1840 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1841 } else { /* list is empty */
1842 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1844 ram_list.mru_block = NULL;
1846 /* Write list before version */
1847 smp_wmb();
1848 ram_list.version++;
1849 qemu_mutex_unlock_ramlist();
1851 cpu_physical_memory_set_dirty_range(new_block->offset,
1852 new_block->used_length,
1853 DIRTY_CLIENTS_ALL);
1855 if (new_block->host) {
1856 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1857 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1859 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1860 * Configure it unless the machine is a qtest server, in which case
1861 * KVM is not used and it may be forked (eg for fuzzing purposes).
1863 if (!qtest_enabled()) {
1864 qemu_madvise(new_block->host, new_block->max_length,
1865 QEMU_MADV_DONTFORK);
1867 ram_block_notify_add(new_block->host, new_block->used_length,
1868 new_block->max_length);
1872 #ifdef CONFIG_POSIX
1873 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1874 uint32_t ram_flags, int fd, off_t offset,
1875 bool readonly, Error **errp)
1877 RAMBlock *new_block;
1878 Error *local_err = NULL;
1879 int64_t file_size, file_align;
1881 /* Just support these ram flags by now. */
1882 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1883 RAM_PROTECTED)) == 0);
1885 if (xen_enabled()) {
1886 error_setg(errp, "-mem-path not supported with Xen");
1887 return NULL;
1890 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1891 error_setg(errp,
1892 "host lacks kvm mmu notifiers, -mem-path unsupported");
1893 return NULL;
1896 size = HOST_PAGE_ALIGN(size);
1897 file_size = get_file_size(fd);
1898 if (file_size > offset && file_size < (offset + size)) {
1899 error_setg(errp, "backing store size 0x%" PRIx64
1900 " does not match 'size' option 0x" RAM_ADDR_FMT,
1901 file_size, size);
1902 return NULL;
1905 file_align = get_file_align(fd);
1906 if (file_align > 0 && file_align > mr->align) {
1907 error_setg(errp, "backing store align 0x%" PRIx64
1908 " is larger than 'align' option 0x%" PRIx64,
1909 file_align, mr->align);
1910 return NULL;
1913 new_block = g_malloc0(sizeof(*new_block));
1914 new_block->mr = mr;
1915 new_block->used_length = size;
1916 new_block->max_length = size;
1917 new_block->flags = ram_flags;
1918 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
1919 !file_size, offset, errp);
1920 if (!new_block->host) {
1921 g_free(new_block);
1922 return NULL;
1925 ram_block_add(new_block, &local_err);
1926 if (local_err) {
1927 g_free(new_block);
1928 error_propagate(errp, local_err);
1929 return NULL;
1931 return new_block;
1936 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1937 uint32_t ram_flags, const char *mem_path,
1938 off_t offset, bool readonly, Error **errp)
1940 int fd;
1941 bool created;
1942 RAMBlock *block;
1944 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
1945 errp);
1946 if (fd < 0) {
1947 return NULL;
1950 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, readonly,
1951 errp);
1952 if (!block) {
1953 if (created) {
1954 unlink(mem_path);
1956 close(fd);
1957 return NULL;
1960 return block;
1962 #endif
1964 static
1965 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1966 void (*resized)(const char*,
1967 uint64_t length,
1968 void *host),
1969 void *host, uint32_t ram_flags,
1970 MemoryRegion *mr, Error **errp)
1972 RAMBlock *new_block;
1973 Error *local_err = NULL;
1975 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
1976 RAM_NORESERVE)) == 0);
1977 assert(!host ^ (ram_flags & RAM_PREALLOC));
1979 size = HOST_PAGE_ALIGN(size);
1980 max_size = HOST_PAGE_ALIGN(max_size);
1981 new_block = g_malloc0(sizeof(*new_block));
1982 new_block->mr = mr;
1983 new_block->resized = resized;
1984 new_block->used_length = size;
1985 new_block->max_length = max_size;
1986 assert(max_size >= size);
1987 new_block->fd = -1;
1988 new_block->page_size = qemu_real_host_page_size();
1989 new_block->host = host;
1990 new_block->flags = ram_flags;
1991 ram_block_add(new_block, &local_err);
1992 if (local_err) {
1993 g_free(new_block);
1994 error_propagate(errp, local_err);
1995 return NULL;
1997 return new_block;
2000 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2001 MemoryRegion *mr, Error **errp)
2003 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2004 errp);
2007 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2008 MemoryRegion *mr, Error **errp)
2010 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2011 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2014 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2015 void (*resized)(const char*,
2016 uint64_t length,
2017 void *host),
2018 MemoryRegion *mr, Error **errp)
2020 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2021 RAM_RESIZEABLE, mr, errp);
2024 static void reclaim_ramblock(RAMBlock *block)
2026 if (block->flags & RAM_PREALLOC) {
2028 } else if (xen_enabled()) {
2029 xen_invalidate_map_cache_entry(block->host);
2030 #ifndef _WIN32
2031 } else if (block->fd >= 0) {
2032 qemu_ram_munmap(block->fd, block->host, block->max_length);
2033 close(block->fd);
2034 #endif
2035 } else {
2036 qemu_anon_ram_free(block->host, block->max_length);
2038 g_free(block);
2041 void qemu_ram_free(RAMBlock *block)
2043 if (!block) {
2044 return;
2047 if (block->host) {
2048 ram_block_notify_remove(block->host, block->used_length,
2049 block->max_length);
2052 qemu_mutex_lock_ramlist();
2053 QLIST_REMOVE_RCU(block, next);
2054 ram_list.mru_block = NULL;
2055 /* Write list before version */
2056 smp_wmb();
2057 ram_list.version++;
2058 call_rcu(block, reclaim_ramblock, rcu);
2059 qemu_mutex_unlock_ramlist();
2062 #ifndef _WIN32
2063 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2065 RAMBlock *block;
2066 ram_addr_t offset;
2067 int flags;
2068 void *area, *vaddr;
2070 RAMBLOCK_FOREACH(block) {
2071 offset = addr - block->offset;
2072 if (offset < block->max_length) {
2073 vaddr = ramblock_ptr(block, offset);
2074 if (block->flags & RAM_PREALLOC) {
2076 } else if (xen_enabled()) {
2077 abort();
2078 } else {
2079 flags = MAP_FIXED;
2080 flags |= block->flags & RAM_SHARED ?
