4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "tcg/startup.h"
27 #include "target_mman.h"
34 #include <sys/mount.h>
36 #include <sys/fsuid.h>
37 #include <sys/personality.h>
38 #include <sys/prctl.h>
39 #include <sys/resource.h>
41 #include <linux/capability.h>
43 #include <sys/timex.h>
44 #include <sys/socket.h>
45 #include <linux/sockios.h>
49 #include <sys/times.h>
52 #include <sys/statfs.h>
54 #include <sys/sysinfo.h>
55 #include <sys/signalfd.h>
56 //#include <sys/user.h>
57 #include <netinet/in.h>
58 #include <netinet/ip.h>
59 #include <netinet/tcp.h>
60 #include <netinet/udp.h>
61 #include <linux/wireless.h>
62 #include <linux/icmp.h>
63 #include <linux/icmpv6.h>
64 #include <linux/if_tun.h>
65 #include <linux/in6.h>
66 #include <linux/errqueue.h>
67 #include <linux/random.h>
69 #include <sys/timerfd.h>
72 #include <sys/eventfd.h>
75 #include <sys/epoll.h>
78 #include "qemu/xattr.h"
80 #ifdef CONFIG_SENDFILE
81 #include <sys/sendfile.h>
83 #ifdef HAVE_SYS_KCOV_H
87 #define termios host_termios
88 #define winsize host_winsize
89 #define termio host_termio
90 #define sgttyb host_sgttyb /* same as target */
91 #define tchars host_tchars /* same as target */
92 #define ltchars host_ltchars /* same as target */
94 #include <linux/termios.h>
95 #include <linux/unistd.h>
96 #include <linux/cdrom.h>
97 #include <linux/hdreg.h>
98 #include <linux/soundcard.h>
100 #include <linux/mtio.h>
101 #include <linux/fs.h>
102 #include <linux/fd.h>
103 #if defined(CONFIG_FIEMAP)
104 #include <linux/fiemap.h>
106 #include <linux/fb.h>
107 #if defined(CONFIG_USBFS)
108 #include <linux/usbdevice_fs.h>
109 #include <linux/usb/ch9.h>
111 #include <linux/vt.h>
112 #include <linux/dm-ioctl.h>
113 #include <linux/reboot.h>
114 #include <linux/route.h>
115 #include <linux/filter.h>
116 #include <linux/blkpg.h>
117 #include <netpacket/packet.h>
118 #include <linux/netlink.h>
119 #include <linux/if_alg.h>
120 #include <linux/rtc.h>
121 #include <sound/asound.h>
123 #include <linux/btrfs.h>
126 #include <libdrm/drm.h>
127 #include <libdrm/i915_drm.h>
129 #include "linux_loop.h"
133 #include "user-internals.h"
135 #include "signal-common.h"
137 #include "user-mmap.h"
138 #include "user/safe-syscall.h"
139 #include "qemu/guest-random.h"
140 #include "qemu/selfmap.h"
141 #include "user/syscall-trace.h"
142 #include "special-errno.h"
143 #include "qapi/error.h"
144 #include "fd-trans.h"
145 #include "cpu_loop-common.h"
148 #define CLONE_IO 0x80000000 /* Clone io context */
151 /* We can't directly call the host clone syscall, because this will
152 * badly confuse libc (breaking mutexes, for example). So we must
153 * divide clone flags into:
154 * * flag combinations that look like pthread_create()
155 * * flag combinations that look like fork()
156 * * flags we can implement within QEMU itself
157 * * flags we can't support and will return an error for
159 /* For thread creation, all these flags must be present; for
160 * fork, none must be present.
162 #define CLONE_THREAD_FLAGS \
163 (CLONE_VM | CLONE_FS | CLONE_FILES | \
164 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
166 /* These flags are ignored:
167 * CLONE_DETACHED is now ignored by the kernel;
168 * CLONE_IO is just an optimisation hint to the I/O scheduler
170 #define CLONE_IGNORED_FLAGS \
171 (CLONE_DETACHED | CLONE_IO)
174 # define CLONE_PIDFD 0x00001000
177 /* Flags for fork which we can implement within QEMU itself */
178 #define CLONE_OPTIONAL_FORK_FLAGS \
179 (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
180 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
182 /* Flags for thread creation which we can implement within QEMU itself */
183 #define CLONE_OPTIONAL_THREAD_FLAGS \
184 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
185 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
187 #define CLONE_INVALID_FORK_FLAGS \
188 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
190 #define CLONE_INVALID_THREAD_FLAGS \
191 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
192 CLONE_IGNORED_FLAGS))
194 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
195 * have almost all been allocated. We cannot support any of
196 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
197 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
198 * The checks against the invalid thread masks above will catch these.
199 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
202 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
203 * once. This exercises the codepaths for restart.
205 //#define DEBUG_ERESTARTSYS
207 //#include <linux/msdos_fs.h>
208 #define VFAT_IOCTL_READDIR_BOTH \
209 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
210 #define VFAT_IOCTL_READDIR_SHORT \
211 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
221 #define _syscall0(type,name) \
222 static type name (void) \
224 return syscall(__NR_##name); \
227 #define _syscall1(type,name,type1,arg1) \
228 static type name (type1 arg1) \
230 return syscall(__NR_##name, arg1); \
233 #define _syscall2(type,name,type1,arg1,type2,arg2) \
234 static type name (type1 arg1,type2 arg2) \
236 return syscall(__NR_##name, arg1, arg2); \
239 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
240 static type name (type1 arg1,type2 arg2,type3 arg3) \
242 return syscall(__NR_##name, arg1, arg2, arg3); \
245 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
248 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
251 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
253 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
255 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
259 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
260 type5,arg5,type6,arg6) \
261 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
264 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
268 #define __NR_sys_uname __NR_uname
269 #define __NR_sys_getcwd1 __NR_getcwd
270 #define __NR_sys_getdents __NR_getdents
271 #define __NR_sys_getdents64 __NR_getdents64
272 #define __NR_sys_getpriority __NR_getpriority
273 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
274 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
275 #define __NR_sys_syslog __NR_syslog
276 #if defined(__NR_futex)
277 # define __NR_sys_futex __NR_futex
279 #if defined(__NR_futex_time64)
280 # define __NR_sys_futex_time64 __NR_futex_time64
282 #define __NR_sys_statx __NR_statx
284 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
285 #define __NR__llseek __NR_lseek
288 /* Newer kernel ports have llseek() instead of _llseek() */
289 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
290 #define TARGET_NR__llseek TARGET_NR_llseek
293 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
294 #ifndef TARGET_O_NONBLOCK_MASK
295 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
298 #define __NR_sys_gettid __NR_gettid
299 _syscall0(int, sys_gettid
)
301 /* For the 64-bit guest on 32-bit host case we must emulate
302 * getdents using getdents64, because otherwise the host
303 * might hand us back more dirent records than we can fit
304 * into the guest buffer after structure format conversion.
305 * Otherwise we emulate getdents with getdents if the host has it.
307 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
308 #define EMULATE_GETDENTS_WITH_GETDENTS
311 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
312 _syscall3(int, sys_getdents
, unsigned int, fd
, struct linux_dirent
*, dirp
, unsigned int, count
);
314 #if (defined(TARGET_NR_getdents) && \
315 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
316 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
317 _syscall3(int, sys_getdents64
, unsigned int, fd
, struct linux_dirent64
*, dirp
, unsigned int, count
);
319 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
320 _syscall5(int, _llseek
, unsigned int, fd
, unsigned long, hi
, unsigned long, lo
,
321 loff_t
*, res
, unsigned int, wh
);
323 _syscall3(int, sys_rt_sigqueueinfo
, pid_t
, pid
, int, sig
, siginfo_t
*, uinfo
)
324 _syscall4(int, sys_rt_tgsigqueueinfo
, pid_t
, pid
, pid_t
, tid
, int, sig
,
326 _syscall3(int,sys_syslog
,int,type
,char*,bufp
,int,len
)
327 #ifdef __NR_exit_group
328 _syscall1(int,exit_group
,int,error_code
)
330 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
331 #define __NR_sys_close_range __NR_close_range
332 _syscall3(int,sys_close_range
,int,first
,int,last
,int,flags
)
333 #ifndef CLOSE_RANGE_CLOEXEC
334 #define CLOSE_RANGE_CLOEXEC (1U << 2)
337 #if defined(__NR_futex)
338 _syscall6(int,sys_futex
,int *,uaddr
,int,op
,int,val
,
339 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
341 #if defined(__NR_futex_time64)
342 _syscall6(int,sys_futex_time64
,int *,uaddr
,int,op
,int,val
,
343 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
345 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
346 _syscall2(int, pidfd_open
, pid_t
, pid
, unsigned int, flags
);
348 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
349 _syscall4(int, pidfd_send_signal
, int, pidfd
, int, sig
, siginfo_t
*, info
,
350 unsigned int, flags
);
352 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
353 _syscall3(int, pidfd_getfd
, int, pidfd
, int, targetfd
, unsigned int, flags
);
355 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
356 _syscall3(int, sys_sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
357 unsigned long *, user_mask_ptr
);
358 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
359 _syscall3(int, sys_sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
360 unsigned long *, user_mask_ptr
);
361 /* sched_attr is not defined in glibc */
364 uint32_t sched_policy
;
365 uint64_t sched_flags
;
367 uint32_t sched_priority
;
368 uint64_t sched_runtime
;
369 uint64_t sched_deadline
;
370 uint64_t sched_period
;
371 uint32_t sched_util_min
;
372 uint32_t sched_util_max
;
374 #define __NR_sys_sched_getattr __NR_sched_getattr
375 _syscall4(int, sys_sched_getattr
, pid_t
, pid
, struct sched_attr
*, attr
,
376 unsigned int, size
, unsigned int, flags
);
377 #define __NR_sys_sched_setattr __NR_sched_setattr
378 _syscall3(int, sys_sched_setattr
, pid_t
, pid
, struct sched_attr
*, attr
,
379 unsigned int, flags
);
380 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
381 _syscall1(int, sys_sched_getscheduler
, pid_t
, pid
);
382 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
383 _syscall3(int, sys_sched_setscheduler
, pid_t
, pid
, int, policy
,
384 const struct sched_param
*, param
);
385 #define __NR_sys_sched_getparam __NR_sched_getparam
386 _syscall2(int, sys_sched_getparam
, pid_t
, pid
,
387 struct sched_param
*, param
);
388 #define __NR_sys_sched_setparam __NR_sched_setparam
389 _syscall2(int, sys_sched_setparam
, pid_t
, pid
,
390 const struct sched_param
*, param
);
391 #define __NR_sys_getcpu __NR_getcpu
392 _syscall3(int, sys_getcpu
, unsigned *, cpu
, unsigned *, node
, void *, tcache
);
393 _syscall4(int, reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
395 _syscall2(int, capget
, struct __user_cap_header_struct
*, header
,
396 struct __user_cap_data_struct
*, data
);
397 _syscall2(int, capset
, struct __user_cap_header_struct
*, header
,
398 struct __user_cap_data_struct
*, data
);
399 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
400 _syscall2(int, ioprio_get
, int, which
, int, who
)
402 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
403 _syscall3(int, ioprio_set
, int, which
, int, who
, int, ioprio
)
405 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
406 _syscall3(int, getrandom
, void *, buf
, size_t, buflen
, unsigned int, flags
)
409 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
410 _syscall5(int, kcmp
, pid_t
, pid1
, pid_t
, pid2
, int, type
,
411 unsigned long, idx1
, unsigned long, idx2
)
415 * It is assumed that struct statx is architecture independent.
417 #if defined(TARGET_NR_statx) && defined(__NR_statx)
418 _syscall5(int, sys_statx
, int, dirfd
, const char *, pathname
, int, flags
,
419 unsigned int, mask
, struct target_statx
*, statxbuf
)
421 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
422 _syscall2(int, membarrier
, int, cmd
, int, flags
)
425 static const bitmask_transtbl fcntl_flags_tbl
[] = {
426 { TARGET_O_ACCMODE
, TARGET_O_WRONLY
, O_ACCMODE
, O_WRONLY
, },
427 { TARGET_O_ACCMODE
, TARGET_O_RDWR
, O_ACCMODE
, O_RDWR
, },
428 { TARGET_O_CREAT
, TARGET_O_CREAT
, O_CREAT
, O_CREAT
, },
429 { TARGET_O_EXCL
, TARGET_O_EXCL
, O_EXCL
, O_EXCL
, },
430 { TARGET_O_NOCTTY
, TARGET_O_NOCTTY
, O_NOCTTY
, O_NOCTTY
, },
431 { TARGET_O_TRUNC
, TARGET_O_TRUNC
, O_TRUNC
, O_TRUNC
, },
432 { TARGET_O_APPEND
, TARGET_O_APPEND
, O_APPEND
, O_APPEND
, },
433 { TARGET_O_NONBLOCK
, TARGET_O_NONBLOCK
, O_NONBLOCK
, O_NONBLOCK
, },
434 { TARGET_O_SYNC
, TARGET_O_DSYNC
, O_SYNC
, O_DSYNC
, },
435 { TARGET_O_SYNC
, TARGET_O_SYNC
, O_SYNC
, O_SYNC
, },
436 { TARGET_FASYNC
, TARGET_FASYNC
, FASYNC
, FASYNC
, },
437 { TARGET_O_DIRECTORY
, TARGET_O_DIRECTORY
, O_DIRECTORY
, O_DIRECTORY
, },
438 { TARGET_O_NOFOLLOW
, TARGET_O_NOFOLLOW
, O_NOFOLLOW
, O_NOFOLLOW
, },
439 #if defined(O_DIRECT)
440 { TARGET_O_DIRECT
, TARGET_O_DIRECT
, O_DIRECT
, O_DIRECT
, },
442 #if defined(O_NOATIME)
443 { TARGET_O_NOATIME
, TARGET_O_NOATIME
, O_NOATIME
, O_NOATIME
},
445 #if defined(O_CLOEXEC)
446 { TARGET_O_CLOEXEC
, TARGET_O_CLOEXEC
, O_CLOEXEC
, O_CLOEXEC
},
449 { TARGET_O_PATH
, TARGET_O_PATH
, O_PATH
, O_PATH
},
451 #if defined(O_TMPFILE)
452 { TARGET_O_TMPFILE
, TARGET_O_TMPFILE
, O_TMPFILE
, O_TMPFILE
},
454 /* Don't terminate the list prematurely on 64-bit host+guest. */
455 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
456 { TARGET_O_LARGEFILE
, TARGET_O_LARGEFILE
, O_LARGEFILE
, O_LARGEFILE
, },
460 _syscall2(int, sys_getcwd1
, char *, buf
, size_t, size
)
462 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
463 #if defined(__NR_utimensat)
464 #define __NR_sys_utimensat __NR_utimensat
465 _syscall4(int,sys_utimensat
,int,dirfd
,const char *,pathname
,
466 const struct timespec
*,tsp
,int,flags
)
468 static int sys_utimensat(int dirfd
, const char *pathname
,
469 const struct timespec times
[2], int flags
)
475 #endif /* TARGET_NR_utimensat */
477 #ifdef TARGET_NR_renameat2
478 #if defined(__NR_renameat2)
479 #define __NR_sys_renameat2 __NR_renameat2
480 _syscall5(int, sys_renameat2
, int, oldfd
, const char *, old
, int, newfd
,
481 const char *, new, unsigned int, flags
)
483 static int sys_renameat2(int oldfd
, const char *old
,
484 int newfd
, const char *new, int flags
)
487 return renameat(oldfd
, old
, newfd
, new);
493 #endif /* TARGET_NR_renameat2 */
495 #ifdef CONFIG_INOTIFY
496 #include <sys/inotify.h>
498 /* Userspace can usually survive runtime without inotify */
499 #undef TARGET_NR_inotify_init
500 #undef TARGET_NR_inotify_init1
501 #undef TARGET_NR_inotify_add_watch
502 #undef TARGET_NR_inotify_rm_watch
503 #endif /* CONFIG_INOTIFY */
505 #if defined(TARGET_NR_prlimit64)
506 #ifndef __NR_prlimit64
507 # define __NR_prlimit64 -1
509 #define __NR_sys_prlimit64 __NR_prlimit64
510 /* The glibc rlimit structure may not be that used by the underlying syscall */
511 struct host_rlimit64
{
515 _syscall4(int, sys_prlimit64
, pid_t
, pid
, int, resource
,
516 const struct host_rlimit64
*, new_limit
,
517 struct host_rlimit64
*, old_limit
)
521 #if defined(TARGET_NR_timer_create)
522 /* Maximum of 32 active POSIX timers allowed at any one time. */
523 #define GUEST_TIMER_MAX 32
524 static timer_t g_posix_timers
[GUEST_TIMER_MAX
];
525 static int g_posix_timer_allocated
[GUEST_TIMER_MAX
];
527 static inline int next_free_host_timer(void)
530 for (k
= 0; k
< ARRAY_SIZE(g_posix_timer_allocated
); k
++) {
531 if (qatomic_xchg(g_posix_timer_allocated
+ k
, 1) == 0) {
538 static inline void free_host_timer_slot(int id
)
540 qatomic_store_release(g_posix_timer_allocated
+ id
, 0);
544 static inline int host_to_target_errno(int host_errno
)
546 switch (host_errno
) {
547 #define E(X) case X: return TARGET_##X;
548 #include "errnos.c.inc"
555 static inline int target_to_host_errno(int target_errno
)
557 switch (target_errno
) {
558 #define E(X) case TARGET_##X: return X;
559 #include "errnos.c.inc"
566 abi_long
get_errno(abi_long ret
)
569 return -host_to_target_errno(errno
);
574 const char *target_strerror(int err
)
576 if (err
== QEMU_ERESTARTSYS
) {
577 return "To be restarted";
579 if (err
== QEMU_ESIGRETURN
) {
580 return "Successful exit from sigreturn";
583 return strerror(target_to_host_errno(err
));
586 static int check_zeroed_user(abi_long addr
, size_t ksize
, size_t usize
)
590 if (usize
<= ksize
) {
593 for (i
= ksize
; i
< usize
; i
++) {
594 if (get_user_u8(b
, addr
+ i
)) {
595 return -TARGET_EFAULT
;
604 #define safe_syscall0(type, name) \
605 static type safe_##name(void) \
607 return safe_syscall(__NR_##name); \
610 #define safe_syscall1(type, name, type1, arg1) \
611 static type safe_##name(type1 arg1) \
613 return safe_syscall(__NR_##name, arg1); \
616 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
617 static type safe_##name(type1 arg1, type2 arg2) \
619 return safe_syscall(__NR_##name, arg1, arg2); \
622 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
623 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
625 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
628 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
630 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
632 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
635 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
636 type4, arg4, type5, arg5) \
637 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
640 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
643 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
644 type4, arg4, type5, arg5, type6, arg6) \
645 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
646 type5 arg5, type6 arg6) \
648 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
651 safe_syscall3(ssize_t
, read
, int, fd
, void *, buff
, size_t, count
)
652 safe_syscall3(ssize_t
, write
, int, fd
, const void *, buff
, size_t, count
)
653 safe_syscall4(int, openat
, int, dirfd
, const char *, pathname
, \
654 int, flags
, mode_t
, mode
)
655 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
656 safe_syscall4(pid_t
, wait4
, pid_t
, pid
, int *, status
, int, options
, \
657 struct rusage
*, rusage
)
659 safe_syscall5(int, waitid
, idtype_t
, idtype
, id_t
, id
, siginfo_t
*, infop
, \
660 int, options
, struct rusage
*, rusage
)
661 safe_syscall3(int, execve
, const char *, filename
, char **, argv
, char **, envp
)
662 safe_syscall5(int, execveat
, int, dirfd
, const char *, filename
,
663 char **, argv
, char **, envp
, int, flags
)
664 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
665 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
666 safe_syscall6(int, pselect6
, int, nfds
, fd_set
*, readfds
, fd_set
*, writefds
, \
667 fd_set
*, exceptfds
, struct timespec
*, timeout
, void *, sig
)
669 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
670 safe_syscall5(int, ppoll
, struct pollfd
*, ufds
, unsigned int, nfds
,
671 struct timespec
*, tsp
, const sigset_t
*, sigmask
,
674 safe_syscall6(int, epoll_pwait
, int, epfd
, struct epoll_event
*, events
,
675 int, maxevents
, int, timeout
, const sigset_t
*, sigmask
,
677 #if defined(__NR_futex)
678 safe_syscall6(int,futex
,int *,uaddr
,int,op
,int,val
, \
679 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
681 #if defined(__NR_futex_time64)
682 safe_syscall6(int,futex_time64
,int *,uaddr
,int,op
,int,val
, \
683 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
685 safe_syscall2(int, rt_sigsuspend
, sigset_t
*, newset
, size_t, sigsetsize
)
686 safe_syscall2(int, kill
, pid_t
, pid
, int, sig
)
687 safe_syscall2(int, tkill
, int, tid
, int, sig
)
688 safe_syscall3(int, tgkill
, int, tgid
, int, pid
, int, sig
)
689 safe_syscall3(ssize_t
, readv
, int, fd
, const struct iovec
*, iov
, int, iovcnt
)
690 safe_syscall3(ssize_t
, writev
, int, fd
, const struct iovec
*, iov
, int, iovcnt
)
691 safe_syscall5(ssize_t
, preadv
, int, fd
, const struct iovec
*, iov
, int, iovcnt
,
692 unsigned long, pos_l
, unsigned long, pos_h
)
693 safe_syscall5(ssize_t
, pwritev
, int, fd
, const struct iovec
*, iov
, int, iovcnt
,
694 unsigned long, pos_l
, unsigned long, pos_h
)
695 safe_syscall3(int, connect
, int, fd
, const struct sockaddr
*, addr
,
697 safe_syscall6(ssize_t
, sendto
, int, fd
, const void *, buf
, size_t, len
,
698 int, flags
, const struct sockaddr
*, addr
, socklen_t
, addrlen
)
699 safe_syscall6(ssize_t
, recvfrom
, int, fd
, void *, buf
, size_t, len
,
700 int, flags
, struct sockaddr
*, addr
, socklen_t
*, addrlen
)
701 safe_syscall3(ssize_t
, sendmsg
, int, fd
, const struct msghdr
*, msg
, int, flags
)
702 safe_syscall3(ssize_t
, recvmsg
, int, fd
, struct msghdr
*, msg
, int, flags
)
703 safe_syscall2(int, flock
, int, fd
, int, operation
)
704 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
705 safe_syscall4(int, rt_sigtimedwait
, const sigset_t
*, these
, siginfo_t
*, uinfo
,
706 const struct timespec
*, uts
, size_t, sigsetsize
)
708 safe_syscall4(int, accept4
, int, fd
, struct sockaddr
*, addr
, socklen_t
*, len
,
710 #if defined(TARGET_NR_nanosleep)
711 safe_syscall2(int, nanosleep
, const struct timespec
*, req
,
712 struct timespec
*, rem
)
714 #if defined(TARGET_NR_clock_nanosleep) || \
715 defined(TARGET_NR_clock_nanosleep_time64)
716 safe_syscall4(int, clock_nanosleep
, const clockid_t
, clock
, int, flags
,
717 const struct timespec
*, req
, struct timespec
*, rem
)
721 safe_syscall5(int, ipc
, int, call
, long, first
, long, second
, long, third
,
724 safe_syscall6(int, ipc
, int, call
, long, first
, long, second
, long, third
,
725 void *, ptr
, long, fifth
)
729 safe_syscall4(int, msgsnd
, int, msgid
, const void *, msgp
, size_t, sz
,
733 safe_syscall5(int, msgrcv
, int, msgid
, void *, msgp
, size_t, sz
,
734 long, msgtype
, int, flags
)
736 #ifdef __NR_semtimedop
737 safe_syscall4(int, semtimedop
, int, semid
, struct sembuf
*, tsops
,
738 unsigned, nsops
, const struct timespec
*, timeout
)
740 #if defined(TARGET_NR_mq_timedsend) || \
741 defined(TARGET_NR_mq_timedsend_time64)
742 safe_syscall5(int, mq_timedsend
, int, mqdes
, const char *, msg_ptr
,
743 size_t, len
, unsigned, prio
, const struct timespec
*, timeout
)
745 #if defined(TARGET_NR_mq_timedreceive) || \
746 defined(TARGET_NR_mq_timedreceive_time64)
747 safe_syscall5(int, mq_timedreceive
, int, mqdes
, char *, msg_ptr
,
748 size_t, len
, unsigned *, prio
, const struct timespec
*, timeout
)
750 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
751 safe_syscall6(ssize_t
, copy_file_range
, int, infd
, loff_t
*, pinoff
,
752 int, outfd
, loff_t
*, poutoff
, size_t, length
,
756 /* We do ioctl like this rather than via safe_syscall3 to preserve the
757 * "third argument might be integer or pointer or not present" behaviour of
760 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
761 /* Similarly for fcntl. Note that callers must always:
762 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
763 * use the flock64 struct rather than unsuffixed flock
764 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
767 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
769 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
772 static inline int host_to_target_sock_type(int host_type
)
776 switch (host_type
& 0xf /* SOCK_TYPE_MASK */) {
778 target_type
= TARGET_SOCK_DGRAM
;
781 target_type
= TARGET_SOCK_STREAM
;
784 target_type
= host_type
& 0xf /* SOCK_TYPE_MASK */;
788 #if defined(SOCK_CLOEXEC)
789 if (host_type
& SOCK_CLOEXEC
) {
790 target_type
|= TARGET_SOCK_CLOEXEC
;
794 #if defined(SOCK_NONBLOCK)
795 if (host_type
& SOCK_NONBLOCK
) {
796 target_type
|= TARGET_SOCK_NONBLOCK
;
803 static abi_ulong target_brk
, initial_target_brk
;
805 void target_set_brk(abi_ulong new_brk
)
807 target_brk
= TARGET_PAGE_ALIGN(new_brk
);
808 initial_target_brk
= target_brk
;
811 /* do_brk() must return target values and target errnos. */
812 abi_long
do_brk(abi_ulong brk_val
)
814 abi_long mapped_addr
;
818 /* brk pointers are always untagged */
820 /* do not allow to shrink below initial brk value */
821 if (brk_val
< initial_target_brk
) {
825 new_brk
= TARGET_PAGE_ALIGN(brk_val
);
826 old_brk
= TARGET_PAGE_ALIGN(target_brk
);
828 /* new and old target_brk might be on the same page */
829 if (new_brk
== old_brk
) {
830 target_brk
= brk_val
;
834 /* Release heap if necesary */
835 if (new_brk
< old_brk
) {
836 target_munmap(new_brk
, old_brk
- new_brk
);
838 target_brk
= brk_val
;
842 mapped_addr
= target_mmap(old_brk
, new_brk
- old_brk
,
843 PROT_READ
| PROT_WRITE
,
844 MAP_FIXED_NOREPLACE
| MAP_ANON
| MAP_PRIVATE
,
847 if (mapped_addr
== old_brk
) {
848 target_brk
= brk_val
;
852 #if defined(TARGET_ALPHA)
853 /* We (partially) emulate OSF/1 on Alpha, which requires we
854 return a proper errno, not an unchanged brk value. */
855 return -TARGET_ENOMEM
;
857 /* For everything else, return the previous break. */
861 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
862 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
863 static inline abi_long
copy_from_user_fdset(fd_set
*fds
,
864 abi_ulong target_fds_addr
,
868 abi_ulong b
, *target_fds
;
870 nw
= DIV_ROUND_UP(n
, TARGET_ABI_BITS
);
871 if (!(target_fds
= lock_user(VERIFY_READ
,
873 sizeof(abi_ulong
) * nw
,
875 return -TARGET_EFAULT
;
879 for (i
= 0; i
< nw
; i
++) {
880 /* grab the abi_ulong */
881 __get_user(b
, &target_fds
[i
]);
882 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
883 /* check the bit inside the abi_ulong */
890 unlock_user(target_fds
, target_fds_addr
, 0);
895 static inline abi_ulong
copy_from_user_fdset_ptr(fd_set
*fds
, fd_set
**fds_ptr
,
896 abi_ulong target_fds_addr
,
899 if (target_fds_addr
) {
900 if (copy_from_user_fdset(fds
, target_fds_addr
, n
))
901 return -TARGET_EFAULT
;
909 static inline abi_long
copy_to_user_fdset(abi_ulong target_fds_addr
,
915 abi_ulong
*target_fds
;
917 nw
= DIV_ROUND_UP(n
, TARGET_ABI_BITS
);
918 if (!(target_fds
= lock_user(VERIFY_WRITE
,
920 sizeof(abi_ulong
) * nw
,
922 return -TARGET_EFAULT
;
925 for (i
= 0; i
< nw
; i
++) {
927 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
928 v
|= ((abi_ulong
)(FD_ISSET(k
, fds
) != 0) << j
);
931 __put_user(v
, &target_fds
[i
]);
934 unlock_user(target_fds
, target_fds_addr
, sizeof(abi_ulong
) * nw
);
940 #if defined(__alpha__)
946 static inline abi_long
host_to_target_clock_t(long ticks
)
948 #if HOST_HZ == TARGET_HZ
951 return ((int64_t)ticks
* TARGET_HZ
) / HOST_HZ
;
955 static inline abi_long
host_to_target_rusage(abi_ulong target_addr
,
956 const struct rusage
*rusage
)
958 struct target_rusage
*target_rusage
;
960 if (!lock_user_struct(VERIFY_WRITE
, target_rusage
, target_addr
, 0))
961 return -TARGET_EFAULT
;
962 target_rusage
->ru_utime
.tv_sec
= tswapal(rusage
->ru_utime
.tv_sec
);
963 target_rusage
->ru_utime
.tv_usec
= tswapal(rusage
->ru_utime
.tv_usec
);
964 target_rusage
->ru_stime
.tv_sec
= tswapal(rusage
->ru_stime
.tv_sec
);
965 target_rusage
->ru_stime
.tv_usec
= tswapal(rusage
->ru_stime
.tv_usec
);
966 target_rusage
->ru_maxrss
= tswapal(rusage
->ru_maxrss
);
967 target_rusage
->ru_ixrss
= tswapal(rusage
->ru_ixrss
);
968 target_rusage
->ru_idrss
= tswapal(rusage
->ru_idrss
);
969 target_rusage
->ru_isrss
= tswapal(rusage
->ru_isrss
);
970 target_rusage
->ru_minflt
= tswapal(rusage
->ru_minflt
);
971 target_rusage
->ru_majflt
= tswapal(rusage
->ru_majflt
);
972 target_rusage
->ru_nswap
= tswapal(rusage
->ru_nswap
);
973 target_rusage
->ru_inblock
= tswapal(rusage
->ru_inblock
);
974 target_rusage
->ru_oublock
= tswapal(rusage
->ru_oublock
);
975 target_rusage
->ru_msgsnd
= tswapal(rusage
->ru_msgsnd
);
976 target_rusage
->ru_msgrcv
= tswapal(rusage
->ru_msgrcv
);
977 target_rusage
->ru_nsignals
= tswapal(rusage
->ru_nsignals
);
978 target_rusage
->ru_nvcsw
= tswapal(rusage
->ru_nvcsw
);
979 target_rusage
->ru_nivcsw
= tswapal(rusage
->ru_nivcsw
);
980 unlock_user_struct(target_rusage
, target_addr
, 1);
985 #ifdef TARGET_NR_setrlimit
986 static inline rlim_t
target_to_host_rlim(abi_ulong target_rlim
)
988 abi_ulong target_rlim_swap
;
991 target_rlim_swap
= tswapal(target_rlim
);
992 if (target_rlim_swap
== TARGET_RLIM_INFINITY
)
993 return RLIM_INFINITY
;
995 result
= target_rlim_swap
;
996 if (target_rlim_swap
!= (rlim_t
)result
)
997 return RLIM_INFINITY
;
1003 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1004 static inline abi_ulong
host_to_target_rlim(rlim_t rlim
)
1006 abi_ulong target_rlim_swap
;
1009 if (rlim
== RLIM_INFINITY
|| rlim
!= (abi_long
)rlim
)
1010 target_rlim_swap
= TARGET_RLIM_INFINITY
;
1012 target_rlim_swap
= rlim
;
1013 result
= tswapal(target_rlim_swap
);
1019 static inline int target_to_host_resource(int code
)
1022 case TARGET_RLIMIT_AS
:
1024 case TARGET_RLIMIT_CORE
:
1026 case TARGET_RLIMIT_CPU
:
1028 case TARGET_RLIMIT_DATA
:
1030 case TARGET_RLIMIT_FSIZE
:
1031 return RLIMIT_FSIZE
;
1032 case TARGET_RLIMIT_LOCKS
:
1033 return RLIMIT_LOCKS
;
1034 case TARGET_RLIMIT_MEMLOCK
:
1035 return RLIMIT_MEMLOCK
;
1036 case TARGET_RLIMIT_MSGQUEUE
:
1037 return RLIMIT_MSGQUEUE
;
1038 case TARGET_RLIMIT_NICE
:
1040 case TARGET_RLIMIT_NOFILE
:
1041 return RLIMIT_NOFILE
;
1042 case TARGET_RLIMIT_NPROC
:
1043 return RLIMIT_NPROC
;
1044 case TARGET_RLIMIT_RSS
:
1046 case TARGET_RLIMIT_RTPRIO
:
1047 return RLIMIT_RTPRIO
;
1048 #ifdef RLIMIT_RTTIME
1049 case TARGET_RLIMIT_RTTIME
:
1050 return RLIMIT_RTTIME
;
1052 case TARGET_RLIMIT_SIGPENDING
:
1053 return RLIMIT_SIGPENDING
;
1054 case TARGET_RLIMIT_STACK
:
1055 return RLIMIT_STACK
;
1061 static inline abi_long
copy_from_user_timeval(struct timeval
*tv
,
1062 abi_ulong target_tv_addr
)
1064 struct target_timeval
*target_tv
;
1066 if (!lock_user_struct(VERIFY_READ
, target_tv
, target_tv_addr
, 1)) {
1067 return -TARGET_EFAULT
;
1070 __get_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1071 __get_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1073 unlock_user_struct(target_tv
, target_tv_addr
, 0);
1078 static inline abi_long
copy_to_user_timeval(abi_ulong target_tv_addr
,
1079 const struct timeval
*tv
)
1081 struct target_timeval
*target_tv
;
1083 if (!lock_user_struct(VERIFY_WRITE
, target_tv
, target_tv_addr
, 0)) {
1084 return -TARGET_EFAULT
;
1087 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1088 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1090 unlock_user_struct(target_tv
, target_tv_addr
, 1);
1095 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1096 static inline abi_long
copy_from_user_timeval64(struct timeval
*tv
,
1097 abi_ulong target_tv_addr
)
1099 struct target__kernel_sock_timeval
*target_tv
;
1101 if (!lock_user_struct(VERIFY_READ
, target_tv
, target_tv_addr
, 1)) {
1102 return -TARGET_EFAULT
;
1105 __get_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1106 __get_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1108 unlock_user_struct(target_tv
, target_tv_addr
, 0);
1114 static inline abi_long
copy_to_user_timeval64(abi_ulong target_tv_addr
,
1115 const struct timeval
*tv
)
1117 struct target__kernel_sock_timeval
*target_tv
;
1119 if (!lock_user_struct(VERIFY_WRITE
, target_tv
, target_tv_addr
, 0)) {
1120 return -TARGET_EFAULT
;
1123 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1124 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1126 unlock_user_struct(target_tv
, target_tv_addr
, 1);
1131 #if defined(TARGET_NR_futex) || \
1132 defined(TARGET_NR_rt_sigtimedwait) || \
1133 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1134 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1135 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1136 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1137 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1138 defined(TARGET_NR_timer_settime) || \
1139 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1140 static inline abi_long
target_to_host_timespec(struct timespec
*host_ts
,
1141 abi_ulong target_addr
)
1143 struct target_timespec
*target_ts
;
1145 if (!lock_user_struct(VERIFY_READ
, target_ts
, target_addr
, 1)) {
1146 return -TARGET_EFAULT
;
1148 __get_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1149 __get_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1150 unlock_user_struct(target_ts
, target_addr
, 0);
1155 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1156 defined(TARGET_NR_timer_settime64) || \
1157 defined(TARGET_NR_mq_timedsend_time64) || \
1158 defined(TARGET_NR_mq_timedreceive_time64) || \
1159 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1160 defined(TARGET_NR_clock_nanosleep_time64) || \
1161 defined(TARGET_NR_rt_sigtimedwait_time64) || \
1162 defined(TARGET_NR_utimensat) || \
1163 defined(TARGET_NR_utimensat_time64) || \
1164 defined(TARGET_NR_semtimedop_time64) || \
1165 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1166 static inline abi_long
target_to_host_timespec64(struct timespec
*host_ts
,
1167 abi_ulong target_addr
)
1169 struct target__kernel_timespec
*target_ts
;
1171 if (!lock_user_struct(VERIFY_READ
, target_ts
, target_addr
, 1)) {
1172 return -TARGET_EFAULT
;
1174 __get_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1175 __get_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1176 /* in 32bit mode, this drops the padding */
1177 host_ts
->tv_nsec
= (long)(abi_long
)host_ts
->tv_nsec
;
1178 unlock_user_struct(target_ts
, target_addr
, 0);
1183 static inline abi_long
host_to_target_timespec(abi_ulong target_addr
,
1184 struct timespec
*host_ts
)
1186 struct target_timespec
*target_ts
;
1188 if (!lock_user_struct(VERIFY_WRITE
, target_ts
, target_addr
, 0)) {
1189 return -TARGET_EFAULT
;
1191 __put_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1192 __put_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1193 unlock_user_struct(target_ts
, target_addr
, 1);
1197 static inline abi_long
host_to_target_timespec64(abi_ulong target_addr
,
1198 struct timespec
*host_ts
)
1200 struct target__kernel_timespec
*target_ts
;
1202 if (!lock_user_struct(VERIFY_WRITE
, target_ts
, target_addr
, 0)) {
1203 return -TARGET_EFAULT
;
1205 __put_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1206 __put_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1207 unlock_user_struct(target_ts
, target_addr
, 1);
1211 #if defined(TARGET_NR_gettimeofday)
1212 static inline abi_long
copy_to_user_timezone(abi_ulong target_tz_addr
,
1213 struct timezone
*tz
)
1215 struct target_timezone
*target_tz
;
1217 if (!lock_user_struct(VERIFY_WRITE
, target_tz
, target_tz_addr
, 1)) {
1218 return -TARGET_EFAULT
;
1221 __put_user(tz
->tz_minuteswest
, &target_tz
->tz_minuteswest
);
1222 __put_user(tz
->tz_dsttime
, &target_tz
->tz_dsttime
);
1224 unlock_user_struct(target_tz
, target_tz_addr
, 1);
1230 #if defined(TARGET_NR_settimeofday)
1231 static inline abi_long
copy_from_user_timezone(struct timezone
*tz
,
1232 abi_ulong target_tz_addr
)
1234 struct target_timezone
*target_tz
;
1236 if (!lock_user_struct(VERIFY_READ
, target_tz
, target_tz_addr
, 1)) {
1237 return -TARGET_EFAULT
;
1240 __get_user(tz
->tz_minuteswest
, &target_tz
->tz_minuteswest
);
1241 __get_user(tz
->tz_dsttime
, &target_tz
->tz_dsttime
);
1243 unlock_user_struct(target_tz
, target_tz_addr
, 0);
1249 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1252 static inline abi_long
copy_from_user_mq_attr(struct mq_attr
*attr
,
1253 abi_ulong target_mq_attr_addr
)
1255 struct target_mq_attr
*target_mq_attr
;
1257 if (!lock_user_struct(VERIFY_READ
, target_mq_attr
,
1258 target_mq_attr_addr
, 1))
1259 return -TARGET_EFAULT
;
1261 __get_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
1262 __get_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
1263 __get_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
1264 __get_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
1266 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 0);
1271 static inline abi_long
copy_to_user_mq_attr(abi_ulong target_mq_attr_addr
,
1272 const struct mq_attr
*attr
)
1274 struct target_mq_attr
*target_mq_attr
;
1276 if (!lock_user_struct(VERIFY_WRITE
, target_mq_attr
,
1277 target_mq_attr_addr
, 0))
1278 return -TARGET_EFAULT
;
1280 __put_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
1281 __put_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
1282 __put_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
1283 __put_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
1285 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 1);
1291 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1292 /* do_select() must return target values and target errnos. */
1293 static abi_long
do_select(int n
,
1294 abi_ulong rfd_addr
, abi_ulong wfd_addr
,
1295 abi_ulong efd_addr
, abi_ulong target_tv_addr
)
1297 fd_set rfds
, wfds
, efds
;
1298 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
1300 struct timespec ts
, *ts_ptr
;
1303 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
1307 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
1311 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
1316 if (target_tv_addr
) {
1317 if (copy_from_user_timeval(&tv
, target_tv_addr
))
1318 return -TARGET_EFAULT
;
1319 ts
.tv_sec
= tv
.tv_sec
;
1320 ts
.tv_nsec
= tv
.tv_usec
* 1000;
1326 ret
= get_errno(safe_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
1329 if (!is_error(ret
)) {
1330 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
1331 return -TARGET_EFAULT
;
1332 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
1333 return -TARGET_EFAULT
;
1334 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
1335 return -TARGET_EFAULT
;
1337 if (target_tv_addr
) {
1338 tv
.tv_sec
= ts
.tv_sec
;
1339 tv
.tv_usec
= ts
.tv_nsec
/ 1000;
1340 if (copy_to_user_timeval(target_tv_addr
, &tv
)) {
1341 return -TARGET_EFAULT
;
1349 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1350 static abi_long
do_old_select(abi_ulong arg1
)
1352 struct target_sel_arg_struct
*sel
;
1353 abi_ulong inp
, outp
, exp
, tvp
;
1356 if (!lock_user_struct(VERIFY_READ
, sel
, arg1
, 1)) {
1357 return -TARGET_EFAULT
;
1360 nsel
= tswapal(sel
->n
);
1361 inp
= tswapal(sel
->inp
);
1362 outp
= tswapal(sel
->outp
);
1363 exp
= tswapal(sel
->exp
);
1364 tvp
= tswapal(sel
->tvp
);
1366 unlock_user_struct(sel
, arg1
, 0);
1368 return do_select(nsel
, inp
, outp
, exp
, tvp
);
1373 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1374 static abi_long
do_pselect6(abi_long arg1
, abi_long arg2
, abi_long arg3
,
1375 abi_long arg4
, abi_long arg5
, abi_long arg6
,
1378 abi_long rfd_addr
, wfd_addr
, efd_addr
, n
, ts_addr
;
1379 fd_set rfds
, wfds
, efds
;
1380 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
1381 struct timespec ts
, *ts_ptr
;
1385 * The 6th arg is actually two args smashed together,
1386 * so we cannot use the C library.
1393 abi_ulong arg_sigset
, arg_sigsize
, *arg7
;
1401 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
1405 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
1409 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
1415 * This takes a timespec, and not a timeval, so we cannot
1416 * use the do_select() helper ...
1420 if (target_to_host_timespec64(&ts
, ts_addr
)) {
1421 return -TARGET_EFAULT
;
1424 if (target_to_host_timespec(&ts
, ts_addr
)) {
1425 return -TARGET_EFAULT
;
1433 /* Extract the two packed args for the sigset */
1436 arg7
= lock_user(VERIFY_READ
, arg6
, sizeof(*arg7
) * 2, 1);
1438 return -TARGET_EFAULT
;
1440 arg_sigset
= tswapal(arg7
[0]);
1441 arg_sigsize
= tswapal(arg7
[1]);
1442 unlock_user(arg7
, arg6
, 0);
1445 ret
= process_sigsuspend_mask(&sig
.set
, arg_sigset
, arg_sigsize
);
1450 sig
.size
= SIGSET_T_SIZE
;
1454 ret
= get_errno(safe_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
1458 finish_sigsuspend_mask(ret
);
1461 if (!is_error(ret
)) {
1462 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
)) {
1463 return -TARGET_EFAULT
;
1465 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
)) {
1466 return -TARGET_EFAULT
;
1468 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
)) {
1469 return -TARGET_EFAULT
;
1472 if (ts_addr
&& host_to_target_timespec64(ts_addr
, &ts
)) {
1473 return -TARGET_EFAULT
;
1476 if (ts_addr
&& host_to_target_timespec(ts_addr
, &ts
)) {
1477 return -TARGET_EFAULT
;
1485 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1486 defined(TARGET_NR_ppoll_time64)
1487 static abi_long
do_ppoll(abi_long arg1
, abi_long arg2
, abi_long arg3
,
1488 abi_long arg4
, abi_long arg5
, bool ppoll
, bool time64
)
1490 struct target_pollfd
*target_pfd
;
1491 unsigned int nfds
= arg2
;
1499 if (nfds
> (INT_MAX
/ sizeof(struct target_pollfd
))) {
1500 return -TARGET_EINVAL
;
1502 target_pfd
= lock_user(VERIFY_WRITE
, arg1
,
1503 sizeof(struct target_pollfd
) * nfds
, 1);
1505 return -TARGET_EFAULT
;
1508 pfd
= alloca(sizeof(struct pollfd
) * nfds
);
1509 for (i
= 0; i
< nfds
; i
++) {
1510 pfd
[i
].fd
= tswap32(target_pfd
[i
].fd
);
1511 pfd
[i
].events
= tswap16(target_pfd
[i
].events
);
1515 struct timespec _timeout_ts
, *timeout_ts
= &_timeout_ts
;
1516 sigset_t
*set
= NULL
;
1520 if (target_to_host_timespec64(timeout_ts
, arg3
)) {
1521 unlock_user(target_pfd
, arg1
, 0);
1522 return -TARGET_EFAULT
;
1525 if (target_to_host_timespec(timeout_ts
, arg3
)) {
1526 unlock_user(target_pfd
, arg1
, 0);
1527 return -TARGET_EFAULT
;
1535 ret
= process_sigsuspend_mask(&set
, arg4
, arg5
);
1537 unlock_user(target_pfd
, arg1
, 0);
1542 ret
= get_errno(safe_ppoll(pfd
, nfds
, timeout_ts
,
1543 set
, SIGSET_T_SIZE
));
1546 finish_sigsuspend_mask(ret
);
1548 if (!is_error(ret
) && arg3
) {
1550 if (host_to_target_timespec64(arg3
, timeout_ts
)) {
1551 return -TARGET_EFAULT
;
1554 if (host_to_target_timespec(arg3
, timeout_ts
)) {
1555 return -TARGET_EFAULT
;
1560 struct timespec ts
, *pts
;
1563 /* Convert ms to secs, ns */
1564 ts
.tv_sec
= arg3
/ 1000;
1565 ts
.tv_nsec
= (arg3
% 1000) * 1000000LL;
1568 /* -ve poll() timeout means "infinite" */
1571 ret
= get_errno(safe_ppoll(pfd
, nfds
, pts
, NULL
, 0));
1574 if (!is_error(ret
)) {
1575 for (i
= 0; i
< nfds
; i
++) {
1576 target_pfd
[i
].revents
= tswap16(pfd
[i
].revents
);
1579 unlock_user(target_pfd
, arg1
, sizeof(struct target_pollfd
) * nfds
);
1584 static abi_long
do_pipe(CPUArchState
*cpu_env
, abi_ulong pipedes
,
1585 int flags
, int is_pipe2
)
1589 ret
= pipe2(host_pipe
, flags
);
1592 return get_errno(ret
);
1594 /* Several targets have special calling conventions for the original
1595 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1597 #if defined(TARGET_ALPHA)
1598 cpu_env
->ir
[IR_A4
] = host_pipe
[1];
1599 return host_pipe
[0];
1600 #elif defined(TARGET_MIPS)
1601 cpu_env
->active_tc
.gpr
[3] = host_pipe
[1];
1602 return host_pipe
[0];
1603 #elif defined(TARGET_SH4)
1604 cpu_env
->gregs
[1] = host_pipe
[1];
1605 return host_pipe
[0];
1606 #elif defined(TARGET_SPARC)
1607 cpu_env
->regwptr
[1] = host_pipe
[1];
1608 return host_pipe
[0];
1612 if (put_user_s32(host_pipe
[0], pipedes
)
1613 || put_user_s32(host_pipe
[1], pipedes
+ sizeof(abi_int
)))
1614 return -TARGET_EFAULT
;
1615 return get_errno(ret
);
1618 static inline abi_long
target_to_host_ip_mreq(struct ip_mreqn
*mreqn
,
1619 abi_ulong target_addr
,
1622 struct target_ip_mreqn
*target_smreqn
;
1624 target_smreqn
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1626 return -TARGET_EFAULT
;
1627 mreqn
->imr_multiaddr
.s_addr
= target_smreqn
->imr_multiaddr
.s_addr
;
1628 mreqn
->imr_address
.s_addr
= target_smreqn
->imr_address
.s_addr
;
1629 if (len
== sizeof(struct target_ip_mreqn
))
1630 mreqn
->imr_ifindex
= tswapal(target_smreqn
->imr_ifindex
);
1631 unlock_user(target_smreqn
, target_addr
, 0);
1636 static inline abi_long
target_to_host_sockaddr(int fd
, struct sockaddr
*addr
,
1637 abi_ulong target_addr
,
1640 const socklen_t unix_maxlen
= sizeof (struct sockaddr_un
);
1641 sa_family_t sa_family
;
1642 struct target_sockaddr
*target_saddr
;
1644 if (fd_trans_target_to_host_addr(fd
)) {
1645 return fd_trans_target_to_host_addr(fd
)(addr
, target_addr
, len
);
1648 target_saddr
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1650 return -TARGET_EFAULT
;
1652 sa_family
= tswap16(target_saddr
->sa_family
);
1654 /* Oops. The caller might send a incomplete sun_path; sun_path
1655 * must be terminated by \0 (see the manual page), but
1656 * unfortunately it is quite common to specify sockaddr_un
1657 * length as "strlen(x->sun_path)" while it should be
1658 * "strlen(...) + 1". We'll fix that here if needed.
1659 * Linux kernel has a similar feature.
1662 if (sa_family
== AF_UNIX
) {
1663 if (len
< unix_maxlen
&& len
> 0) {
1664 char *cp
= (char*)target_saddr
;
1666 if ( cp
[len
-1] && !cp
[len
] )
1669 if (len
> unix_maxlen
)
1673 memcpy(addr
, target_saddr
, len
);
1674 addr
->sa_family
= sa_family
;
1675 if (sa_family
== AF_NETLINK
) {
1676 struct sockaddr_nl
*nladdr
;
1678 nladdr
= (struct sockaddr_nl
*)addr
;
1679 nladdr
->nl_pid
= tswap32(nladdr
->nl_pid
);
1680 nladdr
->nl_groups
= tswap32(nladdr
->nl_groups
);
1681 } else if (sa_family
== AF_PACKET
) {
1682 struct target_sockaddr_ll
*lladdr
;
1684 lladdr
= (struct target_sockaddr_ll
*)addr
;
1685 lladdr
->sll_ifindex
= tswap32(lladdr
->sll_ifindex
);
1686 lladdr
->sll_hatype
= tswap16(lladdr
->sll_hatype
);
1687 } else if (sa_family
== AF_INET6
) {
1688 struct sockaddr_in6
*in6addr
;
1690 in6addr
= (struct sockaddr_in6
*)addr
;
1691 in6addr
->sin6_scope_id
= tswap32(in6addr
->sin6_scope_id
);
1693 unlock_user(target_saddr
, target_addr
, 0);
1698 static inline abi_long
host_to_target_sockaddr(abi_ulong target_addr
,
1699 struct sockaddr
*addr
,
1702 struct target_sockaddr
*target_saddr
;
1709 target_saddr
= lock_user(VERIFY_WRITE
, target_addr
, len
, 0);
1711 return -TARGET_EFAULT
;
1712 memcpy(target_saddr
, addr
, len
);
1713 if (len
>= offsetof(struct target_sockaddr
, sa_family
) +
1714 sizeof(target_saddr
->sa_family
)) {
1715 target_saddr
->sa_family
= tswap16(addr
->sa_family
);
1717 if (addr
->sa_family
== AF_NETLINK
&&
1718 len
>= sizeof(struct target_sockaddr_nl
)) {
1719 struct target_sockaddr_nl
*target_nl
=
1720 (struct target_sockaddr_nl
*)target_saddr
;
1721 target_nl
->nl_pid
= tswap32(target_nl
->nl_pid
);
1722 target_nl
->nl_groups
= tswap32(target_nl
->nl_groups
);
1723 } else if (addr
->sa_family
== AF_PACKET
) {
1724 struct sockaddr_ll
*target_ll
= (struct sockaddr_ll
*)target_saddr
;
1725 target_ll
->sll_ifindex
= tswap32(target_ll
->sll_ifindex
);
1726 target_ll
->sll_hatype
= tswap16(target_ll
->sll_hatype
);
1727 } else if (addr
->sa_family
== AF_INET6
&&
1728 len
>= sizeof(struct target_sockaddr_in6
)) {
1729 struct target_sockaddr_in6
*target_in6
=
1730 (struct target_sockaddr_in6
*)target_saddr
;
1731 target_in6
->sin6_scope_id
= tswap16(target_in6
->sin6_scope_id
);
1733 unlock_user(target_saddr
, target_addr
, len
);
1738 static inline abi_long
target_to_host_cmsg(struct msghdr
*msgh
,
1739 struct target_msghdr
*target_msgh
)
1741 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1742 abi_long msg_controllen
;
1743 abi_ulong target_cmsg_addr
;
1744 struct target_cmsghdr
*target_cmsg
, *target_cmsg_start
;
1745 socklen_t space
= 0;
1747 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1748 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1750 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1751 target_cmsg
= lock_user(VERIFY_READ
, target_cmsg_addr
, msg_controllen
, 1);
1752 target_cmsg_start
= target_cmsg
;
1754 return -TARGET_EFAULT
;
1756 while (cmsg
&& target_cmsg
) {
1757 void *data
= CMSG_DATA(cmsg
);
1758 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1760 int len
= tswapal(target_cmsg
->cmsg_len
)
1761 - sizeof(struct target_cmsghdr
);
1763 space
+= CMSG_SPACE(len
);
1764 if (space
> msgh
->msg_controllen
) {
1765 space
-= CMSG_SPACE(len
);
1766 /* This is a QEMU bug, since we allocated the payload
1767 * area ourselves (unlike overflow in host-to-target
1768 * conversion, which is just the guest giving us a buffer
1769 * that's too small). It can't happen for the payload types
1770 * we currently support; if it becomes an issue in future
1771 * we would need to improve our allocation strategy to
1772 * something more intelligent than "twice the size of the
1773 * target buffer we're reading from".
1775 qemu_log_mask(LOG_UNIMP
,
1776 ("Unsupported ancillary data %d/%d: "
1777 "unhandled msg size\n"),
1778 tswap32(target_cmsg
->cmsg_level
),
1779 tswap32(target_cmsg
->cmsg_type
));
1783 if (tswap32(target_cmsg
->cmsg_level
) == TARGET_SOL_SOCKET
) {
1784 cmsg
->cmsg_level
= SOL_SOCKET
;
1786 cmsg
->cmsg_level
= tswap32(target_cmsg
->cmsg_level
);
1788 cmsg
->cmsg_type
= tswap32(target_cmsg
->cmsg_type
);
1789 cmsg
->cmsg_len
= CMSG_LEN(len
);
1791 if (cmsg
->cmsg_level
== SOL_SOCKET
&& cmsg
->cmsg_type
== SCM_RIGHTS
) {
1792 int *fd
= (int *)data
;
1793 int *target_fd
= (int *)target_data
;
1794 int i
, numfds
= len
/ sizeof(int);
1796 for (i
= 0; i
< numfds
; i
++) {
1797 __get_user(fd
[i
], target_fd
+ i
);
1799 } else if (cmsg
->cmsg_level
== SOL_SOCKET
1800 && cmsg
->cmsg_type
== SCM_CREDENTIALS
) {
1801 struct ucred
*cred
= (struct ucred
*)data
;
1802 struct target_ucred
*target_cred
=
1803 (struct target_ucred
*)target_data
;
1805 __get_user(cred
->pid
, &target_cred
->pid
);
1806 __get_user(cred
->uid
, &target_cred
->uid
);
1807 __get_user(cred
->gid
, &target_cred
->gid
);
1808 } else if (cmsg
->cmsg_level
== SOL_ALG
) {
1809 uint32_t *dst
= (uint32_t *)data
;
1811 memcpy(dst
, target_data
, len
);
1812 /* fix endianness of first 32-bit word */
1813 if (len
>= sizeof(uint32_t)) {
1814 *dst
= tswap32(*dst
);
1817 qemu_log_mask(LOG_UNIMP
, "Unsupported ancillary data: %d/%d\n",
1818 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1819 memcpy(data
, target_data
, len
);
1822 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1823 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
,
1826 unlock_user(target_cmsg
, target_cmsg_addr
, 0);
1828 msgh
->msg_controllen
= space
;
1832 static inline abi_long
host_to_target_cmsg(struct target_msghdr
*target_msgh
,
1833 struct msghdr
*msgh
)
1835 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1836 abi_long msg_controllen
;
1837 abi_ulong target_cmsg_addr
;
1838 struct target_cmsghdr
*target_cmsg
, *target_cmsg_start
;
1839 socklen_t space
= 0;
1841 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1842 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1844 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1845 target_cmsg
= lock_user(VERIFY_WRITE
, target_cmsg_addr
, msg_controllen
, 0);
1846 target_cmsg_start
= target_cmsg
;
1848 return -TARGET_EFAULT
;
1850 while (cmsg
&& target_cmsg
) {
1851 void *data
= CMSG_DATA(cmsg
);
1852 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1854 int len
= cmsg
->cmsg_len
- sizeof(struct cmsghdr
);
1855 int tgt_len
, tgt_space
;
1857 /* We never copy a half-header but may copy half-data;
1858 * this is Linux's behaviour in put_cmsg(). Note that
1859 * truncation here is a guest problem (which we report
1860 * to the guest via the CTRUNC bit), unlike truncation
1861 * in target_to_host_cmsg, which is a QEMU bug.
1863 if (msg_controllen
< sizeof(struct target_cmsghdr
)) {
1864 target_msgh
->msg_flags
|= tswap32(MSG_CTRUNC
);
1868 if (cmsg
->cmsg_level
== SOL_SOCKET
) {
1869 target_cmsg
->cmsg_level
= tswap32(TARGET_SOL_SOCKET
);
1871 target_cmsg
->cmsg_level
= tswap32(cmsg
->cmsg_level
);
1873 target_cmsg
->cmsg_type
= tswap32(cmsg
->cmsg_type
);
1875 /* Payload types which need a different size of payload on
1876 * the target must adjust tgt_len here.
1879 switch (cmsg
->cmsg_level
) {
1881 switch (cmsg
->cmsg_type
) {
1883 tgt_len
= sizeof(struct target_timeval
);
1893 if (msg_controllen
< TARGET_CMSG_LEN(tgt_len
)) {
1894 target_msgh
->msg_flags
|= tswap32(MSG_CTRUNC
);
1895 tgt_len
= msg_controllen
- sizeof(struct target_cmsghdr
);
1898 /* We must now copy-and-convert len bytes of payload
1899 * into tgt_len bytes of destination space. Bear in mind
1900 * that in both source and destination we may be dealing
1901 * with a truncated value!
1903 switch (cmsg
->cmsg_level
) {
1905 switch (cmsg
->cmsg_type
) {
1908 int *fd
= (int *)data
;
1909 int *target_fd
= (int *)target_data
;
1910 int i
, numfds
= tgt_len
/ sizeof(int);
1912 for (i
= 0; i
< numfds
; i
++) {
1913 __put_user(fd
[i
], target_fd
+ i
);
1919 struct timeval
*tv
= (struct timeval
*)data
;
1920 struct target_timeval
*target_tv
=
1921 (struct target_timeval
*)target_data
;
1923 if (len
!= sizeof(struct timeval
) ||
1924 tgt_len
!= sizeof(struct target_timeval
)) {
1928 /* copy struct timeval to target */
1929 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1930 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1933 case SCM_CREDENTIALS
:
1935 struct ucred
*cred
= (struct ucred
*)data
;
1936 struct target_ucred
*target_cred
=
1937 (struct target_ucred
*)target_data
;
1939 __put_user(cred
->pid
, &target_cred
->pid
);
1940 __put_user(cred
->uid
, &target_cred
->uid
);
1941 __put_user(cred
->gid
, &target_cred
->gid
);
1950 switch (cmsg
->cmsg_type
) {
1953 uint32_t *v
= (uint32_t *)data
;
1954 uint32_t *t_int
= (uint32_t *)target_data
;
1956 if (len
!= sizeof(uint32_t) ||
1957 tgt_len
!= sizeof(uint32_t)) {
1960 __put_user(*v
, t_int
);
1966 struct sock_extended_err ee
;
1967 struct sockaddr_in offender
;
1969 struct errhdr_t
*errh
= (struct errhdr_t
*)data
;
1970 struct errhdr_t
*target_errh
=
1971 (struct errhdr_t
*)target_data
;
1973 if (len
!= sizeof(struct errhdr_t
) ||
1974 tgt_len
!= sizeof(struct errhdr_t
)) {
1977 __put_user(errh
->ee
.ee_errno
, &target_errh
->ee
.ee_errno
);
1978 __put_user(errh
->ee
.ee_origin
, &target_errh
->ee
.ee_origin
);
1979 __put_user(errh
->ee
.ee_type
, &target_errh
->ee
.ee_type
);
1980 __put_user(errh
->ee
.ee_code
, &target_errh
->ee
.ee_code
);
1981 __put_user(errh
->ee
.ee_pad
, &target_errh
->ee
.ee_pad
);
1982 __put_user(errh
->ee
.ee_info
, &target_errh
->ee
.ee_info
);
1983 __put_user(errh
->ee
.ee_data
, &target_errh
->ee
.ee_data
);
1984 host_to_target_sockaddr((unsigned long) &target_errh
->offender
,
1985 (void *) &errh
->offender
, sizeof(errh
->offender
));
1994 switch (cmsg
->cmsg_type
) {
1997 uint32_t *v
= (uint32_t *)data
;
1998 uint32_t *t_int
= (uint32_t *)target_data
;
2000 if (len
!= sizeof(uint32_t) ||
2001 tgt_len
!= sizeof(uint32_t)) {
2004 __put_user(*v
, t_int
);
2010 struct sock_extended_err ee
;
2011 struct sockaddr_in6 offender
;
2013 struct errhdr6_t
*errh
= (struct errhdr6_t
*)data
;
2014 struct errhdr6_t
*target_errh
=
2015 (struct errhdr6_t
*)target_data
;
2017 if (len
!= sizeof(struct errhdr6_t
) ||
2018 tgt_len
!= sizeof(struct errhdr6_t
)) {
2021 __put_user(errh
->ee
.ee_errno
, &target_errh
->ee
.ee_errno
);
2022 __put_user(errh
->ee
.ee_origin
, &target_errh
->ee
.ee_origin
);
2023 __put_user(errh
->ee
.ee_type
, &target_errh
->ee
.ee_type
);
2024 __put_user(errh
->ee
.ee_code
, &target_errh
->ee
.ee_code
);
2025 __put_user(errh
->ee
.ee_pad
, &target_errh
->ee
.ee_pad
);
2026 __put_user(errh
->ee
.ee_info
, &target_errh
->ee
.ee_info
);
2027 __put_user(errh
->ee
.ee_data
, &target_errh
->ee
.ee_data
);
2028 host_to_target_sockaddr((unsigned long) &target_errh
->offender
,
2029 (void *) &errh
->offender
, sizeof(errh
->offender
));
2039 qemu_log_mask(LOG_UNIMP
, "Unsupported ancillary data: %d/%d\n",
2040 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
2041 memcpy(target_data
, data
, MIN(len
, tgt_len
));
2042 if (tgt_len
> len
) {
2043 memset(target_data
+ len
, 0, tgt_len
- len
);
2047 target_cmsg
->cmsg_len
= tswapal(TARGET_CMSG_LEN(tgt_len
));
2048 tgt_space
= TARGET_CMSG_SPACE(tgt_len
);
2049 if (msg_controllen
< tgt_space
) {
2050 tgt_space
= msg_controllen
;
2052 msg_controllen
-= tgt_space
;
2054 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
2055 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
,
2058 unlock_user(target_cmsg
, target_cmsg_addr
, space
);
2060 target_msgh
->msg_controllen
= tswapal(space
);
2064 /* do_setsockopt() Must return target values and target errnos. */
2065 static abi_long
do_setsockopt(int sockfd
, int level
, int optname
,
2066 abi_ulong optval_addr
, socklen_t optlen
)
2070 struct ip_mreqn
*ip_mreq
;
2071 struct ip_mreq_source
*ip_mreq_source
;
2076 /* TCP and UDP options all take an 'int' value. */
2077 if (optlen
< sizeof(uint32_t))
2078 return -TARGET_EINVAL
;
2080 if (get_user_u32(val
, optval_addr
))
2081 return -TARGET_EFAULT
;
2082 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
2089 case IP_ROUTER_ALERT
:
2093 case IP_MTU_DISCOVER
:
2100 case IP_MULTICAST_TTL
:
2101 case IP_MULTICAST_LOOP
:
2103 if (optlen
>= sizeof(uint32_t)) {
2104 if (get_user_u32(val
, optval_addr
))
2105 return -TARGET_EFAULT
;
2106 } else if (optlen
>= 1) {
2107 if (get_user_u8(val
, optval_addr
))
2108 return -TARGET_EFAULT
;
2110 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
2112 case IP_ADD_MEMBERSHIP
:
2113 case IP_DROP_MEMBERSHIP
:
2114 if (optlen
< sizeof (struct target_ip_mreq
) ||
2115 optlen
> sizeof (struct target_ip_mreqn
))
2116 return -TARGET_EINVAL
;
2118 ip_mreq
= (struct ip_mreqn
*) alloca(optlen
);
2119 target_to_host_ip_mreq(ip_mreq
, optval_addr
, optlen
);
2120 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq
, optlen
));
2123 case IP_BLOCK_SOURCE
:
2124 case IP_UNBLOCK_SOURCE
:
2125 case IP_ADD_SOURCE_MEMBERSHIP
:
2126 case IP_DROP_SOURCE_MEMBERSHIP
:
2127 if (optlen
!= sizeof (struct target_ip_mreq_source
))
2128 return -TARGET_EINVAL
;
2130 ip_mreq_source
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
2131 if (!ip_mreq_source
) {
2132 return -TARGET_EFAULT
;
2134 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq_source
, optlen
));
2135 unlock_user (ip_mreq_source
, optval_addr
, 0);
2144 case IPV6_MTU_DISCOVER
:
2147 case IPV6_RECVPKTINFO
:
2148 case IPV6_UNICAST_HOPS
:
2149 case IPV6_MULTICAST_HOPS
:
2150 case IPV6_MULTICAST_LOOP
:
2152 case IPV6_RECVHOPLIMIT
:
2153 case IPV6_2292HOPLIMIT
:
2156 case IPV6_2292PKTINFO
:
2157 case IPV6_RECVTCLASS
:
2158 case IPV6_RECVRTHDR
:
2159 case IPV6_2292RTHDR
:
2160 case IPV6_RECVHOPOPTS
:
2161 case IPV6_2292HOPOPTS
:
2162 case IPV6_RECVDSTOPTS
:
2163 case IPV6_2292DSTOPTS
:
2165 case IPV6_ADDR_PREFERENCES
:
2166 #ifdef IPV6_RECVPATHMTU
2167 case IPV6_RECVPATHMTU
:
2169 #ifdef IPV6_TRANSPARENT
2170 case IPV6_TRANSPARENT
:
2172 #ifdef IPV6_FREEBIND
2175 #ifdef IPV6_RECVORIGDSTADDR
2176 case IPV6_RECVORIGDSTADDR
:
2179 if (optlen
< sizeof(uint32_t)) {
2180 return -TARGET_EINVAL
;
2182 if (get_user_u32(val
, optval_addr
)) {
2183 return -TARGET_EFAULT
;
2185 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2186 &val
, sizeof(val
)));
2190 struct in6_pktinfo pki
;
2192 if (optlen
< sizeof(pki
)) {
2193 return -TARGET_EINVAL
;
2196 if (copy_from_user(&pki
, optval_addr
, sizeof(pki
))) {
2197 return -TARGET_EFAULT
;
2200 pki
.ipi6_ifindex
= tswap32(pki
.ipi6_ifindex
);
2202 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2203 &pki
, sizeof(pki
)));
2206 case IPV6_ADD_MEMBERSHIP
:
2207 case IPV6_DROP_MEMBERSHIP
:
2209 struct ipv6_mreq ipv6mreq
;
2211 if (optlen
< sizeof(ipv6mreq
)) {
2212 return -TARGET_EINVAL
;
2215 if (copy_from_user(&ipv6mreq
, optval_addr
, sizeof(ipv6mreq
))) {
2216 return -TARGET_EFAULT
;
2219 ipv6mreq
.ipv6mr_interface
= tswap32(ipv6mreq
.ipv6mr_interface
);
2221 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2222 &ipv6mreq
, sizeof(ipv6mreq
)));
2233 struct icmp6_filter icmp6f
;
2235 if (optlen
> sizeof(icmp6f
)) {
2236 optlen
= sizeof(icmp6f
);
2239 if (copy_from_user(&icmp6f
, optval_addr
, optlen
)) {
2240 return -TARGET_EFAULT
;
2243 for (val
= 0; val
< 8; val
++) {
2244 icmp6f
.data
[val
] = tswap32(icmp6f
.data
[val
]);
2247 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2259 /* those take an u32 value */
2260 if (optlen
< sizeof(uint32_t)) {
2261 return -TARGET_EINVAL
;
2264 if (get_user_u32(val
, optval_addr
)) {
2265 return -TARGET_EFAULT
;
2267 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2268 &val
, sizeof(val
)));
2275 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2280 char *alg_key
= g_malloc(optlen
);
2283 return -TARGET_ENOMEM
;
2285 if (copy_from_user(alg_key
, optval_addr
, optlen
)) {
2287 return -TARGET_EFAULT
;
2289 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2294 case ALG_SET_AEAD_AUTHSIZE
:
2296 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2305 case TARGET_SOL_SOCKET
:
2307 case TARGET_SO_RCVTIMEO
:
2311 optname
= SO_RCVTIMEO
;
2314 if (optlen
!= sizeof(struct target_timeval
)) {
2315 return -TARGET_EINVAL
;
2318 if (copy_from_user_timeval(&tv
, optval_addr
)) {
2319 return -TARGET_EFAULT
;
2322 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
2326 case TARGET_SO_SNDTIMEO
:
2327 optname
= SO_SNDTIMEO
;
2329 case TARGET_SO_ATTACH_FILTER
:
2331 struct target_sock_fprog
*tfprog
;
2332 struct target_sock_filter
*tfilter
;
2333 struct sock_fprog fprog
;
2334 struct sock_filter
*filter
;
2337 if (optlen
!= sizeof(*tfprog
)) {
2338 return -TARGET_EINVAL
;
2340 if (!lock_user_struct(VERIFY_READ
, tfprog
, optval_addr
, 0)) {
2341 return -TARGET_EFAULT
;
2343 if (!lock_user_struct(VERIFY_READ
, tfilter
,
2344 tswapal(tfprog
->filter
), 0)) {
2345 unlock_user_struct(tfprog
, optval_addr
, 1);
2346 return -TARGET_EFAULT
;
2349 fprog
.len
= tswap16(tfprog
->len
);
2350 filter
= g_try_new(struct sock_filter
, fprog
.len
);
2351 if (filter
== NULL
) {
2352 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
2353 unlock_user_struct(tfprog
, optval_addr
, 1);
2354 return -TARGET_ENOMEM
;
2356 for (i
= 0; i
< fprog
.len
; i
++) {
2357 filter
[i
].code
= tswap16(tfilter
[i
].code
);
2358 filter
[i
].jt
= tfilter
[i
].jt
;
2359 filter
[i
].jf
= tfilter
[i
].jf
;
2360 filter
[i
].k
= tswap32(tfilter
[i
].k
);
2362 fprog
.filter
= filter
;
2364 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
,
2365 SO_ATTACH_FILTER
, &fprog
, sizeof(fprog
)));
2368 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
2369 unlock_user_struct(tfprog
, optval_addr
, 1);
2372 case TARGET_SO_BINDTODEVICE
:
2374 char *dev_ifname
, *addr_ifname
;
2376 if (optlen
> IFNAMSIZ
- 1) {
2377 optlen
= IFNAMSIZ
- 1;
2379 dev_ifname
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
2381 return -TARGET_EFAULT
;
2383 optname
= SO_BINDTODEVICE
;
2384 addr_ifname
= alloca(IFNAMSIZ
);
2385 memcpy(addr_ifname
, dev_ifname
, optlen
);
2386 addr_ifname
[optlen
] = 0;
2387 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
2388 addr_ifname
, optlen
));
2389 unlock_user (dev_ifname
, optval_addr
, 0);
2392 case TARGET_SO_LINGER
:
2395 struct target_linger
*tlg
;
2397 if (optlen
!= sizeof(struct target_linger
)) {
2398 return -TARGET_EINVAL
;
2400 if (!lock_user_struct(VERIFY_READ
, tlg
, optval_addr
, 1)) {
2401 return -TARGET_EFAULT
;
2403 __get_user(lg
.l_onoff
, &tlg
->l_onoff
);
2404 __get_user(lg
.l_linger
, &tlg
->l_linger
);
2405 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, SO_LINGER
,
2407 unlock_user_struct(tlg
, optval_addr
, 0);
2410 /* Options with 'int' argument. */
2411 case TARGET_SO_DEBUG
:
2414 case TARGET_SO_REUSEADDR
:
2415 optname
= SO_REUSEADDR
;
2418 case TARGET_SO_REUSEPORT
:
2419 optname
= SO_REUSEPORT
;
2422 case TARGET_SO_TYPE
:
2425 case TARGET_SO_ERROR
:
2428 case TARGET_SO_DONTROUTE
:
2429 optname
= SO_DONTROUTE
;
2431 case TARGET_SO_BROADCAST
:
2432 optname
= SO_BROADCAST
;
2434 case TARGET_SO_SNDBUF
:
2435 optname
= SO_SNDBUF
;
2437 case TARGET_SO_SNDBUFFORCE
:
2438 optname
= SO_SNDBUFFORCE
;
2440 case TARGET_SO_RCVBUF
:
2441 optname
= SO_RCVBUF
;
2443 case TARGET_SO_RCVBUFFORCE
:
2444 optname
= SO_RCVBUFFORCE
;
2446 case TARGET_SO_KEEPALIVE
:
2447 optname
= SO_KEEPALIVE
;
2449 case TARGET_SO_OOBINLINE
:
2450 optname
= SO_OOBINLINE
;
2452 case TARGET_SO_NO_CHECK
:
2453 optname
= SO_NO_CHECK
;
2455 case TARGET_SO_PRIORITY
:
2456 optname
= SO_PRIORITY
;
2459 case TARGET_SO_BSDCOMPAT
:
2460 optname
= SO_BSDCOMPAT
;
2463 case TARGET_SO_PASSCRED
:
2464 optname
= SO_PASSCRED
;
2466 case TARGET_SO_PASSSEC
:
2467 optname
= SO_PASSSEC
;
2469 case TARGET_SO_TIMESTAMP
:
2470 optname
= SO_TIMESTAMP
;
2472 case TARGET_SO_RCVLOWAT
:
2473 optname
= SO_RCVLOWAT
;
2478 if (optlen
< sizeof(uint32_t))
2479 return -TARGET_EINVAL
;
2481 if (get_user_u32(val
, optval_addr
))
2482 return -TARGET_EFAULT
;
2483 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
, &val
, sizeof(val
)));
2488 case NETLINK_PKTINFO
:
2489 case NETLINK_ADD_MEMBERSHIP
:
2490 case NETLINK_DROP_MEMBERSHIP
:
2491 case NETLINK_BROADCAST_ERROR
:
2492 case NETLINK_NO_ENOBUFS
:
2493 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2494 case NETLINK_LISTEN_ALL_NSID
:
2495 case NETLINK_CAP_ACK
:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2497 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2498 case NETLINK_EXT_ACK
:
2499 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2500 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2501 case NETLINK_GET_STRICT_CHK
:
2502 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2508 if (optlen
< sizeof(uint32_t)) {
2509 return -TARGET_EINVAL
;
2511 if (get_user_u32(val
, optval_addr
)) {
2512 return -TARGET_EFAULT
;
2514 ret
= get_errno(setsockopt(sockfd
, SOL_NETLINK
, optname
, &val
,
2517 #endif /* SOL_NETLINK */
2520 qemu_log_mask(LOG_UNIMP
, "Unsupported setsockopt level=%d optname=%d\n",
2522 ret
= -TARGET_ENOPROTOOPT
;
2527 /* do_getsockopt() Must return target values and target errnos. */
2528 static abi_long
do_getsockopt(int sockfd
, int level
, int optname
,
2529 abi_ulong optval_addr
, abi_ulong optlen
)
2536 case TARGET_SOL_SOCKET
:
2539 /* These don't just return a single integer */
2540 case TARGET_SO_PEERNAME
:
2542 case TARGET_SO_RCVTIMEO
: {
2546 optname
= SO_RCVTIMEO
;
2549 if (get_user_u32(len
, optlen
)) {
2550 return -TARGET_EFAULT
;
2553 return -TARGET_EINVAL
;
2557 ret
= get_errno(getsockopt(sockfd
, level
, optname
,
2562 if (len
> sizeof(struct target_timeval
)) {
2563 len
= sizeof(struct target_timeval
);
2565 if (copy_to_user_timeval(optval_addr
, &tv
)) {
2566 return -TARGET_EFAULT
;
2568 if (put_user_u32(len
, optlen
)) {
2569 return -TARGET_EFAULT
;
2573 case TARGET_SO_SNDTIMEO
:
2574 optname
= SO_SNDTIMEO
;
2576 case TARGET_SO_PEERCRED
: {
2579 struct target_ucred
*tcr
;
2581 if (get_user_u32(len
, optlen
)) {
2582 return -TARGET_EFAULT
;
2585 return -TARGET_EINVAL
;
2589 ret
= get_errno(getsockopt(sockfd
, level
, SO_PEERCRED
,
2597 if (!lock_user_struct(VERIFY_WRITE
, tcr
, optval_addr
, 0)) {
2598 return -TARGET_EFAULT
;
2600 __put_user(cr
.pid
, &tcr
->pid
);
2601 __put_user(cr
.uid
, &tcr
->uid
);
2602 __put_user(cr
.gid
, &tcr
->gid
);
2603 unlock_user_struct(tcr
, optval_addr
, 1);
2604 if (put_user_u32(len
, optlen
)) {
2605 return -TARGET_EFAULT
;
2609 case TARGET_SO_PEERSEC
: {
2612 if (get_user_u32(len
, optlen
)) {
2613 return -TARGET_EFAULT
;
2616 return -TARGET_EINVAL
;
2618 name
= lock_user(VERIFY_WRITE
, optval_addr
, len
, 0);
2620 return -TARGET_EFAULT
;
2623 ret
= get_errno(getsockopt(sockfd
, level
, SO_PEERSEC
,
2625 if (put_user_u32(lv
, optlen
)) {
2626 ret
= -TARGET_EFAULT
;
2628 unlock_user(name
, optval_addr
, lv
);
2631 case TARGET_SO_LINGER
:
2635 struct target_linger
*tlg
;
2637 if (get_user_u32(len
, optlen
)) {
2638 return -TARGET_EFAULT
;
2641 return -TARGET_EINVAL
;
2645 ret
= get_errno(getsockopt(sockfd
, level
, SO_LINGER
,
2653 if (!lock_user_struct(VERIFY_WRITE
, tlg
, optval_addr
, 0)) {
2654 return -TARGET_EFAULT
;
2656 __put_user(lg
.l_onoff
, &tlg
->l_onoff
);
2657 __put_user(lg
.l_linger
, &tlg
->l_linger
);
2658 unlock_user_struct(tlg
, optval_addr
, 1);
2659 if (put_user_u32(len
, optlen
)) {
2660 return -TARGET_EFAULT
;
2664 /* Options with 'int' argument. */
2665 case TARGET_SO_DEBUG
:
2668 case TARGET_SO_REUSEADDR
:
2669 optname
= SO_REUSEADDR
;
2672 case TARGET_SO_REUSEPORT
:
2673 optname
= SO_REUSEPORT
;
2676 case TARGET_SO_TYPE
:
2679 case TARGET_SO_ERROR
:
2682 case TARGET_SO_DONTROUTE
:
2683 optname
= SO_DONTROUTE
;
2685 case TARGET_SO_BROADCAST
:
2686 optname
= SO_BROADCAST
;
2688 case TARGET_SO_SNDBUF
:
2689 optname
= SO_SNDBUF
;
2691 case TARGET_SO_RCVBUF
:
2692 optname
= SO_RCVBUF
;
2694 case TARGET_SO_KEEPALIVE
:
2695 optname
= SO_KEEPALIVE
;
2697 case TARGET_SO_OOBINLINE
:
2698 optname
= SO_OOBINLINE
;
2700 case TARGET_SO_NO_CHECK
:
2701 optname
= SO_NO_CHECK
;
2703 case TARGET_SO_PRIORITY
:
2704 optname
= SO_PRIORITY
;
2707 case TARGET_SO_BSDCOMPAT
:
2708 optname
= SO_BSDCOMPAT
;
2711 case TARGET_SO_PASSCRED
:
2712 optname
= SO_PASSCRED
;
2714 case TARGET_SO_TIMESTAMP
:
2715 optname
= SO_TIMESTAMP
;
2717 case TARGET_SO_RCVLOWAT
:
2718 optname
= SO_RCVLOWAT
;
2720 case TARGET_SO_ACCEPTCONN
:
2721 optname
= SO_ACCEPTCONN
;
2723 case TARGET_SO_PROTOCOL
:
2724 optname
= SO_PROTOCOL
;
2726 case TARGET_SO_DOMAIN
:
2727 optname
= SO_DOMAIN
;
2735 /* TCP and UDP options all take an 'int' value. */
2737 if (get_user_u32(len
, optlen
))
2738 return -TARGET_EFAULT
;
2740 return -TARGET_EINVAL
;
2742 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2747 val
= host_to_target_sock_type(val
);
2750 val
= host_to_target_errno(val
);
2756 if (put_user_u32(val
, optval_addr
))
2757 return -TARGET_EFAULT
;
2759 if (put_user_u8(val
, optval_addr
))
2760 return -TARGET_EFAULT
;
2762 if (put_user_u32(len
, optlen
))
2763 return -TARGET_EFAULT
;
2770 case IP_ROUTER_ALERT
:
2774 case IP_MTU_DISCOVER
:
2780 case IP_MULTICAST_TTL
:
2781 case IP_MULTICAST_LOOP
:
2782 if (get_user_u32(len
, optlen
))
2783 return -TARGET_EFAULT
;
2785 return -TARGET_EINVAL
;
2787 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2790 if (len
< sizeof(int) && len
> 0 && val
>= 0 && val
< 255) {
2792 if (put_user_u32(len
, optlen
)
2793 || put_user_u8(val
, optval_addr
))
2794 return -TARGET_EFAULT
;
2796 if (len
> sizeof(int))
2798 if (put_user_u32(len
, optlen
)
2799 || put_user_u32(val
, optval_addr
))
2800 return -TARGET_EFAULT
;
2804 ret
= -TARGET_ENOPROTOOPT
;
2810 case IPV6_MTU_DISCOVER
:
2813 case IPV6_RECVPKTINFO
:
2814 case IPV6_UNICAST_HOPS
:
2815 case IPV6_MULTICAST_HOPS
:
2816 case IPV6_MULTICAST_LOOP
:
2818 case IPV6_RECVHOPLIMIT
:
2819 case IPV6_2292HOPLIMIT
:
2822 case IPV6_2292PKTINFO
:
2823 case IPV6_RECVTCLASS
:
2824 case IPV6_RECVRTHDR
:
2825 case IPV6_2292RTHDR
:
2826 case IPV6_RECVHOPOPTS
:
2827 case IPV6_2292HOPOPTS
:
2828 case IPV6_RECVDSTOPTS
:
2829 case IPV6_2292DSTOPTS
:
2831 case IPV6_ADDR_PREFERENCES
:
2832 #ifdef IPV6_RECVPATHMTU
2833 case IPV6_RECVPATHMTU
:
2835 #ifdef IPV6_TRANSPARENT
2836 case IPV6_TRANSPARENT
:
2838 #ifdef IPV6_FREEBIND
2841 #ifdef IPV6_RECVORIGDSTADDR
2842 case IPV6_RECVORIGDSTADDR
:
2844 if (get_user_u32(len
, optlen
))
2845 return -TARGET_EFAULT
;
2847 return -TARGET_EINVAL
;
2849 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2852 if (len
< sizeof(int) && len
> 0 && val
>= 0 && val
< 255) {
2854 if (put_user_u32(len
, optlen
)
2855 || put_user_u8(val
, optval_addr
))
2856 return -TARGET_EFAULT
;
2858 if (len
> sizeof(int))
2860 if (put_user_u32(len
, optlen
)
2861 || put_user_u32(val
, optval_addr
))
2862 return -TARGET_EFAULT
;
2866 ret
= -TARGET_ENOPROTOOPT
;
2873 case NETLINK_PKTINFO
:
2874 case NETLINK_BROADCAST_ERROR
:
2875 case NETLINK_NO_ENOBUFS
:
2876 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2877 case NETLINK_LISTEN_ALL_NSID
:
2878 case NETLINK_CAP_ACK
:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2880 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2881 case NETLINK_EXT_ACK
:
2882 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2883 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2884 case NETLINK_GET_STRICT_CHK
:
2885 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2886 if (get_user_u32(len
, optlen
)) {
2887 return -TARGET_EFAULT
;
2889 if (len
!= sizeof(val
)) {
2890 return -TARGET_EINVAL
;
2893 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2897 if (put_user_u32(lv
, optlen
)
2898 || put_user_u32(val
, optval_addr
)) {
2899 return -TARGET_EFAULT
;
2902 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2903 case NETLINK_LIST_MEMBERSHIPS
:
2907 if (get_user_u32(len
, optlen
)) {
2908 return -TARGET_EFAULT
;
2911 return -TARGET_EINVAL
;
2913 results
= lock_user(VERIFY_WRITE
, optval_addr
, len
, 1);
2914 if (!results
&& len
> 0) {
2915 return -TARGET_EFAULT
;
2918 ret
= get_errno(getsockopt(sockfd
, level
, optname
, results
, &lv
));
2920 unlock_user(results
, optval_addr
, 0);
2923 /* swap host endianness to target endianness. */
2924 for (i
= 0; i
< (len
/ sizeof(uint32_t)); i
++) {
2925 results
[i
] = tswap32(results
[i
]);
2927 if (put_user_u32(lv
, optlen
)) {
2928 return -TARGET_EFAULT
;
2930 unlock_user(results
, optval_addr
, 0);
2933 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2938 #endif /* SOL_NETLINK */
2941 qemu_log_mask(LOG_UNIMP
,
2942 "getsockopt level=%d optname=%d not yet supported\n",
2944 ret
= -TARGET_EOPNOTSUPP
;
2950 /* Convert target low/high pair representing file offset into the host
2951 * low/high pair. This function doesn't handle offsets bigger than 64 bits
2952 * as the kernel doesn't handle them either.
2954 static void target_to_host_low_high(abi_ulong tlow
,
2956 unsigned long *hlow
,
2957 unsigned long *hhigh
)
2959 uint64_t off
= tlow
|
2960 ((unsigned long long)thigh
<< TARGET_LONG_BITS
/ 2) <<
2961 TARGET_LONG_BITS
/ 2;
2964 *hhigh
= (off
>> HOST_LONG_BITS
/ 2) >> HOST_LONG_BITS
/ 2;
2967 static struct iovec
*lock_iovec(int type
, abi_ulong target_addr
,
2968 abi_ulong count
, int copy
)
2970 struct target_iovec
*target_vec
;
2972 abi_ulong total_len
, max_len
;
2975 bool bad_address
= false;
2981 if (count
> IOV_MAX
) {
2986 vec
= g_try_new0(struct iovec
, count
);
2992 target_vec
= lock_user(VERIFY_READ
, target_addr
,
2993 count
* sizeof(struct target_iovec
), 1);
2994 if (target_vec
== NULL
) {
2999 /* ??? If host page size > target page size, this will result in a
3000 value larger than what we can actually support. */
3001 max_len
= 0x7fffffff & TARGET_PAGE_MASK
;
3004 for (i
= 0; i
< count
; i
++) {
3005 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
3006 abi_long len
= tswapal(target_vec
[i
].iov_len
);
3011 } else if (len
== 0) {
3012 /* Zero length pointer is ignored. */
3013 vec
[i
].iov_base
= 0;
3015 vec
[i
].iov_base
= lock_user(type
, base
, len
, copy
);
3016 /* If the first buffer pointer is bad, this is a fault. But
3017 * subsequent bad buffers will result in a partial write; this
3018 * is realized by filling the vector with null pointers and
3020 if (!vec
[i
].iov_base
) {
3031 if (len
> max_len
- total_len
) {
3032 len
= max_len
- total_len
;
3035 vec
[i
].iov_len
= len
;
3039 unlock_user(target_vec
, target_addr
, 0);
3044 if (tswapal(target_vec
[i
].iov_len
) > 0) {
3045 unlock_user(vec
[i
].iov_base
, tswapal(target_vec
[i
].iov_base
), 0);
3048 unlock_user(target_vec
, target_addr
, 0);
3055 static void unlock_iovec(struct iovec
*vec
, abi_ulong target_addr
,
3056 abi_ulong count
, int copy
)
3058 struct target_iovec
*target_vec
;
3061 target_vec
= lock_user(VERIFY_READ
, target_addr
,
3062 count
* sizeof(struct target_iovec
), 1);
3064 for (i
= 0; i
< count
; i
++) {
3065 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
3066 abi_long len
= tswapal(target_vec
[i
].iov_len
);
3070 unlock_user(vec
[i
].iov_base
, base
, copy
? vec
[i
].iov_len
: 0);
3072 unlock_user(target_vec
, target_addr
, 0);
3078 static inline int target_to_host_sock_type(int *type
)
3081 int target_type
= *type
;
3083 switch (target_type
& TARGET_SOCK_TYPE_MASK
) {
3084 case TARGET_SOCK_DGRAM
:
3085 host_type
= SOCK_DGRAM
;
3087 case TARGET_SOCK_STREAM
:
3088 host_type
= SOCK_STREAM
;
3091 host_type
= target_type
& TARGET_SOCK_TYPE_MASK
;
3094 if (target_type
& TARGET_SOCK_CLOEXEC
) {
3095 #if defined(SOCK_CLOEXEC)
3096 host_type
|= SOCK_CLOEXEC
;
3098 return -TARGET_EINVAL
;
3101 if (target_type
& TARGET_SOCK_NONBLOCK
) {
3102 #if defined(SOCK_NONBLOCK)
3103 host_type
|= SOCK_NONBLOCK
;
3104 #elif !defined(O_NONBLOCK)
3105 return -TARGET_EINVAL
;
3112 /* Try to emulate socket type flags after socket creation. */
3113 static int sock_flags_fixup(int fd
, int target_type
)
3115 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3116 if (target_type
& TARGET_SOCK_NONBLOCK
) {
3117 int flags
= fcntl(fd
, F_GETFL
);
3118 if (fcntl(fd
, F_SETFL
, O_NONBLOCK
| flags
) == -1) {
3120 return -TARGET_EINVAL
;
3127 /* do_socket() Must return target values and target errnos. */
3128 static abi_long
do_socket(int domain
, int type
, int protocol
)
3130 int target_type
= type
;
3133 ret
= target_to_host_sock_type(&type
);
3138 if (domain
== PF_NETLINK
&& !(
3139 #ifdef CONFIG_RTNETLINK
3140 protocol
== NETLINK_ROUTE
||
3142 protocol
== NETLINK_KOBJECT_UEVENT
||
3143 protocol
== NETLINK_AUDIT
)) {
3144 return -TARGET_EPROTONOSUPPORT
;
3147 if (domain
== AF_PACKET
||
3148 (domain
== AF_INET
&& type
== SOCK_PACKET
)) {
3149 protocol
= tswap16(protocol
);
3152 ret
= get_errno(socket(domain
, type
, protocol
));
3154 ret
= sock_flags_fixup(ret
, target_type
);
3155 if (type
== SOCK_PACKET
) {
3156 /* Manage an obsolete case :
3157 * if socket type is SOCK_PACKET, bind by name
3159 fd_trans_register(ret
, &target_packet_trans
);
3160 } else if (domain
== PF_NETLINK
) {
3162 #ifdef CONFIG_RTNETLINK
3164 fd_trans_register(ret
, &target_netlink_route_trans
);
3167 case NETLINK_KOBJECT_UEVENT
:
3168 /* nothing to do: messages are strings */
3171 fd_trans_register(ret
, &target_netlink_audit_trans
);
3174 g_assert_not_reached();
3181 /* do_bind() Must return target values and target errnos. */
3182 static abi_long
do_bind(int sockfd
, abi_ulong target_addr
,
3188 if ((int)addrlen
< 0) {
3189 return -TARGET_EINVAL
;
3192 addr
= alloca(addrlen
+1);
3194 ret
= target_to_host_sockaddr(sockfd
, addr
, target_addr
, addrlen
);
3198 return get_errno(bind(sockfd
, addr
, addrlen
));
3201 /* do_connect() Must return target values and target errnos. */
3202 static abi_long
do_connect(int sockfd
, abi_ulong target_addr
,
3208 if ((int)addrlen
< 0) {
3209 return -TARGET_EINVAL
;
3212 addr
= alloca(addrlen
+1);
3214 ret
= target_to_host_sockaddr(sockfd
, addr
, target_addr
, addrlen
);
3218 return get_errno(safe_connect(sockfd
, addr
, addrlen
));
3221 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3222 static abi_long
do_sendrecvmsg_locked(int fd
, struct target_msghdr
*msgp
,
3223 int flags
, int send
)
3229 abi_ulong target_vec
;
3231 if (msgp
->msg_name
) {
3232 msg
.msg_namelen
= tswap32(msgp
->msg_namelen
);
3233 msg
.msg_name
= alloca(msg
.msg_namelen
+1);
3234 ret
= target_to_host_sockaddr(fd
, msg
.msg_name
,
3235 tswapal(msgp
->msg_name
),
3237 if (ret
== -TARGET_EFAULT
) {
3238 /* For connected sockets msg_name and msg_namelen must
3239 * be ignored, so returning EFAULT immediately is wrong.
3240 * Instead, pass a bad msg_name to the host kernel, and
3241 * let it decide whether to return EFAULT or not.
3243 msg
.msg_name
= (void *)-1;
3248 msg
.msg_name
= NULL
;
3249 msg
.msg_namelen
= 0;
3251 msg
.msg_controllen
= 2 * tswapal(msgp
->msg_controllen
);
3252 msg
.msg_control
= alloca(msg
.msg_controllen
);
3253 memset(msg
.msg_control
, 0, msg
.msg_controllen
);
3255 msg
.msg_flags
= tswap32(msgp
->msg_flags
);
3257 count
= tswapal(msgp
->msg_iovlen
);
3258 target_vec
= tswapal(msgp
->msg_iov
);
3260 if (count
> IOV_MAX
) {
3261 /* sendrcvmsg returns a different errno for this condition than
3262 * readv/writev, so we must catch it here before lock_iovec() does.
3264 ret
= -TARGET_EMSGSIZE
;
3268 vec
= lock_iovec(send
? VERIFY_READ
: VERIFY_WRITE
,
3269 target_vec
, count
, send
);
3271 ret
= -host_to_target_errno(errno
);
3272 /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3277 msg
.msg_iovlen
= count
;
3281 if (fd_trans_target_to_host_data(fd
)) {
3284 host_msg
= g_malloc(msg
.msg_iov
->iov_len
);
3285 memcpy(host_msg
, msg
.msg_iov
->iov_base
, msg
.msg_iov
->iov_len
);
3286 ret
= fd_trans_target_to_host_data(fd
)(host_msg
,
3287 msg
.msg_iov
->iov_len
);
3289 msg
.msg_iov
->iov_base
= host_msg
;
3290 ret
= get_errno(safe_sendmsg(fd
, &msg
, flags
));
3294 ret
= target_to_host_cmsg(&msg
, msgp
);
3296 ret
= get_errno(safe_sendmsg(fd
, &msg
, flags
));
3300 ret
= get_errno(safe_recvmsg(fd
, &msg
, flags
));
3301 if (!is_error(ret
)) {
3303 if (fd_trans_host_to_target_data(fd
)) {
3304 ret
= fd_trans_host_to_target_data(fd
)(msg
.msg_iov
->iov_base
,
3305 MIN(msg
.msg_iov
->iov_len
, len
));
3307 if (!is_error(ret
)) {
3308 ret
= host_to_target_cmsg(msgp
, &msg
);
3310 if (!is_error(ret
)) {
3311 msgp
->msg_namelen
= tswap32(msg
.msg_namelen
);
3312 msgp
->msg_flags
= tswap32(msg
.msg_flags
);
3313 if (msg
.msg_name
!= NULL
&& msg
.msg_name
!= (void *)-1) {
3314 ret
= host_to_target_sockaddr(tswapal(msgp
->msg_name
),
3315 msg
.msg_name
, msg
.msg_namelen
);
3328 unlock_iovec(vec
, target_vec
, count
, !send
);
3334 static abi_long
do_sendrecvmsg(int fd
, abi_ulong target_msg
,
3335 int flags
, int send
)
3338 struct target_msghdr
*msgp
;
3340 if (!lock_user_struct(send
? VERIFY_READ
: VERIFY_WRITE
,
3344 return -TARGET_EFAULT
;
3346 ret
= do_sendrecvmsg_locked(fd
, msgp
, flags
, send
);
3347 unlock_user_struct(msgp
, target_msg
, send
? 0 : 1);
3351 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3352 * so it might not have this *mmsg-specific flag either.