2081 MAP_SHARED : MAP_PRIVATE;
2082 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2083 if (block->fd >= 0) {
2084 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2085 flags, block->fd, offset + block->fd_offset);
2086 } else {
2087 flags |= MAP_ANONYMOUS;
2088 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2089 flags, -1, 0);
2091 if (area != vaddr) {
2092 error_report("Could not remap addr: "
2093 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2094 length, addr);
2095 exit(1);
2097 memory_try_enable_merging(vaddr, length);
2098 qemu_ram_setup_dump(vaddr, length);
2103 #endif /* !_WIN32 */
2105 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2106 * This should not be used for general purpose DMA. Use address_space_map
2107 * or address_space_rw instead. For local memory (e.g. video ram) that the
2108 * device owns, use memory_region_get_ram_ptr.
2110 * Called within RCU critical section.
2112 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2114 RAMBlock *block = ram_block;
2116 if (block == NULL) {
2117 block = qemu_get_ram_block(addr);
2118 addr -= block->offset;
2121 if (xen_enabled() && block->host == NULL) {
2122 /* We need to check if the requested address is in the RAM
2123 * because we don't want to map the entire memory in QEMU.
2124 * In that case just map until the end of the page.
2126 if (block->offset == 0) {
2127 return xen_map_cache(addr, 0, 0, false);
2130 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2132 return ramblock_ptr(block, addr);
2135 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2136 * but takes a size argument.
2138 * Called within RCU critical section.
2140 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2141 hwaddr *size, bool lock)
2143 RAMBlock *block = ram_block;
2144 if (*size == 0) {
2145 return NULL;
2148 if (block == NULL) {
2149 block = qemu_get_ram_block(addr);
2150 addr -= block->offset;
2152 *size = MIN(*size, block->max_length - addr);
2154 if (xen_enabled() && block->host == NULL) {
2155 /* We need to check if the requested address is in the RAM
2156 * because we don't want to map the entire memory in QEMU.
2157 * In that case just map the requested area.
2159 if (block->offset == 0) {
2160 return xen_map_cache(addr, *size, lock, lock);
2163 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2166 return ramblock_ptr(block, addr);
2169 /* Return the offset of a hostpointer within a ramblock */
2170 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2172 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2173 assert((uintptr_t)host >= (uintptr_t)rb->host);
2174 assert(res < rb->max_length);
2176 return res;
2180 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2181 * in that RAMBlock.
2183 * ptr: Host pointer to look up
2184 * round_offset: If true round the result offset down to a page boundary
2185 * *ram_addr: set to result ram_addr
2186 * *offset: set to result offset within the RAMBlock
2188 * Returns: RAMBlock (or NULL if not found)
2190 * By the time this function returns, the returned pointer is not protected
2191 * by RCU anymore. If the caller is not within an RCU critical section and
2192 * does not hold the iothread lock, it must have other means of protecting the
2193 * pointer, such as a reference to the region that includes the incoming
2194 * ram_addr_t.
2196 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2197 ram_addr_t *offset)
2199 RAMBlock *block;
2200 uint8_t *host = ptr;
2202 if (xen_enabled()) {
2203 ram_addr_t ram_addr;
2204 RCU_READ_LOCK_GUARD();
2205 ram_addr = xen_ram_addr_from_mapcache(ptr);
2206 block = qemu_get_ram_block(ram_addr);
2207 if (block) {
2208 *offset = ram_addr - block->offset;
2210 return block;
2213 RCU_READ_LOCK_GUARD();
2214 block = qatomic_rcu_read(&ram_list.mru_block);
2215 if (block && block->host && host - block->host < block->max_length) {
2216 goto found;
2219 RAMBLOCK_FOREACH(block) {
2220 /* This case append when the block is not mapped. */
2221 if (block->host == NULL) {
2222 continue;
2224 if (host - block->host < block->max_length) {
2225 goto found;
2229 return NULL;
2231 found:
2232 *offset = (host - block->host);
2233 if (round_offset) {
2234 *offset &= TARGET_PAGE_MASK;
2236 return block;
2240 * Finds the named RAMBlock
2242 * name: The name of RAMBlock to find
2244 * Returns: RAMBlock (or NULL if not found)
2246 RAMBlock *qemu_ram_block_by_name(const char *name)
2248 RAMBlock *block;
2250 RAMBLOCK_FOREACH(block) {
2251 if (!strcmp(name, block->idstr)) {
2252 return block;
2256 return NULL;
2259 /* Some of the softmmu routines need to translate from a host pointer
2260 (typically a TLB entry) back to a ram offset. */
2261 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2263 RAMBlock *block;
2264 ram_addr_t offset;
2266 block = qemu_ram_block_from_host(ptr, false, &offset);
2267 if (!block) {
2268 return RAM_ADDR_INVALID;
2271 return block->offset + offset;
2274 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2276 ram_addr_t ram_addr;
2278 ram_addr = qemu_ram_addr_from_host(ptr);
2279 if (ram_addr == RAM_ADDR_INVALID) {
2280 error_report("Bad ram pointer %p", ptr);
2281 abort();
2283 return ram_addr;
2286 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2287 MemTxAttrs attrs, void *buf, hwaddr len);
2288 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2289 const void *buf, hwaddr len);
2290 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2291 bool is_write, MemTxAttrs attrs);
2293 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2294 unsigned len, MemTxAttrs attrs)
2296 subpage_t *subpage = opaque;
2297 uint8_t buf[8];
2298 MemTxResult res;
2300 #if defined(DEBUG_SUBPAGE)
2301 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2302 subpage, len, addr);
2303 #endif
2304 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2305 if (res) {
2306 return res;
2308 *data = ldn_p(buf, len);
2309 return MEMTX_OK;
2312 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2313 uint64_t value, unsigned len, MemTxAttrs attrs)
2315 subpage_t *subpage = opaque;
2316 uint8_t buf[8];
2318 #if defined(DEBUG_SUBPAGE)
2319 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2320 " value %"PRIx64"\n",
2321 __func__, subpage, len, addr, value);
2322 #endif