3354 #ifndef MSG_WAITFORONE
3355 #define MSG_WAITFORONE 0x10000
3358 static abi_long
do_sendrecvmmsg(int fd
, abi_ulong target_msgvec
,
3359 unsigned int vlen
, unsigned int flags
,
3362 struct target_mmsghdr
*mmsgp
;
3366 if (vlen
> UIO_MAXIOV
) {
3370 mmsgp
= lock_user(VERIFY_WRITE
, target_msgvec
, sizeof(*mmsgp
) * vlen
, 1);
3372 return -TARGET_EFAULT
;
3375 for (i
= 0; i
< vlen
; i
++) {
3376 ret
= do_sendrecvmsg_locked(fd
, &mmsgp
[i
].msg_hdr
, flags
, send
);
3377 if (is_error(ret
)) {
3380 mmsgp
[i
].msg_len
= tswap32(ret
);
3381 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3382 if (flags
& MSG_WAITFORONE
) {
3383 flags
|= MSG_DONTWAIT
;
3387 unlock_user(mmsgp
, target_msgvec
, sizeof(*mmsgp
) * i
);
3389 /* Return number of datagrams sent if we sent any at all;
3390 * otherwise return the error.
3398 /* do_accept4() Must return target values and target errnos. */
3399 static abi_long
do_accept4(int fd
, abi_ulong target_addr
,
3400 abi_ulong target_addrlen_addr
, int flags
)
3402 socklen_t addrlen
, ret_addrlen
;
3407 if (flags
& ~(TARGET_SOCK_CLOEXEC
| TARGET_SOCK_NONBLOCK
)) {
3408 return -TARGET_EINVAL
;
3412 if (flags
& TARGET_SOCK_NONBLOCK
) {
3413 host_flags
|= SOCK_NONBLOCK
;
3415 if (flags
& TARGET_SOCK_CLOEXEC
) {
3416 host_flags
|= SOCK_CLOEXEC
;
3419 if (target_addr
== 0) {
3420 return get_errno(safe_accept4(fd
, NULL
, NULL
, host_flags
));
3423 /* linux returns EFAULT if addrlen pointer is invalid */
3424 if (get_user_u32(addrlen
, target_addrlen_addr
))
3425 return -TARGET_EFAULT
;
3427 if ((int)addrlen
< 0) {
3428 return -TARGET_EINVAL
;
3431 if (!access_ok(thread_cpu
, VERIFY_WRITE
, target_addr
, addrlen
)) {
3432 return -TARGET_EFAULT
;
3435 addr
= alloca(addrlen
);
3437 ret_addrlen
= addrlen
;
3438 ret
= get_errno(safe_accept4(fd
, addr
, &ret_addrlen
, host_flags
));
3439 if (!is_error(ret
)) {
3440 host_to_target_sockaddr(target_addr
, addr
, MIN(addrlen
, ret_addrlen
));
3441 if (put_user_u32(ret_addrlen
, target_addrlen_addr
)) {
3442 ret
= -TARGET_EFAULT
;
3448 /* do_getpeername() Must return target values and target errnos. */
3449 static abi_long
do_getpeername(int fd
, abi_ulong target_addr
,
3450 abi_ulong target_addrlen_addr
)
3452 socklen_t addrlen
, ret_addrlen
;
3456 if (get_user_u32(addrlen
, target_addrlen_addr
))
3457 return -TARGET_EFAULT
;
3459 if ((int)addrlen
< 0) {
3460 return -TARGET_EINVAL
;
3463 if (!access_ok(thread_cpu
, VERIFY_WRITE
, target_addr
, addrlen
)) {
3464 return -TARGET_EFAULT
;
3467 addr
= alloca(addrlen
);
3469 ret_addrlen
= addrlen
;
3470 ret
= get_errno(getpeername(fd
, addr
, &ret_addrlen
));
3471 if (!is_error(ret
)) {
3472 host_to_target_sockaddr(target_addr
, addr
, MIN(addrlen
, ret_addrlen
));
3473 if (put_user_u32(ret_addrlen
, target_addrlen_addr
)) {
3474 ret
= -TARGET_EFAULT
;
3480 /* do_getsockname() Must return target values and target errnos. */
3481 static abi_long
do_getsockname(int fd
, abi_ulong target_addr
,
3482 abi_ulong target_addrlen_addr
)
3484 socklen_t addrlen
, ret_addrlen
;
3488 if (get_user_u32(addrlen
, target_addrlen_addr
))
3489 return -TARGET_EFAULT
;
3491 if ((int)addrlen
< 0) {
3492 return -TARGET_EINVAL
;
3495 if (!access_ok(thread_cpu
, VERIFY_WRITE
, target_addr
, addrlen
)) {
3496 return -TARGET_EFAULT
;
3499 addr
= alloca(addrlen
);
3501 ret_addrlen
= addrlen
;
3502 ret
= get_errno(getsockname(fd
, addr
, &ret_addrlen
));
3503 if (!is_error(ret
)) {
3504 host_to_target_sockaddr(target_addr
, addr
, MIN(addrlen
, ret_addrlen
));
3505 if (put_user_u32(ret_addrlen
, target_addrlen_addr
)) {
3506 ret
= -TARGET_EFAULT
;
3512 /* do_socketpair() Must return target values and target errnos. */
3513 static abi_long
do_socketpair(int domain
, int type
, int protocol
,
3514 abi_ulong target_tab_addr
)
3519 target_to_host_sock_type(&type
);
3521 ret
= get_errno(socketpair(domain
, type
, protocol
, tab
));
3522 if (!is_error(ret
)) {
3523 if (put_user_s32(tab
[0], target_tab_addr
)
3524 || put_user_s32(tab
[1], target_tab_addr
+ sizeof(tab
[0])))
3525 ret
= -TARGET_EFAULT
;
3530 /* do_sendto() Must return target values and target errnos. */
3531 static abi_long
do_sendto(int fd
, abi_ulong msg
, size_t len
, int flags
,
3532 abi_ulong target_addr
, socklen_t addrlen
)
3536 void *copy_msg
= NULL
;
3539 if ((int)addrlen
< 0) {
3540 return -TARGET_EINVAL
;
3543 host_msg
= lock_user(VERIFY_READ
, msg
, len
, 1);
3545 return -TARGET_EFAULT
;
3546 if (fd_trans_target_to_host_data(fd
)) {
3547 copy_msg
= host_msg
;
3548 host_msg
= g_malloc(len
);
3549 memcpy(host_msg
, copy_msg
, len
);
3550 ret
= fd_trans_target_to_host_data(fd
)(host_msg
, len
);
3556 addr
= alloca(addrlen
+1);
3557 ret
= target_to_host_sockaddr(fd
, addr
, target_addr
, addrlen
);
3561 ret
= get_errno(safe_sendto(fd
, host_msg
, len
, flags
, addr
, addrlen
));
3563 ret
= get_errno(safe_sendto(fd
, host_msg
, len
, flags
, NULL
, 0));
3568 host_msg
= copy_msg
;
3570 unlock_user(host_msg
, msg
, 0);
3574 /* do_recvfrom() Must return target values and target errnos. */
3575 static abi_long
do_recvfrom(int fd
, abi_ulong msg
, size_t len
, int flags
,
3576 abi_ulong target_addr
,
3577 abi_ulong target_addrlen
)
3579 socklen_t addrlen
, ret_addrlen
;
3587 host_msg
= lock_user(VERIFY_WRITE
, msg
, len
, 0);
3589 return -TARGET_EFAULT
;
3593 if (get_user_u32(addrlen
, target_addrlen
)) {
3594 ret
= -TARGET_EFAULT
;
3597 if ((int)addrlen
< 0) {
3598 ret
= -TARGET_EINVAL
;
3601 addr
= alloca(addrlen
);
3602 ret_addrlen
= addrlen
;
3603 ret
= get_errno(safe_recvfrom(fd
, host_msg
, len
, flags
,
3604 addr
, &ret_addrlen
));
3606 addr
= NULL
; /* To keep compiler quiet. */
3607 addrlen
= 0; /* To keep compiler quiet. */
3608 ret
= get_errno(safe_recvfrom(fd
, host_msg
, len
, flags
, NULL
, 0));
3610 if (!is_error(ret
)) {
3611 if (fd_trans_host_to_target_data(fd
)) {
3613 trans
= fd_trans_host_to_target_data(fd
)(host_msg
, MIN(ret
, len
));
3614 if (is_error(trans
)) {
3620 host_to_target_sockaddr(target_addr
, addr
,
3621 MIN(addrlen
, ret_addrlen
));
3622 if (put_user_u32(ret_addrlen
, target_addrlen
)) {
3623 ret
= -TARGET_EFAULT
;
3627 unlock_user(host_msg
, msg
, len
);
3630 unlock_user(host_msg
, msg
, 0);
3635 #ifdef TARGET_NR_socketcall
3636 /* do_socketcall() must return target values and target errnos. */
3637 static abi_long
do_socketcall(int num
, abi_ulong vptr
)
3639 static const unsigned nargs
[] = { /* number of arguments per operation */
3640 [TARGET_SYS_SOCKET
] = 3, /* domain, type, protocol */
3641 [TARGET_SYS_BIND
] = 3, /* fd, addr, addrlen */
3642 [TARGET_SYS_CONNECT
] = 3, /* fd, addr, addrlen */
3643 [TARGET_SYS_LISTEN
] = 2, /* fd, backlog */
3644 [TARGET_SYS_ACCEPT
] = 3, /* fd, addr, addrlen */
3645 [TARGET_SYS_GETSOCKNAME
] = 3, /* fd, addr, addrlen */
3646 [TARGET_SYS_GETPEERNAME
] = 3, /* fd, addr, addrlen */
3647 [TARGET_SYS_SOCKETPAIR
] = 4, /* domain, type, protocol, tab */
3648 [TARGET_SYS_SEND
] = 4, /* fd, msg, len, flags */
3649 [TARGET_SYS_RECV
] = 4, /* fd, msg, len, flags */
3650 [TARGET_SYS_SENDTO
] = 6, /* fd, msg, len, flags, addr, addrlen */
3651 [TARGET_SYS_RECVFROM
] = 6, /* fd, msg, len, flags, addr, addrlen */
3652 [TARGET_SYS_SHUTDOWN
] = 2, /* fd, how */
3653 [TARGET_SYS_SETSOCKOPT
] = 5, /* fd, level, optname, optval, optlen */
3654 [TARGET_SYS_GETSOCKOPT
] = 5, /* fd, level, optname, optval, optlen */
3655 [TARGET_SYS_SENDMSG
] = 3, /* fd, msg, flags */
3656 [TARGET_SYS_RECVMSG
] = 3, /* fd, msg, flags */
3657 [TARGET_SYS_ACCEPT4
] = 4, /* fd, addr, addrlen, flags */
3658 [TARGET_SYS_RECVMMSG
] = 4, /* fd, msgvec, vlen, flags */
3659 [TARGET_SYS_SENDMMSG
] = 4, /* fd, msgvec, vlen, flags */
3661 abi_long a
[6]; /* max 6 args */
3664 /* check the range of the first argument num */
3665 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3666 if (num
< 1 || num
> TARGET_SYS_SENDMMSG
) {
3667 return -TARGET_EINVAL
;
3669 /* ensure we have space for args */
3670 if (nargs
[num
] > ARRAY_SIZE(a
)) {
3671 return -TARGET_EINVAL
;
3673 /* collect the arguments in a[] according to nargs[] */
3674 for (i
= 0; i
< nargs
[num
]; ++i
) {
3675 if (get_user_ual(a
[i
], vptr
+ i
* sizeof(abi_long
)) != 0) {
3676 return -TARGET_EFAULT
;
3679 /* now when we have the args, invoke the appropriate underlying function */
3681 case TARGET_SYS_SOCKET
: /* domain, type, protocol */
3682 return do_socket(a
[0], a
[1], a
[2]);
3683 case TARGET_SYS_BIND
: /* sockfd, addr, addrlen */
3684 return do_bind(a
[0], a
[1], a
[2]);
3685 case TARGET_SYS_CONNECT
: /* sockfd, addr, addrlen */
3686 return do_connect(a
[0], a
[1], a
[2]);
3687 case TARGET_SYS_LISTEN
: /* sockfd, backlog */
3688 return get_errno(listen(a
[0], a
[1]));
3689 case TARGET_SYS_ACCEPT
: /* sockfd, addr, addrlen */
3690 return do_accept4(a
[0], a
[1], a
[2], 0);
3691 case TARGET_SYS_GETSOCKNAME
: /* sockfd, addr, addrlen */
3692 return do_getsockname(a
[0], a
[1], a
[2]);
3693 case TARGET_SYS_GETPEERNAME
: /* sockfd, addr, addrlen */
3694 return do_getpeername(a
[0], a
[1], a
[2]);
3695 case TARGET_SYS_SOCKETPAIR
: /* domain, type, protocol, tab */
3696 return do_socketpair(a
[0], a
[1], a
[2], a
[3]);
3697 case TARGET_SYS_SEND
: /* sockfd, msg, len, flags */
3698 return do_sendto(a
[0], a
[1], a
[2], a
[3], 0, 0);
3699 case TARGET_SYS_RECV
: /* sockfd, msg, len, flags */
3700 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], 0, 0);
3701 case TARGET_SYS_SENDTO
: /* sockfd, msg, len, flags, addr, addrlen */
3702 return do_sendto(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
3703 case TARGET_SYS_RECVFROM
: /* sockfd, msg, len, flags, addr, addrlen */
3704 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
3705 case TARGET_SYS_SHUTDOWN
: /* sockfd, how */
3706 return get_errno(shutdown(a
[0], a
[1]));
3707 case TARGET_SYS_SETSOCKOPT
: /* sockfd, level, optname, optval, optlen */
3708 return do_setsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
3709 case TARGET_SYS_GETSOCKOPT
: /* sockfd, level, optname, optval, optlen */
3710 return do_getsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
3711 case TARGET_SYS_SENDMSG
: /* sockfd, msg, flags */
3712 return do_sendrecvmsg(a
[0], a
[1], a
[2], 1);
3713 case TARGET_SYS_RECVMSG
: /* sockfd, msg, flags */
3714 return do_sendrecvmsg(a
[0], a
[1], a
[2], 0);
3715 case TARGET_SYS_ACCEPT4
: /* sockfd, addr, addrlen, flags */
3716 return do_accept4(a
[0], a
[1], a
[2], a
[3]);
3717 case TARGET_SYS_RECVMMSG
: /* sockfd, msgvec, vlen, flags */
3718 return do_sendrecvmmsg(a
[0], a
[1], a
[2], a
[3], 0);
3719 case TARGET_SYS_SENDMMSG
: /* sockfd, msgvec, vlen, flags */
3720 return do_sendrecvmmsg(a
[0], a
[1], a
[2], a
[3], 1);
3722 qemu_log_mask(LOG_UNIMP
, "Unsupported socketcall: %d\n", num
);
3723 return -TARGET_EINVAL
;
3728 #ifndef TARGET_SEMID64_DS
3729 /* asm-generic version of this struct */
3730 struct target_semid64_ds
3732 struct target_ipc_perm sem_perm
;
3733 abi_ulong sem_otime
;
3734 #if TARGET_ABI_BITS == 32
3735 abi_ulong __unused1
;
3737 abi_ulong sem_ctime
;
3738 #if TARGET_ABI_BITS == 32
3739 abi_ulong __unused2
;
3741 abi_ulong sem_nsems
;
3742 abi_ulong __unused3
;
3743 abi_ulong __unused4
;
3747 static inline abi_long
target_to_host_ipc_perm(struct ipc_perm
*host_ip
,
3748 abi_ulong target_addr
)
3750 struct target_ipc_perm
*target_ip
;
3751 struct target_semid64_ds
*target_sd
;
3753 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
3754 return -TARGET_EFAULT
;
3755 target_ip
= &(target_sd
->sem_perm
);
3756 host_ip
->__key
= tswap32(target_ip
->__key
);
3757 host_ip
->uid
= tswap32(target_ip
->uid
);
3758 host_ip
->gid
= tswap32(target_ip
->gid
);
3759 host_ip
->cuid
= tswap32(target_ip
->cuid
);
3760 host_ip
->cgid
= tswap32(target_ip
->cgid
);
3761 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3762 host_ip
->mode
= tswap32(target_ip
->mode
);
3764 host_ip
->mode
= tswap16(target_ip
->mode
);
3766 #if defined(TARGET_PPC)
3767 host_ip
->__seq
= tswap32(target_ip
->__seq
);
3769 host_ip
->__seq
= tswap16(target_ip
->__seq
);
3771 unlock_user_struct(target_sd
, target_addr
, 0);
3775 static inline abi_long
host_to_target_ipc_perm(abi_ulong target_addr
,
3776 struct ipc_perm
*host_ip
)
3778 struct target_ipc_perm
*target_ip
;
3779 struct target_semid64_ds
*target_sd
;
3781 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
3782 return -TARGET_EFAULT
;
3783 target_ip
= &(target_sd
->sem_perm
);
3784 target_ip
->__key
= tswap32(host_ip
->__key
);
3785 target_ip
->uid
= tswap32(host_ip
->uid
);
3786 target_ip
->gid
= tswap32(host_ip
->gid
);
3787 target_ip
->cuid
= tswap32(host_ip
->cuid
);
3788 target_ip
->cgid
= tswap32(host_ip
->cgid
);
3789 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3790 target_ip
->mode
= tswap32(host_ip
->mode
);
3792 target_ip
->mode
= tswap16(host_ip
->mode
);
3794 #if defined(TARGET_PPC)
3795 target_ip
->__seq
= tswap32(host_ip
->__seq
);
3797 target_ip
->__seq
= tswap16(host_ip
->__seq
);
3799 unlock_user_struct(target_sd
, target_addr
, 1);
3803 static inline abi_long
target_to_host_semid_ds(struct semid_ds
*host_sd
,
3804 abi_ulong target_addr
)
3806 struct target_semid64_ds
*target_sd
;
3808 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
3809 return -TARGET_EFAULT
;
3810 if (target_to_host_ipc_perm(&(host_sd
->sem_perm
),target_addr
))
3811 return -TARGET_EFAULT
;
3812 host_sd
->sem_nsems
= tswapal(target_sd
->sem_nsems
);
3813 host_sd
->sem_otime
= tswapal(target_sd
->sem_otime
);
3814 host_sd
->sem_ctime
= tswapal(target_sd
->sem_ctime
);
3815 unlock_user_struct(target_sd
, target_addr
, 0);
3819 static inline abi_long
host_to_target_semid_ds(abi_ulong target_addr
,
3820 struct semid_ds
*host_sd
)
3822 struct target_semid64_ds
*target_sd
;
3824 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
3825 return -TARGET_EFAULT
;
3826 if (host_to_target_ipc_perm(target_addr
,&(host_sd
->sem_perm
)))
3827 return -TARGET_EFAULT
;
3828 target_sd
->sem_nsems
= tswapal(host_sd
->sem_nsems
);
3829 target_sd
->sem_otime
= tswapal(host_sd
->sem_otime
);
3830 target_sd
->sem_ctime
= tswapal(host_sd
->sem_ctime
);
3831 unlock_user_struct(target_sd
, target_addr
, 1);
3835 struct target_seminfo
{
3848 static inline abi_long
host_to_target_seminfo(abi_ulong target_addr
,
3849 struct seminfo
*host_seminfo
)
3851 struct target_seminfo
*target_seminfo
;
3852 if (!lock_user_struct(VERIFY_WRITE
, target_seminfo
, target_addr
, 0))
3853 return -TARGET_EFAULT
;
3854 __put_user(host_seminfo
->semmap
, &target_seminfo
->semmap
);
3855 __put_user(host_seminfo
->semmni
, &target_seminfo
->semmni
);
3856 __put_user(host_seminfo
->semmns
, &target_seminfo
->semmns
);
3857 __put_user(host_seminfo
->semmnu
, &target_seminfo
->semmnu
);
3858 __put_user(host_seminfo
->semmsl
, &target_seminfo
->semmsl
);
3859 __put_user(host_seminfo
->semopm
, &target_seminfo
->semopm
);
3860 __put_user(host_seminfo
->semume
, &target_seminfo
->semume
);
3861 __put_user(host_seminfo
->semusz
, &target_seminfo
->semusz
);
3862 __put_user(host_seminfo
->semvmx
, &target_seminfo
->semvmx
);
3863 __put_user(host_seminfo
->semaem
, &target_seminfo
->semaem
);
3864 unlock_user_struct(target_seminfo
, target_addr
, 1);
3870 struct semid_ds
*buf
;
3871 unsigned short *array
;
3872 struct seminfo
*__buf
;
3875 union target_semun
{
3882 static inline abi_long
target_to_host_semarray(int semid
, unsigned short **host_array
,
3883 abi_ulong target_addr
)
3886 unsigned short *array
;
3888 struct semid_ds semid_ds
;
3891 semun
.buf
= &semid_ds
;
3893 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
3895 return get_errno(ret
);
3897 nsems
= semid_ds
.sem_nsems
;
3899 *host_array
= g_try_new(unsigned short, nsems
);
3901 return -TARGET_ENOMEM
;
3903 array
= lock_user(VERIFY_READ
, target_addr
,
3904 nsems
*sizeof(unsigned short), 1);
3906 g_free(*host_array
);
3907 return -TARGET_EFAULT
;
3910 for(i
=0; i
<nsems
; i
++) {
3911 __get_user((*host_array
)[i
], &array
[i
]);
3913 unlock_user(array
, target_addr
, 0);
3918 static inline abi_long
host_to_target_semarray(int semid
, abi_ulong target_addr
,
3919 unsigned short **host_array
)
3922 unsigned short *array
;
3924 struct semid_ds semid_ds
;
3927 semun
.buf
= &semid_ds
;
3929 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
3931 return get_errno(ret
);
3933 nsems
= semid_ds
.sem_nsems
;
3935 array
= lock_user(VERIFY_WRITE
, target_addr
,
3936 nsems
*sizeof(unsigned short), 0);
3938 return -TARGET_EFAULT
;
3940 for(i
=0; i
<nsems
; i
++) {
3941 __put_user((*host_array
)[i
], &array
[i
]);
3943 g_free(*host_array
);
3944 unlock_user(array
, target_addr
, 1);
3949 static inline abi_long
do_semctl(int semid
, int semnum
, int cmd
,
3950 abi_ulong target_arg
)
3952 union target_semun target_su
= { .buf
= target_arg
};
3954 struct semid_ds dsarg
;
3955 unsigned short *array
= NULL
;
3956 struct seminfo seminfo
;
3957 abi_long ret
= -TARGET_EINVAL
;
3964 /* In 64 bit cross-endian situations, we will erroneously pick up
3965 * the wrong half of the union for the "val" element. To rectify
3966 * this, the entire 8-byte structure is byteswapped, followed by
3967 * a swap of the 4 byte val field. In other cases, the data is
3968 * already in proper host byte order. */
3969 if (sizeof(target_su
.val
) != (sizeof(target_su
.buf
))) {
3970 target_su
.buf
= tswapal(target_su
.buf
);
3971 arg
.val
= tswap32(target_su
.val
);
3973 arg
.val
= target_su
.val
;
3975 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3979 err
= target_to_host_semarray(semid
, &array
, target_su
.array
);
3983 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3984 err
= host_to_target_semarray(semid
, target_su
.array
, &array
);
3991 err
= target_to_host_semid_ds(&dsarg
, target_su
.buf
);
3995 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3996 err
= host_to_target_semid_ds(target_su
.buf
, &dsarg
);
4002 arg
.__buf
= &seminfo
;
4003 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
4004 err
= host_to_target_seminfo(target_su
.__buf
, &seminfo
);
4012 ret
= get_errno(semctl(semid
, semnum
, cmd
, NULL
));
4019 struct target_sembuf
{
4020 unsigned short sem_num
;
4025 static inline abi_long
target_to_host_sembuf(struct sembuf
*host_sembuf
,
4026 abi_ulong target_addr
,
4029 struct target_sembuf
*target_sembuf
;
4032 target_sembuf
= lock_user(VERIFY_READ
, target_addr
,
4033 nsops
*sizeof(struct target_sembuf
), 1);
4035 return -TARGET_EFAULT
;
4037 for(i
=0; i
<nsops
; i
++) {
4038 __get_user(host_sembuf
[i
].sem_num
, &target_sembuf
[i
].sem_num
);
4039 __get_user(host_sembuf
[i
].sem_op
, &target_sembuf
[i
].sem_op
);
4040 __get_user(host_sembuf
[i
].sem_flg
, &target_sembuf
[i
].sem_flg
);
4043 unlock_user(target_sembuf
, target_addr
, 0);
4048 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4049 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4052 * This macro is required to handle the s390 variants, which passes the
4053 * arguments in a different order than default.
4056 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4057 (__nsops), (__timeout), (__sops)
4059 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4060 (__nsops), 0, (__sops), (__timeout)
4063 static inline abi_long
do_semtimedop(int semid
,
4066 abi_long timeout
, bool time64
)
4068 struct sembuf
*sops
;
4069 struct timespec ts
, *pts
= NULL
;
4075 if (target_to_host_timespec64(pts
, timeout
)) {
4076 return -TARGET_EFAULT
;
4079 if (target_to_host_timespec(pts
, timeout
)) {
4080 return -TARGET_EFAULT
;
4085 if (nsops
> TARGET_SEMOPM
) {
4086 return -TARGET_E2BIG
;
4089 sops
= g_new(struct sembuf
, nsops
);
4091 if (target_to_host_sembuf(sops
, ptr
, nsops
)) {
4093 return -TARGET_EFAULT
;
4096 ret
= -TARGET_ENOSYS
;
4097 #ifdef __NR_semtimedop
4098 ret
= get_errno(safe_semtimedop(semid
, sops
, nsops
, pts
));
4101 if (ret
== -TARGET_ENOSYS
) {
4102 ret
= get_errno(safe_ipc(IPCOP_semtimedop
, semid
,
4103 SEMTIMEDOP_IPC_ARGS(nsops
, sops
, (long)pts
)));
4111 struct target_msqid_ds
4113 struct target_ipc_perm msg_perm
;
4114 abi_ulong msg_stime
;
4115 #if TARGET_ABI_BITS == 32
4116 abi_ulong __unused1
;
4118 abi_ulong msg_rtime
;
4119 #if TARGET_ABI_BITS == 32
4120 abi_ulong __unused2
;
4122 abi_ulong msg_ctime
;
4123 #if TARGET_ABI_BITS == 32
4124 abi_ulong __unused3
;
4126 abi_ulong __msg_cbytes
;
4128 abi_ulong msg_qbytes
;
4129 abi_ulong msg_lspid
;
4130 abi_ulong msg_lrpid
;
4131 abi_ulong __unused4
;
4132 abi_ulong __unused5
;
4135 static inline abi_long
target_to_host_msqid_ds(struct msqid_ds
*host_md
,
4136 abi_ulong target_addr
)
4138 struct target_msqid_ds
*target_md
;
4140 if (!lock_user_struct(VERIFY_READ
, target_md
, target_addr
, 1))
4141 return -TARGET_EFAULT
;
4142 if (target_to_host_ipc_perm(&(host_md
->msg_perm
),target_addr
))
4143 return -TARGET_EFAULT
;
4144 host_md
->msg_stime
= tswapal(target_md
->msg_stime
);
4145 host_md
->msg_rtime
= tswapal(target_md
->msg_rtime
);
4146 host_md
->msg_ctime
= tswapal(target_md
->msg_ctime
);
4147 host_md
->__msg_cbytes
= tswapal(target_md
->__msg_cbytes
);
4148 host_md
->msg_qnum
= tswapal(target_md
->msg_qnum
);
4149 host_md
->msg_qbytes
= tswapal(target_md
->msg_qbytes
);
4150 host_md
->msg_lspid
= tswapal(target_md
->msg_lspid
);
4151 host_md
->msg_lrpid
= tswapal(target_md
->msg_lrpid
);
4152 unlock_user_struct(target_md
, target_addr
, 0);
4156 static inline abi_long
host_to_target_msqid_ds(abi_ulong target_addr
,
4157 struct msqid_ds
*host_md
)
4159 struct target_msqid_ds
*target_md
;
4161 if (!lock_user_struct(VERIFY_WRITE
, target_md
, target_addr
, 0))
4162 return -TARGET_EFAULT
;
4163 if (host_to_target_ipc_perm(target_addr
,&(host_md
->msg_perm
)))
4164 return -TARGET_EFAULT
;
4165 target_md
->msg_stime
= tswapal(host_md
->msg_stime
);
4166 target_md
->msg_rtime
= tswapal(host_md
->msg_rtime
);
4167 target_md
->msg_ctime
= tswapal(host_md
->msg_ctime
);
4168 target_md
->__msg_cbytes
= tswapal(host_md
->__msg_cbytes
);
4169 target_md
->msg_qnum
= tswapal(host_md
->msg_qnum
);
4170 target_md
->msg_qbytes
= tswapal(host_md
->msg_qbytes
);
4171 target_md
->msg_lspid
= tswapal(host_md
->msg_lspid
);
4172 target_md
->msg_lrpid
= tswapal(host_md
->msg_lrpid
);
4173 unlock_user_struct(target_md
, target_addr
, 1);
4177 struct target_msginfo
{
4185 unsigned short int msgseg
;
4188 static inline abi_long
host_to_target_msginfo(abi_ulong target_addr
,
4189 struct msginfo
*host_msginfo
)
4191 struct target_msginfo
*target_msginfo
;
4192 if (!lock_user_struct(VERIFY_WRITE
, target_msginfo
, target_addr
, 0))
4193 return -TARGET_EFAULT
;
4194 __put_user(host_msginfo
->msgpool
, &target_msginfo
->msgpool
);
4195 __put_user(host_msginfo
->msgmap
, &target_msginfo
->msgmap
);
4196 __put_user(host_msginfo
->msgmax
, &target_msginfo
->msgmax
);
4197 __put_user(host_msginfo
->msgmnb
, &target_msginfo
->msgmnb
);
4198 __put_user(host_msginfo
->msgmni
, &target_msginfo
->msgmni
);
4199 __put_user(host_msginfo
->msgssz
, &target_msginfo
->msgssz
);
4200 __put_user(host_msginfo
->msgtql
, &target_msginfo
->msgtql
);
4201 __put_user(host_msginfo
->msgseg
, &target_msginfo
->msgseg
);
4202 unlock_user_struct(target_msginfo
, target_addr
, 1);
4206 static inline abi_long
do_msgctl(int msgid
, int cmd
, abi_long ptr
)
4208 struct msqid_ds dsarg
;
4209 struct msginfo msginfo
;
4210 abi_long ret
= -TARGET_EINVAL
;
4218 if (target_to_host_msqid_ds(&dsarg
,ptr
))
4219 return -TARGET_EFAULT
;
4220 ret
= get_errno(msgctl(msgid
, cmd
, &dsarg
));
4221 if (host_to_target_msqid_ds(ptr
,&dsarg
))
4222 return -TARGET_EFAULT
;
4225 ret
= get_errno(msgctl(msgid
, cmd
, NULL
));
4229 ret
= get_errno(msgctl(msgid
, cmd
, (struct msqid_ds
*)&msginfo
));
4230 if (host_to_target_msginfo(ptr
, &msginfo
))
4231 return -TARGET_EFAULT
;
4238 struct target_msgbuf
{
4243 static inline abi_long
do_msgsnd(int msqid
, abi_long msgp
,
4244 ssize_t msgsz
, int msgflg
)
4246 struct target_msgbuf
*target_mb
;
4247 struct msgbuf
*host_mb
;
4251 return -TARGET_EINVAL
;
4254 if (!lock_user_struct(VERIFY_READ
, target_mb
, msgp
, 0))
4255 return -TARGET_EFAULT
;
4256 host_mb
= g_try_malloc(msgsz
+ sizeof(long));
4258 unlock_user_struct(target_mb
, msgp
, 0);
4259 return -TARGET_ENOMEM
;
4261 host_mb
->mtype
= (abi_long
) tswapal(target_mb
->mtype
);
4262 memcpy(host_mb
->mtext
, target_mb
->mtext
, msgsz
);
4263 ret
= -TARGET_ENOSYS
;
4265 ret
= get_errno(safe_msgsnd(msqid
, host_mb
, msgsz
, msgflg
));
4268 if (ret
== -TARGET_ENOSYS
) {
4270 ret
= get_errno(safe_ipc(IPCOP_msgsnd
, msqid
, msgsz
, msgflg
,
4273 ret
= get_errno(safe_ipc(IPCOP_msgsnd
, msqid
, msgsz
, msgflg
,
4279 unlock_user_struct(target_mb
, msgp
, 0);
4285 #if defined(__sparc__)
4286 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */
4287 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4288 #elif defined(__s390x__)
4289 /* The s390 sys_ipc variant has only five parameters. */
4290 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4291 ((long int[]){(long int)__msgp, __msgtyp})
4293 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4294 ((long int[]){(long int)__msgp, __msgtyp}), 0
4298 static inline abi_long
do_msgrcv(int msqid
, abi_long msgp
,
4299 ssize_t msgsz
, abi_long msgtyp
,
4302 struct target_msgbuf
*target_mb
;
4304 struct msgbuf
*host_mb
;
4308 return -TARGET_EINVAL
;
4311 if (!lock_user_struct(VERIFY_WRITE
, target_mb
, msgp
, 0))
4312 return -TARGET_EFAULT
;
4314 host_mb
= g_try_malloc(msgsz
+ sizeof(long));
4316 ret
= -TARGET_ENOMEM
;
4319 ret
= -TARGET_ENOSYS
;
4321 ret
= get_errno(safe_msgrcv(msqid
, host_mb
, msgsz
, msgtyp
, msgflg
));
4324 if (ret
== -TARGET_ENOSYS
) {
4325 ret
= get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv
), msqid
, msgsz
,
4326 msgflg
, MSGRCV_ARGS(host_mb
, msgtyp
)));
4331 abi_ulong target_mtext_addr
= msgp
+ sizeof(abi_ulong
);
4332 target_mtext
= lock_user(VERIFY_WRITE
, target_mtext_addr
, ret
, 0);
4333 if (!target_mtext
) {
4334 ret
= -TARGET_EFAULT
;
4337 memcpy(target_mb
->mtext
, host_mb
->mtext
, ret
);
4338 unlock_user(target_mtext
, target_mtext_addr
, ret
);
4341 target_mb
->mtype
= tswapal(host_mb
->mtype
);
4345 unlock_user_struct(target_mb
, msgp
, 1);
4350 static inline abi_long
target_to_host_shmid_ds(struct shmid_ds
*host_sd
,
4351 abi_ulong target_addr
)
4353 struct target_shmid_ds
*target_sd
;
4355 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
4356 return -TARGET_EFAULT
;
4357 if (target_to_host_ipc_perm(&(host_sd
->shm_perm
), target_addr
))
4358 return -TARGET_EFAULT
;
4359 __get_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
4360 __get_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
4361 __get_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
4362 __get_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
4363 __get_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
4364 __get_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
4365 __get_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
4366 unlock_user_struct(target_sd
, target_addr
, 0);
4370 static inline abi_long
host_to_target_shmid_ds(abi_ulong target_addr
,
4371 struct shmid_ds
*host_sd
)
4373 struct target_shmid_ds
*target_sd
;
4375 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
4376 return -TARGET_EFAULT
;
4377 if (host_to_target_ipc_perm(target_addr
, &(host_sd
->shm_perm
)))
4378 return -TARGET_EFAULT
;
4379 __put_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
4380 __put_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
4381 __put_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
4382 __put_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
4383 __put_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
4384 __put_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
4385 __put_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
4386 unlock_user_struct(target_sd
, target_addr
, 1);
4390 struct target_shminfo
{
4398 static inline abi_long
host_to_target_shminfo(abi_ulong target_addr
,
4399 struct shminfo
*host_shminfo
)
4401 struct target_shminfo
*target_shminfo
;
4402 if (!lock_user_struct(VERIFY_WRITE
, target_shminfo
, target_addr
, 0))
4403 return -TARGET_EFAULT
;
4404 __put_user(host_shminfo
->shmmax
, &target_shminfo
->shmmax
);
4405 __put_user(host_shminfo
->shmmin
, &target_shminfo
->shmmin
);
4406 __put_user(host_shminfo
->shmmni
, &target_shminfo
->shmmni
);
4407 __put_user(host_shminfo
->shmseg
, &target_shminfo
->shmseg
);
4408 __put_user(host_shminfo
->shmall
, &target_shminfo
->shmall
);
4409 unlock_user_struct(target_shminfo
, target_addr
, 1);
4413 struct target_shm_info
{
4418 abi_ulong swap_attempts
;
4419 abi_ulong swap_successes
;
4422 static inline abi_long
host_to_target_shm_info(abi_ulong target_addr
,
4423 struct shm_info
*host_shm_info
)
4425 struct target_shm_info
*target_shm_info
;
4426 if (!lock_user_struct(VERIFY_WRITE
, target_shm_info
, target_addr
, 0))
4427 return -TARGET_EFAULT
;
4428 __put_user(host_shm_info
->used_ids
, &target_shm_info
->used_ids
);
4429 __put_user(host_shm_info
->shm_tot
, &target_shm_info
->shm_tot
);
4430 __put_user(host_shm_info
->shm_rss
, &target_shm_info
->shm_rss
);
4431 __put_user(host_shm_info
->shm_swp
, &target_shm_info
->shm_swp
);
4432 __put_user(host_shm_info
->swap_attempts
, &target_shm_info
->swap_attempts
);
4433 __put_user(host_shm_info
->swap_successes
, &target_shm_info
->swap_successes
);
4434 unlock_user_struct(target_shm_info
, target_addr
, 1);
4438 static inline abi_long
do_shmctl(int shmid
, int cmd
, abi_long buf
)
4440 struct shmid_ds dsarg
;
4441 struct shminfo shminfo
;
4442 struct shm_info shm_info
;
4443 abi_long ret
= -TARGET_EINVAL
;
4451 if (target_to_host_shmid_ds(&dsarg
, buf
))
4452 return -TARGET_EFAULT
;
4453 ret
= get_errno(shmctl(shmid
, cmd
, &dsarg
));
4454 if (host_to_target_shmid_ds(buf
, &dsarg
))
4455 return -TARGET_EFAULT
;
4458 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shminfo
));
4459 if (host_to_target_shminfo(buf
, &shminfo
))
4460 return -TARGET_EFAULT
;
4463 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shm_info
));
4464 if (host_to_target_shm_info(buf
, &shm_info
))
4465 return -TARGET_EFAULT
;
4470 ret
= get_errno(shmctl(shmid
, cmd
, NULL
));
4477 #ifdef TARGET_NR_ipc
4478 /* ??? This only works with linear mappings. */
4479 /* do_ipc() must return target values and target errnos. */
4480 static abi_long
do_ipc(CPUArchState
*cpu_env
,
4481 unsigned int call
, abi_long first
,
4482 abi_long second
, abi_long third
,
4483 abi_long ptr
, abi_long fifth
)
4488 version
= call
>> 16;
4493 ret
= do_semtimedop(first
, ptr
, second
, 0, false);
4495 case IPCOP_semtimedop
:
4497 * The s390 sys_ipc variant has only five parameters instead of six
4498 * (as for default variant) and the only difference is the handling of
4499 * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4500 * to a struct timespec where the generic variant uses fifth parameter.
4502 #if defined(TARGET_S390X)
4503 ret
= do_semtimedop(first
, ptr
, second
, third
, TARGET_ABI_BITS
== 64);
4505 ret
= do_semtimedop(first
, ptr
, second
, fifth
, TARGET_ABI_BITS
== 64);
4510 ret
= get_errno(semget(first
, second
, third
));
4513 case IPCOP_semctl
: {
4514 /* The semun argument to semctl is passed by value, so dereference the
4517 get_user_ual(atptr
, ptr
);
4518 ret
= do_semctl(first
, second
, third
, atptr
);
4523 ret
= get_errno(msgget(first
, second
));
4527 ret
= do_msgsnd(first
, ptr
, second
, third
);
4531 ret
= do_msgctl(first
, second
, ptr
);
4538 struct target_ipc_kludge
{
4543 if (!lock_user_struct(VERIFY_READ
, tmp
, ptr
, 1)) {
4544 ret
= -TARGET_EFAULT
;
4548 ret
= do_msgrcv(first
, tswapal(tmp
->msgp
), second
, tswapal(tmp
->msgtyp
), third
);
4550 unlock_user_struct(tmp
, ptr
, 0);
4554 ret
= do_msgrcv(first
, ptr
, second
, fifth
, third
);
4563 raddr
= target_shmat(cpu_env
, first
, ptr
, second
);
4564 if (is_error(raddr
))
4565 return get_errno(raddr
);
4566 if (put_user_ual(raddr
, third
))
4567 return -TARGET_EFAULT
;
4571 ret
= -TARGET_EINVAL
;
4576 ret
= target_shmdt(ptr
);
4580 /* IPC_* flag values are the same on all linux platforms */
4581 ret
= get_errno(shmget(first
, second
, third
));
4584 /* IPC_* and SHM_* command values are the same on all linux platforms */
4586 ret
= do_shmctl(first
, second
, ptr
);
4589 qemu_log_mask(LOG_UNIMP
, "Unsupported ipc call: %d (version %d)\n",
4591 ret
= -TARGET_ENOSYS
;
4598 /* kernel structure types definitions */
4600 #define STRUCT(name, ...) STRUCT_ ## name,
4601 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4603 #include "syscall_types.h"
4607 #undef STRUCT_SPECIAL
4609 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
4610 #define STRUCT_SPECIAL(name)
4611 #include "syscall_types.h"
4613 #undef STRUCT_SPECIAL
4615 #define MAX_STRUCT_SIZE 4096
4617 #ifdef CONFIG_FIEMAP
4618 /* So fiemap access checks don't overflow on 32 bit systems.
4619 * This is very slightly smaller than the limit imposed by
4620 * the underlying kernel.
4622 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
4623 / sizeof(struct fiemap_extent))
4625 static abi_long
do_ioctl_fs_ioc_fiemap(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4626 int fd
, int cmd
, abi_long arg
)
4628 /* The parameter for this ioctl is a struct fiemap followed
4629 * by an array of struct fiemap_extent whose size is set
4630 * in fiemap->fm_extent_count. The array is filled in by the
4633 int target_size_in
, target_size_out
;
4635 const argtype
*arg_type
= ie
->arg_type
;
4636 const argtype extent_arg_type
[] = { MK_STRUCT(STRUCT_fiemap_extent
) };
4639 int i
, extent_size
= thunk_type_size(extent_arg_type
, 0);
4643 assert(arg_type
[0] == TYPE_PTR
);
4644 assert(ie
->access
== IOC_RW
);
4646 target_size_in
= thunk_type_size(arg_type
, 0);
4647 argptr
= lock_user(VERIFY_READ
, arg
, target_size_in
, 1);
4649 return -TARGET_EFAULT
;
4651 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
4652 unlock_user(argptr
, arg
, 0);
4653 fm
= (struct fiemap
*)buf_temp
;
4654 if (fm
->fm_extent_count
> FIEMAP_MAX_EXTENTS
) {
4655 return -TARGET_EINVAL
;
4658 outbufsz
= sizeof (*fm
) +
4659 (sizeof(struct fiemap_extent
) * fm
->fm_extent_count
);
4661 if (outbufsz
> MAX_STRUCT_SIZE
) {
4662 /* We can't fit all the extents into the fixed size buffer.
4663 * Allocate one that is large enough and use it instead.
4665 fm
= g_try_malloc(outbufsz
);
4667 return -TARGET_ENOMEM
;
4669 memcpy(fm
, buf_temp
, sizeof(struct fiemap
));
4672 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, fm
));
4673 if (!is_error(ret
)) {
4674 target_size_out
= target_size_in
;
4675 /* An extent_count of 0 means we were only counting the extents
4676 * so there are no structs to copy
4678 if (fm
->fm_extent_count
!= 0) {
4679 target_size_out
+= fm
->fm_mapped_extents
* extent_size
;
4681 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size_out
, 0);
4683 ret
= -TARGET_EFAULT
;
4685 /* Convert the struct fiemap */
4686 thunk_convert(argptr
, fm
, arg_type
, THUNK_TARGET
);
4687 if (fm
->fm_extent_count
!= 0) {
4688 p
= argptr
+ target_size_in
;
4689 /* ...and then all the struct fiemap_extents */
4690 for (i
= 0; i
< fm
->fm_mapped_extents
; i
++) {
4691 thunk_convert(p
, &fm
->fm_extents
[i
], extent_arg_type
,
4696 unlock_user(argptr
, arg
, target_size_out
);
4706 static abi_long
do_ioctl_ifconf(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4707 int fd
, int cmd
, abi_long arg
)
4709 const argtype
*arg_type
= ie
->arg_type
;
4713 struct ifconf
*host_ifconf
;
4715 const argtype ifreq_arg_type
[] = { MK_STRUCT(STRUCT_sockaddr_ifreq
) };
4716 const argtype ifreq_max_type
[] = { MK_STRUCT(STRUCT_ifmap_ifreq
) };
4717 int target_ifreq_size
;
4722 abi_long target_ifc_buf
;
4726 assert(arg_type
[0] == TYPE_PTR
);
4727 assert(ie
->access
== IOC_RW
);
4730 target_size
= thunk_type_size(arg_type
, 0);
4732 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
4734 return -TARGET_EFAULT
;
4735 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
4736 unlock_user(argptr
, arg
, 0);
4738 host_ifconf
= (struct ifconf
*)(unsigned long)buf_temp
;
4739 target_ifc_buf
= (abi_long
)(unsigned long)host_ifconf
->ifc_buf
;
4740 target_ifreq_size
= thunk_type_size(ifreq_max_type
, 0);
4742 if (target_ifc_buf
!= 0) {
4743 target_ifc_len
= host_ifconf
->ifc_len
;
4744 nb_ifreq
= target_ifc_len
/ target_ifreq_size
;
4745 host_ifc_len
= nb_ifreq
* sizeof(struct ifreq
);
4747 outbufsz
= sizeof(*host_ifconf
) + host_ifc_len
;
4748 if (outbufsz
> MAX_STRUCT_SIZE
) {
4750 * We can't fit all the extents into the fixed size buffer.
4751 * Allocate one that is large enough and use it instead.
4753 host_ifconf
= g_try_malloc(outbufsz
);
4755 return -TARGET_ENOMEM
;
4757 memcpy(host_ifconf
, buf_temp
, sizeof(*host_ifconf
));
4760 host_ifc_buf
= (char *)host_ifconf
+ sizeof(*host_ifconf
);
4762 host_ifconf
->ifc_len
= host_ifc_len
;
4764 host_ifc_buf
= NULL
;
4766 host_ifconf
->ifc_buf
= host_ifc_buf
;
4768 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, host_ifconf
));
4769 if (!is_error(ret
)) {
4770 /* convert host ifc_len to target ifc_len */
4772 nb_ifreq
= host_ifconf
->ifc_len
/ sizeof(struct ifreq
);
4773 target_ifc_len
= nb_ifreq
* target_ifreq_size
;
4774 host_ifconf
->ifc_len
= target_ifc_len
;
4776 /* restore target ifc_buf */
4778 host_ifconf
->ifc_buf
= (char *)(unsigned long)target_ifc_buf
;
4780 /* copy struct ifconf to target user */
4782 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
4784 return -TARGET_EFAULT
;
4785 thunk_convert(argptr
, host_ifconf
, arg_type
, THUNK_TARGET
);
4786 unlock_user(argptr
, arg
, target_size
);
4788 if (target_ifc_buf
!= 0) {
4789 /* copy ifreq[] to target user */
4790 argptr
= lock_user(VERIFY_WRITE
, target_ifc_buf
, target_ifc_len
, 0);
4791 for (i
= 0; i
< nb_ifreq
; i
++) {
4792 thunk_convert(argptr
+ i
* target_ifreq_size
,
4793 host_ifc_buf
+ i
* sizeof(struct ifreq
),
4794 ifreq_arg_type
, THUNK_TARGET
);
4796 unlock_user(argptr
, target_ifc_buf
, target_ifc_len
);
4801 g_free(host_ifconf
);
4807 #if defined(CONFIG_USBFS)
4808 #if HOST_LONG_BITS > 64
4809 #error USBDEVFS thunks do not support >64 bit hosts yet.
4812 uint64_t target_urb_adr
;
4813 uint64_t target_buf_adr
;
4814 char *target_buf_ptr
;
4815 struct usbdevfs_urb host_urb
;
4818 static GHashTable
*usbdevfs_urb_hashtable(void)
4820 static GHashTable
*urb_hashtable
;
4822 if (!urb_hashtable
) {
4823 urb_hashtable
= g_hash_table_new(g_int64_hash
, g_int64_equal
);
4825 return urb_hashtable
;
4828 static void urb_hashtable_insert(struct live_urb
*urb
)
4830 GHashTable
*urb_hashtable
= usbdevfs_urb_hashtable();
4831 g_hash_table_insert(urb_hashtable
, urb
, urb
);
4834 static struct live_urb
*urb_hashtable_lookup(uint64_t target_urb_adr
)
4836 GHashTable
*urb_hashtable
= usbdevfs_urb_hashtable();
4837 return g_hash_table_lookup(urb_hashtable
, &target_urb_adr
);
4840 static void urb_hashtable_remove(struct live_urb
*urb
)
4842 GHashTable
*urb_hashtable
= usbdevfs_urb_hashtable();
4843 g_hash_table_remove(urb_hashtable
, urb
);
4847 do_ioctl_usbdevfs_reapurb(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4848 int fd
, int cmd
, abi_long arg
)
4850 const argtype usbfsurb_arg_type
[] = { MK_STRUCT(STRUCT_usbdevfs_urb
) };
4851 const argtype ptrvoid_arg_type
[] = { TYPE_PTRVOID
, 0, 0 };
4852 struct live_urb
*lurb
;
4856 uintptr_t target_urb_adr
;
4859 target_size
= thunk_type_size(usbfsurb_arg_type
, THUNK_TARGET
);
4861 memset(buf_temp
, 0, sizeof(uint64_t));
4862 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
4863 if (is_error(ret
)) {
4867 memcpy(&hurb
, buf_temp
, sizeof(uint64_t));
4868 lurb
= (void *)((uintptr_t)hurb
- offsetof(struct live_urb
, host_urb
));
4869 if (!lurb
->target_urb_adr
) {
4870 return -TARGET_EFAULT
;
4872 urb_hashtable_remove(lurb
);
4873 unlock_user(lurb
->target_buf_ptr
, lurb
->target_buf_adr
,
4874 lurb
->host_urb
.buffer_length
);
4875 lurb
->target_buf_ptr
= NULL
;
4877 /* restore the guest buffer pointer */
4878 lurb
->host_urb
.buffer
= (void *)(uintptr_t)lurb
->target_buf_adr
;
4880 /* update the guest urb struct */
4881 argptr
= lock_user(VERIFY_WRITE
, lurb
->target_urb_adr
, target_size
, 0);
4884 return -TARGET_EFAULT
;
4886 thunk_convert(argptr
, &lurb
->host_urb
, usbfsurb_arg_type
, THUNK_TARGET
);
4887 unlock_user(argptr
, lurb
->target_urb_adr
, target_size
);
4889 target_size
= thunk_type_size(ptrvoid_arg_type
, THUNK_TARGET
);
4890 /* write back the urb handle */
4891 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
4894 return -TARGET_EFAULT
;
4897 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4898 target_urb_adr
= lurb
->target_urb_adr
;
4899 thunk_convert(argptr
, &target_urb_adr
, ptrvoid_arg_type
, THUNK_TARGET
);
4900 unlock_user(argptr
, arg
, target_size
);
4907 do_ioctl_usbdevfs_discardurb(const IOCTLEntry
*ie
,
4908 uint8_t *buf_temp
__attribute__((unused
)),
4909 int fd
, int cmd
, abi_long arg
)
4911 struct live_urb
*lurb
;
4913 /* map target address back to host URB with metadata. */
4914 lurb
= urb_hashtable_lookup(arg
);
4916 return -TARGET_EFAULT
;
4918 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, &lurb
->host_urb
));
4922 do_ioctl_usbdevfs_submiturb(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4923 int fd
, int cmd
, abi_long arg
)
4925 const argtype
*arg_type
= ie
->arg_type
;
4930 struct live_urb
*lurb
;
4933 * each submitted URB needs to map to a unique ID for the
4934 * kernel, and that unique ID needs to be a pointer to
4935 * host memory. hence, we need to malloc for each URB.
4936 * isochronous transfers have a variable length struct.
4939 target_size
= thunk_type_size(arg_type
, THUNK_TARGET
);
4941 /* construct host copy of urb and metadata */
4942 lurb
= g_try_new0(struct live_urb
, 1);
4944 return -TARGET_ENOMEM
;
4947 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
4950 return -TARGET_EFAULT
;
4952 thunk_convert(&lurb
->host_urb
, argptr
, arg_type
, THUNK_HOST
);
4953 unlock_user(argptr
, arg
, 0);
4955 lurb
->target_urb_adr
= arg
;
4956 lurb
->target_buf_adr
= (uintptr_t)lurb
->host_urb
.buffer
;
4958 /* buffer space used depends on endpoint type so lock the entire buffer */
4959 /* control type urbs should check the buffer contents for true direction */
4960 rw_dir
= lurb
->host_urb
.endpoint
& USB_DIR_IN
? VERIFY_WRITE
: VERIFY_READ
;
4961 lurb
->target_buf_ptr
= lock_user(rw_dir
, lurb
->target_buf_adr
,
4962 lurb
->host_urb
.buffer_length
, 1);
4963 if (lurb
->target_buf_ptr
== NULL
) {
4965 return -TARGET_EFAULT
;
4968 /* update buffer pointer in host copy */
4969 lurb
->host_urb
.buffer
= lurb
->target_buf_ptr
;
4971 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, &lurb
->host_urb
));
4972 if (is_error(ret
)) {
4973 unlock_user(lurb
->target_buf_ptr
, lurb
->target_buf_adr
, 0);
4976 urb_hashtable_insert(lurb
);
4981 #endif /* CONFIG_USBFS */
4983 static abi_long
do_ioctl_dm(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
4984 int cmd
, abi_long arg
)
4987 struct dm_ioctl
*host_dm
;
4988 abi_long guest_data
;
4989 uint32_t guest_data_size
;
4991 const argtype
*arg_type
= ie
->arg_type
;
4993 void *big_buf
= NULL
;
4997 target_size
= thunk_type_size(arg_type
, 0);
4998 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5000 ret
= -TARGET_EFAULT
;
5003 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5004 unlock_user(argptr
, arg
, 0);
5006 /* buf_temp is too small, so fetch things into a bigger buffer */
5007 big_buf
= g_malloc0(((struct dm_ioctl
*)buf_temp
)->data_size
* 2);
5008 memcpy(big_buf
, buf_temp
, target_size
);
5012 guest_data
= arg
+ host_dm
->data_start
;
5013 if ((guest_data
- arg
) < 0) {
5014 ret
= -TARGET_EINVAL
;
5017 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
5018 host_data
= (char*)host_dm
+ host_dm
->data_start
;
5020 argptr
= lock_user(VERIFY_READ
, guest_data
, guest_data_size
, 1);
5022 ret
= -TARGET_EFAULT
;
5026 switch (ie
->host_cmd
) {
5028 case DM_LIST_DEVICES
:
5031 case DM_DEV_SUSPEND
:
5034 case DM_TABLE_STATUS
:
5035 case DM_TABLE_CLEAR
:
5037 case DM_LIST_VERSIONS
:
5041 case DM_DEV_SET_GEOMETRY
:
5042 /* data contains only strings */
5043 memcpy(host_data
, argptr
, guest_data_size
);
5046 memcpy(host_data
, argptr
, guest_data_size
);
5047 *(uint64_t*)host_data
= tswap64(*(uint64_t*)argptr
);
5051 void *gspec
= argptr
;
5052 void *cur_data
= host_data
;
5053 const argtype dm_arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
5054 int spec_size
= thunk_type_size(dm_arg_type
, 0);
5057 for (i
= 0; i
< host_dm
->target_count
; i
++) {
5058 struct dm_target_spec
*spec
= cur_data
;
5062 thunk_convert(spec
, gspec
, dm_arg_type
, THUNK_HOST
);
5063 slen
= strlen((char*)gspec
+ spec_size
) + 1;
5065 spec
->next
= sizeof(*spec
) + slen
;
5066 strcpy((char*)&spec
[1], gspec
+ spec_size
);
5068 cur_data
+= spec
->next
;
5073 ret
= -TARGET_EINVAL
;
5074 unlock_user(argptr
, guest_data
, 0);
5077 unlock_user(argptr
, guest_data
, 0);
5079 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5080 if (!is_error(ret
)) {
5081 guest_data
= arg
+ host_dm
->data_start
;
5082 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
5083 argptr
= lock_user(VERIFY_WRITE
, guest_data
, guest_data_size
, 0);
5084 switch (ie
->host_cmd
) {
5089 case DM_DEV_SUSPEND
:
5092 case DM_TABLE_CLEAR
:
5094 case DM_DEV_SET_GEOMETRY
:
5095 /* no return data */
5097 case DM_LIST_DEVICES
:
5099 struct dm_name_list
*nl
= (void*)host_dm
+ host_dm
->data_start
;
5100 uint32_t remaining_data
= guest_data_size
;
5101 void *cur_data
= argptr
;
5102 const argtype dm_arg_type
[] = { MK_STRUCT(STRUCT_dm_name_list
) };
5103 int nl_size
= 12; /* can't use thunk_size due to alignment */
5106 uint32_t next
= nl
->next
;
5108 nl
->next
= nl_size
+ (strlen(nl
->name
) + 1);
5110 if (remaining_data
< nl
->next
) {
5111 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5114 thunk_convert(cur_data
, nl
, dm_arg_type
, THUNK_TARGET
);
5115 strcpy(cur_data
+ nl_size
, nl
->name
);
5116 cur_data
+= nl
->next
;
5117 remaining_data
-= nl
->next
;
5121 nl
= (void*)nl
+ next
;
5126 case DM_TABLE_STATUS
:
5128 struct dm_target_spec
*spec
= (void*)host_dm
+ host_dm
->data_start
;
5129 void *cur_data
= argptr
;
5130 const argtype dm_arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
5131 int spec_size
= thunk_type_size(dm_arg_type
, 0);
5134 for (i
= 0; i
< host_dm
->target_count
; i
++) {
5135 uint32_t next
= spec
->next
;
5136 int slen
= strlen((char*)&spec
[1]) + 1;
5137 spec
->next
= (cur_data
- argptr
) + spec_size
+ slen
;
5138 if (guest_data_size
< spec
->next
) {
5139 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5142 thunk_convert(cur_data
, spec
, dm_arg_type
, THUNK_TARGET
);
5143 strcpy(cur_data
+ spec_size
, (char*)&spec
[1]);
5144 cur_data
= argptr
+ spec
->next
;
5145 spec
= (void*)host_dm
+ host_dm
->data_start
+ next
;
5151 void *hdata
= (void*)host_dm
+ host_dm
->data_start
;
5152 int count
= *(uint32_t*)hdata
;
5153 uint64_t *hdev
= hdata
+ 8;
5154 uint64_t *gdev
= argptr
+ 8;
5157 *(uint32_t*)argptr
= tswap32(count
);
5158 for (i
= 0; i
< count
; i
++) {
5159 *gdev
= tswap64(*hdev
);
5165 case DM_LIST_VERSIONS
:
5167 struct dm_target_versions
*vers
= (void*)host_dm
+ host_dm
->data_start
;
5168 uint32_t remaining_data
= guest_data_size
;
5169 void *cur_data
= argptr
;
5170 const argtype dm_arg_type
[] = { MK_STRUCT(STRUCT_dm_target_versions
) };
5171 int vers_size
= thunk_type_size(dm_arg_type
, 0);
5174 uint32_t next
= vers
->next
;
5176 vers
->next
= vers_size
+ (strlen(vers
->name
) + 1);
5178 if (remaining_data
< vers
->next
) {
5179 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5182 thunk_convert(cur_data
, vers
, dm_arg_type
, THUNK_TARGET
);
5183 strcpy(cur_data
+ vers_size
, vers
->name
);
5184 cur_data
+= vers
->next
;
5185 remaining_data
-= vers
->next
;
5189 vers
= (void*)vers
+ next
;
5194 unlock_user(argptr
, guest_data
, 0);
5195 ret
= -TARGET_EINVAL
;
5198 unlock_user(argptr
, guest_data
, guest_data_size
);
5200 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5202 ret
= -TARGET_EFAULT
;
5205 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5206 unlock_user(argptr
, arg
, target_size
);
5213 static abi_long
do_ioctl_blkpg(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
5214 int cmd
, abi_long arg
)
5218 const argtype
*arg_type
= ie
->arg_type
;
5219 const argtype part_arg_type
[] = { MK_STRUCT(STRUCT_blkpg_partition
) };
5222 struct blkpg_ioctl_arg
*host_blkpg
= (void*)buf_temp
;
5223 struct blkpg_partition host_part
;
5225 /* Read and convert blkpg */
5227 target_size
= thunk_type_size(arg_type
, 0);
5228 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5230 ret
= -TARGET_EFAULT
;
5233 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5234 unlock_user(argptr
, arg
, 0);
5236 switch (host_blkpg
->op
) {
5237 case BLKPG_ADD_PARTITION
:
5238 case BLKPG_DEL_PARTITION
:
5239 /* payload is struct blkpg_partition */
5242 /* Unknown opcode */
5243 ret
= -TARGET_EINVAL
;
5247 /* Read and convert blkpg->data */
5248 arg
= (abi_long
)(uintptr_t)host_blkpg
->data
;
5249 target_size
= thunk_type_size(part_arg_type
, 0);
5250 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5252 ret
= -TARGET_EFAULT
;
5255 thunk_convert(&host_part
, argptr
, part_arg_type
, THUNK_HOST
);
5256 unlock_user(argptr
, arg
, 0);
5258 /* Swizzle the data pointer to our local copy and call! */
5259 host_blkpg
->data
= &host_part
;
5260 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, host_blkpg
));
5266 static abi_long
do_ioctl_rt(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5267 int fd
, int cmd
, abi_long arg
)
5269 const argtype
*arg_type
= ie
->arg_type
;
5270 const StructEntry
*se
;
5271 const argtype
*field_types
;
5272 const int *dst_offsets
, *src_offsets
;
5275 abi_ulong
*target_rt_dev_ptr
= NULL
;
5276 unsigned long *host_rt_dev_ptr
= NULL
;
5280 assert(ie
->access
== IOC_W
);
5281 assert(*arg_type
== TYPE_PTR
);
5283 assert(*arg_type
== TYPE_STRUCT
);
5284 target_size
= thunk_type_size(arg_type
, 0);
5285 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5287 return -TARGET_EFAULT
;
5290 assert(*arg_type
== (int)STRUCT_rtentry
);
5291 se
= struct_entries
+ *arg_type
++;
5292 assert(se
->convert
[0] == NULL
);
5293 /* convert struct here to be able to catch rt_dev string */
5294 field_types
= se
->field_types
;
5295 dst_offsets
= se
->field_offsets
[THUNK_HOST
];
5296 src_offsets
= se
->field_offsets
[THUNK_TARGET
];
5297 for (i
= 0; i
< se
->nb_fields
; i
++) {
5298 if (dst_offsets
[i
] == offsetof(struct rtentry
, rt_dev
)) {
5299 assert(*field_types
== TYPE_PTRVOID
);
5300 target_rt_dev_ptr
= argptr
+ src_offsets
[i
];
5301 host_rt_dev_ptr
= (unsigned long *)(buf_temp
+ dst_offsets
[i
]);
5302 if (*target_rt_dev_ptr
!= 0) {
5303 *host_rt_dev_ptr
= (unsigned long)lock_user_string(
5304 tswapal(*target_rt_dev_ptr
));
5305 if (!*host_rt_dev_ptr
) {
5306 unlock_user(argptr
, arg
, 0);
5307 return -TARGET_EFAULT
;
5310 *host_rt_dev_ptr
= 0;
5315 field_types
= thunk_convert(buf_temp
+ dst_offsets
[i
],
5316 argptr
+ src_offsets
[i
],
5317 field_types
, THUNK_HOST
);
5319 unlock_user(argptr
, arg
, 0);
5321 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5323 assert(host_rt_dev_ptr
!= NULL
);
5324 assert(target_rt_dev_ptr
!= NULL
);
5325 if (*host_rt_dev_ptr
!= 0) {
5326 unlock_user((void *)*host_rt_dev_ptr
,
5327 *target_rt_dev_ptr
, 0);
5332 static abi_long
do_ioctl_kdsigaccept(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5333 int fd
, int cmd
, abi_long arg
)
5335 int sig
= target_to_host_signal(arg
);
5336 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, sig
));
5339 static abi_long
do_ioctl_SIOCGSTAMP(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5340 int fd
, int cmd
, abi_long arg
)
5345 ret
= get_errno(safe_ioctl(fd
, SIOCGSTAMP
, &tv
));
5346 if (is_error(ret
)) {
5350 if (cmd
== (int)TARGET_SIOCGSTAMP_OLD
) {
5351 if (copy_to_user_timeval(arg
, &tv
)) {
5352 return -TARGET_EFAULT
;
5355 if (copy_to_user_timeval64(arg
, &tv
)) {
5356 return -TARGET_EFAULT
;
5363 static abi_long
do_ioctl_SIOCGSTAMPNS(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5364 int fd
, int cmd
, abi_long arg
)
5369 ret
= get_errno(safe_ioctl(fd
, SIOCGSTAMPNS
, &ts
));
5370 if (is_error(ret
)) {
5374 if (cmd
== (int)TARGET_SIOCGSTAMPNS_OLD
) {
5375 if (host_to_target_timespec(arg
, &ts
)) {
5376 return -TARGET_EFAULT
;
5379 if (host_to_target_timespec64(arg
, &ts
)) {
5380 return -TARGET_EFAULT
;
5388 static abi_long
do_ioctl_tiocgptpeer(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5389 int fd
, int cmd
, abi_long arg
)
5391 int flags
= target_to_host_bitmask(arg
, fcntl_flags_tbl
);
5392 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, flags
));
5398 static void unlock_drm_version(struct drm_version
*host_ver
,
5399 struct target_drm_version
*target_ver
,
5402 unlock_user(host_ver
->name
, target_ver
->name
,
5403 copy
? host_ver
->name_len
: 0);
5404 unlock_user(host_ver
->date
, target_ver
->date
,
5405 copy
? host_ver
->date_len
: 0);
5406 unlock_user(host_ver
->desc
, target_ver
->desc
,
5407 copy
? host_ver
->desc_len
: 0);
5410 static inline abi_long
target_to_host_drmversion(struct drm_version
*host_ver
,
5411 struct target_drm_version
*target_ver
)
5413 memset(host_ver
, 0, sizeof(*host_ver
));
5415 __get_user(host_ver
->name_len
, &target_ver
->name_len
);
5416 if (host_ver
->name_len
) {
5417 host_ver
->name
= lock_user(VERIFY_WRITE
, target_ver
->name
,
5418 target_ver
->name_len
, 0);
5419 if (!host_ver
->name
) {
5424 __get_user(host_ver
->date_len
, &target_ver
->date_len
);
5425 if (host_ver
->date_len
) {
5426 host_ver
->date
= lock_user(VERIFY_WRITE
, target_ver
->date
,
5427 target_ver
->date_len
, 0);
5428 if (!host_ver
->date
) {
5433 __get_user(host_ver
->desc_len
, &target_ver
->desc_len
);
5434 if (host_ver
->desc_len
) {
5435 host_ver
->desc
= lock_user(VERIFY_WRITE
, target_ver
->desc
,
5436 target_ver
->desc_len
, 0);
5437 if (!host_ver
->desc
) {
5444 unlock_drm_version(host_ver
, target_ver
, false);
5448 static inline void host_to_target_drmversion(
5449 struct target_drm_version
*target_ver
,
5450 struct drm_version
*host_ver
)
5452 __put_user(host_ver
->version_major
, &target_ver
->version_major
);
5453 __put_user(host_ver
->version_minor
, &target_ver
->version_minor
);
5454 __put_user(host_ver
->version_patchlevel
, &target_ver
->version_patchlevel
);
5455 __put_user(host_ver
->name_len
, &target_ver
->name_len
);
5456 __put_user(host_ver
->date_len
, &target_ver
->date_len
);
5457 __put_user(host_ver
->desc_len
, &target_ver
->desc_len
);
5458 unlock_drm_version(host_ver
, target_ver
, true);
5461 static abi_long
do_ioctl_drm(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5462 int fd
, int cmd
, abi_long arg
)
5464 struct drm_version
*ver
;
5465 struct target_drm_version
*target_ver
;
5468 switch (ie
->host_cmd
) {
5469 case DRM_IOCTL_VERSION
:
5470 if (!lock_user_struct(VERIFY_WRITE
, target_ver
, arg
, 0)) {
5471 return -TARGET_EFAULT
;
5473 ver
= (struct drm_version
*)buf_temp
;
5474 ret
= target_to_host_drmversion(ver
, target_ver
);
5475 if (!is_error(ret
)) {
5476 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, ver
));
5477 if (is_error(ret
)) {
5478 unlock_drm_version(ver
, target_ver
, false);
5480 host_to_target_drmversion(target_ver
, ver
);
5483 unlock_user_struct(target_ver
, arg
, 0);
5486 return -TARGET_ENOSYS
;
5489 static abi_long
do_ioctl_drm_i915_getparam(const IOCTLEntry
*ie
,
5490 struct drm_i915_getparam
*gparam
,
5491 int fd
, abi_long arg
)
5495 struct target_drm_i915_getparam
*target_gparam
;
5497 if (!lock_user_struct(VERIFY_READ
, target_gparam
, arg
, 0)) {
5498 return -TARGET_EFAULT
;
5501 __get_user(gparam
->param
, &target_gparam
->param
);
5502 gparam
->value
= &value
;
5503 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, gparam
));
5504 put_user_s32(value
, target_gparam
->value
);
5506 unlock_user_struct(target_gparam
, arg
, 0);
5510 static abi_long
do_ioctl_drm_i915(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5511 int fd
, int cmd
, abi_long arg
)
5513 switch (ie
->host_cmd
) {
5514 case DRM_IOCTL_I915_GETPARAM
:
5515 return do_ioctl_drm_i915_getparam(ie
,
5516 (struct drm_i915_getparam
*)buf_temp
,
5519 return -TARGET_ENOSYS
;
5525 static abi_long
do_ioctl_TUNSETTXFILTER(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5526 int fd
, int cmd
, abi_long arg
)
5528 struct tun_filter
*filter
= (struct tun_filter
*)buf_temp
;
5529 struct tun_filter
*target_filter
;
5532 assert(ie
->access
== IOC_W
);
5534 target_filter
= lock_user(VERIFY_READ
, arg
, sizeof(*target_filter
), 1);
5535 if (!target_filter
) {
5536 return -TARGET_EFAULT
;
5538 filter
->flags
= tswap16(target_filter
->flags
);
5539 filter
->count
= tswap16(target_filter
->count
);
5540 unlock_user(target_filter
, arg
, 0);
5542 if (filter
->count
) {
5543 if (offsetof(struct tun_filter
, addr
) + filter
->count
* ETH_ALEN
>
5545 return -TARGET_EFAULT
;
5548 target_addr
= lock_user(VERIFY_READ
,
5549 arg
+ offsetof(struct tun_filter
, addr
),
5550 filter
->count
* ETH_ALEN
, 1);
5552 return -TARGET_EFAULT
;
5554 memcpy(filter
->addr
, target_addr
, filter
->count
* ETH_ALEN
);
5555 unlock_user(target_addr
, arg
+ offsetof(struct tun_filter
, addr
), 0);
5558 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, filter
));
5561 IOCTLEntry ioctl_entries
[] = {
5562 #define IOCTL(cmd, access, ...) \
5563 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5564 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5565 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5566 #define IOCTL_IGNORE(cmd) \
5567 { TARGET_ ## cmd, 0, #cmd },
5572 /* ??? Implement proper locking for ioctls. */
5573 /* do_ioctl() Must return target values and target errnos. */
5574 static abi_long
do_ioctl(int fd
, int cmd
, abi_long arg
)
5576 const IOCTLEntry
*ie
;
5577 const argtype
*arg_type
;
5579 uint8_t buf_temp
[MAX_STRUCT_SIZE
];
5585 if (ie
->target_cmd
== 0) {
5587 LOG_UNIMP
, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd
);
5588 return -TARGET_ENOTTY
;
5590 if (ie
->target_cmd
== cmd
)
5594 arg_type
= ie
->arg_type
;
5596 return ie
->do_ioctl(ie
, buf_temp
, fd
, cmd
, arg
);
5597 } else if (!ie
->host_cmd
) {
5598 /* Some architectures define BSD ioctls in their headers
5599 that are not implemented in Linux. */
5600 return -TARGET_ENOTTY
;
5603 switch(arg_type
[0]) {
5606 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
));
5612 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, arg
));
5616 target_size
= thunk_type_size(arg_type
, 0);
5617 switch(ie
->access
) {
5619 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5620 if (!is_error(ret
)) {
5621 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5623 return -TARGET_EFAULT
;
5624 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5625 unlock_user(argptr
, arg
, target_size
);
5629 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5631 return -TARGET_EFAULT
;
5632 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5633 unlock_user(argptr
, arg
, 0);
5634 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5638 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5640 return -TARGET_EFAULT
;
5641 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5642 unlock_user(argptr
, arg
, 0);
5643 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5644 if (!is_error(ret
)) {
5645 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5647 return -TARGET_EFAULT
;
5648 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5649 unlock_user(argptr
, arg
, target_size
);
5655 qemu_log_mask(LOG_UNIMP
,
5656 "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5657 (long)cmd
, arg_type
[0]);
5658 ret
= -TARGET_ENOTTY
;
5664 static const bitmask_transtbl iflag_tbl
[] = {
5665 { TARGET_IGNBRK
, TARGET_IGNBRK
, IGNBRK
, IGNBRK
},
5666 { TARGET_BRKINT
, TARGET_BRKINT
, BRKINT
, BRKINT
},
5667 { TARGET_IGNPAR
, TARGET_IGNPAR
, IGNPAR
, IGNPAR
},
5668 { TARGET_PARMRK
, TARGET_PARMRK
, PARMRK
, PARMRK
},
5669 { TARGET_INPCK
, TARGET_INPCK
, INPCK
, INPCK
},
5670 { TARGET_ISTRIP
, TARGET_ISTRIP
, ISTRIP
, ISTRIP
},
5671 { TARGET_INLCR
, TARGET_INLCR
, INLCR
, INLCR
},
5672 { TARGET_IGNCR
, TARGET_IGNCR
, IGNCR
, IGNCR
},
5673 { TARGET_ICRNL
, TARGET_ICRNL
, ICRNL
, ICRNL
},
5674 { TARGET_IUCLC
, TARGET_IUCLC
, IUCLC
, IUCLC
},
5675 { TARGET_IXON
, TARGET_IXON
, IXON
, IXON
},
5676 { TARGET_IXANY
, TARGET_IXANY
, IXANY
, IXANY
},
5677 { TARGET_IXOFF
, TARGET_IXOFF
, IXOFF
, IXOFF
},
5678 { TARGET_IMAXBEL
, TARGET_IMAXBEL
, IMAXBEL
, IMAXBEL
},
5679 { TARGET_IUTF8
, TARGET_IUTF8
, IUTF8
, IUTF8
},
5682 static const bitmask_transtbl oflag_tbl
[] = {
5683 { TARGET_OPOST
, TARGET_OPOST
, OPOST
, OPOST
},
5684 { TARGET_OLCUC
, TARGET_OLCUC
, OLCUC
, OLCUC
},
5685 { TARGET_ONLCR
, TARGET_ONLCR
, ONLCR
, ONLCR
},
5686 { TARGET_OCRNL
, TARGET_OCRNL
, OCRNL
, OCRNL
},
5687 { TARGET_ONOCR
, TARGET_ONOCR
, ONOCR
, ONOCR
},
5688 { TARGET_ONLRET
, TARGET_ONLRET
, ONLRET
, ONLRET
},
5689 { TARGET_OFILL
, TARGET_OFILL
, OFILL
, OFILL
},
5690 { TARGET_OFDEL
, TARGET_OFDEL
, OFDEL
, OFDEL
},
5691 { TARGET_NLDLY
, TARGET_NL0
, NLDLY
, NL0
},
5692 { TARGET_NLDLY
, TARGET_NL1
, NLDLY
, NL1
},
5693 { TARGET_CRDLY
, TARGET_CR0
, CRDLY
, CR0
},
5694 { TARGET_CRDLY
, TARGET_CR1
, CRDLY
, CR1
},
5695 { TARGET_CRDLY
, TARGET_CR2
, CRDLY
, CR2
},
5696 { TARGET_CRDLY
, TARGET_CR3
, CRDLY
, CR3
},
5697 { TARGET_TABDLY
, TARGET_TAB0
, TABDLY
, TAB0
},
5698 { TARGET_TABDLY
, TARGET_TAB1
, TABDLY
, TAB1
},
5699 { TARGET_TABDLY
, TARGET_TAB2
, TABDLY
, TAB2
},
5700 { TARGET_TABDLY
, TARGET_TAB3
, TABDLY
, TAB3
},
5701 { TARGET_BSDLY
, TARGET_BS0
, BSDLY
, BS0
},
5702 { TARGET_BSDLY
, TARGET_BS1
, BSDLY
, BS1
},
5703 { TARGET_VTDLY
, TARGET_VT0
, VTDLY
, VT0
},
5704 { TARGET_VTDLY
, TARGET_VT1
, VTDLY
, VT1
},
5705 { TARGET_FFDLY
, TARGET_FF0
, FFDLY
, FF0
},
5706 { TARGET_FFDLY
, TARGET_FF1
, FFDLY
, FF1
},
5709 static const bitmask_transtbl cflag_tbl
[] = {
5710 { TARGET_CBAUD
, TARGET_B0
, CBAUD
, B0
},
5711 { TARGET_CBAUD
, TARGET_B50
, CBAUD
, B50
},
5712 { TARGET_CBAUD
, TARGET_B75
, CBAUD
, B75
},
5713 { TARGET_CBAUD
, TARGET_B110
, CBAUD
, B110
},
5714 { TARGET_CBAUD
, TARGET_B134
, CBAUD
, B134
},
5715 { TARGET_CBAUD
, TARGET_B150
, CBAUD
, B150
},
5716 { TARGET_CBAUD
, TARGET_B200
, CBAUD
, B200
},
5717 { TARGET_CBAUD
, TARGET_B300
, CBAUD
, B300
},
5718 { TARGET_CBAUD
, TARGET_B600
, CBAUD
, B600
},
5719 { TARGET_CBAUD
, TARGET_B1200
, CBAUD
, B1200
},
5720 { TARGET_CBAUD
, TARGET_B1800
, CBAUD
, B1800
},
5721 { TARGET_CBAUD
, TARGET_B2400
, CBAUD
, B2400
},
5722 { TARGET_CBAUD
, TARGET_B4800
, CBAUD
, B4800
},
5723 { TARGET_CBAUD
, TARGET_B9600
, CBAUD
, B9600
},
5724 { TARGET_CBAUD
, TARGET_B19200
, CBAUD
, B19200
},
5725 { TARGET_CBAUD
, TARGET_B38400
, CBAUD
, B38400
},
5726 { TARGET_CBAUD
, TARGET_B57600
, CBAUD
, B57600
},
5727 { TARGET_CBAUD
, TARGET_B115200
, CBAUD
, B115200
},
5728 { TARGET_CBAUD
, TARGET_B230400
, CBAUD
, B230400
},
5729 { TARGET_CBAUD
, TARGET_B460800
, CBAUD
, B460800
},
5730 { TARGET_CSIZE
, TARGET_CS5
, CSIZE
, CS5
},
5731 { TARGET_CSIZE
, TARGET_CS6
, CSIZE
, CS6
},
5732 { TARGET_CSIZE
, TARGET_CS7
, CSIZE
, CS7
},
5733 { TARGET_CSIZE
, TARGET_CS8
, CSIZE
, CS8
},
5734 { TARGET_CSTOPB
, TARGET_CSTOPB
, CSTOPB
, CSTOPB
},
5735 { TARGET_CREAD
, TARGET_CREAD
, CREAD
, CREAD
},
5736 { TARGET_PARENB
, TARGET_PARENB
, PARENB
, PARENB
},
5737 { TARGET_PARODD
, TARGET_PARODD
, PARODD
, PARODD
},
5738 { TARGET_HUPCL
, TARGET_HUPCL
, HUPCL
, HUPCL
},
5739 { TARGET_CLOCAL
, TARGET_CLOCAL
, CLOCAL
, CLOCAL
},
5740 { TARGET_CRTSCTS
, TARGET_CRTSCTS
, CRTSCTS
, CRTSCTS
},
5743 static const bitmask_transtbl lflag_tbl
[] = {
5744 { TARGET_ISIG
, TARGET_ISIG
, ISIG
, ISIG
},
5745 { TARGET_ICANON
, TARGET_ICANON
, ICANON
, ICANON
},
5746 { TARGET_XCASE
, TARGET_XCASE
, XCASE
, XCASE
},
5747 { TARGET_ECHO
, TARGET_ECHO
, ECHO
, ECHO
},
5748 { TARGET_ECHOE
, TARGET_ECHOE
, ECHOE
, ECHOE
},
5749 { TARGET_ECHOK
, TARGET_ECHOK
, ECHOK
, ECHOK
},
5750 { TARGET_ECHONL
, TARGET_ECHONL
, ECHONL
, ECHONL
},
5751 { TARGET_NOFLSH
, TARGET_NOFLSH
, NOFLSH
, NOFLSH
},
5752 { TARGET_TOSTOP
, TARGET_TOSTOP
, TOSTOP
, TOSTOP
},
5753 { TARGET_ECHOCTL
, TARGET_ECHOCTL
, ECHOCTL
, ECHOCTL
},
5754 { TARGET_ECHOPRT
, TARGET_ECHOPRT
, ECHOPRT
, ECHOPRT
},
5755 { TARGET_ECHOKE
, TARGET_ECHOKE
, ECHOKE
, ECHOKE
},
5756 { TARGET_FLUSHO
, TARGET_FLUSHO
, FLUSHO
, FLUSHO
},
5757 { TARGET_PENDIN
, TARGET_PENDIN
, PENDIN
, PENDIN
},
5758 { TARGET_IEXTEN
, TARGET_IEXTEN
, IEXTEN
, IEXTEN
},
5759 { TARGET_EXTPROC
, TARGET_EXTPROC
, EXTPROC
, EXTPROC
},
5762 static void target_to_host_termios (void *dst
, const void *src
)
5764 struct host_termios
*host
= dst
;
5765 const struct target_termios
*target
= src
;
5768 target_to_host_bitmask(tswap32(target
->c_iflag
), iflag_tbl
);
5770 target_to_host_bitmask(tswap32(target
->c_oflag
), oflag_tbl
);
5772 target_to_host_bitmask(tswap32(target
->c_cflag
), cflag_tbl
);
5774 target_to_host_bitmask(tswap32(target
->c_lflag
), lflag_tbl
);
5775 host
->c_line
= target
->c_line
;
5777 memset(host
->c_cc
, 0, sizeof(host
->c_cc
));
5778 host
->c_cc
[VINTR
] = target
->c_cc
[TARGET_VINTR
];
5779 host
->c_cc
[VQUIT
] = target
->c_cc
[TARGET_VQUIT
];
5780 host
->c_cc
[VERASE
] = target
->c_cc
[TARGET_VERASE
];
5781 host
->c_cc
[VKILL
] = target
->c_cc
[TARGET_VKILL
];
5782 host
->c_cc
[VEOF
] = target
->c_cc
[TARGET_VEOF
];
5783 host
->c_cc
[VTIME
] = target
->c_cc
[TARGET_VTIME
];
5784 host
->c_cc
[VMIN
] = target
->c_cc
[TARGET_VMIN
];
5785 host
->c_cc
[VSWTC
] = target
->c_cc
[TARGET_VSWTC
];
5786 host
->c_cc
[VSTART
] = target
->c_cc
[TARGET_VSTART
];
5787 host
->c_cc
[VSTOP
] = target
->c_cc
[TARGET_VSTOP
];
5788 host
->c_cc
[VSUSP
] = target
->c_cc
[TARGET_VSUSP
];
5789 host
->c_cc
[VEOL
] = target
->c_cc
[TARGET_VEOL
];
5790 host
->c_cc
[VREPRINT
] = target
->c_cc
[TARGET_VREPRINT
];
5791 host
->c_cc
[VDISCARD
] = target
->c_cc
[TARGET_VDISCARD
];
5792 host
->c_cc
[VWERASE
] = target
->c_cc
[TARGET_VWERASE
];
5793 host
->c_cc
[VLNEXT
] = target
->c_cc
[TARGET_VLNEXT
];
5794 host
->c_cc
[VEOL2
] = target
->c_cc
[TARGET_VEOL2
];
5797 static void host_to_target_termios (void *dst
, const void *src
)
5799 struct target_termios
*target
= dst
;
5800 const struct host_termios
*host
= src
;
5803 tswap32(host_to_target_bitmask(host
->c_iflag
, iflag_tbl
));
5805 tswap32(host_to_target_bitmask(host
->c_oflag
, oflag_tbl
));
5807 tswap32(host_to_target_bitmask(host
->c_cflag
, cflag_tbl
));
5809 tswap32(host_to_target_bitmask(host
->c_lflag
, lflag_tbl
));
5810 target
->c_line
= host
->c_line
;
5812 memset(target
->c_cc
, 0, sizeof(target
->c_cc
));
5813 target
->c_cc
[TARGET_VINTR
] = host
->c_cc
[VINTR
];
5814 target
->c_cc
[TARGET_VQUIT
] = host
->c_cc
[VQUIT
];
5815 target
->c_cc
[TARGET_VERASE
] = host
->c_cc
[VERASE
];
5816 target
->c_cc
[TARGET_VKILL
] = host
->c_cc
[VKILL
];
5817 target
->c_cc
[TARGET_VEOF
] = host
->c_cc
[VEOF
];
5818 target
->c_cc
[TARGET_VTIME
] = host
->c_cc
[VTIME
];
5819 target
->c_cc
[TARGET_VMIN
] = host
->c_cc
[VMIN
];
5820 target
->c_cc
[TARGET_VSWTC
] = host
->c_cc
[VSWTC
];
5821 target
->c_cc
[TARGET_VSTART
] = host
->c_cc
[VSTART
];
5822 target
->c_cc
[TARGET_VSTOP
] = host
->c_cc
[VSTOP
];
5823 target
->c_cc
[TARGET_VSUSP
] = host
->c_cc
[VSUSP
];
5824 target
->c_cc
[TARGET_VEOL
] = host
->c_cc
[VEOL
];
5825 target
->c_cc
[TARGET_VREPRINT
] = host
->c_cc
[VREPRINT
];
5826 target
->c_cc
[TARGET_VDISCARD
] = host
->c_cc
[VDISCARD
];
5827 target
->c_cc
[TARGET_VWERASE
] = host
->c_cc
[VWERASE
];
5828 target
->c_cc
[TARGET_VLNEXT
] = host
->c_cc
[VLNEXT
];
5829 target
->c_cc
[TARGET_VEOL2
] = host
->c_cc
[VEOL2
];
5832 static const StructEntry struct_termios_def
= {
5833 .convert
= { host_to_target_termios
, target_to_host_termios
},
5834 .size
= { sizeof(struct target_termios
), sizeof(struct host_termios
) },
5835 .align
= { __alignof__(struct target_termios
), __alignof__(struct host_termios
) },
5836 .print
= print_termios
,
5839 /* If the host does not provide these bits, they may be safely discarded. */
5843 #ifndef MAP_UNINITIALIZED
5844 #define MAP_UNINITIALIZED 0
5847 static const bitmask_transtbl mmap_flags_tbl
[] = {
5848 { TARGET_MAP_FIXED
, TARGET_MAP_FIXED
, MAP_FIXED
, MAP_FIXED
},
5849 { TARGET_MAP_ANONYMOUS
, TARGET_MAP_ANONYMOUS
,
5850 MAP_ANONYMOUS
, MAP_ANONYMOUS
},
5851 { TARGET_MAP_GROWSDOWN
, TARGET_MAP_GROWSDOWN
,
5852 MAP_GROWSDOWN
, MAP_GROWSDOWN
},
5853 { TARGET_MAP_DENYWRITE
, TARGET_MAP_DENYWRITE
,
5854 MAP_DENYWRITE
, MAP_DENYWRITE
},
5855 { TARGET_MAP_EXECUTABLE
, TARGET_MAP_EXECUTABLE
,
5856 MAP_EXECUTABLE
, MAP_EXECUTABLE
},
5857 { TARGET_MAP_LOCKED
, TARGET_MAP_LOCKED
, MAP_LOCKED
, MAP_LOCKED
},
5858 { TARGET_MAP_NORESERVE
, TARGET_MAP_NORESERVE
,
5859 MAP_NORESERVE
, MAP_NORESERVE
},
5860 { TARGET_MAP_HUGETLB
, TARGET_MAP_HUGETLB
, MAP_HUGETLB
, MAP_HUGETLB
},
5861 /* MAP_STACK had been ignored by the kernel for quite some time.
5862 Recognize it for the target insofar as we do not want to pass
5863 it through to the host. */
5864 { TARGET_MAP_STACK
, TARGET_MAP_STACK
, 0, 0 },
5865 { TARGET_MAP_NONBLOCK
, TARGET_MAP_NONBLOCK
, MAP_NONBLOCK
, MAP_NONBLOCK
},
5866 { TARGET_MAP_POPULATE
, TARGET_MAP_POPULATE
, MAP_POPULATE
, MAP_POPULATE
},
5867 { TARGET_MAP_FIXED_NOREPLACE
, TARGET_MAP_FIXED_NOREPLACE
,
5868 MAP_FIXED_NOREPLACE
, MAP_FIXED_NOREPLACE
},
5869 { TARGET_MAP_UNINITIALIZED
, TARGET_MAP_UNINITIALIZED
,
5870 MAP_UNINITIALIZED
, MAP_UNINITIALIZED
},
5874 * Arrange for legacy / undefined architecture specific flags to be
5875 * ignored by mmap handling code.
5877 #ifndef TARGET_MAP_32BIT
5878 #define TARGET_MAP_32BIT 0
5880 #ifndef TARGET_MAP_HUGE_2MB
5881 #define TARGET_MAP_HUGE_2MB 0
5883 #ifndef TARGET_MAP_HUGE_1GB
5884 #define TARGET_MAP_HUGE_1GB 0
5887 static abi_long
do_mmap(abi_ulong addr
, abi_ulong len
, int prot
,
5888 int target_flags
, int fd
, off_t offset
)
5891 * The historical set of flags that all mmap types implicitly support.