2323 stn_p(buf, len, value);
2324 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2327 static bool subpage_accepts(void *opaque, hwaddr addr,
2328 unsigned len, bool is_write,
2329 MemTxAttrs attrs)
2331 subpage_t *subpage = opaque;
2332 #if defined(DEBUG_SUBPAGE)
2333 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2334 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2335 #endif
2337 return flatview_access_valid(subpage->fv, addr + subpage->base,
2338 len, is_write, attrs);
2341 static const MemoryRegionOps subpage_ops = {
2342 .read_with_attrs = subpage_read,
2343 .write_with_attrs = subpage_write,
2344 .impl.min_access_size = 1,
2345 .impl.max_access_size = 8,
2346 .valid.min_access_size = 1,
2347 .valid.max_access_size = 8,
2348 .valid.accepts = subpage_accepts,
2349 .endianness = DEVICE_NATIVE_ENDIAN,
2352 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2353 uint16_t section)
2355 int idx, eidx;
2357 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2358 return -1;
2359 idx = SUBPAGE_IDX(start);
2360 eidx = SUBPAGE_IDX(end);
2361 #if defined(DEBUG_SUBPAGE)
2362 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2363 __func__, mmio, start, end, idx, eidx, section);
2364 #endif
2365 for (; idx <= eidx; idx++) {
2366 mmio->sub_section[idx] = section;
2369 return 0;
2372 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2374 subpage_t *mmio;
2376 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2377 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2378 mmio->fv = fv;
2379 mmio->base = base;
2380 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2381 NULL, TARGET_PAGE_SIZE);
2382 mmio->iomem.subpage = true;
2383 #if defined(DEBUG_SUBPAGE)
2384 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2385 mmio, base, TARGET_PAGE_SIZE);
2386 #endif
2388 return mmio;
2391 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2393 assert(fv);
2394 MemoryRegionSection section = {
2395 .fv = fv,
2396 .mr = mr,
2397 .offset_within_address_space = 0,
2398 .offset_within_region = 0,
2399 .size = int128_2_64(),
2402 return phys_section_add(map, &section);
2405 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2406 hwaddr index, MemTxAttrs attrs)
2408 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2409 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2410 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2411 MemoryRegionSection *sections = d->map.sections;
2413 return &sections[index & ~TARGET_PAGE_MASK];
2416 static void io_mem_init(void)
2418 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2419 NULL, UINT64_MAX);
2422 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2424 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2425 uint16_t n;
2427 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2428 assert(n == PHYS_SECTION_UNASSIGNED);
2430 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2432 return d;
2435 void address_space_dispatch_free(AddressSpaceDispatch *d)
2437 phys_sections_free(&d->map);
2438 g_free(d);
2441 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2445 static void tcg_log_global_after_sync(MemoryListener *listener)
2447 CPUAddressSpace *cpuas;
2449 /* Wait for the CPU to end the current TB. This avoids the following
2450 * incorrect race:
2452 * vCPU migration
2453 * ---------------------- -------------------------
2454 * TLB check -> slow path
2455 * notdirty_mem_write
2456 * write to RAM
2457 * mark dirty
2458 * clear dirty flag
2459 * TLB check -> fast path
2460 * read memory
2461 * write to RAM
2463 * by pushing the migration thread's memory read after the vCPU thread has
2464 * written the memory.
2466 if (replay_mode == REPLAY_MODE_NONE) {
2468 * VGA can make calls to this function while updating the screen.
2469 * In record/replay mode this causes a deadlock, because
2470 * run_on_cpu waits for rr mutex. Therefore no races are possible
2471 * in this case and no need for making run_on_cpu when
2472 * record/replay is enabled.
2474 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2475 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2479 static void tcg_commit(MemoryListener *listener)
2481 CPUAddressSpace *cpuas;
2482 AddressSpaceDispatch *d;
2484 assert(tcg_enabled());
2485 /* since each CPU stores ram addresses in its TLB cache, we must
2486 reset the modified entries */
2487 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2488 cpu_reloading_memory_map();
2489 /* The CPU and TLB are protected by the iothread lock.
2490 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2491 * may have split the RCU critical section.
2493 d = address_space_to_dispatch(cpuas->as);
2494 qatomic_rcu_set(&cpuas->memory_dispatch, d);
2495 tlb_flush(cpuas->cpu);
2498 static void memory_map_init(void)
2500 system_memory = g_malloc(sizeof(*system_memory));
2502 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2503 address_space_init(&address_space_memory, system_memory, "memory");
2505 system_io = g_malloc(sizeof(*system_io));
2506 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2507 65536);
2508 address_space_init(&address_space_io, system_io, "I/O");
2511 MemoryRegion *get_system_memory(void)
2513 return system_memory;
2516 MemoryRegion *get_system_io(void)
2518 return system_io;
2521 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2522 hwaddr length)
2524 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2525 addr += memory_region_get_ram_addr(mr);
2527 /* No early return if dirty_log_mask is or becomes 0, because
2528 * cpu_physical_memory_set_dirty_range will still call
2529 * xen_modified_memory.
2531 if (dirty_log_mask) {
2532 dirty_log_mask =
2533 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2535 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2536 assert(tcg_enabled());
2537 tb_invalidate_phys_range(addr, addr + length - 1);
2538 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2540 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2543 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2546 * In principle this function would work on other memory region types too,
2547 * but the ROM device use case is the only one where this operation is
2548 * necessary. Other memory regions should use the
2549 * address_space_read/write() APIs.
2551 assert(memory_region_is_romd(mr));
2553 invalidate_and_set_dirty(mr, addr, size);
2556 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2558 unsigned access_size_max = mr->ops->valid.max_access_size;
2560 /* Regions are assumed to support 1-4 byte accesses unless
2561 otherwise specified. */
2562 if (access_size_max == 0) {
2563 access_size_max = 4;
2566 /* Bound the maximum access by the alignment of the address. */
2567 if (!mr->ops->impl.unaligned) {
2568 unsigned align_size_max = addr & -addr;
2569 if (align_size_max != 0 && align_size_max < access_size_max) {
2570 access_size_max = align_size_max;
2574 /* Don't attempt accesses larger than the maximum. */
2575 if (l > access_size_max) {
2576 l = access_size_max;
2578 l = pow2floor(l);
2580 return l;
2583 bool prepare_mmio_access(MemoryRegion *mr)
2585 bool release_lock = false;
2587 if (!qemu_mutex_iothread_locked()) {
2588 qemu_mutex_lock_iothread();
2589 release_lock = true;
2591 if (mr->flush_coalesced_mmio) {
2592 qemu_flush_coalesced_mmio_buffer();
2595 return release_lock;
2599 * flatview_access_allowed
2600 * @mr: #MemoryRegion to be accessed
2601 * @attrs: memory transaction attributes
2602 * @addr: address within that memory region
2603 * @len: the number of bytes to access
2605 * Check if a memory transaction is allowed.
2607 * Returns: true if transaction is allowed, false if denied.
2609 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2610 hwaddr addr, hwaddr len)
2612 if (likely(!attrs.memory)) {
2613 return true;
2615 if (memory_region_is_ram(mr)) {
2616 return true;
2618 qemu_log_mask(LOG_GUEST_ERROR,
2619 "Invalid access to non-RAM device at "
2620 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2621 "region '%s'\n", addr, len, memory_region_name(mr));
2622 return false;
2625 /* Called within RCU critical section. */
2626 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2627 MemTxAttrs attrs,
2628 const void *ptr,
2629 hwaddr len, hwaddr addr1,
2630 hwaddr l, MemoryRegion *mr)
2632 uint8_t *ram_ptr;
2633 uint64_t val;
2634 MemTxResult result = MEMTX_OK;
2635 bool release_lock = false;
2636 const uint8_t *buf = ptr;
2638 for (;;) {
2639 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2640 result |= MEMTX_ACCESS_ERROR;
2641 /* Keep going. */
2642 } else if (!memory_access_is_direct(mr, true)) {
2643 release_lock |= prepare_mmio_access(mr);
2644 l = memory_access_size(mr, l, addr1);
2645 /* XXX: could force current_cpu to NULL to avoid
2646 potential bugs */
2647 val = ldn_he_p(buf, l);
2648 result |= memory_region_dispatch_write(mr, addr1, val,
2649 size_memop(l), attrs);
2650 } else {
2651 /* RAM case */
2652 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2653 memmove(ram_ptr, buf, l);
2654 invalidate_and_set_dirty(mr, addr1, l);
2657 if (release_lock) {
2658 qemu_mutex_unlock_iothread();
2659 release_lock = false;
2662 len -= l;
2663 buf += l;
2664 addr += l;
2666 if (!len) {
2667 break;
2670 l = len;
2671 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2674 return result;
2677 /* Called from RCU critical section. */
2678 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2679 const void *buf, hwaddr len)
2681 hwaddr l;
2682 hwaddr addr1;
2683 MemoryRegion *mr;
2685 l = len;
2686 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2687 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2688 return MEMTX_ACCESS_ERROR;
2690 return flatview_write_continue(fv, addr, attrs, buf, len,
2691 addr1, l, mr);
2694 /* Called within RCU critical section. */
2695 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2696 MemTxAttrs attrs, void *ptr,
2697 hwaddr len, hwaddr addr1, hwaddr l,
2698 MemoryRegion *mr)
2700 uint8_t *ram_ptr;
2701 uint64_t val;
2702 MemTxResult result = MEMTX_OK;
2703 bool release_lock = false;
2704 uint8_t *buf = ptr;
2706 fuzz_dma_read_cb(addr, len, mr);
2707 for (;;) {
2708 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2709 result |= MEMTX_ACCESS_ERROR;
2710 /* Keep going. */
2711 } else if (!memory_access_is_direct(mr, false)) {
2712 /* I/O case */
2713 release_lock |= prepare_mmio_access(mr);
2714 l = memory_access_size(mr, l, addr1);
2715 result |= memory_region_dispatch_read(mr, addr1, &val,
2716 size_memop(l), attrs);
2717 stn_he_p(buf, l, val);
2718 } else {
2719 /* RAM case */
2720 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2721 memcpy(buf, ram_ptr, l);
2724 if (release_lock) {
2725 qemu_mutex_unlock_iothread();
2726 release_lock = false;
2729 len -= l;
2730 buf += l;
2731 addr += l;
2733 if (!len) {
2734 break;
2737 l = len;
2738 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2741 return result;
2744 /* Called from RCU critical section. */
2745 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2746 MemTxAttrs attrs, void *buf, hwaddr len)
2748 hwaddr l;
2749 hwaddr addr1;
2750 MemoryRegion *mr;
2752 l = len;
2753 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2754 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2755 return MEMTX_ACCESS_ERROR;
2757 return flatview_read_continue(fv, addr, attrs, buf, len,
2758 addr1, l, mr);
2761 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2762 MemTxAttrs attrs, void *buf, hwaddr len)
2764 MemTxResult result = MEMTX_OK;
2765 FlatView *fv;
2767 if (len > 0) {
2768 RCU_READ_LOCK_GUARD();
2769 fv = address_space_to_flatview(as);
2770 result = flatview_read(fv, addr, attrs, buf, len);
2773 return result;
2776 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2777 MemTxAttrs attrs,
2778 const void *buf, hwaddr len)
2780 MemTxResult result = MEMTX_OK;
2781 FlatView *fv;
2783 if (len > 0) {
2784 RCU_READ_LOCK_GUARD();
2785 fv = address_space_to_flatview(as);
2786 result = flatview_write(fv, addr, attrs, buf, len);
2789 return result;
2792 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2793 void *buf, hwaddr len, bool is_write)
2795 if (is_write) {
2796 return address_space_write(as, addr, attrs, buf, len);
2797 } else {
2798 return address_space_read_full(as, addr, attrs, buf, len);