5894 TARGET_LEGACY_MAP_MASK
= TARGET_MAP_SHARED
5895 | TARGET_MAP_PRIVATE
5897 | TARGET_MAP_ANONYMOUS
5898 | TARGET_MAP_DENYWRITE
5899 | TARGET_MAP_EXECUTABLE
5900 | TARGET_MAP_UNINITIALIZED
5901 | TARGET_MAP_GROWSDOWN
5903 | TARGET_MAP_NORESERVE
5904 | TARGET_MAP_POPULATE
5905 | TARGET_MAP_NONBLOCK
5907 | TARGET_MAP_HUGETLB
5909 | TARGET_MAP_HUGE_2MB
5910 | TARGET_MAP_HUGE_1GB
5914 switch (target_flags
& TARGET_MAP_TYPE
) {
5915 case TARGET_MAP_PRIVATE
:
5916 host_flags
= MAP_PRIVATE
;
5918 case TARGET_MAP_SHARED
:
5919 host_flags
= MAP_SHARED
;
5921 case TARGET_MAP_SHARED_VALIDATE
:
5923 * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
5924 * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
5926 if (target_flags
& ~(TARGET_LEGACY_MAP_MASK
| TARGET_MAP_SYNC
)) {
5927 return -TARGET_EOPNOTSUPP
;
5929 host_flags
= MAP_SHARED_VALIDATE
;
5930 if (target_flags
& TARGET_MAP_SYNC
) {
5931 host_flags
|= MAP_SYNC
;
5935 return -TARGET_EINVAL
;
5937 host_flags
|= target_to_host_bitmask(target_flags
, mmap_flags_tbl
);
5939 return get_errno(target_mmap(addr
, len
, prot
, host_flags
, fd
, offset
));
5943 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5944 * TARGET_I386 is defined if TARGET_X86_64 is defined
5946 #if defined(TARGET_I386)
5948 /* NOTE: there is really one LDT for all the threads */
5949 static uint8_t *ldt_table
;
5951 static abi_long
read_ldt(abi_ulong ptr
, unsigned long bytecount
)
5958 size
= TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
;
5959 if (size
> bytecount
)
5961 p
= lock_user(VERIFY_WRITE
, ptr
, size
, 0);
5963 return -TARGET_EFAULT
;
5964 /* ??? Should this by byteswapped? */
5965 memcpy(p
, ldt_table
, size
);
5966 unlock_user(p
, ptr
, size
);
5970 /* XXX: add locking support */
5971 static abi_long
write_ldt(CPUX86State
*env
,
5972 abi_ulong ptr
, unsigned long bytecount
, int oldmode
)
5974 struct target_modify_ldt_ldt_s ldt_info
;
5975 struct target_modify_ldt_ldt_s
*target_ldt_info
;
5976 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
5977 int seg_not_present
, useable
, lm
;
5978 uint32_t *lp
, entry_1
, entry_2
;
5980 if (bytecount
!= sizeof(ldt_info
))
5981 return -TARGET_EINVAL
;
5982 if (!lock_user_struct(VERIFY_READ
, target_ldt_info
, ptr
, 1))
5983 return -TARGET_EFAULT
;
5984 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
5985 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
5986 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
5987 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
5988 unlock_user_struct(target_ldt_info
, ptr
, 0);
5990 if (ldt_info
.entry_number
>= TARGET_LDT_ENTRIES
)
5991 return -TARGET_EINVAL
;
5992 seg_32bit
= ldt_info
.flags
& 1;
5993 contents
= (ldt_info
.flags
>> 1) & 3;
5994 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
5995 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
5996 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
5997 useable
= (ldt_info
.flags
>> 6) & 1;
6001 lm
= (ldt_info
.flags
>> 7) & 1;
6003 if (contents
== 3) {
6005 return -TARGET_EINVAL
;
6006 if (seg_not_present
== 0)
6007 return -TARGET_EINVAL
;
6009 /* allocate the LDT */
6011 env
->ldt
.base
= target_mmap(0,
6012 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
,
6013 PROT_READ
|PROT_WRITE
,
6014 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
6015 if (env
->ldt
.base
== -1)
6016 return -TARGET_ENOMEM
;
6017 memset(g2h_untagged(env
->ldt
.base
), 0,
6018 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
);
6019 env
->ldt
.limit
= 0xffff;
6020 ldt_table
= g2h_untagged(env
->ldt
.base
);
6023 /* NOTE: same code as Linux kernel */
6024 /* Allow LDTs to be cleared by the user. */
6025 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
6028 read_exec_only
== 1 &&
6030 limit_in_pages
== 0 &&
6031 seg_not_present
== 1 &&
6039 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
6040 (ldt_info
.limit
& 0x0ffff);
6041 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
6042 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
6043 (ldt_info
.limit
& 0xf0000) |
6044 ((read_exec_only
^ 1) << 9) |
6046 ((seg_not_present
^ 1) << 15) |
6048 (limit_in_pages
<< 23) |
6052 entry_2
|= (useable
<< 20);
6054 /* Install the new entry ... */
6056 lp
= (uint32_t *)(ldt_table
+ (ldt_info
.entry_number
<< 3));
6057 lp
[0] = tswap32(entry_1
);
6058 lp
[1] = tswap32(entry_2
);
6062 /* specific and weird i386 syscalls */
6063 static abi_long
do_modify_ldt(CPUX86State
*env
, int func
, abi_ulong ptr
,
6064 unsigned long bytecount
)
6070 ret
= read_ldt(ptr
, bytecount
);
6073 ret
= write_ldt(env
, ptr
, bytecount
, 1);
6076 ret
= write_ldt(env
, ptr
, bytecount
, 0);
6079 ret
= -TARGET_ENOSYS
;
6085 #if defined(TARGET_ABI32)
6086 abi_long
do_set_thread_area(CPUX86State
*env
, abi_ulong ptr
)
6088 uint64_t *gdt_table
= g2h_untagged(env
->gdt
.base
);
6089 struct target_modify_ldt_ldt_s ldt_info
;
6090 struct target_modify_ldt_ldt_s
*target_ldt_info
;
6091 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
6092 int seg_not_present
, useable
, lm
;
6093 uint32_t *lp
, entry_1
, entry_2
;
6096 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
6097 if (!target_ldt_info
)
6098 return -TARGET_EFAULT
;
6099 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
6100 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
6101 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
6102 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
6103 if (ldt_info
.entry_number
== -1) {
6104 for (i
=TARGET_GDT_ENTRY_TLS_MIN
; i
<=TARGET_GDT_ENTRY_TLS_MAX
; i
++) {
6105 if (gdt_table
[i
] == 0) {
6106 ldt_info
.entry_number
= i
;
6107 target_ldt_info
->entry_number
= tswap32(i
);
6112 unlock_user_struct(target_ldt_info
, ptr
, 1);
6114 if (ldt_info
.entry_number
< TARGET_GDT_ENTRY_TLS_MIN
||
6115 ldt_info
.entry_number
> TARGET_GDT_ENTRY_TLS_MAX
)
6116 return -TARGET_EINVAL
;
6117 seg_32bit
= ldt_info
.flags
& 1;
6118 contents
= (ldt_info
.flags
>> 1) & 3;
6119 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
6120 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
6121 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
6122 useable
= (ldt_info
.flags
>> 6) & 1;
6126 lm
= (ldt_info
.flags
>> 7) & 1;
6129 if (contents
== 3) {
6130 if (seg_not_present
== 0)
6131 return -TARGET_EINVAL
;
6134 /* NOTE: same code as Linux kernel */
6135 /* Allow LDTs to be cleared by the user. */
6136 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
6137 if ((contents
== 0 &&
6138 read_exec_only
== 1 &&
6140 limit_in_pages
== 0 &&
6141 seg_not_present
== 1 &&
6149 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
6150 (ldt_info
.limit
& 0x0ffff);
6151 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
6152 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
6153 (ldt_info
.limit
& 0xf0000) |
6154 ((read_exec_only
^ 1) << 9) |
6156 ((seg_not_present
^ 1) << 15) |
6158 (limit_in_pages
<< 23) |
6163 /* Install the new entry ... */
6165 lp
= (uint32_t *)(gdt_table
+ ldt_info
.entry_number
);
6166 lp
[0] = tswap32(entry_1
);
6167 lp
[1] = tswap32(entry_2
);
6171 static abi_long
do_get_thread_area(CPUX86State
*env
, abi_ulong ptr
)
6173 struct target_modify_ldt_ldt_s
*target_ldt_info
;
6174 uint64_t *gdt_table
= g2h_untagged(env
->gdt
.base
);
6175 uint32_t base_addr
, limit
, flags
;
6176 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
, idx
;
6177 int seg_not_present
, useable
, lm
;
6178 uint32_t *lp
, entry_1
, entry_2
;
6180 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
6181 if (!target_ldt_info
)
6182 return -TARGET_EFAULT
;
6183 idx
= tswap32(target_ldt_info
->entry_number
);
6184 if (idx
< TARGET_GDT_ENTRY_TLS_MIN
||
6185 idx
> TARGET_GDT_ENTRY_TLS_MAX
) {
6186 unlock_user_struct(target_ldt_info
, ptr
, 1);
6187 return -TARGET_EINVAL
;
6189 lp
= (uint32_t *)(gdt_table
+ idx
);
6190 entry_1
= tswap32(lp
[0]);
6191 entry_2
= tswap32(lp
[1]);
6193 read_exec_only
= ((entry_2
>> 9) & 1) ^ 1;
6194 contents
= (entry_2
>> 10) & 3;
6195 seg_not_present
= ((entry_2
>> 15) & 1) ^ 1;
6196 seg_32bit
= (entry_2
>> 22) & 1;
6197 limit_in_pages
= (entry_2
>> 23) & 1;
6198 useable
= (entry_2
>> 20) & 1;
6202 lm
= (entry_2
>> 21) & 1;
6204 flags
= (seg_32bit
<< 0) | (contents
<< 1) |
6205 (read_exec_only
<< 3) | (limit_in_pages
<< 4) |
6206 (seg_not_present
<< 5) | (useable
<< 6) | (lm
<< 7);
6207 limit
= (entry_1
& 0xffff) | (entry_2
& 0xf0000);
6208 base_addr
= (entry_1
>> 16) |
6209 (entry_2
& 0xff000000) |
6210 ((entry_2
& 0xff) << 16);
6211 target_ldt_info
->base_addr
= tswapal(base_addr
);
6212 target_ldt_info
->limit
= tswap32(limit
);
6213 target_ldt_info
->flags
= tswap32(flags
);
6214 unlock_user_struct(target_ldt_info
, ptr
, 1);
6218 abi_long
do_arch_prctl(CPUX86State
*env
, int code
, abi_ulong addr
)
6220 return -TARGET_ENOSYS
;
6223 abi_long
do_arch_prctl(CPUX86State
*env
, int code
, abi_ulong addr
)
6230 case TARGET_ARCH_SET_GS
:
6231 case TARGET_ARCH_SET_FS
:
6232 if (code
== TARGET_ARCH_SET_GS
)
6236 cpu_x86_load_seg(env
, idx
, 0);
6237 env
->segs
[idx
].base
= addr
;
6239 case TARGET_ARCH_GET_GS
:
6240 case TARGET_ARCH_GET_FS
:
6241 if (code
== TARGET_ARCH_GET_GS
)
6245 val
= env
->segs
[idx
].base
;
6246 if (put_user(val
, addr
, abi_ulong
))
6247 ret
= -TARGET_EFAULT
;
6250 ret
= -TARGET_EINVAL
;
6255 #endif /* defined(TARGET_ABI32 */
6256 #endif /* defined(TARGET_I386) */
6259 * These constants are generic. Supply any that are missing from the host.
6262 # define PR_SET_NAME 15
6263 # define PR_GET_NAME 16
6265 #ifndef PR_SET_FP_MODE
6266 # define PR_SET_FP_MODE 45
6267 # define PR_GET_FP_MODE 46
6268 # define PR_FP_MODE_FR (1 << 0)
6269 # define PR_FP_MODE_FRE (1 << 1)
6271 #ifndef PR_SVE_SET_VL
6272 # define PR_SVE_SET_VL 50
6273 # define PR_SVE_GET_VL 51
6274 # define PR_SVE_VL_LEN_MASK 0xffff
6275 # define PR_SVE_VL_INHERIT (1 << 17)
6277 #ifndef PR_PAC_RESET_KEYS
6278 # define PR_PAC_RESET_KEYS 54
6279 # define PR_PAC_APIAKEY (1 << 0)
6280 # define PR_PAC_APIBKEY (1 << 1)
6281 # define PR_PAC_APDAKEY (1 << 2)
6282 # define PR_PAC_APDBKEY (1 << 3)
6283 # define PR_PAC_APGAKEY (1 << 4)
6285 #ifndef PR_SET_TAGGED_ADDR_CTRL
6286 # define PR_SET_TAGGED_ADDR_CTRL 55
6287 # define PR_GET_TAGGED_ADDR_CTRL 56
6288 # define PR_TAGGED_ADDR_ENABLE (1UL << 0)
6290 #ifndef PR_MTE_TCF_SHIFT
6291 # define PR_MTE_TCF_SHIFT 1
6292 # define PR_MTE_TCF_NONE (0UL << PR_MTE_TCF_SHIFT)
6293 # define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT)
6294 # define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT)
6295 # define PR_MTE_TCF_MASK (3UL << PR_MTE_TCF_SHIFT)
6296 # define PR_MTE_TAG_SHIFT 3
6297 # define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT)
6299 #ifndef PR_SET_IO_FLUSHER
6300 # define PR_SET_IO_FLUSHER 57
6301 # define PR_GET_IO_FLUSHER 58
6303 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6304 # define PR_SET_SYSCALL_USER_DISPATCH 59
6306 #ifndef PR_SME_SET_VL
6307 # define PR_SME_SET_VL 63
6308 # define PR_SME_GET_VL 64
6309 # define PR_SME_VL_LEN_MASK 0xffff
6310 # define PR_SME_VL_INHERIT (1 << 17)
6313 #include "target_prctl.h"
6315 static abi_long
do_prctl_inval0(CPUArchState
*env
)
6317 return -TARGET_EINVAL
;
6320 static abi_long
do_prctl_inval1(CPUArchState
*env
, abi_long arg2
)
6322 return -TARGET_EINVAL
;
6325 #ifndef do_prctl_get_fp_mode
6326 #define do_prctl_get_fp_mode do_prctl_inval0
6328 #ifndef do_prctl_set_fp_mode
6329 #define do_prctl_set_fp_mode do_prctl_inval1
6331 #ifndef do_prctl_sve_get_vl
6332 #define do_prctl_sve_get_vl do_prctl_inval0
6334 #ifndef do_prctl_sve_set_vl
6335 #define do_prctl_sve_set_vl do_prctl_inval1
6337 #ifndef do_prctl_reset_keys
6338 #define do_prctl_reset_keys do_prctl_inval1
6340 #ifndef do_prctl_set_tagged_addr_ctrl
6341 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6343 #ifndef do_prctl_get_tagged_addr_ctrl
6344 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6346 #ifndef do_prctl_get_unalign
6347 #define do_prctl_get_unalign do_prctl_inval1
6349 #ifndef do_prctl_set_unalign
6350 #define do_prctl_set_unalign do_prctl_inval1
6352 #ifndef do_prctl_sme_get_vl
6353 #define do_prctl_sme_get_vl do_prctl_inval0
6355 #ifndef do_prctl_sme_set_vl
6356 #define do_prctl_sme_set_vl do_prctl_inval1
6359 static abi_long
do_prctl(CPUArchState
*env
, abi_long option
, abi_long arg2
,
6360 abi_long arg3
, abi_long arg4
, abi_long arg5
)
6365 case PR_GET_PDEATHSIG
:
6368 ret
= get_errno(prctl(PR_GET_PDEATHSIG
, &deathsig
,
6370 if (!is_error(ret
) &&
6371 put_user_s32(host_to_target_signal(deathsig
), arg2
)) {
6372 return -TARGET_EFAULT
;
6376 case PR_SET_PDEATHSIG
:
6377 return get_errno(prctl(PR_SET_PDEATHSIG
, target_to_host_signal(arg2
),
6381 void *name
= lock_user(VERIFY_WRITE
, arg2
, 16, 1);
6383 return -TARGET_EFAULT
;
6385 ret
= get_errno(prctl(PR_GET_NAME
, (uintptr_t)name
,
6387 unlock_user(name
, arg2
, 16);
6392 void *name
= lock_user(VERIFY_READ
, arg2
, 16, 1);
6394 return -TARGET_EFAULT
;
6396 ret
= get_errno(prctl(PR_SET_NAME
, (uintptr_t)name
,
6398 unlock_user(name
, arg2
, 0);
6401 case PR_GET_FP_MODE
:
6402 return do_prctl_get_fp_mode(env
);
6403 case PR_SET_FP_MODE
:
6404 return do_prctl_set_fp_mode(env
, arg2
);
6406 return do_prctl_sve_get_vl(env
);
6408 return do_prctl_sve_set_vl(env
, arg2
);
6410 return do_prctl_sme_get_vl(env
);
6412 return do_prctl_sme_set_vl(env
, arg2
);
6413 case PR_PAC_RESET_KEYS
:
6414 if (arg3
|| arg4
|| arg5
) {
6415 return -TARGET_EINVAL
;
6417 return do_prctl_reset_keys(env
, arg2
);
6418 case PR_SET_TAGGED_ADDR_CTRL
:
6419 if (arg3
|| arg4
|| arg5
) {
6420 return -TARGET_EINVAL
;
6422 return do_prctl_set_tagged_addr_ctrl(env
, arg2
);
6423 case PR_GET_TAGGED_ADDR_CTRL
:
6424 if (arg2
|| arg3
|| arg4
|| arg5
) {
6425 return -TARGET_EINVAL
;
6427 return do_prctl_get_tagged_addr_ctrl(env
);
6429 case PR_GET_UNALIGN
:
6430 return do_prctl_get_unalign(env
, arg2
);
6431 case PR_SET_UNALIGN
:
6432 return do_prctl_set_unalign(env
, arg2
);
6434 case PR_CAP_AMBIENT
:
6435 case PR_CAPBSET_READ
:
6436 case PR_CAPBSET_DROP
:
6437 case PR_GET_DUMPABLE
:
6438 case PR_SET_DUMPABLE
:
6439 case PR_GET_KEEPCAPS
:
6440 case PR_SET_KEEPCAPS
:
6441 case PR_GET_SECUREBITS
:
6442 case PR_SET_SECUREBITS
:
6445 case PR_GET_TIMERSLACK
:
6446 case PR_SET_TIMERSLACK
:
6448 case PR_MCE_KILL_GET
:
6449 case PR_GET_NO_NEW_PRIVS
:
6450 case PR_SET_NO_NEW_PRIVS
:
6451 case PR_GET_IO_FLUSHER
:
6452 case PR_SET_IO_FLUSHER
:
6453 /* Some prctl options have no pointer arguments and we can pass on. */
6454 return get_errno(prctl(option
, arg2
, arg3
, arg4
, arg5
));
6456 case PR_GET_CHILD_SUBREAPER
:
6457 case PR_SET_CHILD_SUBREAPER
:
6458 case PR_GET_SPECULATION_CTRL
:
6459 case PR_SET_SPECULATION_CTRL
:
6460 case PR_GET_TID_ADDRESS
:
6462 return -TARGET_EINVAL
;
6466 /* Was used for SPE on PowerPC. */
6467 return -TARGET_EINVAL
;
6474 case PR_GET_SECCOMP
:
6475 case PR_SET_SECCOMP
:
6476 case PR_SET_SYSCALL_USER_DISPATCH
:
6477 case PR_GET_THP_DISABLE
:
6478 case PR_SET_THP_DISABLE
:
6481 /* Disable to prevent the target disabling stuff we need. */
6482 return -TARGET_EINVAL
;
6485 qemu_log_mask(LOG_UNIMP
, "Unsupported prctl: " TARGET_ABI_FMT_ld
"\n",
6487 return -TARGET_EINVAL
;
6491 #define NEW_STACK_SIZE 0x40000
6494 static pthread_mutex_t clone_lock
= PTHREAD_MUTEX_INITIALIZER
;
6497 pthread_mutex_t mutex
;
6498 pthread_cond_t cond
;
6501 abi_ulong child_tidptr
;
6502 abi_ulong parent_tidptr
;
6506 static void *clone_func(void *arg
)
6508 new_thread_info
*info
= arg
;
6513 rcu_register_thread();
6514 tcg_register_thread();
6518 ts
= (TaskState
*)cpu
->opaque
;
6519 info
->tid
= sys_gettid();
6521 if (info
->child_tidptr
)
6522 put_user_u32(info
->tid
, info
->child_tidptr
);
6523 if (info
->parent_tidptr
)
6524 put_user_u32(info
->tid
, info
->parent_tidptr
);
6525 qemu_guest_random_seed_thread_part2(cpu
->random_seed
);
6526 /* Enable signals. */
6527 sigprocmask(SIG_SETMASK
, &info
->sigmask
, NULL
);
6528 /* Signal to the parent that we're ready. */
6529 pthread_mutex_lock(&info
->mutex
);
6530 pthread_cond_broadcast(&info
->cond
);
6531 pthread_mutex_unlock(&info
->mutex
);
6532 /* Wait until the parent has finished initializing the tls state. */
6533 pthread_mutex_lock(&clone_lock
);
6534 pthread_mutex_unlock(&clone_lock
);
6540 /* do_fork() Must return host values and target errnos (unlike most
6541 do_*() functions). */
6542 static int do_fork(CPUArchState
*env
, unsigned int flags
, abi_ulong newsp
,
6543 abi_ulong parent_tidptr
, target_ulong newtls
,
6544 abi_ulong child_tidptr
)
6546 CPUState
*cpu
= env_cpu(env
);
6550 CPUArchState
*new_env
;
6553 flags
&= ~CLONE_IGNORED_FLAGS
;
6555 /* Emulate vfork() with fork() */
6556 if (flags
& CLONE_VFORK
)
6557 flags
&= ~(CLONE_VFORK
| CLONE_VM
);
6559 if (flags
& CLONE_VM
) {
6560 TaskState
*parent_ts
= (TaskState
*)cpu
->opaque
;
6561 new_thread_info info
;
6562 pthread_attr_t attr
;
6564 if (((flags
& CLONE_THREAD_FLAGS
) != CLONE_THREAD_FLAGS
) ||
6565 (flags
& CLONE_INVALID_THREAD_FLAGS
)) {
6566 return -TARGET_EINVAL
;
6569 ts
= g_new0(TaskState
, 1);
6570 init_task_state(ts
);
6572 /* Grab a mutex so that thread setup appears atomic. */
6573 pthread_mutex_lock(&clone_lock
);
6576 * If this is our first additional thread, we need to ensure we
6577 * generate code for parallel execution and flush old translations.
6578 * Do this now so that the copy gets CF_PARALLEL too.
6580 if (!(cpu
->tcg_cflags
& CF_PARALLEL
)) {
6581 cpu
->tcg_cflags
|= CF_PARALLEL
;
6585 /* we create a new CPU instance. */
6586 new_env
= cpu_copy(env
);
6587 /* Init regs that differ from the parent. */
6588 cpu_clone_regs_child(new_env
, newsp
, flags
);
6589 cpu_clone_regs_parent(env
, flags
);
6590 new_cpu
= env_cpu(new_env
);
6591 new_cpu
->opaque
= ts
;
6592 ts
->bprm
= parent_ts
->bprm
;
6593 ts
->info
= parent_ts
->info
;
6594 ts
->signal_mask
= parent_ts
->signal_mask
;
6596 if (flags
& CLONE_CHILD_CLEARTID
) {
6597 ts
->child_tidptr
= child_tidptr
;
6600 if (flags
& CLONE_SETTLS
) {
6601 cpu_set_tls (new_env
, newtls
);
6604 memset(&info
, 0, sizeof(info
));
6605 pthread_mutex_init(&info
.mutex
, NULL
);
6606 pthread_mutex_lock(&info
.mutex
);
6607 pthread_cond_init(&info
.cond
, NULL
);
6609 if (flags
& CLONE_CHILD_SETTID
) {
6610 info
.child_tidptr
= child_tidptr
;
6612 if (flags
& CLONE_PARENT_SETTID
) {
6613 info
.parent_tidptr
= parent_tidptr
;
6616 ret
= pthread_attr_init(&attr
);
6617 ret
= pthread_attr_setstacksize(&attr
, NEW_STACK_SIZE
);
6618 ret
= pthread_attr_setdetachstate(&attr
, PTHREAD_CREATE_DETACHED
);
6619 /* It is not safe to deliver signals until the child has finished
6620 initializing, so temporarily block all signals. */
6621 sigfillset(&sigmask
);
6622 sigprocmask(SIG_BLOCK
, &sigmask
, &info
.sigmask
);
6623 cpu
->random_seed
= qemu_guest_random_seed_thread_part1();
6625 ret
= pthread_create(&info
.thread
, &attr
, clone_func
, &info
);
6626 /* TODO: Free new CPU state if thread creation failed. */
6628 sigprocmask(SIG_SETMASK
, &info
.sigmask
, NULL
);
6629 pthread_attr_destroy(&attr
);
6631 /* Wait for the child to initialize. */
6632 pthread_cond_wait(&info
.cond
, &info
.mutex
);
6637 pthread_mutex_unlock(&info
.mutex
);
6638 pthread_cond_destroy(&info
.cond
);
6639 pthread_mutex_destroy(&info
.mutex
);
6640 pthread_mutex_unlock(&clone_lock
);
6642 /* if no CLONE_VM, we consider it is a fork */
6643 if (flags
& CLONE_INVALID_FORK_FLAGS
) {
6644 return -TARGET_EINVAL
;
6647 /* We can't support custom termination signals */
6648 if ((flags
& CSIGNAL
) != TARGET_SIGCHLD
) {
6649 return -TARGET_EINVAL
;
6652 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6653 if (flags
& CLONE_PIDFD
) {
6654 return -TARGET_EINVAL
;
6658 /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6659 if ((flags
& CLONE_PIDFD
) && (flags
& CLONE_PARENT_SETTID
)) {
6660 return -TARGET_EINVAL
;
6663 if (block_signals()) {
6664 return -QEMU_ERESTARTSYS
;
6670 /* Child Process. */
6671 cpu_clone_regs_child(env
, newsp
, flags
);
6673 /* There is a race condition here. The parent process could
6674 theoretically read the TID in the child process before the child
6675 tid is set. This would require using either ptrace
6676 (not implemented) or having *_tidptr to point at a shared memory
6677 mapping. We can't repeat the spinlock hack used above because
6678 the child process gets its own copy of the lock. */
6679 if (flags
& CLONE_CHILD_SETTID
)
6680 put_user_u32(sys_gettid(), child_tidptr
);
6681 if (flags
& CLONE_PARENT_SETTID
)
6682 put_user_u32(sys_gettid(), parent_tidptr
);
6683 ts
= (TaskState
*)cpu
->opaque
;
6684 if (flags
& CLONE_SETTLS
)
6685 cpu_set_tls (env
, newtls
);
6686 if (flags
& CLONE_CHILD_CLEARTID
)
6687 ts
->child_tidptr
= child_tidptr
;
6689 cpu_clone_regs_parent(env
, flags
);
6690 if (flags
& CLONE_PIDFD
) {
6692 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6693 int pid_child
= ret
;
6694 pid_fd
= pidfd_open(pid_child
, 0);
6696 fcntl(pid_fd
, F_SETFD
, fcntl(pid_fd
, F_GETFL
)
6702 put_user_u32(pid_fd
, parent_tidptr
);
6706 g_assert(!cpu_in_exclusive_context(cpu
));
6711 /* warning : doesn't handle linux specific flags... */
6712 static int target_to_host_fcntl_cmd(int cmd
)
6717 case TARGET_F_DUPFD
:
6718 case TARGET_F_GETFD
:
6719 case TARGET_F_SETFD
:
6720 case TARGET_F_GETFL
:
6721 case TARGET_F_SETFL
:
6722 case TARGET_F_OFD_GETLK
:
6723 case TARGET_F_OFD_SETLK
:
6724 case TARGET_F_OFD_SETLKW
:
6727 case TARGET_F_GETLK
:
6730 case TARGET_F_SETLK
:
6733 case TARGET_F_SETLKW
:
6736 case TARGET_F_GETOWN
:
6739 case TARGET_F_SETOWN
:
6742 case TARGET_F_GETSIG
:
6745 case TARGET_F_SETSIG
:
6748 #if TARGET_ABI_BITS == 32
6749 case TARGET_F_GETLK64
:
6752 case TARGET_F_SETLK64
:
6755 case TARGET_F_SETLKW64
:
6759 case TARGET_F_SETLEASE
:
6762 case TARGET_F_GETLEASE
:
6765 #ifdef F_DUPFD_CLOEXEC
6766 case TARGET_F_DUPFD_CLOEXEC
:
6767 ret
= F_DUPFD_CLOEXEC
;
6770 case TARGET_F_NOTIFY
:
6774 case TARGET_F_GETOWN_EX
:
6779 case TARGET_F_SETOWN_EX
:
6784 case TARGET_F_SETPIPE_SZ
:
6787 case TARGET_F_GETPIPE_SZ
:
6792 case TARGET_F_ADD_SEALS
:
6795 case TARGET_F_GET_SEALS
:
6800 ret
= -TARGET_EINVAL
;
6804 #if defined(__powerpc64__)
6805 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6806 * is not supported by kernel. The glibc fcntl call actually adjusts
6807 * them to 5, 6 and 7 before making the syscall(). Since we make the
6808 * syscall directly, adjust to what is supported by the kernel.
6810 if (ret
>= F_GETLK64
&& ret
<= F_SETLKW64
) {
6811 ret
-= F_GETLK64
- 5;
6818 #define FLOCK_TRANSTBL \
6820 TRANSTBL_CONVERT(F_RDLCK); \
6821 TRANSTBL_CONVERT(F_WRLCK); \
6822 TRANSTBL_CONVERT(F_UNLCK); \
6825 static int target_to_host_flock(int type
)
6827 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6829 #undef TRANSTBL_CONVERT
6830 return -TARGET_EINVAL
;
6833 static int host_to_target_flock(int type
)
6835 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6837 #undef TRANSTBL_CONVERT
6838 /* if we don't know how to convert the value coming
6839 * from the host we copy to the target field as-is
6844 static inline abi_long
copy_from_user_flock(struct flock64
*fl
,
6845 abi_ulong target_flock_addr
)
6847 struct target_flock
*target_fl
;
6850 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6851 return -TARGET_EFAULT
;
6854 __get_user(l_type
, &target_fl
->l_type
);
6855 l_type
= target_to_host_flock(l_type
);
6859 fl
->l_type
= l_type
;
6860 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6861 __get_user(fl
->l_start
, &target_fl
->l_start
);
6862 __get_user(fl
->l_len
, &target_fl
->l_len
);
6863 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6864 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6868 static inline abi_long
copy_to_user_flock(abi_ulong target_flock_addr
,
6869 const struct flock64
*fl
)
6871 struct target_flock
*target_fl
;
6874 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6875 return -TARGET_EFAULT
;
6878 l_type
= host_to_target_flock(fl
->l_type
);
6879 __put_user(l_type
, &target_fl
->l_type
);
6880 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6881 __put_user(fl
->l_start
, &target_fl
->l_start
);
6882 __put_user(fl
->l_len
, &target_fl
->l_len
);
6883 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6884 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6888 typedef abi_long
from_flock64_fn(struct flock64
*fl
, abi_ulong target_addr
);
6889 typedef abi_long
to_flock64_fn(abi_ulong target_addr
, const struct flock64
*fl
);
6891 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6892 struct target_oabi_flock64
{
6900 static inline abi_long
copy_from_user_oabi_flock64(struct flock64
*fl
,
6901 abi_ulong target_flock_addr
)
6903 struct target_oabi_flock64
*target_fl
;
6906 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6907 return -TARGET_EFAULT
;
6910 __get_user(l_type
, &target_fl
->l_type
);
6911 l_type
= target_to_host_flock(l_type
);
6915 fl
->l_type
= l_type
;
6916 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6917 __get_user(fl
->l_start
, &target_fl
->l_start
);
6918 __get_user(fl
->l_len
, &target_fl
->l_len
);
6919 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6920 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6924 static inline abi_long
copy_to_user_oabi_flock64(abi_ulong target_flock_addr
,
6925 const struct flock64
*fl
)
6927 struct target_oabi_flock64
*target_fl
;
6930 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6931 return -TARGET_EFAULT
;
6934 l_type
= host_to_target_flock(fl
->l_type
);
6935 __put_user(l_type
, &target_fl
->l_type
);
6936 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6937 __put_user(fl
->l_start
, &target_fl
->l_start
);
6938 __put_user(fl
->l_len
, &target_fl
->l_len
);
6939 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6940 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6945 static inline abi_long
copy_from_user_flock64(struct flock64
*fl
,
6946 abi_ulong target_flock_addr
)
6948 struct target_flock64
*target_fl
;
6951 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6952 return -TARGET_EFAULT
;
6955 __get_user(l_type
, &target_fl
->l_type
);
6956 l_type
= target_to_host_flock(l_type
);
6960 fl
->l_type
= l_type
;
6961 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6962 __get_user(fl
->l_start
, &target_fl
->l_start
);
6963 __get_user(fl
->l_len
, &target_fl
->l_len
);
6964 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6965 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6969 static inline abi_long
copy_to_user_flock64(abi_ulong target_flock_addr
,
6970 const struct flock64
*fl
)
6972 struct target_flock64
*target_fl
;
6975 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6976 return -TARGET_EFAULT
;
6979 l_type
= host_to_target_flock(fl
->l_type
);
6980 __put_user(l_type
, &target_fl
->l_type
);
6981 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6982 __put_user(fl
->l_start
, &target_fl
->l_start
);
6983 __put_user(fl
->l_len
, &target_fl
->l_len
);
6984 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6985 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6989 static abi_long
do_fcntl(int fd
, int cmd
, abi_ulong arg
)
6991 struct flock64 fl64
;
6993 struct f_owner_ex fox
;
6994 struct target_f_owner_ex
*target_fox
;
6997 int host_cmd
= target_to_host_fcntl_cmd(cmd
);
6999 if (host_cmd
== -TARGET_EINVAL
)
7003 case TARGET_F_GETLK
:
7004 ret
= copy_from_user_flock(&fl64
, arg
);
7008 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
7010 ret
= copy_to_user_flock(arg
, &fl64
);
7014 case TARGET_F_SETLK
:
7015 case TARGET_F_SETLKW
:
7016 ret
= copy_from_user_flock(&fl64
, arg
);
7020 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
7023 case TARGET_F_GETLK64
:
7024 case TARGET_F_OFD_GETLK
:
7025 ret
= copy_from_user_flock64(&fl64
, arg
);
7029 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
7031 ret
= copy_to_user_flock64(arg
, &fl64
);
7034 case TARGET_F_SETLK64
:
7035 case TARGET_F_SETLKW64
:
7036 case TARGET_F_OFD_SETLK
:
7037 case TARGET_F_OFD_SETLKW
:
7038 ret
= copy_from_user_flock64(&fl64
, arg
);
7042 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
7045 case TARGET_F_GETFL
:
7046 ret
= get_errno(safe_fcntl(fd
, host_cmd
, arg
));
7048 ret
= host_to_target_bitmask(ret
, fcntl_flags_tbl
);
7049 /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7050 if (O_LARGEFILE
== 0 && HOST_LONG_BITS
== 64) {
7051 ret
|= TARGET_O_LARGEFILE
;
7056 case TARGET_F_SETFL
:
7057 ret
= get_errno(safe_fcntl(fd
, host_cmd
,
7058 target_to_host_bitmask(arg
,
7063 case TARGET_F_GETOWN_EX
:
7064 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fox
));
7066 if (!lock_user_struct(VERIFY_WRITE
, target_fox
, arg
, 0))
7067 return -TARGET_EFAULT
;
7068 target_fox
->type
= tswap32(fox
.type
);
7069 target_fox
->pid
= tswap32(fox
.pid
);
7070 unlock_user_struct(target_fox
, arg
, 1);
7076 case TARGET_F_SETOWN_EX
:
7077 if (!lock_user_struct(VERIFY_READ
, target_fox
, arg
, 1))
7078 return -TARGET_EFAULT
;
7079 fox
.type
= tswap32(target_fox
->type
);
7080 fox
.pid
= tswap32(target_fox
->pid
);
7081 unlock_user_struct(target_fox
, arg
, 0);
7082 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fox
));
7086 case TARGET_F_SETSIG
:
7087 ret
= get_errno(safe_fcntl(fd
, host_cmd
, target_to_host_signal(arg
)));
7090 case TARGET_F_GETSIG
:
7091 ret
= host_to_target_signal(get_errno(safe_fcntl(fd
, host_cmd
, arg
)));
7094 case TARGET_F_SETOWN
:
7095 case TARGET_F_GETOWN
:
7096 case TARGET_F_SETLEASE
:
7097 case TARGET_F_GETLEASE
:
7098 case TARGET_F_SETPIPE_SZ
:
7099 case TARGET_F_GETPIPE_SZ
:
7100 case TARGET_F_ADD_SEALS
:
7101 case TARGET_F_GET_SEALS
:
7102 ret
= get_errno(safe_fcntl(fd
, host_cmd
, arg
));
7106 ret
= get_errno(safe_fcntl(fd
, cmd
, arg
));
7114 static inline int high2lowuid(int uid
)
7122 static inline int high2lowgid(int gid
)
7130 static inline int low2highuid(int uid
)
7132 if ((int16_t)uid
== -1)
7138 static inline int low2highgid(int gid
)
7140 if ((int16_t)gid
== -1)
7145 static inline int tswapid(int id
)
7150 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7152 #else /* !USE_UID16 */
7153 static inline int high2lowuid(int uid
)
7157 static inline int high2lowgid(int gid
)
7161 static inline int low2highuid(int uid
)
7165 static inline int low2highgid(int gid
)
7169 static inline int tswapid(int id
)
7174 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7176 #endif /* USE_UID16 */
7178 /* We must do direct syscalls for setting UID/GID, because we want to
7179 * implement the Linux system call semantics of "change only for this thread",
7180 * not the libc/POSIX semantics of "change for all threads in process".
7181 * (See http://ewontfix.com/17/ for more details.)
7182 * We use the 32-bit version of the syscalls if present; if it is not
7183 * then either the host architecture supports 32-bit UIDs natively with
7184 * the standard syscall, or the 16-bit UID is the best we can do.
7186 #ifdef __NR_setuid32
7187 #define __NR_sys_setuid __NR_setuid32
7189 #define __NR_sys_setuid __NR_setuid
7191 #ifdef __NR_setgid32
7192 #define __NR_sys_setgid __NR_setgid32
7194 #define __NR_sys_setgid __NR_setgid
7196 #ifdef __NR_setresuid32
7197 #define __NR_sys_setresuid __NR_setresuid32
7199 #define __NR_sys_setresuid __NR_setresuid
7201 #ifdef __NR_setresgid32
7202 #define __NR_sys_setresgid __NR_setresgid32
7204 #define __NR_sys_setresgid __NR_setresgid
7207 _syscall1(int, sys_setuid
, uid_t
, uid
)
7208 _syscall1(int, sys_setgid
, gid_t
, gid
)
7209 _syscall3(int, sys_setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
7210 _syscall3(int, sys_setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
7212 void syscall_init(void)
7215 const argtype
*arg_type
;
7218 thunk_init(STRUCT_MAX
);
7220 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7221 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7222 #include "syscall_types.h"
7224 #undef STRUCT_SPECIAL
7226 /* we patch the ioctl size if necessary. We rely on the fact that
7227 no ioctl has all the bits at '1' in the size field */
7229 while (ie
->target_cmd
!= 0) {
7230 if (((ie
->target_cmd
>> TARGET_IOC_SIZESHIFT
) & TARGET_IOC_SIZEMASK
) ==
7231 TARGET_IOC_SIZEMASK
) {
7232 arg_type
= ie
->arg_type
;
7233 if (arg_type
[0] != TYPE_PTR
) {
7234 fprintf(stderr
, "cannot patch size for ioctl 0x%x\n",
7239 size
= thunk_type_size(arg_type
, 0);
7240 ie
->target_cmd
= (ie
->target_cmd
&
7241 ~(TARGET_IOC_SIZEMASK
<< TARGET_IOC_SIZESHIFT
)) |
7242 (size
<< TARGET_IOC_SIZESHIFT
);
7245 /* automatic consistency check if same arch */
7246 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7247 (defined(__x86_64__) && defined(TARGET_X86_64))
7248 if (unlikely(ie
->target_cmd
!= ie
->host_cmd
)) {
7249 fprintf(stderr
, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7250 ie
->name
, ie
->target_cmd
, ie
->host_cmd
);
7257 #ifdef TARGET_NR_truncate64
7258 static inline abi_long
target_truncate64(CPUArchState
*cpu_env
, const char *arg1
,
7263 if (regpairs_aligned(cpu_env
, TARGET_NR_truncate64
)) {
7267 return get_errno(truncate64(arg1
, target_offset64(arg2
, arg3
)));
7271 #ifdef TARGET_NR_ftruncate64
7272 static inline abi_long
target_ftruncate64(CPUArchState
*cpu_env
, abi_long arg1
,
7277 if (regpairs_aligned(cpu_env
, TARGET_NR_ftruncate64
)) {
7281 return get_errno(ftruncate64(arg1
, target_offset64(arg2
, arg3
)));
7285 #if defined(TARGET_NR_timer_settime) || \
7286 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7287 static inline abi_long
target_to_host_itimerspec(struct itimerspec
*host_its
,
7288 abi_ulong target_addr
)
7290 if (target_to_host_timespec(&host_its
->it_interval
, target_addr
+
7291 offsetof(struct target_itimerspec
,
7293 target_to_host_timespec(&host_its
->it_value
, target_addr
+
7294 offsetof(struct target_itimerspec
,
7296 return -TARGET_EFAULT
;
7303 #if defined(TARGET_NR_timer_settime64) || \
7304 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7305 static inline abi_long
target_to_host_itimerspec64(struct itimerspec
*host_its
,
7306 abi_ulong target_addr
)
7308 if (target_to_host_timespec64(&host_its
->it_interval
, target_addr
+
7309 offsetof(struct target__kernel_itimerspec
,
7311 target_to_host_timespec64(&host_its
->it_value
, target_addr
+
7312 offsetof(struct target__kernel_itimerspec
,
7314 return -TARGET_EFAULT
;
7321 #if ((defined(TARGET_NR_timerfd_gettime) || \
7322 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7323 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7324 static inline abi_long
host_to_target_itimerspec(abi_ulong target_addr
,
7325 struct itimerspec
*host_its
)
7327 if (host_to_target_timespec(target_addr
+ offsetof(struct target_itimerspec
,
7329 &host_its
->it_interval
) ||
7330 host_to_target_timespec(target_addr
+ offsetof(struct target_itimerspec
,
7332 &host_its
->it_value
)) {
7333 return -TARGET_EFAULT
;
7339 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7340 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7341 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7342 static inline abi_long
host_to_target_itimerspec64(abi_ulong target_addr
,
7343 struct itimerspec
*host_its
)
7345 if (host_to_target_timespec64(target_addr
+
7346 offsetof(struct target__kernel_itimerspec
,
7348 &host_its
->it_interval
) ||
7349 host_to_target_timespec64(target_addr
+
7350 offsetof(struct target__kernel_itimerspec
,
7352 &host_its
->it_value
)) {
7353 return -TARGET_EFAULT
;
7359 #if defined(TARGET_NR_adjtimex) || \
7360 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7361 static inline abi_long
target_to_host_timex(struct timex
*host_tx
,
7362 abi_long target_addr
)
7364 struct target_timex
*target_tx
;
7366 if (!lock_user_struct(VERIFY_READ
, target_tx
, target_addr
, 1)) {
7367 return -TARGET_EFAULT
;
7370 __get_user(host_tx
->modes
, &target_tx
->modes
);
7371 __get_user(host_tx
->offset
, &target_tx
->offset
);
7372 __get_user(host_tx
->freq
, &target_tx
->freq
);
7373 __get_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7374 __get_user(host_tx
->esterror
, &target_tx
->esterror
);
7375 __get_user(host_tx
->status
, &target_tx
->status
);
7376 __get_user(host_tx
->constant
, &target_tx
->constant
);
7377 __get_user(host_tx
->precision
, &target_tx
->precision
);
7378 __get_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7379 __get_user(host_tx
->time
.tv_sec
, &target_tx
->time
.tv_sec
);
7380 __get_user(host_tx
->time
.tv_usec
, &target_tx
->time
.tv_usec
);
7381 __get_user(host_tx
->tick
, &target_tx
->tick
);
7382 __get_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7383 __get_user(host_tx
->jitter
, &target_tx
->jitter
);
7384 __get_user(host_tx
->shift
, &target_tx
->shift
);
7385 __get_user(host_tx
->stabil
, &target_tx
->stabil
);
7386 __get_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7387 __get_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7388 __get_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7389 __get_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7390 __get_user(host_tx
->tai
, &target_tx
->tai
);
7392 unlock_user_struct(target_tx
, target_addr
, 0);
7396 static inline abi_long
host_to_target_timex(abi_long target_addr
,
7397 struct timex
*host_tx
)
7399 struct target_timex
*target_tx
;
7401 if (!lock_user_struct(VERIFY_WRITE
, target_tx
, target_addr
, 0)) {
7402 return -TARGET_EFAULT
;
7405 __put_user(host_tx
->modes
, &target_tx
->modes
);
7406 __put_user(host_tx
->offset
, &target_tx
->offset
);
7407 __put_user(host_tx
->freq
, &target_tx
->freq
);
7408 __put_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7409 __put_user(host_tx
->esterror
, &target_tx
->esterror
);
7410 __put_user(host_tx
->status
, &target_tx
->status
);
7411 __put_user(host_tx
->constant
, &target_tx
->constant
);
7412 __put_user(host_tx
->precision
, &target_tx
->precision
);
7413 __put_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7414 __put_user(host_tx
->time
.tv_sec
, &target_tx
->time
.tv_sec
);
7415 __put_user(host_tx
->time
.tv_usec
, &target_tx
->time
.tv_usec
);
7416 __put_user(host_tx
->tick
, &target_tx
->tick
);
7417 __put_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7418 __put_user(host_tx
->jitter
, &target_tx
->jitter
);
7419 __put_user(host_tx
->shift
, &target_tx
->shift
);
7420 __put_user(host_tx
->stabil
, &target_tx
->stabil
);
7421 __put_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7422 __put_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7423 __put_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7424 __put_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7425 __put_user(host_tx
->tai
, &target_tx
->tai
);
7427 unlock_user_struct(target_tx
, target_addr
, 1);
7433 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7434 static inline abi_long
target_to_host_timex64(struct timex
*host_tx
,
7435 abi_long target_addr
)
7437 struct target__kernel_timex
*target_tx
;
7439 if (copy_from_user_timeval64(&host_tx
->time
, target_addr
+
7440 offsetof(struct target__kernel_timex
,
7442 return -TARGET_EFAULT
;
7445 if (!lock_user_struct(VERIFY_READ
, target_tx
, target_addr
, 1)) {
7446 return -TARGET_EFAULT
;
7449 __get_user(host_tx
->modes
, &target_tx
->modes
);
7450 __get_user(host_tx
->offset
, &target_tx
->offset
);
7451 __get_user(host_tx
->freq
, &target_tx
->freq
);
7452 __get_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7453 __get_user(host_tx
->esterror
, &target_tx
->esterror
);
7454 __get_user(host_tx
->status
, &target_tx
->status
);
7455 __get_user(host_tx
->constant
, &target_tx
->constant
);
7456 __get_user(host_tx
->precision
, &target_tx
->precision
);
7457 __get_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7458 __get_user(host_tx
->tick
, &target_tx
->tick
);
7459 __get_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7460 __get_user(host_tx
->jitter
, &target_tx
->jitter
);
7461 __get_user(host_tx
->shift
, &target_tx
->shift
);
7462 __get_user(host_tx
->stabil
, &target_tx
->stabil
);
7463 __get_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7464 __get_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7465 __get_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7466 __get_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7467 __get_user(host_tx
->tai
, &target_tx
->tai
);
7469 unlock_user_struct(target_tx
, target_addr
, 0);
7473 static inline abi_long
host_to_target_timex64(abi_long target_addr
,
7474 struct timex
*host_tx
)
7476 struct target__kernel_timex
*target_tx
;
7478 if (copy_to_user_timeval64(target_addr
+
7479 offsetof(struct target__kernel_timex
, time
),
7481 return -TARGET_EFAULT
;
7484 if (!lock_user_struct(VERIFY_WRITE
, target_tx
, target_addr
, 0)) {
7485 return -TARGET_EFAULT
;
7488 __put_user(host_tx
->modes
, &target_tx
->modes
);
7489 __put_user(host_tx
->offset
, &target_tx
->offset
);
7490 __put_user(host_tx
->freq
, &target_tx
->freq
);
7491 __put_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7492 __put_user(host_tx
->esterror
, &target_tx
->esterror
);
7493 __put_user(host_tx
->status
, &target_tx
->status
);
7494 __put_user(host_tx
->constant
, &target_tx
->constant
);
7495 __put_user(host_tx
->precision
, &target_tx
->precision
);
7496 __put_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7497 __put_user(host_tx
->tick
, &target_tx
->tick
);
7498 __put_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7499 __put_user(host_tx
->jitter
, &target_tx
->jitter
);
7500 __put_user(host_tx
->shift
, &target_tx
->shift
);
7501 __put_user(host_tx
->stabil
, &target_tx
->stabil
);
7502 __put_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7503 __put_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7504 __put_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7505 __put_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7506 __put_user(host_tx
->tai
, &target_tx
->tai
);
7508 unlock_user_struct(target_tx
, target_addr
, 1);
7513 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7514 #define sigev_notify_thread_id _sigev_un._tid
7517 static inline abi_long
target_to_host_sigevent(struct sigevent
*host_sevp
,
7518 abi_ulong target_addr
)
7520 struct target_sigevent
*target_sevp
;
7522 if (!lock_user_struct(VERIFY_READ
, target_sevp
, target_addr
, 1)) {
7523 return -TARGET_EFAULT
;
7526 /* This union is awkward on 64 bit systems because it has a 32 bit
7527 * integer and a pointer in it; we follow the conversion approach
7528 * used for handling sigval types in signal.c so the guest should get
7529 * the correct value back even if we did a 64 bit byteswap and it's
7530 * using the 32 bit integer.
7532 host_sevp
->sigev_value
.sival_ptr
=
7533 (void *)(uintptr_t)tswapal(target_sevp
->sigev_value
.sival_ptr
);
7534 host_sevp
->sigev_signo
=
7535 target_to_host_signal(tswap32(target_sevp
->sigev_signo
));
7536 host_sevp
->sigev_notify
= tswap32(target_sevp
->sigev_notify
);
7537 host_sevp
->sigev_notify_thread_id
= tswap32(target_sevp
->_sigev_un
._tid
);
7539 unlock_user_struct(target_sevp
, target_addr
, 1);
7543 #if defined(TARGET_NR_mlockall)
7544 static inline int target_to_host_mlockall_arg(int arg
)
7548 if (arg
& TARGET_MCL_CURRENT
) {
7549 result
|= MCL_CURRENT
;
7551 if (arg
& TARGET_MCL_FUTURE
) {
7552 result
|= MCL_FUTURE
;
7555 if (arg
& TARGET_MCL_ONFAULT
) {
7556 result
|= MCL_ONFAULT
;
7564 static inline int target_to_host_msync_arg(abi_long arg
)
7566 return ((arg
& TARGET_MS_ASYNC
) ? MS_ASYNC
: 0) |
7567 ((arg
& TARGET_MS_INVALIDATE
) ? MS_INVALIDATE
: 0) |
7568 ((arg
& TARGET_MS_SYNC
) ? MS_SYNC
: 0) |
7569 (arg
& ~(TARGET_MS_ASYNC
| TARGET_MS_INVALIDATE
| TARGET_MS_SYNC
));
7572 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \
7573 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \
7574 defined(TARGET_NR_newfstatat))
7575 static inline abi_long
host_to_target_stat64(CPUArchState
*cpu_env
,
7576 abi_ulong target_addr
,
7577 struct stat
*host_st
)
7579 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7580 if (cpu_env
->eabi
) {
7581 struct target_eabi_stat64
*target_st
;
7583 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
7584 return -TARGET_EFAULT
;
7585 memset(target_st
, 0, sizeof(struct target_eabi_stat64
));
7586 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
7587 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
7588 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7589 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
7591 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
7592 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
7593 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
7594 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
7595 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
7596 __put_user(host_st
->st_size
, &target_st
->st_size
);
7597 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
7598 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
7599 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
7600 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
7601 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
7602 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7603 __put_user(host_st
->st_atim
.tv_nsec
, &target_st
->target_st_atime_nsec
);
7604 __put_user(host_st
->st_mtim
.tv_nsec
, &target_st
->target_st_mtime_nsec
);
7605 __put_user(host_st
->st_ctim
.tv_nsec
, &target_st
->target_st_ctime_nsec
);
7607 unlock_user_struct(target_st
, target_addr
, 1);
7611 #if defined(TARGET_HAS_STRUCT_STAT64)
7612 struct target_stat64
*target_st
;
7614 struct target_stat
*target_st
;
7617 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
7618 return -TARGET_EFAULT
;
7619 memset(target_st
, 0, sizeof(*target_st
));
7620 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
7621 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
7622 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7623 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
7625 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
7626 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
7627 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
7628 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
7629 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
7630 /* XXX: better use of kernel struct */
7631 __put_user(host_st
->st_size
, &target_st
->st_size
);
7632 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
7633 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
7634 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
7635 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
7636 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
7637 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7638 __put_user(host_st
->st_atim
.tv_nsec
, &target_st
->target_st_atime_nsec
);
7639 __put_user(host_st
->st_mtim
.tv_nsec
, &target_st
->target_st_mtime_nsec
);
7640 __put_user(host_st
->st_ctim
.tv_nsec
, &target_st
->target_st_ctime_nsec
);
7642 unlock_user_struct(target_st
, target_addr
, 1);
7649 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7650 static inline abi_long
host_to_target_statx(struct target_statx
*host_stx
,
7651 abi_ulong target_addr
)
7653 struct target_statx
*target_stx
;
7655 if (!lock_user_struct(VERIFY_WRITE
, target_stx
, target_addr
, 0)) {
7656 return -TARGET_EFAULT
;
7658 memset(target_stx
, 0, sizeof(*target_stx
));
7660 __put_user(host_stx
->stx_mask
, &target_stx
->stx_mask
);
7661 __put_user(host_stx
->stx_blksize
, &target_stx
->stx_blksize
);
7662 __put_user(host_stx
->stx_attributes
, &target_stx
->stx_attributes
);
7663 __put_user(host_stx
->stx_nlink
, &target_stx
->stx_nlink
);
7664 __put_user(host_stx
->stx_uid
, &target_stx
->stx_uid
);
7665 __put_user(host_stx
->stx_gid
, &target_stx
->stx_gid
);
7666 __put_user(host_stx
->stx_mode
, &target_stx
->stx_mode
);
7667 __put_user(host_stx
->stx_ino
, &target_stx
->stx_ino
);
7668 __put_user(host_stx
->stx_size
, &target_stx
->stx_size
);
7669 __put_user(host_stx
->stx_blocks
, &target_stx
->stx_blocks
);
7670 __put_user(host_stx
->stx_attributes_mask
, &target_stx
->stx_attributes_mask
);
7671 __put_user(host_stx
->stx_atime
.tv_sec
, &target_stx
->stx_atime
.tv_sec
);
7672 __put_user(host_stx
->stx_atime
.tv_nsec
, &target_stx
->stx_atime
.tv_nsec
);
7673 __put_user(host_stx
->stx_btime
.tv_sec
, &target_stx
->stx_btime
.tv_sec
);
7674 __put_user(host_stx
->stx_btime
.tv_nsec
, &target_stx
->stx_btime
.tv_nsec
);
7675 __put_user(host_stx
->stx_ctime
.tv_sec
, &target_stx
->stx_ctime
.tv_sec
);
7676 __put_user(host_stx
->stx_ctime
.tv_nsec
, &target_stx
->stx_ctime
.tv_nsec
);
7677 __put_user(host_stx
->stx_mtime
.tv_sec
, &target_stx
->stx_mtime
.tv_sec
);
7678 __put_user(host_stx
->stx_mtime
.tv_nsec
, &target_stx
->stx_mtime
.tv_nsec
);
7679 __put_user(host_stx
->stx_rdev_major
, &target_stx
->stx_rdev_major
);
7680 __put_user(host_stx
->stx_rdev_minor
, &target_stx
->stx_rdev_minor
);
7681 __put_user(host_stx
->stx_dev_major
, &target_stx
->stx_dev_major
);
7682 __put_user(host_stx
->stx_dev_minor
, &target_stx
->stx_dev_minor
);
7684 unlock_user_struct(target_stx
, target_addr
, 1);
7690 static int do_sys_futex(int *uaddr
, int op
, int val
,
7691 const struct timespec
*timeout
, int *uaddr2
,
7694 #if HOST_LONG_BITS == 64
7695 #if defined(__NR_futex)
7696 /* always a 64-bit time_t, it doesn't define _time64 version */
7697 return sys_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
);
7700 #else /* HOST_LONG_BITS == 64 */
7701 #if defined(__NR_futex_time64)
7702 if (sizeof(timeout
->tv_sec
) == 8) {
7703 /* _time64 function on 32bit arch */
7704 return sys_futex_time64(uaddr
, op
, val
, timeout
, uaddr2
, val3
);
7707 #if defined(__NR_futex)
7708 /* old function on 32bit arch */
7709 return sys_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
);
7711 #endif /* HOST_LONG_BITS == 64 */
7712 g_assert_not_reached();
7715 static int do_safe_futex(int *uaddr
, int op
, int val
,
7716 const struct timespec
*timeout
, int *uaddr2
,
7719 #if HOST_LONG_BITS == 64
7720 #if defined(__NR_futex)
7721 /* always a 64-bit time_t, it doesn't define _time64 version */
7722 return get_errno(safe_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
));
7724 #else /* HOST_LONG_BITS == 64 */
7725 #if defined(__NR_futex_time64)
7726 if (sizeof(timeout
->tv_sec
) == 8) {
7727 /* _time64 function on 32bit arch */
7728 return get_errno(safe_futex_time64(uaddr
, op
, val
, timeout
, uaddr2
,
7732 #if defined(__NR_futex)
7733 /* old function on 32bit arch */
7734 return get_errno(safe_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
));
7736 #endif /* HOST_LONG_BITS == 64 */
7737 return -TARGET_ENOSYS
;
7740 /* ??? Using host futex calls even when target atomic operations
7741 are not really atomic probably breaks things. However implementing
7742 futexes locally would make futexes shared between multiple processes
7743 tricky. However they're probably useless because guest atomic
7744 operations won't work either. */
7745 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7746 static int do_futex(CPUState
*cpu
, bool time64
, target_ulong uaddr
,
7747 int op
, int val
, target_ulong timeout
,
7748 target_ulong uaddr2
, int val3
)
7750 struct timespec ts
, *pts
= NULL
;
7751 void *haddr2
= NULL
;
7754 /* We assume FUTEX_* constants are the same on both host and target. */
7755 #ifdef FUTEX_CMD_MASK
7756 base_op
= op
& FUTEX_CMD_MASK
;
7762 case FUTEX_WAIT_BITSET
:
7765 case FUTEX_WAIT_REQUEUE_PI
:
7767 haddr2
= g2h(cpu
, uaddr2
);
7770 case FUTEX_LOCK_PI2
:
7773 case FUTEX_WAKE_BITSET
:
7774 case FUTEX_TRYLOCK_PI
:
7775 case FUTEX_UNLOCK_PI
:
7779 val
= target_to_host_signal(val
);
7782 case FUTEX_CMP_REQUEUE
:
7783 case FUTEX_CMP_REQUEUE_PI
:
7784 val3
= tswap32(val3
);
7789 * For these, the 4th argument is not TIMEOUT, but VAL2.
7790 * But the prototype of do_safe_futex takes a pointer, so
7791 * insert casts to satisfy the compiler. We do not need
7792 * to tswap VAL2 since it's not compared to guest memory.
7794 pts
= (struct timespec
*)(uintptr_t)timeout
;
7796 haddr2
= g2h(cpu
, uaddr2
);
7799 return -TARGET_ENOSYS
;
7804 ? target_to_host_timespec64(pts
, timeout
)
7805 : target_to_host_timespec(pts
, timeout
)) {
7806 return -TARGET_EFAULT
;
7809 return do_safe_futex(g2h(cpu
, uaddr
), op
, val
, pts
, haddr2
, val3
);
7813 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7814 static abi_long
do_name_to_handle_at(abi_long dirfd
, abi_long pathname
,
7815 abi_long handle
, abi_long mount_id
,
7818 struct file_handle
*target_fh
;
7819 struct file_handle
*fh
;
7823 unsigned int size
, total_size
;
7825 if (get_user_s32(size
, handle
)) {
7826 return -TARGET_EFAULT
;
7829 name
= lock_user_string(pathname
);
7831 return -TARGET_EFAULT
;
7834 total_size
= sizeof(struct file_handle
) + size
;
7835 target_fh
= lock_user(VERIFY_WRITE
, handle
, total_size
, 0);
7837 unlock_user(name
, pathname
, 0);
7838 return -TARGET_EFAULT
;
7841 fh
= g_malloc0(total_size
);
7842 fh
->handle_bytes
= size
;
7844 ret
= get_errno(name_to_handle_at(dirfd
, path(name
), fh
, &mid
, flags
));
7845 unlock_user(name
, pathname
, 0);
7847 /* man name_to_handle_at(2):
7848 * Other than the use of the handle_bytes field, the caller should treat
7849 * the file_handle structure as an opaque data type
7852 memcpy(target_fh
, fh
, total_size
);
7853 target_fh
->handle_bytes
= tswap32(fh
->handle_bytes
);
7854 target_fh
->handle_type
= tswap32(fh
->handle_type
);
7856 unlock_user(target_fh
, handle
, total_size
);
7858 if (put_user_s32(mid
, mount_id
)) {
7859 return -TARGET_EFAULT
;
7867 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7868 static abi_long
do_open_by_handle_at(abi_long mount_fd
, abi_long handle
,
7871 struct file_handle
*target_fh
;
7872 struct file_handle
*fh
;
7873 unsigned int size
, total_size
;
7876 if (get_user_s32(size
, handle
)) {
7877 return -TARGET_EFAULT
;
7880 total_size
= sizeof(struct file_handle
) + size
;
7881 target_fh
= lock_user(VERIFY_READ
, handle
, total_size
, 1);
7883 return -TARGET_EFAULT
;
7886 fh
= g_memdup(target_fh
, total_size
);
7887 fh
->handle_bytes
= size
;
7888 fh
->handle_type
= tswap32(target_fh
->handle_type
);
7890 ret
= get_errno(open_by_handle_at(mount_fd
, fh
,
7891 target_to_host_bitmask(flags
, fcntl_flags_tbl
)));
7895 unlock_user(target_fh
, handle
, total_size
);
7901 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7903 static abi_long
do_signalfd4(int fd
, abi_long mask
, int flags
)
7906 target_sigset_t
*target_mask
;
7910 if (flags
& ~(TARGET_O_NONBLOCK_MASK
| TARGET_O_CLOEXEC
)) {
7911 return -TARGET_EINVAL
;
7913 if (!lock_user_struct(VERIFY_READ
, target_mask
, mask
, 1)) {
7914 return -TARGET_EFAULT
;
7917 target_to_host_sigset(&host_mask
, target_mask
);
7919 host_flags
= target_to_host_bitmask(flags
, fcntl_flags_tbl
);
7921 ret
= get_errno(signalfd(fd
, &host_mask
, host_flags
));
7923 fd_trans_register(ret
, &target_signalfd_trans
);
7926 unlock_user_struct(target_mask
, mask
, 0);
7932 /* Map host to target signal numbers for the wait family of syscalls.
7933 Assume all other status bits are the same. */
7934 int host_to_target_waitstatus(int status
)
7936 if (WIFSIGNALED(status
)) {
7937 return host_to_target_signal(WTERMSIG(status
)) | (status
& ~0x7f);
7939 if (WIFSTOPPED(status
)) {
7940 return (host_to_target_signal(WSTOPSIG(status
)) << 8)
7946 static int open_self_cmdline(CPUArchState
*cpu_env
, int fd
)
7948 CPUState
*cpu
= env_cpu(cpu_env
);
7949 struct linux_binprm
*bprm
= ((TaskState
*)cpu
->opaque
)->bprm
;
7952 for (i
= 0; i
< bprm
->argc
; i
++) {
7953 size_t len
= strlen(bprm
->argv
[i
]) + 1;
7955 if (write(fd
, bprm
->argv
[i
], len
) != len
) {
7963 struct open_self_maps_data
{
7965 IntervalTreeRoot
*host_maps
;
7971 * Subroutine to output one line of /proc/self/maps,
7972 * or one region of /proc/self/smaps.
7976 # define test_stack(S, E, L) (E == L)
7978 # define test_stack(S, E, L) (S == L)
7981 static void open_self_maps_4(const struct open_self_maps_data
*d
,
7982 const MapInfo
*mi
, abi_ptr start
,
7983 abi_ptr end
, unsigned flags
)
7985 const struct image_info
*info
= d
->ts
->info
;
7986 const char *path
= mi
->path
;
7991 if (test_stack(start
, end
, info
->stack_limit
)) {
7993 } else if (start
== info
->brk
) {
7997 /* Except null device (MAP_ANON), adjust offset for this fragment. */
7998 offset
= mi
->offset
;
8000 uintptr_t hstart
= (uintptr_t)g2h_untagged(start
);
8001 offset
+= hstart
- mi
->itree
.start
;
8004 count
= dprintf(fd
, TARGET_ABI_FMT_ptr
"-" TARGET_ABI_FMT_ptr
8005 " %c%c%c%c %08" PRIx64
" %02x:%02x %"PRId64
,
8007 (flags
& PAGE_READ
) ? 'r' : '-',
8008 (flags
& PAGE_WRITE_ORG
) ? 'w' : '-',
8009 (flags
& PAGE_EXEC
) ? 'x' : '-',
8010 mi
->is_priv
? 'p' : 's',
8011 offset
, major(mi
->dev
), minor(mi
->dev
),
8012 (uint64_t)mi
->inode
);
8014 dprintf(fd
, "%*s%s\n", 73 - count
, "", path
);
8020 unsigned long size
= end
- start
;
8021 unsigned long page_size_kb
= TARGET_PAGE_SIZE
>> 10;
8022 unsigned long size_kb
= size
>> 10;
8024 dprintf(fd
, "Size: %lu kB\n"
8025 "KernelPageSize: %lu kB\n"
8026 "MMUPageSize: %lu kB\n"
8030 "Shared_Clean: 0 kB\n"
8031 "Shared_Dirty: 0 kB\n"
8032 "Private_Clean: 0 kB\n"
8033 "Private_Dirty: 0 kB\n"
8034 "Referenced: 0 kB\n"
8035 "Anonymous: %lu kB\n"
8037 "AnonHugePages: 0 kB\n"
8038 "ShmemPmdMapped: 0 kB\n"
8039 "FilePmdMapped: 0 kB\n"
8040 "Shared_Hugetlb: 0 kB\n"
8041 "Private_Hugetlb: 0 kB\n"
8046 "VmFlags:%s%s%s%s%s%s%s%s\n",
8047 size_kb
, page_size_kb
, page_size_kb
,
8048 (flags
& PAGE_ANON
? size_kb
: 0),
8049 (flags
& PAGE_READ
) ? " rd" : "",
8050 (flags
& PAGE_WRITE_ORG
) ? " wr" : "",
8051 (flags
& PAGE_EXEC
) ? " ex" : "",
8052 mi
->is_priv
? "" : " sh",
8053 (flags
& PAGE_READ
) ? " mr" : "",
8054 (flags
& PAGE_WRITE_ORG
) ? " mw" : "",
8055 (flags
& PAGE_EXEC
) ? " me" : "",
8056 mi
->is_priv
? "" : " ms");
8061 * Callback for walk_memory_regions, when read_self_maps() fails.
8062 * Proceed without the benefit of host /proc/self/maps cross-check.
8064 static int open_self_maps_3(void *opaque
, target_ulong guest_start
,
8065 target_ulong guest_end
, unsigned long flags
)
8067 static const MapInfo mi
= { .is_priv
= true };
8069 open_self_maps_4(opaque
, &mi
, guest_start
, guest_end
, flags
);
8074 * Callback for walk_memory_regions, when read_self_maps() succeeds.
8076 static int open_self_maps_2(void *opaque
, target_ulong guest_start
,
8077 target_ulong guest_end
, unsigned long flags
)
8079 const struct open_self_maps_data
*d
= opaque
;
8080 uintptr_t host_start
= (uintptr_t)g2h_untagged(guest_start
);
8081 uintptr_t host_last
= (uintptr_t)g2h_untagged(guest_end
- 1);
8084 IntervalTreeNode
*n
=
8085 interval_tree_iter_first(d
->host_maps
, host_start
, host_start
);
8086 MapInfo
*mi
= container_of(n
, MapInfo
, itree
);
8087 uintptr_t this_hlast
= MIN(host_last
, n
->last
);
8088 target_ulong this_gend
= h2g(this_hlast
) + 1;
8090 open_self_maps_4(d
, mi
, guest_start
, this_gend
, flags
);
8092 if (this_hlast
== host_last
) {
8095 host_start
= this_hlast
+ 1;
8096 guest_start
= h2g(host_start
);
8100 static int open_self_maps_1(CPUArchState
*env
, int fd
, bool smaps
)
8102 struct open_self_maps_data d
= {
8103 .ts
= env_cpu(env
)->opaque
,
8104 .host_maps
= read_self_maps(),
8110 walk_memory_regions(&d
, open_self_maps_2
);
8111 free_self_maps(d
.host_maps
);
8113 walk_memory_regions(&d
, open_self_maps_3
);
8118 static int open_self_maps(CPUArchState
*cpu_env
, int fd
)
8120 return open_self_maps_1(cpu_env
, fd
, false);
8123 static int open_self_smaps(CPUArchState
*cpu_env
, int fd
)
8125 return open_self_maps_1(cpu_env
, fd
, true);
8128 static int open_self_stat(CPUArchState
*cpu_env
, int fd
)
8130 CPUState
*cpu
= env_cpu(cpu_env
);
8131 TaskState
*ts
= cpu
->opaque
;
8132 g_autoptr(GString
) buf
= g_string_new(NULL
);
8135 for (i
= 0; i
< 44; i
++) {
8138 g_string_printf(buf
, FMT_pid
" ", getpid());
8139 } else if (i
== 1) {
8141 gchar
*bin
= g_strrstr(ts
->bprm
->argv
[0], "/");
8142 bin
= bin
? bin
+ 1 : ts
->bprm
->argv
[0];
8143 g_string_printf(buf
, "(%.15s) ", bin
);
8144 } else if (i
== 2) {
8146 g_string_assign(buf
, "R "); /* we are running right now */
8147 } else if (i
== 3) {
8149 g_string_printf(buf
, FMT_pid
" ", getppid());
8150 } else if (i
== 21) {
8152 g_string_printf(buf
, "%" PRIu64
" ", ts
->start_boottime
);
8153 } else if (i
== 27) {
8155 g_string_printf(buf
, TARGET_ABI_FMT_ld
" ", ts
->info
->start_stack
);
8157 /* for the rest, there is MasterCard */
8158 g_string_printf(buf
, "0%c", i
== 43 ? '\n' : ' ');
8161 if (write(fd
, buf
->str
, buf
->len
) != buf
->len
) {
8169 static int open_self_auxv(CPUArchState
*cpu_env
, int fd
)
8171 CPUState
*cpu
= env_cpu(cpu_env
);
8172 TaskState
*ts
= cpu
->opaque
;
8173 abi_ulong auxv
= ts
->info
->saved_auxv
;
8174 abi_ulong len
= ts
->info
->auxv_len
;
8178 * Auxiliary vector is stored in target process stack.
8179 * read in whole auxv vector and copy it to file
8181 ptr
= lock_user(VERIFY_READ
, auxv
, len
, 0);
8185 r
= write(fd
, ptr
, len
);
8192 lseek(fd
, 0, SEEK_SET
);
8193 unlock_user(ptr
, auxv
, len
);
8199 static int is_proc_myself(const char *filename
, const char *entry
)
8201 if (!strncmp(filename
, "/proc/", strlen("/proc/"))) {
8202 filename
+= strlen("/proc/");
8203 if (!strncmp(filename
, "self/", strlen("self/"))) {
8204 filename
+= strlen("self/");
8205 } else if (*filename
>= '1' && *filename
<= '9') {
8207 snprintf(myself
, sizeof(myself
), "%d/", getpid());
8208 if (!strncmp(filename
, myself
, strlen(myself
))) {
8209 filename
+= strlen(myself
);
8216 if (!strcmp(filename
, entry
)) {
8223 static void excp_dump_file(FILE *logfile
, CPUArchState
*env
,
8224 const char *fmt
, int code
)
8227 CPUState
*cs
= env_cpu(env
);
8229 fprintf(logfile
, fmt
, code
);
8230 fprintf(logfile
, "Failing executable: %s\n", exec_path
);
8231 cpu_dump_state(cs
, logfile
, 0);
8232 open_self_maps(env
, fileno(logfile
));
8236 void target_exception_dump(CPUArchState
*env
, const char *fmt
, int code
)
8238 /* dump to console */
8239 excp_dump_file(stderr
, env
, fmt
, code
);
8241 /* dump to log file */
8242 if (qemu_log_separate()) {
8243 FILE *logfile
= qemu_log_trylock();
8245 excp_dump_file(logfile
, env
, fmt
, code
);
8246 qemu_log_unlock(logfile
);
8250 #include "target_proc.h"
8252 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8253 defined(HAVE_ARCH_PROC_CPUINFO) || \
8254 defined(HAVE_ARCH_PROC_HARDWARE)
8255 static int is_proc(const char *filename
, const char *entry
)
8257 return strcmp(filename
, entry
) == 0;
8261 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8262 static int open_net_route(CPUArchState
*cpu_env
, int fd
)
8269 fp
= fopen("/proc/net/route", "r");
8276 read
= getline(&line
, &len
, fp
);
8277 dprintf(fd
, "%s", line
);
8281 while ((read
= getline(&line
, &len
, fp
)) != -1) {
8283 uint32_t dest
, gw
, mask
;
8284 unsigned int flags
, refcnt
, use
, metric
, mtu
, window
, irtt
;
8287 fields
= sscanf(line
,
8288 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8289 iface
, &dest
, &gw
, &flags
, &refcnt
, &use
, &metric
,
8290 &mask
, &mtu
, &window
, &irtt
);
8294 dprintf(fd
, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8295 iface
, tswap32(dest
), tswap32(gw
), flags
, refcnt
, use
,
8296 metric
, tswap32(mask
), mtu
, window
, irtt
);
8306 int do_guest_openat(CPUArchState
*cpu_env
, int dirfd
, const char *fname
,
8307 int flags
, mode_t mode
, bool safe
)
8309 g_autofree
char *proc_name
= NULL
;
8310 const char *pathname
;
8312 const char *filename
;
8313 int (*fill
)(CPUArchState
*cpu_env
, int fd
);
8314 int (*cmp
)(const char *s1
, const char *s2
);
8316 const struct fake_open
*fake_open
;
8317 static const struct fake_open fakes
[] = {
8318 { "maps", open_self_maps
, is_proc_myself
},
8319 { "smaps", open_self_smaps
, is_proc_myself
},
8320 { "stat", open_self_stat
, is_proc_myself
},
8321 { "auxv", open_self_auxv
, is_proc_myself
},
8322 { "cmdline", open_self_cmdline
, is_proc_myself
},
8323 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8324 { "/proc/net/route", open_net_route
, is_proc
},
8326 #if defined(HAVE_ARCH_PROC_CPUINFO)
8327 { "/proc/cpuinfo", open_cpuinfo
, is_proc
},
8329 #if defined(HAVE_ARCH_PROC_HARDWARE)
8330 { "/proc/hardware", open_hardware
, is_proc
},
8332 { NULL
, NULL
, NULL
}
8335 /* if this is a file from /proc/ filesystem, expand full name */
8336 proc_name
= realpath(fname
, NULL
);
8337 if (proc_name
&& strncmp(proc_name
, "/proc/", 6) == 0) {
8338 pathname
= proc_name
;
8343 if (is_proc_myself(pathname
, "exe")) {
8345 return safe_openat(dirfd
, exec_path
, flags
, mode
);
8347 return openat(dirfd
, exec_path
, flags
, mode
);
8351 for (fake_open
= fakes
; fake_open
->filename
; fake_open
++) {
8352 if (fake_open
->cmp(pathname
, fake_open
->filename
)) {
8357 if (fake_open
->filename
) {
8359 char filename
[PATH_MAX
];
8362 fd
= memfd_create("qemu-open", 0);
8364 if (errno
!= ENOSYS
) {
8367 /* create temporary file to map stat to */
8368 tmpdir
= getenv("TMPDIR");
8371 snprintf(filename
, sizeof(filename
), "%s/qemu-open.XXXXXX", tmpdir
);
8372 fd
= mkstemp(filename
);
8379 if ((r
= fake_open
->fill(cpu_env
, fd
))) {
8385 lseek(fd
, 0, SEEK_SET
);
8391 return safe_openat(dirfd
, path(pathname
), flags
, mode
);
8393 return openat(dirfd
, path(pathname
), flags
, mode
);
8397 ssize_t
do_guest_readlink(const char *pathname
, char *buf
, size_t bufsiz
)
8401 if (!pathname
|| !buf
) {
8407 /* Short circuit this for the magic exe check. */
8412 if (is_proc_myself((const char *)pathname
, "exe")) {
8414 * Don't worry about sign mismatch as earlier mapping
8415 * logic would have thrown a bad address error.
8417 ret
= MIN(strlen(exec_path
), bufsiz
);
8418 /* We cannot NUL terminate the string. */
8419 memcpy(buf
, exec_path
, ret
);
8421 ret
= readlink(path(pathname
), buf
, bufsiz
);
8427 static int do_execv(CPUArchState
*cpu_env
, int dirfd
,
8428 abi_long pathname
, abi_long guest_argp
,
8429 abi_long guest_envp
, int flags
, bool is_execveat
)
8432 char **argp
, **envp
;
8441 for (gp
= guest_argp
; gp
; gp
+= sizeof(abi_ulong
)) {
8442 if (get_user_ual(addr
, gp
)) {
8443 return -TARGET_EFAULT
;
8451 for (gp
= guest_envp
; gp
; gp
+= sizeof(abi_ulong
)) {
8452 if (get_user_ual(addr
, gp
)) {
8453 return -TARGET_EFAULT
;
8461 argp
= g_new0(char *, argc
+ 1);
8462 envp
= g_new0(char *, envc
+ 1);
8464 for (gp
= guest_argp
, q
= argp
; gp
; gp
+= sizeof(abi_ulong
), q
++) {
8465 if (get_user_ual(addr
, gp
)) {
8471 *q
= lock_user_string(addr
);
8478 for (gp
= guest_envp
, q
= envp
; gp
; gp
+= sizeof(abi_ulong
), q
++) {
8479 if (get_user_ual(addr
, gp
)) {
8485 *q
= lock_user_string(addr
);
8493 * Although execve() is not an interruptible syscall it is
8494 * a special case where we must use the safe_syscall wrapper:
8495 * if we allow a signal to happen before we make the host
8496 * syscall then we will 'lose' it, because at the point of
8497 * execve the process leaves QEMU's control. So we use the
8498 * safe syscall wrapper to ensure that we either take the
8499 * signal as a guest signal, or else it does not happen
8500 * before the execve completes and makes it the other
8501 * program's problem.
8503 p
= lock_user_string(pathname
);
8508 const char *exe
= p
;
8509 if (is_proc_myself(p
, "exe")) {
8513 ? safe_execveat(dirfd
, exe
, argp
, envp
, flags
)
8514 : safe_execve(exe
, argp
, envp
);
8515 ret
= get_errno(ret
);
8517 unlock_user(p
, pathname
, 0);
8522 ret
= -TARGET_EFAULT
;
8525 for (gp
= guest_argp
, q
= argp
; *q
; gp
+= sizeof(abi_ulong
), q
++) {
8526 if (get_user_ual(addr
, gp
) || !addr
) {
8529 unlock_user(*q
, addr
, 0);
8531 for (gp
= guest_envp
, q
= envp
; *q
; gp
+= sizeof(abi_ulong
), q
++) {
8532 if (get_user_ual(addr
, gp
) || !addr
) {
8535 unlock_user(*q
, addr
, 0);
8543 #define TIMER_MAGIC 0x0caf0000
8544 #define TIMER_MAGIC_MASK 0xffff0000
8546 /* Convert QEMU provided timer ID back to internal 16bit index format */
8547 static target_timer_t
get_timer_id(abi_long arg
)
8549 target_timer_t timerid
= arg
;
8551 if ((timerid
& TIMER_MAGIC_MASK
) != TIMER_MAGIC
) {
8552 return -TARGET_EINVAL
;
8557 if (timerid
>= ARRAY_SIZE(g_posix_timers
)) {
8558 return -TARGET_EINVAL
;
8564 static int target_to_host_cpu_mask(unsigned long *host_mask
,
8566 abi_ulong target_addr
,
8569 unsigned target_bits
= sizeof(abi_ulong
) * 8;
8570 unsigned host_bits
= sizeof(*host_mask
) * 8;
8571 abi_ulong
*target_mask
;
8574 assert(host_size
>= target_size
);
8576 target_mask
= lock_user(VERIFY_READ
, target_addr
, target_size
, 1);
8578 return -TARGET_EFAULT
;
8580 memset(host_mask
, 0, host_size
);
8582 for (i
= 0 ; i
< target_size
/ sizeof(abi_ulong
); i
++) {
8583 unsigned bit
= i
* target_bits
;
8586 __get_user(val
, &target_mask
[i
]);
8587 for (j
= 0; j
< target_bits
; j
++, bit
++) {
8588 if (val
& (1UL << j
)) {
8589 host_mask
[bit
/ host_bits
] |= 1UL << (bit
% host_bits
);
8594 unlock_user(target_mask
, target_addr
, 0);
8598 static int host_to_target_cpu_mask(const unsigned long *host_mask
,
8600 abi_ulong target_addr
,
8603 unsigned target_bits
= sizeof(abi_ulong
) * 8;
8604 unsigned host_bits
= sizeof(*host_mask
) * 8;
8605 abi_ulong
*target_mask
;
8608 assert(host_size
>= target_size
);
8610 target_mask
= lock_user(VERIFY_WRITE
, target_addr
, target_size
, 0);
8612 return -TARGET_EFAULT
;
8615 for (i
= 0 ; i
< target_size
/ sizeof(abi_ulong
); i
++) {
8616 unsigned bit
= i
* target_bits
;
8619 for (j
= 0; j
< target_bits
; j
++, bit
++) {
8620 if (host_mask
[bit
/ host_bits
] & (1UL << (bit
% host_bits
))) {
8624 __put_user(val
, &target_mask
[i
]);
8627 unlock_user(target_mask
, target_addr
, target_size
);
8631 #ifdef TARGET_NR_getdents
8632 static int do_getdents(abi_long dirfd
, abi_long arg2
, abi_long count
)
8634 g_autofree
void *hdirp
= NULL
;
8636 int hlen
, hoff
, toff
;
8637 int hreclen
, treclen
;
8638 off64_t prev_diroff
= 0;
8640 hdirp
= g_try_malloc(count
);
8642 return -TARGET_ENOMEM
;
8645 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8646 hlen
= sys_getdents(dirfd
, hdirp
, count
);
8648 hlen
= sys_getdents64(dirfd
, hdirp
, count
);
8651 hlen
= get_errno(hlen
);
8652 if (is_error(hlen
)) {
8656 tdirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0);
8658 return -TARGET_EFAULT
;
8661 for (hoff
= toff
= 0; hoff
< hlen
; hoff
+= hreclen
, toff
+= treclen
) {
8662 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8663 struct linux_dirent
*hde
= hdirp
+ hoff
;
8665 struct linux_dirent64
*hde
= hdirp
+ hoff
;
8667 struct target_dirent
*tde
= tdirp
+ toff
;
8671 namelen
= strlen(hde
->d_name
);
8672 hreclen
= hde
->d_reclen
;
8673 treclen
= offsetof(struct target_dirent
, d_name
) + namelen
+ 2;
8674 treclen
= QEMU_ALIGN_UP(treclen
, __alignof(struct target_dirent
));
8676 if (toff
+ treclen
> count
) {
8678 * If the host struct is smaller than the target struct, or
8679 * requires less alignment and thus packs into less space,
8680 * then the host can return more entries than we can pass
8684 toff
= -TARGET_EINVAL
; /* result buffer is too small */
8688 * Return what we have, resetting the file pointer to the
8689 * location of the first record not returned.
8691 lseek64(dirfd
, prev_diroff
, SEEK_SET
);
8695 prev_diroff
= hde
->d_off
;
8696 tde
->d_ino
= tswapal(hde
->d_ino
);
8697 tde
->d_off
= tswapal(hde
->d_off
);
8698 tde
->d_reclen
= tswap16(treclen
);
8699 memcpy(tde
->d_name
, hde
->d_name
, namelen
+ 1);
8702 * The getdents type is in what was formerly a padding byte at the
8703 * end of the structure.
8705 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8706 type
= *((uint8_t *)hde
+ hreclen
- 1);
8710 *((uint8_t *)tde
+ treclen
- 1) = type
;
8713 unlock_user(tdirp
, arg2
, toff
);
8716 #endif /* TARGET_NR_getdents */
8718 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8719 static int do_getdents64(abi_long dirfd
, abi_long arg2
, abi_long count
)
8721 g_autofree
void *hdirp
= NULL
;
8723 int hlen
, hoff
, toff
;
8724 int hreclen
, treclen
;
8725 off64_t prev_diroff
= 0;
8727 hdirp
= g_try_malloc(count
);
8729 return -TARGET_ENOMEM
;
8732 hlen
= get_errno(sys_getdents64(dirfd
, hdirp
, count
));
8733 if (is_error(hlen
)) {
8737 tdirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0);
8739 return -TARGET_EFAULT
;
8742 for (hoff
= toff
= 0; hoff
< hlen
; hoff
+= hreclen
, toff
+= treclen
) {
8743 struct linux_dirent64
*hde
= hdirp
+ hoff
;
8744 struct target_dirent64
*tde
= tdirp
+ toff
;
8747 namelen
= strlen(hde
->d_name
) + 1;
8748 hreclen
= hde
->d_reclen
;
8749 treclen
= offsetof(struct target_dirent64
, d_name
) + namelen
;
8750 treclen
= QEMU_ALIGN_UP(treclen
, __alignof(struct target_dirent64
));
8752 if (toff
+ treclen
> count
) {
8754 * If the host struct is smaller than the target struct, or
8755 * requires less alignment and thus packs into less space,
8756 * then the host can return more entries than we can pass
8760 toff
= -TARGET_EINVAL
; /* result buffer is too small */
8764 * Return what we have, resetting the file pointer to the
8765 * location of the first record not returned.
8767 lseek64(dirfd
, prev_diroff
, SEEK_SET
);
8771 prev_diroff
= hde
->d_off
;
8772 tde
->d_ino
= tswap64(hde
->d_ino
);
8773 tde
->d_off
= tswap64(hde
->d_off
);
8774 tde
->d_reclen
= tswap16(treclen
);
8775 tde
->d_type
= hde
->d_type
;
8776 memcpy(tde
->d_name
, hde
->d_name
, namelen
);
8779 unlock_user(tdirp
, arg2
, toff
);
8782 #endif /* TARGET_NR_getdents64 */
8784 #if defined(TARGET_NR_riscv_hwprobe)
8786 #define RISCV_HWPROBE_KEY_MVENDORID 0
8787 #define RISCV_HWPROBE_KEY_MARCHID 1
8788 #define RISCV_HWPROBE_KEY_MIMPID 2
8790 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8791 #define RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8793 #define RISCV_HWPROBE_KEY_IMA_EXT_0 4
8794 #define RISCV_HWPROBE_IMA_FD (1 << 0)
8795 #define RISCV_HWPROBE_IMA_C (1 << 1)
8796 #define RISCV_HWPROBE_IMA_V (1 << 2)
8797 #define RISCV_HWPROBE_EXT_ZBA (1 << 3)
8798 #define RISCV_HWPROBE_EXT_ZBB (1 << 4)
8799 #define RISCV_HWPROBE_EXT_ZBS (1 << 5)
8801 #define RISCV_HWPROBE_KEY_CPUPERF_0 5
8802 #define RISCV_HWPROBE_MISALIGNED_UNKNOWN (0 << 0)
8803 #define RISCV_HWPROBE_MISALIGNED_EMULATED (1 << 0)
8804 #define RISCV_HWPROBE_MISALIGNED_SLOW (2 << 0)
8805 #define RISCV_HWPROBE_MISALIGNED_FAST (3 << 0)
8806 #define RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8807 #define RISCV_HWPROBE_MISALIGNED_MASK (7 << 0)
8809 struct riscv_hwprobe
{
8814 static void risc_hwprobe_fill_pairs(CPURISCVState
*env
,
8815 struct riscv_hwprobe
*pair
,
8818 const RISCVCPUConfig
*cfg
= riscv_cpu_cfg(env
);
8820 for (; pair_count
> 0; pair_count
--, pair
++) {
8823 __put_user(0, &pair
->value
);
8824 __get_user(key
, &pair
->key
);
8826 case RISCV_HWPROBE_KEY_MVENDORID
:
8827 __put_user(cfg
->mvendorid
, &pair
->value
);
8829 case RISCV_HWPROBE_KEY_MARCHID
:
8830 __put_user(cfg
->marchid
, &pair
->value
);
8832 case RISCV_HWPROBE_KEY_MIMPID
:
8833 __put_user(cfg
->mimpid
, &pair
->value
);
8835 case RISCV_HWPROBE_KEY_BASE_BEHAVIOR
:
8836 value
= riscv_has_ext(env
, RVI
) &&
8837 riscv_has_ext(env
, RVM
) &&
8838 riscv_has_ext(env
, RVA
) ?
8839 RISCV_HWPROBE_BASE_BEHAVIOR_IMA
: 0;
8840 __put_user(value
, &pair
->value
);
8842 case RISCV_HWPROBE_KEY_IMA_EXT_0
:
8843 value
= riscv_has_ext(env
, RVF
) &&
8844 riscv_has_ext(env
, RVD
) ?
8845 RISCV_HWPROBE_IMA_FD
: 0;
8846 value
|= riscv_has_ext(env
, RVC
) ?
8847 RISCV_HWPROBE_IMA_C
: 0;
8848 value
|= riscv_has_ext(env
, RVV
) ?
8849 RISCV_HWPROBE_IMA_V
: 0;
8850 value
|= cfg
->ext_zba
?
8851 RISCV_HWPROBE_EXT_ZBA
: 0;
8852 value
|= cfg
->ext_zbb
?
8853 RISCV_HWPROBE_EXT_ZBB
: 0;
8854 value
|= cfg
->ext_zbs
?
8855 RISCV_HWPROBE_EXT_ZBS
: 0;
8856 __put_user(value
, &pair
->value
);
8858 case RISCV_HWPROBE_KEY_CPUPERF_0
:
8859 __put_user(RISCV_HWPROBE_MISALIGNED_FAST
, &pair
->value
);
8862 __put_user(-1, &pair
->key
);
8868 static int cpu_set_valid(abi_long arg3
, abi_long arg4
)
8871 size_t host_mask_size
, target_mask_size
;
8872 unsigned long *host_mask
;
8875 * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
8876 * arg3 contains the cpu count.
8878 tmp
= (8 * sizeof(abi_ulong
));
8879 target_mask_size
= ((arg3
+ tmp
- 1) / tmp
) * sizeof(abi_ulong
);
8880 host_mask_size
= (target_mask_size
+ (sizeof(*host_mask
) - 1)) &
8881 ~(sizeof(*host_mask
) - 1);
8883 host_mask
= alloca(host_mask_size
);
8885 ret
= target_to_host_cpu_mask(host_mask
, host_mask_size
,
8886 arg4
, target_mask_size
);
8891 for (i
= 0 ; i
< host_mask_size
/ sizeof(*host_mask
); i
++) {
8892 if (host_mask
[i
] != 0) {
8896 return -TARGET_EINVAL
;
8899 static abi_long
do_riscv_hwprobe(CPUArchState
*cpu_env
, abi_long arg1
,
8900 abi_long arg2
, abi_long arg3
,
8901 abi_long arg4
, abi_long arg5
)
8904 struct riscv_hwprobe
*host_pairs
;
8906 /* flags must be 0 */
8908 return -TARGET_EINVAL
;
8913 ret
= cpu_set_valid(arg3
, arg4
);
8917 } else if (arg4
!= 0) {
8918 return -TARGET_EINVAL
;
8926 host_pairs
= lock_user(VERIFY_WRITE
, arg1
,
8927 sizeof(*host_pairs
) * (size_t)arg2
, 0);
8928 if (host_pairs
== NULL
) {
8929 return -TARGET_EFAULT
;
8931 risc_hwprobe_fill_pairs(cpu_env
, host_pairs
, arg2
);
8932 unlock_user(host_pairs
, arg1
, sizeof(*host_pairs
) * (size_t)arg2
);
8935 #endif /* TARGET_NR_riscv_hwprobe */
8937 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
8938 _syscall2(int, pivot_root
, const char *, new_root
, const char *, put_old
)
8941 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
8942 #define __NR_sys_open_tree __NR_open_tree
8943 _syscall3(int, sys_open_tree
, int, __dfd
, const char *, __filename
,
8944 unsigned int, __flags
)
8947 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
8948 #define __NR_sys_move_mount __NR_move_mount
8949 _syscall5(int, sys_move_mount
, int, __from_dfd
, const char *, __from_pathname
,
8950 int, __to_dfd
, const char *, __to_pathname
, unsigned int, flag
)
8953 /* This is an internal helper for do_syscall so that it is easier
8954 * to have a single return point, so that actions, such as logging
8955 * of syscall results, can be performed.
8956 * All errnos that do_syscall() returns must be -TARGET_<errcode>.
8958 static abi_long
do_syscall1(CPUArchState
*cpu_env
, int num
, abi_long arg1
,
8959 abi_long arg2
, abi_long arg3
, abi_long arg4
,
8960 abi_long arg5
, abi_long arg6
, abi_long arg7
,
8963 CPUState
*cpu
= env_cpu(cpu_env
);
8965 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
8966 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
8967 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
8968 || defined(TARGET_NR_statx)
8971 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
8972 || defined(TARGET_NR_fstatfs)
8978 case TARGET_NR_exit
:
8979 /* In old applications this may be used to implement _exit(2).
8980 However in threaded applications it is used for thread termination,
8981 and _exit_group is used for application termination.
8982 Do thread termination if we have more then one thread. */
8984 if (block_signals()) {
8985 return -QEMU_ERESTARTSYS
;
8988 pthread_mutex_lock(&clone_lock
);
8990 if (CPU_NEXT(first_cpu
)) {
8991 TaskState
*ts
= cpu
->opaque
;
8993 if (ts
->child_tidptr
) {
8994 put_user_u32(0, ts
->child_tidptr
);
8995 do_sys_futex(g2h(cpu
, ts
->child_tidptr
),
8996 FUTEX_WAKE
, INT_MAX
, NULL
, NULL
, 0);
8999 object_unparent(OBJECT(cpu
));
9000 object_unref(OBJECT(cpu
));
9002 * At this point the CPU should be unrealized and removed
9003 * from cpu lists. We can clean-up the rest of the thread
9004 * data without the lock held.