2802 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2803 uint8_t c, hwaddr len, MemTxAttrs attrs)
2805 #define FILLBUF_SIZE 512
2806 uint8_t fillbuf[FILLBUF_SIZE];
2807 int l;
2808 MemTxResult error = MEMTX_OK;
2810 memset(fillbuf, c, FILLBUF_SIZE);
2811 while (len > 0) {
2812 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2813 error |= address_space_write(as, addr, attrs, fillbuf, l);
2814 len -= l;
2815 addr += l;
2818 return error;
2821 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2822 hwaddr len, bool is_write)
2824 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2825 buf, len, is_write);
2828 enum write_rom_type {
2829 WRITE_DATA,
2830 FLUSH_CACHE,
2833 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2834 hwaddr addr,
2835 MemTxAttrs attrs,
2836 const void *ptr,
2837 hwaddr len,
2838 enum write_rom_type type)
2840 hwaddr l;
2841 uint8_t *ram_ptr;
2842 hwaddr addr1;
2843 MemoryRegion *mr;
2844 const uint8_t *buf = ptr;
2846 RCU_READ_LOCK_GUARD();
2847 while (len > 0) {
2848 l = len;
2849 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2851 if (!(memory_region_is_ram(mr) ||
2852 memory_region_is_romd(mr))) {
2853 l = memory_access_size(mr, l, addr1);
2854 } else {
2855 /* ROM/RAM case */
2856 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2857 switch (type) {
2858 case WRITE_DATA:
2859 memcpy(ram_ptr, buf, l);
2860 invalidate_and_set_dirty(mr, addr1, l);
2861 break;
2862 case FLUSH_CACHE:
2863 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2864 break;
2867 len -= l;
2868 buf += l;
2869 addr += l;
2871 return MEMTX_OK;
2874 /* used for ROM loading : can write in RAM and ROM */
2875 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2876 MemTxAttrs attrs,
2877 const void *buf, hwaddr len)
2879 return address_space_write_rom_internal(as, addr, attrs,
2880 buf, len, WRITE_DATA);
2883 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2886 * This function should do the same thing as an icache flush that was
2887 * triggered from within the guest. For TCG we are always cache coherent,
2888 * so there is no need to flush anything. For KVM / Xen we need to flush
2889 * the host's instruction cache at least.
2891 if (tcg_enabled()) {
2892 return;
2895 address_space_write_rom_internal(&address_space_memory,
2896 start, MEMTXATTRS_UNSPECIFIED,
2897 NULL, len, FLUSH_CACHE);
2900 typedef struct {
2901 MemoryRegion *mr;
2902 void *buffer;
2903 hwaddr addr;
2904 hwaddr len;
2905 bool in_use;
2906 } BounceBuffer;
2908 static BounceBuffer bounce;
2910 typedef struct MapClient {
2911 QEMUBH *bh;
2912 QLIST_ENTRY(MapClient) link;
2913 } MapClient;
2915 QemuMutex map_client_list_lock;
2916 static QLIST_HEAD(, MapClient) map_client_list
2917 = QLIST_HEAD_INITIALIZER(map_client_list);
2919 static void cpu_unregister_map_client_do(MapClient *client)
2921 QLIST_REMOVE(client, link);
2922 g_free(client);
2925 static void cpu_notify_map_clients_locked(void)
2927 MapClient *client;
2929 while (!QLIST_EMPTY(&map_client_list)) {
2930 client = QLIST_FIRST(&map_client_list);
2931 qemu_bh_schedule(client->bh);
2932 cpu_unregister_map_client_do(client);
2936 void cpu_register_map_client(QEMUBH *bh)
2938 MapClient *client = g_malloc(sizeof(*client));
2940 qemu_mutex_lock(&map_client_list_lock);
2941 client->bh = bh;
2942 QLIST_INSERT_HEAD(&map_client_list, client, link);
2943 /* Write map_client_list before reading in_use. */
2944 smp_mb();
2945 if (!qatomic_read(&bounce.in_use)) {
2946 cpu_notify_map_clients_locked();
2948 qemu_mutex_unlock(&map_client_list_lock);
2951 void cpu_exec_init_all(void)
2953 qemu_mutex_init(&ram_list.mutex);
2954 /* The data structures we set up here depend on knowing the page size,
2955 * so no more changes can be made after this point.
2956 * In an ideal world, nothing we did before we had finished the
2957 * machine setup would care about the target page size, and we could
2958 * do this much later, rather than requiring board models to state
2959 * up front what their requirements are.
2961 finalize_target_page_bits();
2962 io_mem_init();
2963 memory_map_init();
2964 qemu_mutex_init(&map_client_list_lock);
2967 void cpu_unregister_map_client(QEMUBH *bh)
2969 MapClient *client;
2971 qemu_mutex_lock(&map_client_list_lock);
2972 QLIST_FOREACH(client, &map_client_list, link) {
2973 if (client->bh == bh) {
2974 cpu_unregister_map_client_do(client);
2975 break;
2978 qemu_mutex_unlock(&map_client_list_lock);
2981 static void cpu_notify_map_clients(void)
2983 qemu_mutex_lock(&map_client_list_lock);
2984 cpu_notify_map_clients_locked();
2985 qemu_mutex_unlock(&map_client_list_lock);
2988 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2989 bool is_write, MemTxAttrs attrs)
2991 MemoryRegion *mr;
2992 hwaddr l, xlat;
2994 while (len > 0) {
2995 l = len;
2996 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
2997 if (!memory_access_is_direct(mr, is_write)) {
2998 l = memory_access_size(mr, l, addr);
2999 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3000 return false;
3004 len -= l;
3005 addr += l;
3007 return true;
3010 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3011 hwaddr len, bool is_write,
3012 MemTxAttrs attrs)
3014 FlatView *fv;
3016 RCU_READ_LOCK_GUARD();
3017 fv = address_space_to_flatview(as);
3018 return flatview_access_valid(fv, addr, len, is_write, attrs);
3021 static hwaddr
3022 flatview_extend_translation(FlatView *fv, hwaddr addr,
3023 hwaddr target_len,
3024 MemoryRegion *mr, hwaddr base, hwaddr len,
3025 bool is_write, MemTxAttrs attrs)
3027 hwaddr done = 0;
3028 hwaddr xlat;
3029 MemoryRegion *this_mr;
3031 for (;;) {
3032 target_len -= len;
3033 addr += len;
3034 done += len;
3035 if (target_len == 0) {
3036 return done;
3039 len = target_len;
3040 this_mr = flatview_translate(fv, addr, &xlat,
3041 &len, is_write, attrs);
3042 if (this_mr != mr || xlat != base + done) {
3043 return done;
3048 /* Map a physical memory region into a host virtual address.