9007 pthread_mutex_unlock(&clone_lock
);
9011 rcu_unregister_thread();
9015 pthread_mutex_unlock(&clone_lock
);
9016 preexit_cleanup(cpu_env
, arg1
);
9018 return 0; /* avoid warning */
9019 case TARGET_NR_read
:
9020 if (arg2
== 0 && arg3
== 0) {
9021 return get_errno(safe_read(arg1
, 0, 0));
9023 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0)))
9024 return -TARGET_EFAULT
;
9025 ret
= get_errno(safe_read(arg1
, p
, arg3
));
9027 fd_trans_host_to_target_data(arg1
)) {
9028 ret
= fd_trans_host_to_target_data(arg1
)(p
, ret
);
9030 unlock_user(p
, arg2
, ret
);
9033 case TARGET_NR_write
:
9034 if (arg2
== 0 && arg3
== 0) {
9035 return get_errno(safe_write(arg1
, 0, 0));
9037 if (!(p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1)))
9038 return -TARGET_EFAULT
;
9039 if (fd_trans_target_to_host_data(arg1
)) {
9040 void *copy
= g_malloc(arg3
);
9041 memcpy(copy
, p
, arg3
);
9042 ret
= fd_trans_target_to_host_data(arg1
)(copy
, arg3
);
9044 ret
= get_errno(safe_write(arg1
, copy
, ret
));
9048 ret
= get_errno(safe_write(arg1
, p
, arg3
));
9050 unlock_user(p
, arg2
, 0);
9053 #ifdef TARGET_NR_open
9054 case TARGET_NR_open
:
9055 if (!(p
= lock_user_string(arg1
)))
9056 return -TARGET_EFAULT
;
9057 ret
= get_errno(do_guest_openat(cpu_env
, AT_FDCWD
, p
,
9058 target_to_host_bitmask(arg2
, fcntl_flags_tbl
),
9060 fd_trans_unregister(ret
);
9061 unlock_user(p
, arg1
, 0);
9064 case TARGET_NR_openat
:
9065 if (!(p
= lock_user_string(arg2
)))
9066 return -TARGET_EFAULT
;
9067 ret
= get_errno(do_guest_openat(cpu_env
, arg1
, p
,
9068 target_to_host_bitmask(arg3
, fcntl_flags_tbl
),
9070 fd_trans_unregister(ret
);
9071 unlock_user(p
, arg2
, 0);
9073 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9074 case TARGET_NR_name_to_handle_at
:
9075 ret
= do_name_to_handle_at(arg1
, arg2
, arg3
, arg4
, arg5
);
9078 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9079 case TARGET_NR_open_by_handle_at
:
9080 ret
= do_open_by_handle_at(arg1
, arg2
, arg3
);
9081 fd_trans_unregister(ret
);
9084 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9085 case TARGET_NR_pidfd_open
:
9086 return get_errno(pidfd_open(arg1
, arg2
));
9088 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9089 case TARGET_NR_pidfd_send_signal
:
9091 siginfo_t uinfo
, *puinfo
;
9094 p
= lock_user(VERIFY_READ
, arg3
, sizeof(target_siginfo_t
), 1);
9096 return -TARGET_EFAULT
;
9098 target_to_host_siginfo(&uinfo
, p
);
9099 unlock_user(p
, arg3
, 0);
9104 ret
= get_errno(pidfd_send_signal(arg1
, target_to_host_signal(arg2
),
9109 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9110 case TARGET_NR_pidfd_getfd
:
9111 return get_errno(pidfd_getfd(arg1
, arg2
, arg3
));
9113 case TARGET_NR_close
:
9114 fd_trans_unregister(arg1
);
9115 return get_errno(close(arg1
));
9116 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9117 case TARGET_NR_close_range
:
9118 ret
= get_errno(sys_close_range(arg1
, arg2
, arg3
));
9119 if (ret
== 0 && !(arg3
& CLOSE_RANGE_CLOEXEC
)) {
9121 maxfd
= MIN(arg2
, target_fd_max
);
9122 for (fd
= arg1
; fd
< maxfd
; fd
++) {
9123 fd_trans_unregister(fd
);
9130 return do_brk(arg1
);
9131 #ifdef TARGET_NR_fork
9132 case TARGET_NR_fork
:
9133 return get_errno(do_fork(cpu_env
, TARGET_SIGCHLD
, 0, 0, 0, 0));
9135 #ifdef TARGET_NR_waitpid
9136 case TARGET_NR_waitpid
:
9139 ret
= get_errno(safe_wait4(arg1
, &status
, arg3
, 0));
9140 if (!is_error(ret
) && arg2
&& ret
9141 && put_user_s32(host_to_target_waitstatus(status
), arg2
))
9142 return -TARGET_EFAULT
;
9146 #ifdef TARGET_NR_waitid
9147 case TARGET_NR_waitid
:
9151 ret
= get_errno(safe_waitid(arg1
, arg2
, &info
, arg4
, NULL
));
9152 if (!is_error(ret
) && arg3
&& info
.si_pid
!= 0) {
9153 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_siginfo_t
), 0)))
9154 return -TARGET_EFAULT
;
9155 host_to_target_siginfo(p
, &info
);
9156 unlock_user(p
, arg3
, sizeof(target_siginfo_t
));
9161 #ifdef TARGET_NR_creat /* not on alpha */
9162 case TARGET_NR_creat
:
9163 if (!(p
= lock_user_string(arg1
)))
9164 return -TARGET_EFAULT
;
9165 ret
= get_errno(creat(p
, arg2
));
9166 fd_trans_unregister(ret
);
9167 unlock_user(p
, arg1
, 0);
9170 #ifdef TARGET_NR_link
9171 case TARGET_NR_link
:
9174 p
= lock_user_string(arg1
);
9175 p2
= lock_user_string(arg2
);
9177 ret
= -TARGET_EFAULT
;
9179 ret
= get_errno(link(p
, p2
));
9180 unlock_user(p2
, arg2
, 0);
9181 unlock_user(p
, arg1
, 0);
9185 #if defined(TARGET_NR_linkat)
9186 case TARGET_NR_linkat
:
9190 return -TARGET_EFAULT
;
9191 p
= lock_user_string(arg2
);
9192 p2
= lock_user_string(arg4
);
9194 ret
= -TARGET_EFAULT
;
9196 ret
= get_errno(linkat(arg1
, p
, arg3
, p2
, arg5
));
9197 unlock_user(p
, arg2
, 0);
9198 unlock_user(p2
, arg4
, 0);
9202 #ifdef TARGET_NR_unlink
9203 case TARGET_NR_unlink
:
9204 if (!(p
= lock_user_string(arg1
)))
9205 return -TARGET_EFAULT
;
9206 ret
= get_errno(unlink(p
));
9207 unlock_user(p
, arg1
, 0);
9210 #if defined(TARGET_NR_unlinkat)
9211 case TARGET_NR_unlinkat
:
9212 if (!(p
= lock_user_string(arg2
)))
9213 return -TARGET_EFAULT
;
9214 ret
= get_errno(unlinkat(arg1
, p
, arg3
));
9215 unlock_user(p
, arg2
, 0);
9218 case TARGET_NR_execveat
:
9219 return do_execv(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
, true);
9220 case TARGET_NR_execve
:
9221 return do_execv(cpu_env
, AT_FDCWD
, arg1
, arg2
, arg3
, 0, false);
9222 case TARGET_NR_chdir
:
9223 if (!(p
= lock_user_string(arg1
)))
9224 return -TARGET_EFAULT
;
9225 ret
= get_errno(chdir(p
));
9226 unlock_user(p
, arg1
, 0);
9228 #ifdef TARGET_NR_time
9229 case TARGET_NR_time
:
9232 ret
= get_errno(time(&host_time
));
9235 && put_user_sal(host_time
, arg1
))
9236 return -TARGET_EFAULT
;
9240 #ifdef TARGET_NR_mknod
9241 case TARGET_NR_mknod
:
9242 if (!(p
= lock_user_string(arg1
)))
9243 return -TARGET_EFAULT
;
9244 ret
= get_errno(mknod(p
, arg2
, arg3
));
9245 unlock_user(p
, arg1
, 0);
9248 #if defined(TARGET_NR_mknodat)
9249 case TARGET_NR_mknodat
:
9250 if (!(p
= lock_user_string(arg2
)))
9251 return -TARGET_EFAULT
;
9252 ret
= get_errno(mknodat(arg1
, p
, arg3
, arg4
));
9253 unlock_user(p
, arg2
, 0);
9256 #ifdef TARGET_NR_chmod
9257 case TARGET_NR_chmod
:
9258 if (!(p
= lock_user_string(arg1
)))
9259 return -TARGET_EFAULT
;
9260 ret
= get_errno(chmod(p
, arg2
));
9261 unlock_user(p
, arg1
, 0);
9264 #ifdef TARGET_NR_lseek
9265 case TARGET_NR_lseek
:
9266 return get_errno(lseek(arg1
, arg2
, arg3
));
9268 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9269 /* Alpha specific */
9270 case TARGET_NR_getxpid
:
9271 cpu_env
->ir
[IR_A4
] = getppid();
9272 return get_errno(getpid());
9274 #ifdef TARGET_NR_getpid
9275 case TARGET_NR_getpid
:
9276 return get_errno(getpid());
9278 case TARGET_NR_mount
:
9280 /* need to look at the data field */
9284 p
= lock_user_string(arg1
);
9286 return -TARGET_EFAULT
;
9292 p2
= lock_user_string(arg2
);
9295 unlock_user(p
, arg1
, 0);
9297 return -TARGET_EFAULT
;
9301 p3
= lock_user_string(arg3
);
9304 unlock_user(p
, arg1
, 0);
9306 unlock_user(p2
, arg2
, 0);
9307 return -TARGET_EFAULT
;
9313 /* FIXME - arg5 should be locked, but it isn't clear how to
9314 * do that since it's not guaranteed to be a NULL-terminated
9318 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, NULL
);
9320 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, g2h(cpu
, arg5
));
9322 ret
= get_errno(ret
);
9325 unlock_user(p
, arg1
, 0);
9327 unlock_user(p2
, arg2
, 0);
9329 unlock_user(p3
, arg3
, 0);
9333 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9334 #if defined(TARGET_NR_umount)
9335 case TARGET_NR_umount
:
9337 #if defined(TARGET_NR_oldumount)
9338 case TARGET_NR_oldumount
:
9340 if (!(p
= lock_user_string(arg1
)))
9341 return -TARGET_EFAULT
;
9342 ret
= get_errno(umount(p
));
9343 unlock_user(p
, arg1
, 0);
9346 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9347 case TARGET_NR_move_mount
:
9351 if (!arg2
|| !arg4
) {
9352 return -TARGET_EFAULT
;
9355 p2
= lock_user_string(arg2
);
9357 return -TARGET_EFAULT
;
9360 p4
= lock_user_string(arg4
);
9362 unlock_user(p2
, arg2
, 0);
9363 return -TARGET_EFAULT
;
9365 ret
= get_errno(sys_move_mount(arg1
, p2
, arg3
, p4
, arg5
));
9367 unlock_user(p2
, arg2
, 0);
9368 unlock_user(p4
, arg4
, 0);
9373 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9374 case TARGET_NR_open_tree
:
9380 return -TARGET_EFAULT
;
9383 p2
= lock_user_string(arg2
);
9385 return -TARGET_EFAULT
;
9388 host_flags
= arg3
& ~TARGET_O_CLOEXEC
;
9389 if (arg3
& TARGET_O_CLOEXEC
) {
9390 host_flags
|= O_CLOEXEC
;
9393 ret
= get_errno(sys_open_tree(arg1
, p2
, host_flags
));
9395 unlock_user(p2
, arg2
, 0);
9400 #ifdef TARGET_NR_stime /* not on alpha */
9401 case TARGET_NR_stime
:
9405 if (get_user_sal(ts
.tv_sec
, arg1
)) {
9406 return -TARGET_EFAULT
;
9408 return get_errno(clock_settime(CLOCK_REALTIME
, &ts
));
9411 #ifdef TARGET_NR_alarm /* not on alpha */
9412 case TARGET_NR_alarm
:
9415 #ifdef TARGET_NR_pause /* not on alpha */
9416 case TARGET_NR_pause
:
9417 if (!block_signals()) {
9418 sigsuspend(&((TaskState
*)cpu
->opaque
)->signal_mask
);
9420 return -TARGET_EINTR
;
9422 #ifdef TARGET_NR_utime
9423 case TARGET_NR_utime
:
9425 struct utimbuf tbuf
, *host_tbuf
;
9426 struct target_utimbuf
*target_tbuf
;
9428 if (!lock_user_struct(VERIFY_READ
, target_tbuf
, arg2
, 1))
9429 return -TARGET_EFAULT
;
9430 tbuf
.actime
= tswapal(target_tbuf
->actime
);
9431 tbuf
.modtime
= tswapal(target_tbuf
->modtime
);
9432 unlock_user_struct(target_tbuf
, arg2
, 0);
9437 if (!(p
= lock_user_string(arg1
)))
9438 return -TARGET_EFAULT
;
9439 ret
= get_errno(utime(p
, host_tbuf
));
9440 unlock_user(p
, arg1
, 0);
9444 #ifdef TARGET_NR_utimes
9445 case TARGET_NR_utimes
:
9447 struct timeval
*tvp
, tv
[2];
9449 if (copy_from_user_timeval(&tv
[0], arg2
)
9450 || copy_from_user_timeval(&tv
[1],
9451 arg2
+ sizeof(struct target_timeval
)))
9452 return -TARGET_EFAULT
;
9457 if (!(p
= lock_user_string(arg1
)))
9458 return -TARGET_EFAULT
;
9459 ret
= get_errno(utimes(p
, tvp
));
9460 unlock_user(p
, arg1
, 0);
9464 #if defined(TARGET_NR_futimesat)
9465 case TARGET_NR_futimesat
:
9467 struct timeval
*tvp
, tv
[2];
9469 if (copy_from_user_timeval(&tv
[0], arg3
)
9470 || copy_from_user_timeval(&tv
[1],
9471 arg3
+ sizeof(struct target_timeval
)))
9472 return -TARGET_EFAULT
;
9477 if (!(p
= lock_user_string(arg2
))) {
9478 return -TARGET_EFAULT
;
9480 ret
= get_errno(futimesat(arg1
, path(p
), tvp
));
9481 unlock_user(p
, arg2
, 0);
9485 #ifdef TARGET_NR_access
9486 case TARGET_NR_access
:
9487 if (!(p
= lock_user_string(arg1
))) {
9488 return -TARGET_EFAULT
;
9490 ret
= get_errno(access(path(p
), arg2
));
9491 unlock_user(p
, arg1
, 0);
9494 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9495 case TARGET_NR_faccessat
:
9496 if (!(p
= lock_user_string(arg2
))) {
9497 return -TARGET_EFAULT
;
9499 ret
= get_errno(faccessat(arg1
, p
, arg3
, 0));
9500 unlock_user(p
, arg2
, 0);
9503 #if defined(TARGET_NR_faccessat2)
9504 case TARGET_NR_faccessat2
:
9505 if (!(p
= lock_user_string(arg2
))) {
9506 return -TARGET_EFAULT
;
9508 ret
= get_errno(faccessat(arg1
, p
, arg3
, arg4
));
9509 unlock_user(p
, arg2
, 0);
9512 #ifdef TARGET_NR_nice /* not on alpha */
9513 case TARGET_NR_nice
:
9514 return get_errno(nice(arg1
));
9516 case TARGET_NR_sync
:
9519 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9520 case TARGET_NR_syncfs
:
9521 return get_errno(syncfs(arg1
));
9523 case TARGET_NR_kill
:
9524 return get_errno(safe_kill(arg1
, target_to_host_signal(arg2
)));
9525 #ifdef TARGET_NR_rename
9526 case TARGET_NR_rename
:
9529 p
= lock_user_string(arg1
);
9530 p2
= lock_user_string(arg2
);
9532 ret
= -TARGET_EFAULT
;
9534 ret
= get_errno(rename(p
, p2
));
9535 unlock_user(p2
, arg2
, 0);
9536 unlock_user(p
, arg1
, 0);
9540 #if defined(TARGET_NR_renameat)
9541 case TARGET_NR_renameat
:
9544 p
= lock_user_string(arg2
);
9545 p2
= lock_user_string(arg4
);
9547 ret
= -TARGET_EFAULT
;
9549 ret
= get_errno(renameat(arg1
, p
, arg3
, p2
));
9550 unlock_user(p2
, arg4
, 0);
9551 unlock_user(p
, arg2
, 0);
9555 #if defined(TARGET_NR_renameat2)
9556 case TARGET_NR_renameat2
:
9559 p
= lock_user_string(arg2
);
9560 p2
= lock_user_string(arg4
);
9562 ret
= -TARGET_EFAULT
;
9564 ret
= get_errno(sys_renameat2(arg1
, p
, arg3
, p2
, arg5
));
9566 unlock_user(p2
, arg4
, 0);
9567 unlock_user(p
, arg2
, 0);
9571 #ifdef TARGET_NR_mkdir
9572 case TARGET_NR_mkdir
:
9573 if (!(p
= lock_user_string(arg1
)))
9574 return -TARGET_EFAULT
;
9575 ret
= get_errno(mkdir(p
, arg2
));
9576 unlock_user(p
, arg1
, 0);
9579 #if defined(TARGET_NR_mkdirat)
9580 case TARGET_NR_mkdirat
:
9581 if (!(p
= lock_user_string(arg2
)))
9582 return -TARGET_EFAULT
;
9583 ret
= get_errno(mkdirat(arg1
, p
, arg3
));
9584 unlock_user(p
, arg2
, 0);
9587 #ifdef TARGET_NR_rmdir
9588 case TARGET_NR_rmdir
:
9589 if (!(p
= lock_user_string(arg1
)))
9590 return -TARGET_EFAULT
;
9591 ret
= get_errno(rmdir(p
));
9592 unlock_user(p
, arg1
, 0);
9596 ret
= get_errno(dup(arg1
));
9598 fd_trans_dup(arg1
, ret
);
9601 #ifdef TARGET_NR_pipe
9602 case TARGET_NR_pipe
:
9603 return do_pipe(cpu_env
, arg1
, 0, 0);
9605 #ifdef TARGET_NR_pipe2
9606 case TARGET_NR_pipe2
:
9607 return do_pipe(cpu_env
, arg1
,
9608 target_to_host_bitmask(arg2
, fcntl_flags_tbl
), 1);
9610 case TARGET_NR_times
:
9612 struct target_tms
*tmsp
;
9614 ret
= get_errno(times(&tms
));
9616 tmsp
= lock_user(VERIFY_WRITE
, arg1
, sizeof(struct target_tms
), 0);
9618 return -TARGET_EFAULT
;
9619 tmsp
->tms_utime
= tswapal(host_to_target_clock_t(tms
.tms_utime
));
9620 tmsp
->tms_stime
= tswapal(host_to_target_clock_t(tms
.tms_stime
));
9621 tmsp
->tms_cutime
= tswapal(host_to_target_clock_t(tms
.tms_cutime
));
9622 tmsp
->tms_cstime
= tswapal(host_to_target_clock_t(tms
.tms_cstime
));
9625 ret
= host_to_target_clock_t(ret
);
9628 case TARGET_NR_acct
:
9630 ret
= get_errno(acct(NULL
));
9632 if (!(p
= lock_user_string(arg1
))) {
9633 return -TARGET_EFAULT
;
9635 ret
= get_errno(acct(path(p
)));
9636 unlock_user(p
, arg1
, 0);
9639 #ifdef TARGET_NR_umount2
9640 case TARGET_NR_umount2
:
9641 if (!(p
= lock_user_string(arg1
)))
9642 return -TARGET_EFAULT
;
9643 ret
= get_errno(umount2(p
, arg2
));
9644 unlock_user(p
, arg1
, 0);
9647 case TARGET_NR_ioctl
:
9648 return do_ioctl(arg1
, arg2
, arg3
);
9649 #ifdef TARGET_NR_fcntl
9650 case TARGET_NR_fcntl
:
9651 return do_fcntl(arg1
, arg2
, arg3
);
9653 case TARGET_NR_setpgid
:
9654 return get_errno(setpgid(arg1
, arg2
));
9655 case TARGET_NR_umask
:
9656 return get_errno(umask(arg1
));
9657 case TARGET_NR_chroot
:
9658 if (!(p
= lock_user_string(arg1
)))
9659 return -TARGET_EFAULT
;
9660 ret
= get_errno(chroot(p
));
9661 unlock_user(p
, arg1
, 0);
9663 #ifdef TARGET_NR_dup2
9664 case TARGET_NR_dup2
:
9665 ret
= get_errno(dup2(arg1
, arg2
));
9667 fd_trans_dup(arg1
, arg2
);
9671 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9672 case TARGET_NR_dup3
:
9676 if ((arg3
& ~TARGET_O_CLOEXEC
) != 0) {
9679 host_flags
= target_to_host_bitmask(arg3
, fcntl_flags_tbl
);
9680 ret
= get_errno(dup3(arg1
, arg2
, host_flags
));
9682 fd_trans_dup(arg1
, arg2
);
9687 #ifdef TARGET_NR_getppid /* not on alpha */
9688 case TARGET_NR_getppid
:
9689 return get_errno(getppid());
9691 #ifdef TARGET_NR_getpgrp
9692 case TARGET_NR_getpgrp
:
9693 return get_errno(getpgrp());
9695 case TARGET_NR_setsid
:
9696 return get_errno(setsid());
9697 #ifdef TARGET_NR_sigaction
9698 case TARGET_NR_sigaction
:
9700 #if defined(TARGET_MIPS)
9701 struct target_sigaction act
, oact
, *pact
, *old_act
;
9704 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
9705 return -TARGET_EFAULT
;
9706 act
._sa_handler
= old_act
->_sa_handler
;
9707 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
.sig
[0]);
9708 act
.sa_flags
= old_act
->sa_flags
;
9709 unlock_user_struct(old_act
, arg2
, 0);
9715 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
, 0));
9717 if (!is_error(ret
) && arg3
) {
9718 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
9719 return -TARGET_EFAULT
;
9720 old_act
->_sa_handler
= oact
._sa_handler
;
9721 old_act
->sa_flags
= oact
.sa_flags
;
9722 old_act
->sa_mask
.sig
[0] = oact
.sa_mask
.sig
[0];
9723 old_act
->sa_mask
.sig
[1] = 0;
9724 old_act
->sa_mask
.sig
[2] = 0;
9725 old_act
->sa_mask
.sig
[3] = 0;
9726 unlock_user_struct(old_act
, arg3
, 1);
9729 struct target_old_sigaction
*old_act
;
9730 struct target_sigaction act
, oact
, *pact
;
9732 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
9733 return -TARGET_EFAULT
;
9734 act
._sa_handler
= old_act
->_sa_handler
;
9735 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
9736 act
.sa_flags
= old_act
->sa_flags
;
9737 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9738 act
.sa_restorer
= old_act
->sa_restorer
;
9740 unlock_user_struct(old_act
, arg2
, 0);
9745 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
, 0));
9746 if (!is_error(ret
) && arg3
) {
9747 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
9748 return -TARGET_EFAULT
;
9749 old_act
->_sa_handler
= oact
._sa_handler
;
9750 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
9751 old_act
->sa_flags
= oact
.sa_flags
;
9752 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9753 old_act
->sa_restorer
= oact
.sa_restorer
;
9755 unlock_user_struct(old_act
, arg3
, 1);
9761 case TARGET_NR_rt_sigaction
:
9764 * For Alpha and SPARC this is a 5 argument syscall, with
9765 * a 'restorer' parameter which must be copied into the
9766 * sa_restorer field of the sigaction struct.
9767 * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9768 * and arg5 is the sigsetsize.
9770 #if defined(TARGET_ALPHA)
9771 target_ulong sigsetsize
= arg4
;
9772 target_ulong restorer
= arg5
;
9773 #elif defined(TARGET_SPARC)
9774 target_ulong restorer
= arg4
;
9775 target_ulong sigsetsize
= arg5
;
9777 target_ulong sigsetsize
= arg4
;
9778 target_ulong restorer
= 0;
9780 struct target_sigaction
*act
= NULL
;
9781 struct target_sigaction
*oact
= NULL
;
9783 if (sigsetsize
!= sizeof(target_sigset_t
)) {
9784 return -TARGET_EINVAL
;
9786 if (arg2
&& !lock_user_struct(VERIFY_READ
, act
, arg2
, 1)) {
9787 return -TARGET_EFAULT
;
9789 if (arg3
&& !lock_user_struct(VERIFY_WRITE
, oact
, arg3
, 0)) {
9790 ret
= -TARGET_EFAULT
;
9792 ret
= get_errno(do_sigaction(arg1
, act
, oact
, restorer
));
9794 unlock_user_struct(oact
, arg3
, 1);
9798 unlock_user_struct(act
, arg2
, 0);
9802 #ifdef TARGET_NR_sgetmask /* not on alpha */
9803 case TARGET_NR_sgetmask
:
9806 abi_ulong target_set
;
9807 ret
= do_sigprocmask(0, NULL
, &cur_set
);
9809 host_to_target_old_sigset(&target_set
, &cur_set
);
9815 #ifdef TARGET_NR_ssetmask /* not on alpha */
9816 case TARGET_NR_ssetmask
:
9819 abi_ulong target_set
= arg1
;
9820 target_to_host_old_sigset(&set
, &target_set
);
9821 ret
= do_sigprocmask(SIG_SETMASK
, &set
, &oset
);
9823 host_to_target_old_sigset(&target_set
, &oset
);
9829 #ifdef TARGET_NR_sigprocmask
9830 case TARGET_NR_sigprocmask
:
9832 #if defined(TARGET_ALPHA)
9833 sigset_t set
, oldset
;
9838 case TARGET_SIG_BLOCK
:
9841 case TARGET_SIG_UNBLOCK
:
9844 case TARGET_SIG_SETMASK
:
9848 return -TARGET_EINVAL
;
9851 target_to_host_old_sigset(&set
, &mask
);
9853 ret
= do_sigprocmask(how
, &set
, &oldset
);
9854 if (!is_error(ret
)) {
9855 host_to_target_old_sigset(&mask
, &oldset
);
9857 cpu_env
->ir
[IR_V0
] = 0; /* force no error */
9860 sigset_t set
, oldset
, *set_ptr
;
9864 p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1);
9866 return -TARGET_EFAULT
;
9868 target_to_host_old_sigset(&set
, p
);
9869 unlock_user(p
, arg2
, 0);
9872 case TARGET_SIG_BLOCK
:
9875 case TARGET_SIG_UNBLOCK
:
9878 case TARGET_SIG_SETMASK
:
9882 return -TARGET_EINVAL
;
9888 ret
= do_sigprocmask(how
, set_ptr
, &oldset
);
9889 if (!is_error(ret
) && arg3
) {
9890 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
9891 return -TARGET_EFAULT
;
9892 host_to_target_old_sigset(p
, &oldset
);
9893 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
9899 case TARGET_NR_rt_sigprocmask
:
9902 sigset_t set
, oldset
, *set_ptr
;
9904 if (arg4
!= sizeof(target_sigset_t
)) {
9905 return -TARGET_EINVAL
;
9909 p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1);
9911 return -TARGET_EFAULT
;
9913 target_to_host_sigset(&set
, p
);
9914 unlock_user(p
, arg2
, 0);
9917 case TARGET_SIG_BLOCK
:
9920 case TARGET_SIG_UNBLOCK
:
9923 case TARGET_SIG_SETMASK
:
9927 return -TARGET_EINVAL
;
9933 ret
= do_sigprocmask(how
, set_ptr
, &oldset
);
9934 if (!is_error(ret
) && arg3
) {
9935 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
9936 return -TARGET_EFAULT
;
9937 host_to_target_sigset(p
, &oldset
);
9938 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
9942 #ifdef TARGET_NR_sigpending
9943 case TARGET_NR_sigpending
:
9946 ret
= get_errno(sigpending(&set
));
9947 if (!is_error(ret
)) {
9948 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
9949 return -TARGET_EFAULT
;
9950 host_to_target_old_sigset(p
, &set
);
9951 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
9956 case TARGET_NR_rt_sigpending
:
9960 /* Yes, this check is >, not != like most. We follow the kernel's
9961 * logic and it does it like this because it implements
9962 * NR_sigpending through the same code path, and in that case
9963 * the old_sigset_t is smaller in size.
9965 if (arg2
> sizeof(target_sigset_t
)) {
9966 return -TARGET_EINVAL
;
9969 ret
= get_errno(sigpending(&set
));
9970 if (!is_error(ret
)) {
9971 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
9972 return -TARGET_EFAULT
;
9973 host_to_target_sigset(p
, &set
);
9974 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
9978 #ifdef TARGET_NR_sigsuspend
9979 case TARGET_NR_sigsuspend
:
9983 #if defined(TARGET_ALPHA)
9984 TaskState
*ts
= cpu
->opaque
;
9985 /* target_to_host_old_sigset will bswap back */
9986 abi_ulong mask
= tswapal(arg1
);
9987 set
= &ts
->sigsuspend_mask
;
9988 target_to_host_old_sigset(set
, &mask
);
9990 ret
= process_sigsuspend_mask(&set
, arg1
, sizeof(target_sigset_t
));
9995 ret
= get_errno(safe_rt_sigsuspend(set
, SIGSET_T_SIZE
));
9996 finish_sigsuspend_mask(ret
);
10000 case TARGET_NR_rt_sigsuspend
:
10004 ret
= process_sigsuspend_mask(&set
, arg1
, arg2
);
10008 ret
= get_errno(safe_rt_sigsuspend(set
, SIGSET_T_SIZE
));
10009 finish_sigsuspend_mask(ret
);
10012 #ifdef TARGET_NR_rt_sigtimedwait
10013 case TARGET_NR_rt_sigtimedwait
:
10016 struct timespec uts
, *puts
;
10019 if (arg4
!= sizeof(target_sigset_t
)) {
10020 return -TARGET_EINVAL
;
10023 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
10024 return -TARGET_EFAULT
;
10025 target_to_host_sigset(&set
, p
);
10026 unlock_user(p
, arg1
, 0);
10029 if (target_to_host_timespec(puts
, arg3
)) {
10030 return -TARGET_EFAULT
;
10035 ret
= get_errno(safe_rt_sigtimedwait(&set
, &uinfo
, puts
,
10037 if (!is_error(ret
)) {
10039 p
= lock_user(VERIFY_WRITE
, arg2
, sizeof(target_siginfo_t
),
10042 return -TARGET_EFAULT
;
10044 host_to_target_siginfo(p
, &uinfo
);
10045 unlock_user(p
, arg2
, sizeof(target_siginfo_t
));
10047 ret
= host_to_target_signal(ret
);
10052 #ifdef TARGET_NR_rt_sigtimedwait_time64
10053 case TARGET_NR_rt_sigtimedwait_time64
:
10056 struct timespec uts
, *puts
;
10059 if (arg4
!= sizeof(target_sigset_t
)) {
10060 return -TARGET_EINVAL
;
10063 p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1);
10065 return -TARGET_EFAULT
;
10067 target_to_host_sigset(&set
, p
);
10068 unlock_user(p
, arg1
, 0);
10071 if (target_to_host_timespec64(puts
, arg3
)) {
10072 return -TARGET_EFAULT
;
10077 ret
= get_errno(safe_rt_sigtimedwait(&set
, &uinfo
, puts
,
10079 if (!is_error(ret
)) {
10081 p
= lock_user(VERIFY_WRITE
, arg2
,
10082 sizeof(target_siginfo_t
), 0);
10084 return -TARGET_EFAULT
;
10086 host_to_target_siginfo(p
, &uinfo
);
10087 unlock_user(p
, arg2
, sizeof(target_siginfo_t
));
10089 ret
= host_to_target_signal(ret
);
10094 case TARGET_NR_rt_sigqueueinfo
:
10098 p
= lock_user(VERIFY_READ
, arg3
, sizeof(target_siginfo_t
), 1);
10100 return -TARGET_EFAULT
;
10102 target_to_host_siginfo(&uinfo
, p
);
10103 unlock_user(p
, arg3
, 0);
10104 ret
= get_errno(sys_rt_sigqueueinfo(arg1
, target_to_host_signal(arg2
), &uinfo
));
10107 case TARGET_NR_rt_tgsigqueueinfo
:
10111 p
= lock_user(VERIFY_READ
, arg4
, sizeof(target_siginfo_t
), 1);
10113 return -TARGET_EFAULT
;
10115 target_to_host_siginfo(&uinfo
, p
);
10116 unlock_user(p
, arg4
, 0);
10117 ret
= get_errno(sys_rt_tgsigqueueinfo(arg1
, arg2
, target_to_host_signal(arg3
), &uinfo
));
10120 #ifdef TARGET_NR_sigreturn
10121 case TARGET_NR_sigreturn
:
10122 if (block_signals()) {
10123 return -QEMU_ERESTARTSYS
;
10125 return do_sigreturn(cpu_env
);
10127 case TARGET_NR_rt_sigreturn
:
10128 if (block_signals()) {
10129 return -QEMU_ERESTARTSYS
;
10131 return do_rt_sigreturn(cpu_env
);
10132 case TARGET_NR_sethostname
:
10133 if (!(p
= lock_user_string(arg1
)))
10134 return -TARGET_EFAULT
;
10135 ret
= get_errno(sethostname(p
, arg2
));
10136 unlock_user(p
, arg1
, 0);
10138 #ifdef TARGET_NR_setrlimit
10139 case TARGET_NR_setrlimit
:
10141 int resource
= target_to_host_resource(arg1
);
10142 struct target_rlimit
*target_rlim
;
10143 struct rlimit rlim
;
10144 if (!lock_user_struct(VERIFY_READ
, target_rlim
, arg2
, 1))
10145 return -TARGET_EFAULT
;
10146 rlim
.rlim_cur
= target_to_host_rlim(target_rlim
->rlim_cur
);
10147 rlim
.rlim_max
= target_to_host_rlim(target_rlim
->rlim_max
);
10148 unlock_user_struct(target_rlim
, arg2
, 0);
10150 * If we just passed through resource limit settings for memory then
10151 * they would also apply to QEMU's own allocations, and QEMU will
10152 * crash or hang or die if its allocations fail. Ideally we would
10153 * track the guest allocations in QEMU and apply the limits ourselves.
10154 * For now, just tell the guest the call succeeded but don't actually
10157 if (resource
!= RLIMIT_AS
&&
10158 resource
!= RLIMIT_DATA
&&
10159 resource
!= RLIMIT_STACK
) {
10160 return get_errno(setrlimit(resource
, &rlim
));
10166 #ifdef TARGET_NR_getrlimit
10167 case TARGET_NR_getrlimit
:
10169 int resource
= target_to_host_resource(arg1
);
10170 struct target_rlimit
*target_rlim
;
10171 struct rlimit rlim
;
10173 ret
= get_errno(getrlimit(resource
, &rlim
));
10174 if (!is_error(ret
)) {
10175 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
10176 return -TARGET_EFAULT
;
10177 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
10178 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
10179 unlock_user_struct(target_rlim
, arg2
, 1);
10184 case TARGET_NR_getrusage
:
10186 struct rusage rusage
;
10187 ret
= get_errno(getrusage(arg1
, &rusage
));
10188 if (!is_error(ret
)) {
10189 ret
= host_to_target_rusage(arg2
, &rusage
);
10193 #if defined(TARGET_NR_gettimeofday)
10194 case TARGET_NR_gettimeofday
:
10197 struct timezone tz
;
10199 ret
= get_errno(gettimeofday(&tv
, &tz
));
10200 if (!is_error(ret
)) {
10201 if (arg1
&& copy_to_user_timeval(arg1
, &tv
)) {
10202 return -TARGET_EFAULT
;
10204 if (arg2
&& copy_to_user_timezone(arg2
, &tz
)) {
10205 return -TARGET_EFAULT
;
10211 #if defined(TARGET_NR_settimeofday)
10212 case TARGET_NR_settimeofday
:
10214 struct timeval tv
, *ptv
= NULL
;
10215 struct timezone tz
, *ptz
= NULL
;
10218 if (copy_from_user_timeval(&tv
, arg1
)) {
10219 return -TARGET_EFAULT
;
10225 if (copy_from_user_timezone(&tz
, arg2
)) {
10226 return -TARGET_EFAULT
;
10231 return get_errno(settimeofday(ptv
, ptz
));
10234 #if defined(TARGET_NR_select)
10235 case TARGET_NR_select
:
10236 #if defined(TARGET_WANT_NI_OLD_SELECT)
10237 /* some architectures used to have old_select here
10238 * but now ENOSYS it.
10240 ret
= -TARGET_ENOSYS
;
10241 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10242 ret
= do_old_select(arg1
);
10244 ret
= do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
10248 #ifdef TARGET_NR_pselect6
10249 case TARGET_NR_pselect6
:
10250 return do_pselect6(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
, false);
10252 #ifdef TARGET_NR_pselect6_time64
10253 case TARGET_NR_pselect6_time64
:
10254 return do_pselect6(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
, true);
10256 #ifdef TARGET_NR_symlink
10257 case TARGET_NR_symlink
:
10260 p
= lock_user_string(arg1
);
10261 p2
= lock_user_string(arg2
);
10263 ret
= -TARGET_EFAULT
;
10265 ret
= get_errno(symlink(p
, p2
));
10266 unlock_user(p2
, arg2
, 0);
10267 unlock_user(p
, arg1
, 0);
10271 #if defined(TARGET_NR_symlinkat)
10272 case TARGET_NR_symlinkat
:
10275 p
= lock_user_string(arg1
);
10276 p2
= lock_user_string(arg3
);
10278 ret
= -TARGET_EFAULT
;
10280 ret
= get_errno(symlinkat(p
, arg2
, p2
));
10281 unlock_user(p2
, arg3
, 0);
10282 unlock_user(p
, arg1
, 0);
10286 #ifdef TARGET_NR_readlink
10287 case TARGET_NR_readlink
:
10290 p
= lock_user_string(arg1
);
10291 p2
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
10292 ret
= get_errno(do_guest_readlink(p
, p2
, arg3
));
10293 unlock_user(p2
, arg2
, ret
);
10294 unlock_user(p
, arg1
, 0);
10298 #if defined(TARGET_NR_readlinkat)
10299 case TARGET_NR_readlinkat
:
10302 p
= lock_user_string(arg2
);
10303 p2
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
10305 ret
= -TARGET_EFAULT
;
10306 } else if (!arg4
) {
10307 /* Short circuit this for the magic exe check. */
10308 ret
= -TARGET_EINVAL
;
10309 } else if (is_proc_myself((const char *)p
, "exe")) {
10311 * Don't worry about sign mismatch as earlier mapping
10312 * logic would have thrown a bad address error.
10314 ret
= MIN(strlen(exec_path
), arg4
);
10315 /* We cannot NUL terminate the string. */
10316 memcpy(p2
, exec_path
, ret
);
10318 ret
= get_errno(readlinkat(arg1
, path(p
), p2
, arg4
));
10320 unlock_user(p2
, arg3
, ret
);
10321 unlock_user(p
, arg2
, 0);
10325 #ifdef TARGET_NR_swapon
10326 case TARGET_NR_swapon
:
10327 if (!(p
= lock_user_string(arg1
)))
10328 return -TARGET_EFAULT
;
10329 ret
= get_errno(swapon(p
, arg2
));
10330 unlock_user(p
, arg1
, 0);
10333 case TARGET_NR_reboot
:
10334 if (arg3
== LINUX_REBOOT_CMD_RESTART2
) {
10335 /* arg4 must be ignored in all other cases */
10336 p
= lock_user_string(arg4
);
10338 return -TARGET_EFAULT
;
10340 ret
= get_errno(reboot(arg1
, arg2
, arg3
, p
));
10341 unlock_user(p
, arg4
, 0);
10343 ret
= get_errno(reboot(arg1
, arg2
, arg3
, NULL
));
10346 #ifdef TARGET_NR_mmap
10347 case TARGET_NR_mmap
:
10348 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10349 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10350 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10351 || defined(TARGET_S390X)
10354 abi_ulong v1
, v2
, v3
, v4
, v5
, v6
;
10355 if (!(v
= lock_user(VERIFY_READ
, arg1
, 6 * sizeof(abi_ulong
), 1)))
10356 return -TARGET_EFAULT
;
10357 v1
= tswapal(v
[0]);
10358 v2
= tswapal(v
[1]);
10359 v3
= tswapal(v
[2]);
10360 v4
= tswapal(v
[3]);
10361 v5
= tswapal(v
[4]);
10362 v6
= tswapal(v
[5]);
10363 unlock_user(v
, arg1
, 0);
10364 return do_mmap(v1
, v2
, v3
, v4
, v5
, v6
);
10367 /* mmap pointers are always untagged */
10368 return do_mmap(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
10371 #ifdef TARGET_NR_mmap2
10372 case TARGET_NR_mmap2
:
10374 #define MMAP_SHIFT 12
10376 return do_mmap(arg1
, arg2
, arg3
, arg4
, arg5
,
10377 (off_t
)(abi_ulong
)arg6
<< MMAP_SHIFT
);
10379 case TARGET_NR_munmap
:
10380 arg1
= cpu_untagged_addr(cpu
, arg1
);
10381 return get_errno(target_munmap(arg1
, arg2
));
10382 case TARGET_NR_mprotect
:
10383 arg1
= cpu_untagged_addr(cpu
, arg1
);
10385 TaskState
*ts
= cpu
->opaque
;
10386 /* Special hack to detect libc making the stack executable. */
10387 if ((arg3
& PROT_GROWSDOWN
)
10388 && arg1
>= ts
->info
->stack_limit
10389 && arg1
<= ts
->info
->start_stack
) {
10390 arg3
&= ~PROT_GROWSDOWN
;
10391 arg2
= arg2
+ arg1
- ts
->info
->stack_limit
;
10392 arg1
= ts
->info
->stack_limit
;
10395 return get_errno(target_mprotect(arg1
, arg2
, arg3
));
10396 #ifdef TARGET_NR_mremap
10397 case TARGET_NR_mremap
:
10398 arg1
= cpu_untagged_addr(cpu
, arg1
);
10399 /* mremap new_addr (arg5) is always untagged */
10400 return get_errno(target_mremap(arg1
, arg2
, arg3
, arg4
, arg5
));
10402 /* ??? msync/mlock/munlock are broken for softmmu. */
10403 #ifdef TARGET_NR_msync
10404 case TARGET_NR_msync
:
10405 return get_errno(msync(g2h(cpu
, arg1
), arg2
,
10406 target_to_host_msync_arg(arg3
)));
10408 #ifdef TARGET_NR_mlock
10409 case TARGET_NR_mlock
:
10410 return get_errno(mlock(g2h(cpu
, arg1
), arg2
));
10412 #ifdef TARGET_NR_munlock
10413 case TARGET_NR_munlock
:
10414 return get_errno(munlock(g2h(cpu
, arg1
), arg2
));
10416 #ifdef TARGET_NR_mlockall
10417 case TARGET_NR_mlockall
:
10418 return get_errno(mlockall(target_to_host_mlockall_arg(arg1
)));
10420 #ifdef TARGET_NR_munlockall
10421 case TARGET_NR_munlockall
:
10422 return get_errno(munlockall());
10424 #ifdef TARGET_NR_truncate
10425 case TARGET_NR_truncate
:
10426 if (!(p
= lock_user_string(arg1
)))
10427 return -TARGET_EFAULT
;
10428 ret
= get_errno(truncate(p
, arg2
));
10429 unlock_user(p
, arg1
, 0);
10432 #ifdef TARGET_NR_ftruncate
10433 case TARGET_NR_ftruncate
:
10434 return get_errno(ftruncate(arg1
, arg2
));
10436 case TARGET_NR_fchmod
:
10437 return get_errno(fchmod(arg1
, arg2
));
10438 #if defined(TARGET_NR_fchmodat)
10439 case TARGET_NR_fchmodat
:
10440 if (!(p
= lock_user_string(arg2
)))
10441 return -TARGET_EFAULT
;
10442 ret
= get_errno(fchmodat(arg1
, p
, arg3
, 0));
10443 unlock_user(p
, arg2
, 0);
10446 case TARGET_NR_getpriority
:
10447 /* Note that negative values are valid for getpriority, so we must
10448 differentiate based on errno settings. */
10450 ret
= getpriority(arg1
, arg2
);
10451 if (ret
== -1 && errno
!= 0) {
10452 return -host_to_target_errno(errno
);
10454 #ifdef TARGET_ALPHA
10455 /* Return value is the unbiased priority. Signal no error. */
10456 cpu_env
->ir
[IR_V0
] = 0;
10458 /* Return value is a biased priority to avoid negative numbers. */
10462 case TARGET_NR_setpriority
:
10463 return get_errno(setpriority(arg1
, arg2
, arg3
));
10464 #ifdef TARGET_NR_statfs
10465 case TARGET_NR_statfs
:
10466 if (!(p
= lock_user_string(arg1
))) {
10467 return -TARGET_EFAULT
;
10469 ret
= get_errno(statfs(path(p
), &stfs
));
10470 unlock_user(p
, arg1
, 0);
10472 if (!is_error(ret
)) {
10473 struct target_statfs
*target_stfs
;
10475 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg2
, 0))
10476 return -TARGET_EFAULT
;
10477 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
10478 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
10479 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
10480 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
10481 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
10482 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
10483 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
10484 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
10485 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
10486 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
10487 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
10488 #ifdef _STATFS_F_FLAGS
10489 __put_user(stfs
.f_flags
, &target_stfs
->f_flags
);
10491 __put_user(0, &target_stfs
->f_flags
);
10493 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
10494 unlock_user_struct(target_stfs
, arg2
, 1);
10498 #ifdef TARGET_NR_fstatfs
10499 case TARGET_NR_fstatfs
:
10500 ret
= get_errno(fstatfs(arg1
, &stfs
));
10501 goto convert_statfs
;
10503 #ifdef TARGET_NR_statfs64
10504 case TARGET_NR_statfs64
:
10505 if (!(p
= lock_user_string(arg1
))) {
10506 return -TARGET_EFAULT
;
10508 ret
= get_errno(statfs(path(p
), &stfs
));
10509 unlock_user(p
, arg1
, 0);
10511 if (!is_error(ret
)) {
10512 struct target_statfs64
*target_stfs
;
10514 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg3
, 0))
10515 return -TARGET_EFAULT
;
10516 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
10517 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
10518 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
10519 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
10520 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
10521 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
10522 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
10523 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
10524 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
10525 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
10526 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
10527 #ifdef _STATFS_F_FLAGS
10528 __put_user(stfs
.f_flags
, &target_stfs
->f_flags
);
10530 __put_user(0, &target_stfs
->f_flags
);
10532 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
10533 unlock_user_struct(target_stfs
, arg3
, 1);
10536 case TARGET_NR_fstatfs64
:
10537 ret
= get_errno(fstatfs(arg1
, &stfs
));
10538 goto convert_statfs64
;
10540 #ifdef TARGET_NR_socketcall
10541 case TARGET_NR_socketcall
:
10542 return do_socketcall(arg1
, arg2
);
10544 #ifdef TARGET_NR_accept
10545 case TARGET_NR_accept
:
10546 return do_accept4(arg1
, arg2
, arg3
, 0);
10548 #ifdef TARGET_NR_accept4
10549 case TARGET_NR_accept4
:
10550 return do_accept4(arg1
, arg2
, arg3
, arg4
);
10552 #ifdef TARGET_NR_bind
10553 case TARGET_NR_bind
:
10554 return do_bind(arg1
, arg2
, arg3
);
10556 #ifdef TARGET_NR_connect
10557 case TARGET_NR_connect
:
10558 return do_connect(arg1
, arg2
, arg3
);
10560 #ifdef TARGET_NR_getpeername
10561 case TARGET_NR_getpeername
:
10562 return do_getpeername(arg1
, arg2
, arg3
);
10564 #ifdef TARGET_NR_getsockname
10565 case TARGET_NR_getsockname
:
10566 return do_getsockname(arg1
, arg2
, arg3
);
10568 #ifdef TARGET_NR_getsockopt
10569 case TARGET_NR_getsockopt
:
10570 return do_getsockopt(arg1
, arg2
, arg3
, arg4
, arg5
);
10572 #ifdef TARGET_NR_listen
10573 case TARGET_NR_listen
:
10574 return get_errno(listen(arg1
, arg2
));
10576 #ifdef TARGET_NR_recv
10577 case TARGET_NR_recv
:
10578 return do_recvfrom(arg1
, arg2
, arg3
, arg4
, 0, 0);
10580 #ifdef TARGET_NR_recvfrom
10581 case TARGET_NR_recvfrom
:
10582 return do_recvfrom(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
10584 #ifdef TARGET_NR_recvmsg
10585 case TARGET_NR_recvmsg
:
10586 return do_sendrecvmsg(arg1
, arg2
, arg3
, 0);
10588 #ifdef TARGET_NR_send
10589 case TARGET_NR_send
:
10590 return do_sendto(arg1
, arg2
, arg3
, arg4
, 0, 0);
10592 #ifdef TARGET_NR_sendmsg
10593 case TARGET_NR_sendmsg
:
10594 return do_sendrecvmsg(arg1
, arg2
, arg3
, 1);
10596 #ifdef TARGET_NR_sendmmsg
10597 case TARGET_NR_sendmmsg
:
10598 return do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 1);
10600 #ifdef TARGET_NR_recvmmsg
10601 case TARGET_NR_recvmmsg
:
10602 return do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 0);
10604 #ifdef TARGET_NR_sendto
10605 case TARGET_NR_sendto
:
10606 return do_sendto(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
10608 #ifdef TARGET_NR_shutdown
10609 case TARGET_NR_shutdown
:
10610 return get_errno(shutdown(arg1
, arg2
));
10612 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10613 case TARGET_NR_getrandom
:
10614 p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
10616 return -TARGET_EFAULT
;
10618 ret
= get_errno(getrandom(p
, arg2
, arg3
));
10619 unlock_user(p
, arg1
, ret
);
10622 #ifdef TARGET_NR_socket
10623 case TARGET_NR_socket
:
10624 return do_socket(arg1
, arg2
, arg3
);
10626 #ifdef TARGET_NR_socketpair
10627 case TARGET_NR_socketpair
:
10628 return do_socketpair(arg1
, arg2
, arg3
, arg4
);
10630 #ifdef TARGET_NR_setsockopt
10631 case TARGET_NR_setsockopt
:
10632 return do_setsockopt(arg1
, arg2
, arg3
, arg4
, (socklen_t
) arg5
);
10634 #if defined(TARGET_NR_syslog)
10635 case TARGET_NR_syslog
:
10640 case TARGET_SYSLOG_ACTION_CLOSE
: /* Close log */
10641 case TARGET_SYSLOG_ACTION_OPEN
: /* Open log */
10642 case TARGET_SYSLOG_ACTION_CLEAR
: /* Clear ring buffer */
10643 case TARGET_SYSLOG_ACTION_CONSOLE_OFF
: /* Disable logging */
10644 case TARGET_SYSLOG_ACTION_CONSOLE_ON
: /* Enable logging */
10645 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL
: /* Set messages level */
10646 case TARGET_SYSLOG_ACTION_SIZE_UNREAD
: /* Number of chars */
10647 case TARGET_SYSLOG_ACTION_SIZE_BUFFER
: /* Size of the buffer */
10648 return get_errno(sys_syslog((int)arg1
, NULL
, (int)arg3
));
10649 case TARGET_SYSLOG_ACTION_READ
: /* Read from log */
10650 case TARGET_SYSLOG_ACTION_READ_CLEAR
: /* Read/clear msgs */
10651 case TARGET_SYSLOG_ACTION_READ_ALL
: /* Read last messages */
10654 return -TARGET_EINVAL
;
10659 p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
10661 return -TARGET_EFAULT
;
10663 ret
= get_errno(sys_syslog((int)arg1
, p
, (int)arg3
));
10664 unlock_user(p
, arg2
, arg3
);
10668 return -TARGET_EINVAL
;
10673 case TARGET_NR_setitimer
:
10675 struct itimerval value
, ovalue
, *pvalue
;
10679 if (copy_from_user_timeval(&pvalue
->it_interval
, arg2
)
10680 || copy_from_user_timeval(&pvalue
->it_value
,
10681 arg2
+ sizeof(struct target_timeval
)))
10682 return -TARGET_EFAULT
;
10686 ret
= get_errno(setitimer(arg1
, pvalue
, &ovalue
));
10687 if (!is_error(ret
) && arg3
) {
10688 if (copy_to_user_timeval(arg3
,
10689 &ovalue
.it_interval
)
10690 || copy_to_user_timeval(arg3
+ sizeof(struct target_timeval
),
10692 return -TARGET_EFAULT
;
10696 case TARGET_NR_getitimer
:
10698 struct itimerval value
;
10700 ret
= get_errno(getitimer(arg1
, &value
));
10701 if (!is_error(ret
) && arg2
) {
10702 if (copy_to_user_timeval(arg2
,
10703 &value
.it_interval
)
10704 || copy_to_user_timeval(arg2
+ sizeof(struct target_timeval
),
10706 return -TARGET_EFAULT
;
10710 #ifdef TARGET_NR_stat
10711 case TARGET_NR_stat
:
10712 if (!(p
= lock_user_string(arg1
))) {
10713 return -TARGET_EFAULT
;
10715 ret
= get_errno(stat(path(p
), &st
));
10716 unlock_user(p
, arg1
, 0);
10719 #ifdef TARGET_NR_lstat
10720 case TARGET_NR_lstat
:
10721 if (!(p
= lock_user_string(arg1
))) {
10722 return -TARGET_EFAULT
;
10724 ret
= get_errno(lstat(path(p
), &st
));
10725 unlock_user(p
, arg1
, 0);
10728 #ifdef TARGET_NR_fstat
10729 case TARGET_NR_fstat
:
10731 ret
= get_errno(fstat(arg1
, &st
));
10732 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10735 if (!is_error(ret
)) {
10736 struct target_stat
*target_st
;
10738 if (!lock_user_struct(VERIFY_WRITE
, target_st
, arg2
, 0))
10739 return -TARGET_EFAULT
;
10740 memset(target_st
, 0, sizeof(*target_st
));
10741 __put_user(st
.st_dev
, &target_st
->st_dev
);
10742 __put_user(st
.st_ino
, &target_st
->st_ino
);
10743 __put_user(st
.st_mode
, &target_st
->st_mode
);
10744 __put_user(st
.st_uid
, &target_st
->st_uid
);
10745 __put_user(st
.st_gid
, &target_st
->st_gid
);
10746 __put_user(st
.st_nlink
, &target_st
->st_nlink
);
10747 __put_user(st
.st_rdev
, &target_st
->st_rdev
);
10748 __put_user(st
.st_size
, &target_st
->st_size
);
10749 __put_user(st
.st_blksize
, &target_st
->st_blksize
);
10750 __put_user(st
.st_blocks
, &target_st
->st_blocks
);
10751 __put_user(st
.st_atime
, &target_st
->target_st_atime
);
10752 __put_user(st
.st_mtime
, &target_st
->target_st_mtime
);
10753 __put_user(st
.st_ctime
, &target_st
->target_st_ctime
);
10754 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10755 __put_user(st
.st_atim
.tv_nsec
,
10756 &target_st
->target_st_atime_nsec
);
10757 __put_user(st
.st_mtim
.tv_nsec
,
10758 &target_st
->target_st_mtime_nsec
);
10759 __put_user(st
.st_ctim
.tv_nsec
,
10760 &target_st
->target_st_ctime_nsec
);
10762 unlock_user_struct(target_st
, arg2
, 1);
10767 case TARGET_NR_vhangup
:
10768 return get_errno(vhangup());
10769 #ifdef TARGET_NR_syscall
10770 case TARGET_NR_syscall
:
10771 return do_syscall(cpu_env
, arg1
& 0xffff, arg2
, arg3
, arg4
, arg5
,
10772 arg6
, arg7
, arg8
, 0);
10774 #if defined(TARGET_NR_wait4)
10775 case TARGET_NR_wait4
:
10778 abi_long status_ptr
= arg2
;
10779 struct rusage rusage
, *rusage_ptr
;
10780 abi_ulong target_rusage
= arg4
;
10781 abi_long rusage_err
;
10783 rusage_ptr
= &rusage
;
10786 ret
= get_errno(safe_wait4(arg1
, &status
, arg3
, rusage_ptr
));
10787 if (!is_error(ret
)) {
10788 if (status_ptr
&& ret
) {
10789 status
= host_to_target_waitstatus(status
);
10790 if (put_user_s32(status
, status_ptr
))
10791 return -TARGET_EFAULT
;
10793 if (target_rusage
) {
10794 rusage_err
= host_to_target_rusage(target_rusage
, &rusage
);
10803 #ifdef TARGET_NR_swapoff
10804 case TARGET_NR_swapoff
:
10805 if (!(p
= lock_user_string(arg1
)))
10806 return -TARGET_EFAULT
;
10807 ret
= get_errno(swapoff(p
));
10808 unlock_user(p
, arg1
, 0);
10811 case TARGET_NR_sysinfo
:
10813 struct target_sysinfo
*target_value
;
10814 struct sysinfo value
;
10815 ret
= get_errno(sysinfo(&value
));
10816 if (!is_error(ret
) && arg1
)
10818 if (!lock_user_struct(VERIFY_WRITE
, target_value
, arg1
, 0))
10819 return -TARGET_EFAULT
;
10820 __put_user(value
.uptime
, &target_value
->uptime
);
10821 __put_user(value
.loads
[0], &target_value
->loads
[0]);
10822 __put_user(value
.loads
[1], &target_value
->loads
[1]);
10823 __put_user(value
.loads
[2], &target_value
->loads
[2]);
10824 __put_user(value
.totalram
, &target_value
->totalram
);
10825 __put_user(value
.freeram
, &target_value
->freeram
);
10826 __put_user(value
.sharedram
, &target_value
->sharedram
);
10827 __put_user(value
.bufferram
, &target_value
->bufferram
);
10828 __put_user(value
.totalswap
, &target_value
->totalswap
);
10829 __put_user(value
.freeswap
, &target_value
->freeswap
);
10830 __put_user(value
.procs
, &target_value
->procs
);
10831 __put_user(value
.totalhigh
, &target_value
->totalhigh
);
10832 __put_user(value
.freehigh
, &target_value
->freehigh
);
10833 __put_user(value
.mem_unit
, &target_value
->mem_unit
);
10834 unlock_user_struct(target_value
, arg1
, 1);
10838 #ifdef TARGET_NR_ipc
10839 case TARGET_NR_ipc
:
10840 return do_ipc(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
10842 #ifdef TARGET_NR_semget
10843 case TARGET_NR_semget
:
10844 return get_errno(semget(arg1
, arg2
, arg3
));
10846 #ifdef TARGET_NR_semop
10847 case TARGET_NR_semop
:
10848 return do_semtimedop(arg1
, arg2
, arg3
, 0, false);
10850 #ifdef TARGET_NR_semtimedop
10851 case TARGET_NR_semtimedop
:
10852 return do_semtimedop(arg1
, arg2
, arg3
, arg4
, false);
10854 #ifdef TARGET_NR_semtimedop_time64
10855 case TARGET_NR_semtimedop_time64
:
10856 return do_semtimedop(arg1
, arg2
, arg3
, arg4
, true);
10858 #ifdef TARGET_NR_semctl
10859 case TARGET_NR_semctl
:
10860 return do_semctl(arg1
, arg2
, arg3
, arg4
);
10862 #ifdef TARGET_NR_msgctl
10863 case TARGET_NR_msgctl
:
10864 return do_msgctl(arg1
, arg2
, arg3
);
10866 #ifdef TARGET_NR_msgget
10867 case TARGET_NR_msgget
:
10868 return get_errno(msgget(arg1
, arg2
));
10870 #ifdef TARGET_NR_msgrcv
10871 case TARGET_NR_msgrcv
:
10872 return do_msgrcv(arg1
, arg2
, arg3
, arg4
, arg5
);
10874 #ifdef TARGET_NR_msgsnd
10875 case TARGET_NR_msgsnd
:
10876 return do_msgsnd(arg1
, arg2
, arg3
, arg4
);
10878 #ifdef TARGET_NR_shmget
10879 case TARGET_NR_shmget
:
10880 return get_errno(shmget(arg1
, arg2
, arg3
));
10882 #ifdef TARGET_NR_shmctl
10883 case TARGET_NR_shmctl
:
10884 return do_shmctl(arg1
, arg2
, arg3
);
10886 #ifdef TARGET_NR_shmat
10887 case TARGET_NR_shmat
:
10888 return target_shmat(cpu_env
, arg1
, arg2
, arg3
);
10890 #ifdef TARGET_NR_shmdt
10891 case TARGET_NR_shmdt
:
10892 return target_shmdt(arg1
);
10894 case TARGET_NR_fsync
:
10895 return get_errno(fsync(arg1
));
10896 case TARGET_NR_clone
:
10897 /* Linux manages to have three different orderings for its
10898 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
10899 * match the kernel's CONFIG_CLONE_* settings.