3049 * May map a subset of the requested range, given by and returned in *plen.
3050 * May return NULL if resources needed to perform the mapping are exhausted.
3051 * Use only for reads OR writes - not for read-modify-write operations.
3052 * Use cpu_register_map_client() to know when retrying the map operation is
3053 * likely to succeed.
3055 void *address_space_map(AddressSpace *as,
3056 hwaddr addr,
3057 hwaddr *plen,
3058 bool is_write,
3059 MemTxAttrs attrs)
3061 hwaddr len = *plen;
3062 hwaddr l, xlat;
3063 MemoryRegion *mr;
3064 FlatView *fv;
3066 if (len == 0) {
3067 return NULL;
3070 l = len;
3071 RCU_READ_LOCK_GUARD();
3072 fv = address_space_to_flatview(as);
3073 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3075 if (!memory_access_is_direct(mr, is_write)) {
3076 if (qatomic_xchg(&bounce.in_use, true)) {
3077 *plen = 0;
3078 return NULL;
3080 /* Avoid unbounded allocations */
3081 l = MIN(l, TARGET_PAGE_SIZE);
3082 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3083 bounce.addr = addr;
3084 bounce.len = l;
3086 memory_region_ref(mr);
3087 bounce.mr = mr;
3088 if (!is_write) {
3089 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3090 bounce.buffer, l);
3093 *plen = l;
3094 return bounce.buffer;
3098 memory_region_ref(mr);
3099 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3100 l, is_write, attrs);
3101 fuzz_dma_read_cb(addr, *plen, mr);
3102 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3105 /* Unmaps a memory region previously mapped by address_space_map().
3106 * Will also mark the memory as dirty if is_write is true. access_len gives
3107 * the amount of memory that was actually read or written by the caller.
3109 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3110 bool is_write, hwaddr access_len)
3112 if (buffer != bounce.buffer) {
3113 MemoryRegion *mr;
3114 ram_addr_t addr1;
3116 mr = memory_region_from_host(buffer, &addr1);
3117 assert(mr != NULL);
3118 if (is_write) {
3119 invalidate_and_set_dirty(mr, addr1, access_len);
3121 if (xen_enabled()) {
3122 xen_invalidate_map_cache_entry(buffer);
3124 memory_region_unref(mr);
3125 return;
3127 if (is_write) {
3128 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3129 bounce.buffer, access_len);
3131 qemu_vfree(bounce.buffer);
3132 bounce.buffer = NULL;
3133 memory_region_unref(bounce.mr);
3134 /* Clear in_use before reading map_client_list. */
3135 qatomic_mb_set(&bounce.in_use, false);
3136 cpu_notify_map_clients();
3139 void *cpu_physical_memory_map(hwaddr addr,
3140 hwaddr *plen,
3141 bool is_write)
3143 return address_space_map(&address_space_memory, addr, plen, is_write,
3144 MEMTXATTRS_UNSPECIFIED);
3147 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3148 bool is_write, hwaddr access_len)
3150 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3153 #define ARG1_DECL AddressSpace *as
3154 #define ARG1 as
3155 #define SUFFIX
3156 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3157 #define RCU_READ_LOCK(...) rcu_read_lock()
3158 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3159 #include "memory_ldst.c.inc"
3161 int64_t address_space_cache_init(MemoryRegionCache *cache,
3162 AddressSpace *as,
3163 hwaddr addr,
3164 hwaddr len,
3165 bool is_write)
3167 AddressSpaceDispatch *d;
3168 hwaddr l;
3169 MemoryRegion *mr;
3170 Int128 diff;
3172 assert(len > 0);
3174 l = len;
3175 cache->fv = address_space_get_flatview(as);
3176 d = flatview_to_dispatch(cache->fv);
3177 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3180 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3181 * Take that into account to compute how many bytes are there between
3182 * cache->xlat and the end of the section.
3184 diff = int128_sub(cache->mrs.size,
3185 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3186 l = int128_get64(int128_min(diff, int128_make64(l)));
3188 mr = cache->mrs.mr;
3189 memory_region_ref(mr);
3190 if (memory_access_is_direct(mr, is_write)) {
3191 /* We don't care about the memory attributes here as we're only
3192 * doing this if we found actual RAM, which behaves the same
3193 * regardless of attributes; so UNSPECIFIED is fine.
3195 l = flatview_extend_translation(cache->fv, addr, len, mr,
3196 cache->xlat, l, is_write,
3197 MEMTXATTRS_UNSPECIFIED);
3198 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3199 } else {
3200 cache->ptr = NULL;
3203 cache->len = l;
3204 cache->is_write = is_write;
3205 return l;
3208 void address_space_cache_invalidate(MemoryRegionCache *cache,
3209 hwaddr addr,
3210 hwaddr access_len)
3212 assert(cache->is_write);
3213 if (likely(cache->ptr)) {
3214 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3218 void address_space_cache_destroy(MemoryRegionCache *cache)
3220 if (!cache->mrs.mr) {
3221 return;
3224 if (xen_enabled()) {
3225 xen_invalidate_map_cache_entry(cache->ptr);
3227 memory_region_unref(cache->mrs.mr);
3228 flatview_unref(cache->fv);
3229 cache->mrs.mr = NULL;
3230 cache->fv = NULL;
3233 /* Called from RCU critical section. This function has the same
3234 * semantics as address_space_translate, but it only works on a
3235 * predefined range of a MemoryRegion that was mapped with
3236 * address_space_cache_init.
3238 static inline MemoryRegion *address_space_translate_cached(
3239 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3240 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3242 MemoryRegionSection section;
3243 MemoryRegion *mr;
3244 IOMMUMemoryRegion *iommu_mr;
3245 AddressSpace *target_as;
3247 assert(!cache->ptr);
3248 *xlat = addr + cache->xlat;
3250 mr = cache->mrs.mr;
3251 iommu_mr = memory_region_get_iommu(mr);
3252 if (!iommu_mr) {
3253 /* MMIO region. */
3254 return mr;
3257 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3258 NULL, is_write, true,
3259 &target_as, attrs);
3260 return section.mr;
3263 /* Called from RCU critical section. address_space_read_cached uses this
3264 * out of line function when the target is an MMIO or IOMMU region.
3266 MemTxResult
3267 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3268 void *buf, hwaddr len)
3270 hwaddr addr1, l;
3271 MemoryRegion *mr;
3273 l = len;
3274 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3275 MEMTXATTRS_UNSPECIFIED);
3276 return flatview_read_continue(cache->fv,
3277 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3278 addr1, l, mr);
3281 /* Called from RCU critical section. address_space_write_cached uses this
3282 * out of line function when the target is an MMIO or IOMMU region.
3284 MemTxResult
3285 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3286 const void *buf, hwaddr len)
3288 hwaddr addr1, l;
3289 MemoryRegion *mr;
3291 l = len;
3292 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3293 MEMTXATTRS_UNSPECIFIED);
3294 return flatview_write_continue(cache->fv,
3295 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3296 addr1, l, mr);
3299 #define ARG1_DECL MemoryRegionCache *cache
3300 #define ARG1 cache
3301 #define SUFFIX _cached_slow
3302 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3303 #define RCU_READ_LOCK() ((void)0)
3304 #define RCU_READ_UNLOCK() ((void)0)
3305 #include "memory_ldst.c.inc"
3307 /* virtual memory access for debug (includes writing to ROM) */
3308 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3309 void *ptr, size_t len, bool is_write)
3311 hwaddr phys_addr;
3312 vaddr l, page;
3313 uint8_t *buf = ptr;
3315 cpu_synchronize_state(cpu);
3316 while (len > 0) {
3317 int asidx;
3318 MemTxAttrs attrs;
3319 MemTxResult res;
3321 page = addr & TARGET_PAGE_MASK;
3322 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3323 asidx = cpu_asidx_from_attrs(cpu, attrs);
3324 /* if no physical page mapped, return an error */
3325 if (phys_addr == -1)
3326 return -1;
3327 l = (page + TARGET_PAGE_SIZE) - addr;
3328 if (l > len)
3329 l = len;
3330 phys_addr += (addr & ~TARGET_PAGE_MASK);
3331 if (is_write) {
3332 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3333 attrs, buf, l);
3334 } else {
3335 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3336 attrs, buf, l);
3338 if (res != MEMTX_OK) {
3339 return -1;
3341 len -= l;
3342 buf += l;
3343 addr += l;
3345 return 0;
3349 * Allows code that needs to deal with migration bitmaps etc to still be built
3350 * target independent.
3352 size_t qemu_target_page_size(void)
3354 return TARGET_PAGE_SIZE;
3357 int qemu_target_page_bits(void)
3359 return TARGET_PAGE_BITS;
3362 int qemu_target_page_bits_min(void)
3364 return TARGET_PAGE_BITS_MIN;
3367 /* Convert target pages to MiB (2**20). */
3368 size_t qemu_target_pages_to_MiB(size_t pages)
3370 int page_bits = TARGET_PAGE_BITS;
3372 /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */
3373 g_assert(page_bits < 20);
3375 return pages >> (20 - page_bits);
3378 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3380 MemoryRegion*mr;
3381 hwaddr l = 1;
3383 RCU_READ_LOCK_GUARD();
3384 mr = address_space_translate(&address_space_memory,
3385 phys_addr, &phys_addr, &l, false,
3386 MEMTXATTRS_UNSPECIFIED);
3388 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3391 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3393 RAMBlock *block;
3394 int ret = 0;
3396 RCU_READ_LOCK_GUARD();
3397 RAMBLOCK_FOREACH(block) {
3398 ret = func(block, opaque);
3399 if (ret) {
3400 break;
3403 return ret;
3407 * Unmap pages of memory from start to start+length such that
3408 * they a) read as 0, b) Trigger whatever fault mechanism
3409 * the OS provides for postcopy.
3410 * The pages must be unmapped by the end of the function.
3411 * Returns: 0 on success, none-0 on failure
3414 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3416 int ret = -1;
3418 uint8_t *host_startaddr = rb->host + start;
3420 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3421 error_report("ram_block_discard_range: Unaligned start address: %p",
3422 host_startaddr);
3423 goto err;
3426 if ((start + length) <= rb->max_length) {
3427 bool need_madvise, need_fallocate;
3428 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3429 error_report("ram_block_discard_range: Unaligned length: %zx",
3430 length);
3431 goto err;
3434 errno = ENOTSUP; /* If we are missing MADVISE etc */
3436 /* The logic here is messy;
3437 * madvise DONTNEED fails for hugepages
3438 * fallocate works on hugepages and shmem
3439 * shared anonymous memory requires madvise REMOVE
3441 need_madvise = (rb->page_size == qemu_host_page_size);
3442 need_fallocate = rb->fd != -1;
3443 if (need_fallocate) {
3444 /* For a file, this causes the area of the file to be zero'd
3445 * if read, and for hugetlbfs also causes it to be unmapped
3446 * so a userfault will trigger.
3448 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3449 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3450 start, length);
3451 if (ret) {
3452 ret = -errno;
3453 error_report("ram_block_discard_range: Failed to fallocate "
3454 "%s:%" PRIx64 " +%zx (%d)",
3455 rb->idstr, start, length, ret);
3456 goto err;
3458 #else
3459 ret = -ENOSYS;
3460 error_report("ram_block_discard_range: fallocate not available/file"
3461 "%s:%" PRIx64 " +%zx (%d)",
3462 rb->idstr, start, length, ret);
3463 goto err;
3464 #endif
3466 if (need_madvise) {
3467 /* For normal RAM this causes it to be unmapped,
3468 * for shared memory it causes the local mapping to disappear
3469 * and to fall back on the file contents (which we just
3470 * fallocate'd away).
3472 #if defined(CONFIG_MADVISE)
3473 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3474 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3475 } else {
3476 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3478 if (ret) {
3479 ret = -errno;
3480 error_report("ram_block_discard_range: Failed to discard range "
3481 "%s:%" PRIx64 " +%zx (%d)",
3482 rb->idstr, start, length, ret);
3483 goto err;
3485 #else
3486 ret = -ENOSYS;
3487 error_report("ram_block_discard_range: MADVISE not available"
3488 "%s:%" PRIx64 " +%zx (%d)",
3489 rb->idstr, start, length, ret);
3490 goto err;
3491 #endif
3493 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3494 need_madvise, need_fallocate, ret);
3495 } else {
3496 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3497 "/%zx/" RAM_ADDR_FMT")",
3498 rb->idstr, start, length, rb->max_length);
3501 err:
3502 return ret;
3505 bool ramblock_is_pmem(RAMBlock *rb)
3507 return rb->flags & RAM_PMEM;
3510 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3512 if (start == end - 1) {
3513 qemu_printf("\t%3d ", start);
3514 } else {
3515 qemu_printf("\t%3d..%-3d ", start, end - 1);
3517 qemu_printf(" skip=%d ", skip);
3518 if (ptr == PHYS_MAP_NODE_NIL) {
3519 qemu_printf(" ptr=NIL");
3520 } else if (!skip) {
3521 qemu_printf(" ptr=#%d", ptr);
3522 } else {
3523 qemu_printf(" ptr=[%d]", ptr);
3525 qemu_printf("\n");
3528 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3529 int128_sub((size), int128_one())) : 0)
3531 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3533 int i;
3535 qemu_printf(" Dispatch\n");
3536 qemu_printf(" Physical sections\n");
3538 for (i = 0; i < d->map.sections_nb; ++i) {
3539 MemoryRegionSection *s = d->map.sections + i;
3540 const char *names[] = { " [unassigned]", " [not dirty]",
3541 " [ROM]", " [watch]" };
3543 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3544 " %s%s%s%s%s",
3546 s->offset_within_address_space,
3547 s->offset_within_address_space + MR_SIZE(s->size),
3548 s->mr->name ? s->mr->name : "(noname)",
3549 i < ARRAY_SIZE(names) ? names[i] : "",
3550 s->mr == root ? " [ROOT]" : "",
3551 s == d->mru_section ? " [MRU]" : "",
3552 s->mr->is_iommu ? " [iommu]" : "");
3554 if (s->mr->alias) {
3555 qemu_printf(" alias=%s", s->mr->alias->name ?
3556 s->mr->alias->name : "noname");
3558 qemu_printf("\n");
3561 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3562 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3563 for (i = 0; i < d->map.nodes_nb; ++i) {
3564 int j, jprev;
3565 PhysPageEntry prev;
3566 Node *n = d->map.nodes + i;
3568 qemu_printf(" [%d]\n", i);
3570 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3571 PhysPageEntry *pe = *n + j;
3573 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3574 continue;
3577 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3579 jprev = j;
3580 prev = *pe;
3583 if (jprev != ARRAY_SIZE(*n)) {
3584 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3589 /* Require any discards to work. */
3590 static unsigned int ram_block_discard_required_cnt;
3591 /* Require only coordinated discards to work. */
3592 static unsigned int ram_block_coordinated_discard_required_cnt;
3593 /* Disable any discards. */
3594 static unsigned int ram_block_discard_disabled_cnt;
3595 /* Disable only uncoordinated discards. */
3596 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3597 static QemuMutex ram_block_discard_disable_mutex;
3599 static void ram_block_discard_disable_mutex_lock(void)
3601 static gsize initialized;
3603 if (g_once_init_enter(&initialized)) {
3604 qemu_mutex_init(&ram_block_discard_disable_mutex);
3605 g_once_init_leave(&initialized, 1);
3607 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3610 static void ram_block_discard_disable_mutex_unlock(void)
3612 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3615 int ram_block_discard_disable(bool state)
3617 int ret = 0;
3619 ram_block_discard_disable_mutex_lock();
3620 if (!state) {
3621 ram_block_discard_disabled_cnt--;
3622 } else if (ram_block_discard_required_cnt ||
3623 ram_block_coordinated_discard_required_cnt) {
3624 ret = -EBUSY;
3625 } else {
3626 ram_block_discard_disabled_cnt++;
3628 ram_block_discard_disable_mutex_unlock();
3629 return ret;
3632 int ram_block_uncoordinated_discard_disable(bool state)
3634 int ret = 0;
3636 ram_block_discard_disable_mutex_lock();
3637 if (!state) {
3638 ram_block_uncoordinated_discard_disabled_cnt--;
3639 } else if (ram_block_discard_required_cnt) {
3640 ret = -EBUSY;
3641 } else {
3642 ram_block_uncoordinated_discard_disabled_cnt++;
3644 ram_block_discard_disable_mutex_unlock();
3645 return ret;
3648 int ram_block_discard_require(bool state)
3650 int ret = 0;
3652 ram_block_discard_disable_mutex_lock();
3653 if (!state) {
3654 ram_block_discard_required_cnt--;
3655 } else if (ram_block_discard_disabled_cnt ||
3656 ram_block_uncoordinated_discard_disabled_cnt) {
3657 ret = -EBUSY;
3658 } else {
3659 ram_block_discard_required_cnt++;
3661 ram_block_discard_disable_mutex_unlock();
3662 return ret;
3665 int ram_block_coordinated_discard_require(bool state)
3667 int ret = 0;
3669 ram_block_discard_disable_mutex_lock();
3670 if (!state) {
3671 ram_block_coordinated_discard_required_cnt--;
3672 } else if (ram_block_discard_disabled_cnt) {
3673 ret = -EBUSY;
3674 } else {
3675 ram_block_coordinated_discard_required_cnt++;
3677 ram_block_discard_disable_mutex_unlock();
3678 return ret;
3681 bool ram_block_discard_is_disabled(void)
3683 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3684 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3687 bool ram_block_discard_is_required(void)
3689 return qatomic_read(&ram_block_discard_required_cnt) ||
3690 qatomic_read(&ram_block_coordinated_discard_required_cnt);