10900 * Microblaze is further special in that it uses a sixth
10901 * implicit argument to clone for the TLS pointer.
10903 #if defined(TARGET_MICROBLAZE)
10904 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg4
, arg6
, arg5
));
10905 #elif defined(TARGET_CLONE_BACKWARDS)
10906 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
));
10907 #elif defined(TARGET_CLONE_BACKWARDS2)
10908 ret
= get_errno(do_fork(cpu_env
, arg2
, arg1
, arg3
, arg5
, arg4
));
10910 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg5
, arg4
));
10913 #ifdef __NR_exit_group
10914 /* new thread calls */
10915 case TARGET_NR_exit_group
:
10916 preexit_cleanup(cpu_env
, arg1
);
10917 return get_errno(exit_group(arg1
));
10919 case TARGET_NR_setdomainname
:
10920 if (!(p
= lock_user_string(arg1
)))
10921 return -TARGET_EFAULT
;
10922 ret
= get_errno(setdomainname(p
, arg2
));
10923 unlock_user(p
, arg1
, 0);
10925 case TARGET_NR_uname
:
10926 /* no need to transcode because we use the linux syscall */
10928 struct new_utsname
* buf
;
10930 if (!lock_user_struct(VERIFY_WRITE
, buf
, arg1
, 0))
10931 return -TARGET_EFAULT
;
10932 ret
= get_errno(sys_uname(buf
));
10933 if (!is_error(ret
)) {
10934 /* Overwrite the native machine name with whatever is being
10936 g_strlcpy(buf
->machine
, cpu_to_uname_machine(cpu_env
),
10937 sizeof(buf
->machine
));
10938 /* Allow the user to override the reported release. */
10939 if (qemu_uname_release
&& *qemu_uname_release
) {
10940 g_strlcpy(buf
->release
, qemu_uname_release
,
10941 sizeof(buf
->release
));
10944 unlock_user_struct(buf
, arg1
, 1);
10948 case TARGET_NR_modify_ldt
:
10949 return do_modify_ldt(cpu_env
, arg1
, arg2
, arg3
);
10950 #if !defined(TARGET_X86_64)
10951 case TARGET_NR_vm86
:
10952 return do_vm86(cpu_env
, arg1
, arg2
);
10955 #if defined(TARGET_NR_adjtimex)
10956 case TARGET_NR_adjtimex
:
10958 struct timex host_buf
;
10960 if (target_to_host_timex(&host_buf
, arg1
) != 0) {
10961 return -TARGET_EFAULT
;
10963 ret
= get_errno(adjtimex(&host_buf
));
10964 if (!is_error(ret
)) {
10965 if (host_to_target_timex(arg1
, &host_buf
) != 0) {
10966 return -TARGET_EFAULT
;
10972 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10973 case TARGET_NR_clock_adjtime
:
10977 if (target_to_host_timex(&htx
, arg2
) != 0) {
10978 return -TARGET_EFAULT
;
10980 ret
= get_errno(clock_adjtime(arg1
, &htx
));
10981 if (!is_error(ret
) && host_to_target_timex(arg2
, &htx
)) {
10982 return -TARGET_EFAULT
;
10987 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
10988 case TARGET_NR_clock_adjtime64
:
10992 if (target_to_host_timex64(&htx
, arg2
) != 0) {
10993 return -TARGET_EFAULT
;
10995 ret
= get_errno(clock_adjtime(arg1
, &htx
));
10996 if (!is_error(ret
) && host_to_target_timex64(arg2
, &htx
)) {
10997 return -TARGET_EFAULT
;
11002 case TARGET_NR_getpgid
:
11003 return get_errno(getpgid(arg1
));
11004 case TARGET_NR_fchdir
:
11005 return get_errno(fchdir(arg1
));
11006 case TARGET_NR_personality
:
11007 return get_errno(personality(arg1
));
11008 #ifdef TARGET_NR__llseek /* Not on alpha */
11009 case TARGET_NR__llseek
:
11012 #if !defined(__NR_llseek)
11013 res
= lseek(arg1
, ((uint64_t)arg2
<< 32) | (abi_ulong
)arg3
, arg5
);
11015 ret
= get_errno(res
);
11020 ret
= get_errno(_llseek(arg1
, arg2
, arg3
, &res
, arg5
));
11022 if ((ret
== 0) && put_user_s64(res
, arg4
)) {
11023 return -TARGET_EFAULT
;
11028 #ifdef TARGET_NR_getdents
11029 case TARGET_NR_getdents
:
11030 return do_getdents(arg1
, arg2
, arg3
);
11031 #endif /* TARGET_NR_getdents */
11032 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11033 case TARGET_NR_getdents64
:
11034 return do_getdents64(arg1
, arg2
, arg3
);
11035 #endif /* TARGET_NR_getdents64 */
11036 #if defined(TARGET_NR__newselect)
11037 case TARGET_NR__newselect
:
11038 return do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
11040 #ifdef TARGET_NR_poll
11041 case TARGET_NR_poll
:
11042 return do_ppoll(arg1
, arg2
, arg3
, arg4
, arg5
, false, false);
11044 #ifdef TARGET_NR_ppoll
11045 case TARGET_NR_ppoll
:
11046 return do_ppoll(arg1
, arg2
, arg3
, arg4
, arg5
, true, false);
11048 #ifdef TARGET_NR_ppoll_time64
11049 case TARGET_NR_ppoll_time64
:
11050 return do_ppoll(arg1
, arg2
, arg3
, arg4
, arg5
, true, true);
11052 case TARGET_NR_flock
:
11053 /* NOTE: the flock constant seems to be the same for every
11055 return get_errno(safe_flock(arg1
, arg2
));
11056 case TARGET_NR_readv
:
11058 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
11060 ret
= get_errno(safe_readv(arg1
, vec
, arg3
));
11061 unlock_iovec(vec
, arg2
, arg3
, 1);
11063 ret
= -host_to_target_errno(errno
);
11067 case TARGET_NR_writev
:
11069 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
11071 ret
= get_errno(safe_writev(arg1
, vec
, arg3
));
11072 unlock_iovec(vec
, arg2
, arg3
, 0);
11074 ret
= -host_to_target_errno(errno
);
11078 #if defined(TARGET_NR_preadv)
11079 case TARGET_NR_preadv
:
11081 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
11083 unsigned long low
, high
;
11085 target_to_host_low_high(arg4
, arg5
, &low
, &high
);
11086 ret
= get_errno(safe_preadv(arg1
, vec
, arg3
, low
, high
));
11087 unlock_iovec(vec
, arg2
, arg3
, 1);
11089 ret
= -host_to_target_errno(errno
);
11094 #if defined(TARGET_NR_pwritev)
11095 case TARGET_NR_pwritev
:
11097 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
11099 unsigned long low
, high
;
11101 target_to_host_low_high(arg4
, arg5
, &low
, &high
);
11102 ret
= get_errno(safe_pwritev(arg1
, vec
, arg3
, low
, high
));
11103 unlock_iovec(vec
, arg2
, arg3
, 0);
11105 ret
= -host_to_target_errno(errno
);
11110 case TARGET_NR_getsid
:
11111 return get_errno(getsid(arg1
));
11112 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11113 case TARGET_NR_fdatasync
:
11114 return get_errno(fdatasync(arg1
));
11116 case TARGET_NR_sched_getaffinity
:
11118 unsigned int mask_size
;
11119 unsigned long *mask
;
11122 * sched_getaffinity needs multiples of ulong, so need to take
11123 * care of mismatches between target ulong and host ulong sizes.
11125 if (arg2
& (sizeof(abi_ulong
) - 1)) {
11126 return -TARGET_EINVAL
;
11128 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
11130 mask
= alloca(mask_size
);
11131 memset(mask
, 0, mask_size
);
11132 ret
= get_errno(sys_sched_getaffinity(arg1
, mask_size
, mask
));
11134 if (!is_error(ret
)) {
11136 /* More data returned than the caller's buffer will fit.
11137 * This only happens if sizeof(abi_long) < sizeof(long)
11138 * and the caller passed us a buffer holding an odd number
11139 * of abi_longs. If the host kernel is actually using the
11140 * extra 4 bytes then fail EINVAL; otherwise we can just
11141 * ignore them and only copy the interesting part.
11143 int numcpus
= sysconf(_SC_NPROCESSORS_CONF
);
11144 if (numcpus
> arg2
* 8) {
11145 return -TARGET_EINVAL
;
11150 if (host_to_target_cpu_mask(mask
, mask_size
, arg3
, ret
)) {
11151 return -TARGET_EFAULT
;
11156 case TARGET_NR_sched_setaffinity
:
11158 unsigned int mask_size
;
11159 unsigned long *mask
;
11162 * sched_setaffinity needs multiples of ulong, so need to take
11163 * care of mismatches between target ulong and host ulong sizes.
11165 if (arg2
& (sizeof(abi_ulong
) - 1)) {
11166 return -TARGET_EINVAL
;
11168 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
11169 mask
= alloca(mask_size
);
11171 ret
= target_to_host_cpu_mask(mask
, mask_size
, arg3
, arg2
);
11176 return get_errno(sys_sched_setaffinity(arg1
, mask_size
, mask
));
11178 case TARGET_NR_getcpu
:
11180 unsigned cpuid
, node
;
11181 ret
= get_errno(sys_getcpu(arg1
? &cpuid
: NULL
,
11182 arg2
? &node
: NULL
,
11184 if (is_error(ret
)) {
11187 if (arg1
&& put_user_u32(cpuid
, arg1
)) {
11188 return -TARGET_EFAULT
;
11190 if (arg2
&& put_user_u32(node
, arg2
)) {
11191 return -TARGET_EFAULT
;
11195 case TARGET_NR_sched_setparam
:
11197 struct target_sched_param
*target_schp
;
11198 struct sched_param schp
;
11201 return -TARGET_EINVAL
;
11203 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg2
, 1)) {
11204 return -TARGET_EFAULT
;
11206 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
11207 unlock_user_struct(target_schp
, arg2
, 0);
11208 return get_errno(sys_sched_setparam(arg1
, &schp
));
11210 case TARGET_NR_sched_getparam
:
11212 struct target_sched_param
*target_schp
;
11213 struct sched_param schp
;
11216 return -TARGET_EINVAL
;
11218 ret
= get_errno(sys_sched_getparam(arg1
, &schp
));
11219 if (!is_error(ret
)) {
11220 if (!lock_user_struct(VERIFY_WRITE
, target_schp
, arg2
, 0)) {
11221 return -TARGET_EFAULT
;
11223 target_schp
->sched_priority
= tswap32(schp
.sched_priority
);
11224 unlock_user_struct(target_schp
, arg2
, 1);
11228 case TARGET_NR_sched_setscheduler
:
11230 struct target_sched_param
*target_schp
;
11231 struct sched_param schp
;
11233 return -TARGET_EINVAL
;
11235 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg3
, 1)) {
11236 return -TARGET_EFAULT
;
11238 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
11239 unlock_user_struct(target_schp
, arg3
, 0);
11240 return get_errno(sys_sched_setscheduler(arg1
, arg2
, &schp
));
11242 case TARGET_NR_sched_getscheduler
:
11243 return get_errno(sys_sched_getscheduler(arg1
));
11244 case TARGET_NR_sched_getattr
:
11246 struct target_sched_attr
*target_scha
;
11247 struct sched_attr scha
;
11249 return -TARGET_EINVAL
;
11251 if (arg3
> sizeof(scha
)) {
11252 arg3
= sizeof(scha
);
11254 ret
= get_errno(sys_sched_getattr(arg1
, &scha
, arg3
, arg4
));
11255 if (!is_error(ret
)) {
11256 target_scha
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
11257 if (!target_scha
) {
11258 return -TARGET_EFAULT
;
11260 target_scha
->size
= tswap32(scha
.size
);
11261 target_scha
->sched_policy
= tswap32(scha
.sched_policy
);
11262 target_scha
->sched_flags
= tswap64(scha
.sched_flags
);
11263 target_scha
->sched_nice
= tswap32(scha
.sched_nice
);
11264 target_scha
->sched_priority
= tswap32(scha
.sched_priority
);
11265 target_scha
->sched_runtime
= tswap64(scha
.sched_runtime
);
11266 target_scha
->sched_deadline
= tswap64(scha
.sched_deadline
);
11267 target_scha
->sched_period
= tswap64(scha
.sched_period
);
11268 if (scha
.size
> offsetof(struct sched_attr
, sched_util_min
)) {
11269 target_scha
->sched_util_min
= tswap32(scha
.sched_util_min
);
11270 target_scha
->sched_util_max
= tswap32(scha
.sched_util_max
);
11272 unlock_user(target_scha
, arg2
, arg3
);
11276 case TARGET_NR_sched_setattr
:
11278 struct target_sched_attr
*target_scha
;
11279 struct sched_attr scha
;
11283 return -TARGET_EINVAL
;
11285 if (get_user_u32(size
, arg2
)) {
11286 return -TARGET_EFAULT
;
11289 size
= offsetof(struct target_sched_attr
, sched_util_min
);
11291 if (size
< offsetof(struct target_sched_attr
, sched_util_min
)) {
11292 if (put_user_u32(sizeof(struct target_sched_attr
), arg2
)) {
11293 return -TARGET_EFAULT
;
11295 return -TARGET_E2BIG
;
11298 zeroed
= check_zeroed_user(arg2
, sizeof(struct target_sched_attr
), size
);
11301 } else if (zeroed
== 0) {
11302 if (put_user_u32(sizeof(struct target_sched_attr
), arg2
)) {
11303 return -TARGET_EFAULT
;
11305 return -TARGET_E2BIG
;
11307 if (size
> sizeof(struct target_sched_attr
)) {
11308 size
= sizeof(struct target_sched_attr
);
11311 target_scha
= lock_user(VERIFY_READ
, arg2
, size
, 1);
11312 if (!target_scha
) {
11313 return -TARGET_EFAULT
;
11316 scha
.sched_policy
= tswap32(target_scha
->sched_policy
);
11317 scha
.sched_flags
= tswap64(target_scha
->sched_flags
);
11318 scha
.sched_nice
= tswap32(target_scha
->sched_nice
);
11319 scha
.sched_priority
= tswap32(target_scha
->sched_priority
);
11320 scha
.sched_runtime
= tswap64(target_scha
->sched_runtime
);
11321 scha
.sched_deadline
= tswap64(target_scha
->sched_deadline
);
11322 scha
.sched_period
= tswap64(target_scha
->sched_period
);
11323 if (size
> offsetof(struct target_sched_attr
, sched_util_min
)) {
11324 scha
.sched_util_min
= tswap32(target_scha
->sched_util_min
);
11325 scha
.sched_util_max
= tswap32(target_scha
->sched_util_max
);
11327 unlock_user(target_scha
, arg2
, 0);
11328 return get_errno(sys_sched_setattr(arg1
, &scha
, arg3
));
11330 case TARGET_NR_sched_yield
:
11331 return get_errno(sched_yield());
11332 case TARGET_NR_sched_get_priority_max
:
11333 return get_errno(sched_get_priority_max(arg1
));
11334 case TARGET_NR_sched_get_priority_min
:
11335 return get_errno(sched_get_priority_min(arg1
));
11336 #ifdef TARGET_NR_sched_rr_get_interval
11337 case TARGET_NR_sched_rr_get_interval
:
11339 struct timespec ts
;
11340 ret
= get_errno(sched_rr_get_interval(arg1
, &ts
));
11341 if (!is_error(ret
)) {
11342 ret
= host_to_target_timespec(arg2
, &ts
);
11347 #ifdef TARGET_NR_sched_rr_get_interval_time64
11348 case TARGET_NR_sched_rr_get_interval_time64
:
11350 struct timespec ts
;
11351 ret
= get_errno(sched_rr_get_interval(arg1
, &ts
));
11352 if (!is_error(ret
)) {
11353 ret
= host_to_target_timespec64(arg2
, &ts
);
11358 #if defined(TARGET_NR_nanosleep)
11359 case TARGET_NR_nanosleep
:
11361 struct timespec req
, rem
;
11362 target_to_host_timespec(&req
, arg1
);
11363 ret
= get_errno(safe_nanosleep(&req
, &rem
));
11364 if (is_error(ret
) && arg2
) {
11365 host_to_target_timespec(arg2
, &rem
);
11370 case TARGET_NR_prctl
:
11371 return do_prctl(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
);
11373 #ifdef TARGET_NR_arch_prctl
11374 case TARGET_NR_arch_prctl
:
11375 return do_arch_prctl(cpu_env
, arg1
, arg2
);
11377 #ifdef TARGET_NR_pread64
11378 case TARGET_NR_pread64
:
11379 if (regpairs_aligned(cpu_env
, num
)) {
11383 if (arg2
== 0 && arg3
== 0) {
11384 /* Special-case NULL buffer and zero length, which should succeed */
11387 p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
11389 return -TARGET_EFAULT
;
11392 ret
= get_errno(pread64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
11393 unlock_user(p
, arg2
, ret
);
11395 case TARGET_NR_pwrite64
:
11396 if (regpairs_aligned(cpu_env
, num
)) {
11400 if (arg2
== 0 && arg3
== 0) {
11401 /* Special-case NULL buffer and zero length, which should succeed */
11404 p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1);
11406 return -TARGET_EFAULT
;
11409 ret
= get_errno(pwrite64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
11410 unlock_user(p
, arg2
, 0);
11413 case TARGET_NR_getcwd
:
11414 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0)))
11415 return -TARGET_EFAULT
;
11416 ret
= get_errno(sys_getcwd1(p
, arg2
));
11417 unlock_user(p
, arg1
, ret
);
11419 case TARGET_NR_capget
:
11420 case TARGET_NR_capset
:
11422 struct target_user_cap_header
*target_header
;
11423 struct target_user_cap_data
*target_data
= NULL
;
11424 struct __user_cap_header_struct header
;
11425 struct __user_cap_data_struct data
[2];
11426 struct __user_cap_data_struct
*dataptr
= NULL
;
11427 int i
, target_datalen
;
11428 int data_items
= 1;
11430 if (!lock_user_struct(VERIFY_WRITE
, target_header
, arg1
, 1)) {
11431 return -TARGET_EFAULT
;
11433 header
.version
= tswap32(target_header
->version
);
11434 header
.pid
= tswap32(target_header
->pid
);
11436 if (header
.version
!= _LINUX_CAPABILITY_VERSION
) {
11437 /* Version 2 and up takes pointer to two user_data structs */
11441 target_datalen
= sizeof(*target_data
) * data_items
;
11444 if (num
== TARGET_NR_capget
) {
11445 target_data
= lock_user(VERIFY_WRITE
, arg2
, target_datalen
, 0);
11447 target_data
= lock_user(VERIFY_READ
, arg2
, target_datalen
, 1);
11449 if (!target_data
) {
11450 unlock_user_struct(target_header
, arg1
, 0);
11451 return -TARGET_EFAULT
;
11454 if (num
== TARGET_NR_capset
) {
11455 for (i
= 0; i
< data_items
; i
++) {
11456 data
[i
].effective
= tswap32(target_data
[i
].effective
);
11457 data
[i
].permitted
= tswap32(target_data
[i
].permitted
);
11458 data
[i
].inheritable
= tswap32(target_data
[i
].inheritable
);
11465 if (num
== TARGET_NR_capget
) {
11466 ret
= get_errno(capget(&header
, dataptr
));
11468 ret
= get_errno(capset(&header
, dataptr
));
11471 /* The kernel always updates version for both capget and capset */
11472 target_header
->version
= tswap32(header
.version
);
11473 unlock_user_struct(target_header
, arg1
, 1);
11476 if (num
== TARGET_NR_capget
) {
11477 for (i
= 0; i
< data_items
; i
++) {
11478 target_data
[i
].effective
= tswap32(data
[i
].effective
);
11479 target_data
[i
].permitted
= tswap32(data
[i
].permitted
);
11480 target_data
[i
].inheritable
= tswap32(data
[i
].inheritable
);
11482 unlock_user(target_data
, arg2
, target_datalen
);
11484 unlock_user(target_data
, arg2
, 0);
11489 case TARGET_NR_sigaltstack
:
11490 return do_sigaltstack(arg1
, arg2
, cpu_env
);
11492 #ifdef CONFIG_SENDFILE
11493 #ifdef TARGET_NR_sendfile
11494 case TARGET_NR_sendfile
:
11496 off_t
*offp
= NULL
;
11499 ret
= get_user_sal(off
, arg3
);
11500 if (is_error(ret
)) {
11505 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
11506 if (!is_error(ret
) && arg3
) {
11507 abi_long ret2
= put_user_sal(off
, arg3
);
11508 if (is_error(ret2
)) {
11515 #ifdef TARGET_NR_sendfile64
11516 case TARGET_NR_sendfile64
:
11518 off_t
*offp
= NULL
;
11521 ret
= get_user_s64(off
, arg3
);
11522 if (is_error(ret
)) {
11527 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
11528 if (!is_error(ret
) && arg3
) {
11529 abi_long ret2
= put_user_s64(off
, arg3
);
11530 if (is_error(ret2
)) {
11538 #ifdef TARGET_NR_vfork
11539 case TARGET_NR_vfork
:
11540 return get_errno(do_fork(cpu_env
,
11541 CLONE_VFORK
| CLONE_VM
| TARGET_SIGCHLD
,
11544 #ifdef TARGET_NR_ugetrlimit
11545 case TARGET_NR_ugetrlimit
:
11547 struct rlimit rlim
;
11548 int resource
= target_to_host_resource(arg1
);
11549 ret
= get_errno(getrlimit(resource
, &rlim
));
11550 if (!is_error(ret
)) {
11551 struct target_rlimit
*target_rlim
;
11552 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
11553 return -TARGET_EFAULT
;
11554 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
11555 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
11556 unlock_user_struct(target_rlim
, arg2
, 1);
11561 #ifdef TARGET_NR_truncate64
11562 case TARGET_NR_truncate64
:
11563 if (!(p
= lock_user_string(arg1
)))
11564 return -TARGET_EFAULT
;
11565 ret
= target_truncate64(cpu_env
, p
, arg2
, arg3
, arg4
);
11566 unlock_user(p
, arg1
, 0);
11569 #ifdef TARGET_NR_ftruncate64
11570 case TARGET_NR_ftruncate64
:
11571 return target_ftruncate64(cpu_env
, arg1
, arg2
, arg3
, arg4
);
11573 #ifdef TARGET_NR_stat64
11574 case TARGET_NR_stat64
:
11575 if (!(p
= lock_user_string(arg1
))) {
11576 return -TARGET_EFAULT
;
11578 ret
= get_errno(stat(path(p
), &st
));
11579 unlock_user(p
, arg1
, 0);
11580 if (!is_error(ret
))
11581 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
11584 #ifdef TARGET_NR_lstat64
11585 case TARGET_NR_lstat64
:
11586 if (!(p
= lock_user_string(arg1
))) {
11587 return -TARGET_EFAULT
;
11589 ret
= get_errno(lstat(path(p
), &st
));
11590 unlock_user(p
, arg1
, 0);
11591 if (!is_error(ret
))
11592 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
11595 #ifdef TARGET_NR_fstat64
11596 case TARGET_NR_fstat64
:
11597 ret
= get_errno(fstat(arg1
, &st
));
11598 if (!is_error(ret
))
11599 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
11602 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11603 #ifdef TARGET_NR_fstatat64
11604 case TARGET_NR_fstatat64
:
11606 #ifdef TARGET_NR_newfstatat
11607 case TARGET_NR_newfstatat
:
11609 if (!(p
= lock_user_string(arg2
))) {
11610 return -TARGET_EFAULT
;
11612 ret
= get_errno(fstatat(arg1
, path(p
), &st
, arg4
));
11613 unlock_user(p
, arg2
, 0);
11614 if (!is_error(ret
))
11615 ret
= host_to_target_stat64(cpu_env
, arg3
, &st
);
11618 #if defined(TARGET_NR_statx)
11619 case TARGET_NR_statx
:
11621 struct target_statx
*target_stx
;
11625 p
= lock_user_string(arg2
);
11627 return -TARGET_EFAULT
;
11629 #if defined(__NR_statx)
11632 * It is assumed that struct statx is architecture independent.
11634 struct target_statx host_stx
;
11637 ret
= get_errno(sys_statx(dirfd
, p
, flags
, mask
, &host_stx
));
11638 if (!is_error(ret
)) {
11639 if (host_to_target_statx(&host_stx
, arg5
) != 0) {
11640 unlock_user(p
, arg2
, 0);
11641 return -TARGET_EFAULT
;
11645 if (ret
!= -TARGET_ENOSYS
) {
11646 unlock_user(p
, arg2
, 0);
11651 ret
= get_errno(fstatat(dirfd
, path(p
), &st
, flags
));
11652 unlock_user(p
, arg2
, 0);
11654 if (!is_error(ret
)) {
11655 if (!lock_user_struct(VERIFY_WRITE
, target_stx
, arg5
, 0)) {
11656 return -TARGET_EFAULT
;
11658 memset(target_stx
, 0, sizeof(*target_stx
));
11659 __put_user(major(st
.st_dev
), &target_stx
->stx_dev_major
);
11660 __put_user(minor(st
.st_dev
), &target_stx
->stx_dev_minor
);
11661 __put_user(st
.st_ino
, &target_stx
->stx_ino
);
11662 __put_user(st
.st_mode
, &target_stx
->stx_mode
);
11663 __put_user(st
.st_uid
, &target_stx
->stx_uid
);
11664 __put_user(st
.st_gid
, &target_stx
->stx_gid
);
11665 __put_user(st
.st_nlink
, &target_stx
->stx_nlink
);
11666 __put_user(major(st
.st_rdev
), &target_stx
->stx_rdev_major
);
11667 __put_user(minor(st
.st_rdev
), &target_stx
->stx_rdev_minor
);
11668 __put_user(st
.st_size
, &target_stx
->stx_size
);
11669 __put_user(st
.st_blksize
, &target_stx
->stx_blksize
);
11670 __put_user(st
.st_blocks
, &target_stx
->stx_blocks
);
11671 __put_user(st
.st_atime
, &target_stx
->stx_atime
.tv_sec
);
11672 __put_user(st
.st_mtime
, &target_stx
->stx_mtime
.tv_sec
);
11673 __put_user(st
.st_ctime
, &target_stx
->stx_ctime
.tv_sec
);
11674 unlock_user_struct(target_stx
, arg5
, 1);
11679 #ifdef TARGET_NR_lchown
11680 case TARGET_NR_lchown
:
11681 if (!(p
= lock_user_string(arg1
)))
11682 return -TARGET_EFAULT
;
11683 ret
= get_errno(lchown(p
, low2highuid(arg2
), low2highgid(arg3
)));
11684 unlock_user(p
, arg1
, 0);
11687 #ifdef TARGET_NR_getuid
11688 case TARGET_NR_getuid
:
11689 return get_errno(high2lowuid(getuid()));
11691 #ifdef TARGET_NR_getgid
11692 case TARGET_NR_getgid
:
11693 return get_errno(high2lowgid(getgid()));
11695 #ifdef TARGET_NR_geteuid
11696 case TARGET_NR_geteuid
:
11697 return get_errno(high2lowuid(geteuid()));
11699 #ifdef TARGET_NR_getegid
11700 case TARGET_NR_getegid
:
11701 return get_errno(high2lowgid(getegid()));
11703 case TARGET_NR_setreuid
:
11704 return get_errno(setreuid(low2highuid(arg1
), low2highuid(arg2
)));
11705 case TARGET_NR_setregid
:
11706 return get_errno(setregid(low2highgid(arg1
), low2highgid(arg2
)));
11707 case TARGET_NR_getgroups
:
11708 { /* the same code as for TARGET_NR_getgroups32 */
11709 int gidsetsize
= arg1
;
11710 target_id
*target_grouplist
;
11711 g_autofree gid_t
*grouplist
= NULL
;
11714 if (gidsetsize
> NGROUPS_MAX
|| gidsetsize
< 0) {
11715 return -TARGET_EINVAL
;
11717 if (gidsetsize
> 0) {
11718 grouplist
= g_try_new(gid_t
, gidsetsize
);
11720 return -TARGET_ENOMEM
;
11723 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
11724 if (!is_error(ret
) && gidsetsize
> 0) {
11725 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
,
11726 gidsetsize
* sizeof(target_id
), 0);
11727 if (!target_grouplist
) {
11728 return -TARGET_EFAULT
;
11730 for (i
= 0; i
< ret
; i
++) {
11731 target_grouplist
[i
] = tswapid(high2lowgid(grouplist
[i
]));
11733 unlock_user(target_grouplist
, arg2
,
11734 gidsetsize
* sizeof(target_id
));
11738 case TARGET_NR_setgroups
:
11739 { /* the same code as for TARGET_NR_setgroups32 */
11740 int gidsetsize
= arg1
;
11741 target_id
*target_grouplist
;
11742 g_autofree gid_t
*grouplist
= NULL
;
11745 if (gidsetsize
> NGROUPS_MAX
|| gidsetsize
< 0) {
11746 return -TARGET_EINVAL
;
11748 if (gidsetsize
> 0) {
11749 grouplist
= g_try_new(gid_t
, gidsetsize
);
11751 return -TARGET_ENOMEM
;
11753 target_grouplist
= lock_user(VERIFY_READ
, arg2
,
11754 gidsetsize
* sizeof(target_id
), 1);
11755 if (!target_grouplist
) {
11756 return -TARGET_EFAULT
;
11758 for (i
= 0; i
< gidsetsize
; i
++) {
11759 grouplist
[i
] = low2highgid(tswapid(target_grouplist
[i
]));
11761 unlock_user(target_grouplist
, arg2
,
11762 gidsetsize
* sizeof(target_id
));
11764 return get_errno(setgroups(gidsetsize
, grouplist
));
11766 case TARGET_NR_fchown
:
11767 return get_errno(fchown(arg1
, low2highuid(arg2
), low2highgid(arg3
)));
11768 #if defined(TARGET_NR_fchownat)
11769 case TARGET_NR_fchownat
:
11770 if (!(p
= lock_user_string(arg2
)))
11771 return -TARGET_EFAULT
;
11772 ret
= get_errno(fchownat(arg1
, p
, low2highuid(arg3
),
11773 low2highgid(arg4
), arg5
));
11774 unlock_user(p
, arg2
, 0);
11777 #ifdef TARGET_NR_setresuid
11778 case TARGET_NR_setresuid
:
11779 return get_errno(sys_setresuid(low2highuid(arg1
),
11781 low2highuid(arg3
)));
11783 #ifdef TARGET_NR_getresuid
11784 case TARGET_NR_getresuid
:
11786 uid_t ruid
, euid
, suid
;
11787 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
11788 if (!is_error(ret
)) {
11789 if (put_user_id(high2lowuid(ruid
), arg1
)
11790 || put_user_id(high2lowuid(euid
), arg2
)
11791 || put_user_id(high2lowuid(suid
), arg3
))
11792 return -TARGET_EFAULT
;
11797 #ifdef TARGET_NR_getresgid
11798 case TARGET_NR_setresgid
:
11799 return get_errno(sys_setresgid(low2highgid(arg1
),
11801 low2highgid(arg3
)));
11803 #ifdef TARGET_NR_getresgid
11804 case TARGET_NR_getresgid
:
11806 gid_t rgid
, egid
, sgid
;
11807 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
11808 if (!is_error(ret
)) {
11809 if (put_user_id(high2lowgid(rgid
), arg1
)
11810 || put_user_id(high2lowgid(egid
), arg2
)
11811 || put_user_id(high2lowgid(sgid
), arg3
))
11812 return -TARGET_EFAULT
;
11817 #ifdef TARGET_NR_chown
11818 case TARGET_NR_chown
:
11819 if (!(p
= lock_user_string(arg1
)))
11820 return -TARGET_EFAULT
;
11821 ret
= get_errno(chown(p
, low2highuid(arg2
), low2highgid(arg3
)));
11822 unlock_user(p
, arg1
, 0);
11825 case TARGET_NR_setuid
:
11826 return get_errno(sys_setuid(low2highuid(arg1
)));
11827 case TARGET_NR_setgid
:
11828 return get_errno(sys_setgid(low2highgid(arg1
)));
11829 case TARGET_NR_setfsuid
:
11830 return get_errno(setfsuid(arg1
));
11831 case TARGET_NR_setfsgid
:
11832 return get_errno(setfsgid(arg1
));
11834 #ifdef TARGET_NR_lchown32
11835 case TARGET_NR_lchown32
:
11836 if (!(p
= lock_user_string(arg1
)))
11837 return -TARGET_EFAULT
;
11838 ret
= get_errno(lchown(p
, arg2
, arg3
));
11839 unlock_user(p
, arg1
, 0);
11842 #ifdef TARGET_NR_getuid32
11843 case TARGET_NR_getuid32
:
11844 return get_errno(getuid());
11847 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11848 /* Alpha specific */
11849 case TARGET_NR_getxuid
:
11853 cpu_env
->ir
[IR_A4
]=euid
;
11855 return get_errno(getuid());
11857 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11858 /* Alpha specific */
11859 case TARGET_NR_getxgid
:
11863 cpu_env
->ir
[IR_A4
]=egid
;
11865 return get_errno(getgid());
11867 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11868 /* Alpha specific */
11869 case TARGET_NR_osf_getsysinfo
:
11870 ret
= -TARGET_EOPNOTSUPP
;
11872 case TARGET_GSI_IEEE_FP_CONTROL
:
11874 uint64_t fpcr
= cpu_alpha_load_fpcr(cpu_env
);
11875 uint64_t swcr
= cpu_env
->swcr
;
11877 swcr
&= ~SWCR_STATUS_MASK
;
11878 swcr
|= (fpcr
>> 35) & SWCR_STATUS_MASK
;
11880 if (put_user_u64 (swcr
, arg2
))
11881 return -TARGET_EFAULT
;
11886 /* case GSI_IEEE_STATE_AT_SIGNAL:
11887 -- Not implemented in linux kernel.
11889 -- Retrieves current unaligned access state; not much used.
11890 case GSI_PROC_TYPE:
11891 -- Retrieves implver information; surely not used.
11892 case GSI_GET_HWRPB:
11893 -- Grabs a copy of the HWRPB; surely not used.
11898 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11899 /* Alpha specific */
11900 case TARGET_NR_osf_setsysinfo
:
11901 ret
= -TARGET_EOPNOTSUPP
;
11903 case TARGET_SSI_IEEE_FP_CONTROL
:
11905 uint64_t swcr
, fpcr
;
11907 if (get_user_u64 (swcr
, arg2
)) {
11908 return -TARGET_EFAULT
;
11912 * The kernel calls swcr_update_status to update the
11913 * status bits from the fpcr at every point that it
11914 * could be queried. Therefore, we store the status
11915 * bits only in FPCR.
11917 cpu_env
->swcr
= swcr
& (SWCR_TRAP_ENABLE_MASK
| SWCR_MAP_MASK
);
11919 fpcr
= cpu_alpha_load_fpcr(cpu_env
);
11920 fpcr
&= ((uint64_t)FPCR_DYN_MASK
<< 32);
11921 fpcr
|= alpha_ieee_swcr_to_fpcr(swcr
);
11922 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
11927 case TARGET_SSI_IEEE_RAISE_EXCEPTION
:
11929 uint64_t exc
, fpcr
, fex
;
11931 if (get_user_u64(exc
, arg2
)) {
11932 return -TARGET_EFAULT
;
11934 exc
&= SWCR_STATUS_MASK
;
11935 fpcr
= cpu_alpha_load_fpcr(cpu_env
);
11937 /* Old exceptions are not signaled. */
11938 fex
= alpha_ieee_fpcr_to_swcr(fpcr
);
11940 fex
>>= SWCR_STATUS_TO_EXCSUM_SHIFT
;
11941 fex
&= (cpu_env
)->swcr
;
11943 /* Update the hardware fpcr. */
11944 fpcr
|= alpha_ieee_swcr_to_fpcr(exc
);
11945 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
11948 int si_code
= TARGET_FPE_FLTUNK
;
11949 target_siginfo_t info
;
11951 if (fex
& SWCR_TRAP_ENABLE_DNO
) {
11952 si_code
= TARGET_FPE_FLTUND
;
11954 if (fex
& SWCR_TRAP_ENABLE_INE
) {
11955 si_code
= TARGET_FPE_FLTRES
;
11957 if (fex
& SWCR_TRAP_ENABLE_UNF
) {
11958 si_code
= TARGET_FPE_FLTUND
;
11960 if (fex
& SWCR_TRAP_ENABLE_OVF
) {
11961 si_code
= TARGET_FPE_FLTOVF
;
11963 if (fex
& SWCR_TRAP_ENABLE_DZE
) {
11964 si_code
= TARGET_FPE_FLTDIV
;
11966 if (fex
& SWCR_TRAP_ENABLE_INV
) {
11967 si_code
= TARGET_FPE_FLTINV
;
11970 info
.si_signo
= SIGFPE
;
11972 info
.si_code
= si_code
;
11973 info
._sifields
._sigfault
._addr
= (cpu_env
)->pc
;
11974 queue_signal(cpu_env
, info
.si_signo
,
11975 QEMU_SI_FAULT
, &info
);
11981 /* case SSI_NVPAIRS:
11982 -- Used with SSIN_UACPROC to enable unaligned accesses.
11983 case SSI_IEEE_STATE_AT_SIGNAL:
11984 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11985 -- Not implemented in linux kernel
11990 #ifdef TARGET_NR_osf_sigprocmask
11991 /* Alpha specific. */
11992 case TARGET_NR_osf_sigprocmask
:
11996 sigset_t set
, oldset
;
11999 case TARGET_SIG_BLOCK
:
12002 case TARGET_SIG_UNBLOCK
:
12005 case TARGET_SIG_SETMASK
:
12009 return -TARGET_EINVAL
;
12012 target_to_host_old_sigset(&set
, &mask
);
12013 ret
= do_sigprocmask(how
, &set
, &oldset
);
12015 host_to_target_old_sigset(&mask
, &oldset
);
12022 #ifdef TARGET_NR_getgid32
12023 case TARGET_NR_getgid32
:
12024 return get_errno(getgid());
12026 #ifdef TARGET_NR_geteuid32
12027 case TARGET_NR_geteuid32
:
12028 return get_errno(geteuid());
12030 #ifdef TARGET_NR_getegid32
12031 case TARGET_NR_getegid32
:
12032 return get_errno(getegid());
12034 #ifdef TARGET_NR_setreuid32
12035 case TARGET_NR_setreuid32
:
12036 return get_errno(setreuid(arg1
, arg2
));
12038 #ifdef TARGET_NR_setregid32
12039 case TARGET_NR_setregid32
:
12040 return get_errno(setregid(arg1
, arg2
));
12042 #ifdef TARGET_NR_getgroups32
12043 case TARGET_NR_getgroups32
:
12044 { /* the same code as for TARGET_NR_getgroups */
12045 int gidsetsize
= arg1
;
12046 uint32_t *target_grouplist
;
12047 g_autofree gid_t
*grouplist
= NULL
;
12050 if (gidsetsize
> NGROUPS_MAX
|| gidsetsize
< 0) {
12051 return -TARGET_EINVAL
;
12053 if (gidsetsize
> 0) {
12054 grouplist
= g_try_new(gid_t
, gidsetsize
);
12056 return -TARGET_ENOMEM
;
12059 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
12060 if (!is_error(ret
) && gidsetsize
> 0) {
12061 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
,
12062 gidsetsize
* 4, 0);
12063 if (!target_grouplist
) {
12064 return -TARGET_EFAULT
;
12066 for (i
= 0; i
< ret
; i
++) {
12067 target_grouplist
[i
] = tswap32(grouplist
[i
]);
12069 unlock_user(target_grouplist
, arg2
, gidsetsize
* 4);
12074 #ifdef TARGET_NR_setgroups32
12075 case TARGET_NR_setgroups32
:
12076 { /* the same code as for TARGET_NR_setgroups */
12077 int gidsetsize
= arg1
;
12078 uint32_t *target_grouplist
;
12079 g_autofree gid_t
*grouplist
= NULL
;
12082 if (gidsetsize
> NGROUPS_MAX
|| gidsetsize
< 0) {
12083 return -TARGET_EINVAL
;
12085 if (gidsetsize
> 0) {
12086 grouplist
= g_try_new(gid_t
, gidsetsize
);
12088 return -TARGET_ENOMEM
;
12090 target_grouplist
= lock_user(VERIFY_READ
, arg2
,
12091 gidsetsize
* 4, 1);
12092 if (!target_grouplist
) {
12093 return -TARGET_EFAULT
;
12095 for (i
= 0; i
< gidsetsize
; i
++) {
12096 grouplist
[i
] = tswap32(target_grouplist
[i
]);
12098 unlock_user(target_grouplist
, arg2
, 0);
12100 return get_errno(setgroups(gidsetsize
, grouplist
));
12103 #ifdef TARGET_NR_fchown32
12104 case TARGET_NR_fchown32
:
12105 return get_errno(fchown(arg1
, arg2
, arg3
));
12107 #ifdef TARGET_NR_setresuid32
12108 case TARGET_NR_setresuid32
:
12109 return get_errno(sys_setresuid(arg1
, arg2
, arg3
));
12111 #ifdef TARGET_NR_getresuid32
12112 case TARGET_NR_getresuid32
:
12114 uid_t ruid
, euid
, suid
;
12115 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
12116 if (!is_error(ret
)) {
12117 if (put_user_u32(ruid
, arg1
)
12118 || put_user_u32(euid
, arg2
)
12119 || put_user_u32(suid
, arg3
))
12120 return -TARGET_EFAULT
;
12125 #ifdef TARGET_NR_setresgid32
12126 case TARGET_NR_setresgid32
:
12127 return get_errno(sys_setresgid(arg1
, arg2
, arg3
));
12129 #ifdef TARGET_NR_getresgid32
12130 case TARGET_NR_getresgid32
:
12132 gid_t rgid
, egid
, sgid
;
12133 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
12134 if (!is_error(ret
)) {
12135 if (put_user_u32(rgid
, arg1
)
12136 || put_user_u32(egid
, arg2
)
12137 || put_user_u32(sgid
, arg3
))
12138 return -TARGET_EFAULT
;
12143 #ifdef TARGET_NR_chown32
12144 case TARGET_NR_chown32
:
12145 if (!(p
= lock_user_string(arg1
)))
12146 return -TARGET_EFAULT
;
12147 ret
= get_errno(chown(p
, arg2
, arg3
));
12148 unlock_user(p
, arg1
, 0);
12151 #ifdef TARGET_NR_setuid32
12152 case TARGET_NR_setuid32
:
12153 return get_errno(sys_setuid(arg1
));
12155 #ifdef TARGET_NR_setgid32
12156 case TARGET_NR_setgid32
:
12157 return get_errno(sys_setgid(arg1
));
12159 #ifdef TARGET_NR_setfsuid32
12160 case TARGET_NR_setfsuid32
:
12161 return get_errno(setfsuid(arg1
));
12163 #ifdef TARGET_NR_setfsgid32
12164 case TARGET_NR_setfsgid32
:
12165 return get_errno(setfsgid(arg1
));
12167 #ifdef TARGET_NR_mincore
12168 case TARGET_NR_mincore
:
12170 void *a
= lock_user(VERIFY_NONE
, arg1
, arg2
, 0);
12172 return -TARGET_ENOMEM
;
12174 p
= lock_user_string(arg3
);
12176 ret
= -TARGET_EFAULT
;
12178 ret
= get_errno(mincore(a
, arg2
, p
));
12179 unlock_user(p
, arg3
, ret
);
12181 unlock_user(a
, arg1
, 0);
12185 #ifdef TARGET_NR_arm_fadvise64_64
12186 case TARGET_NR_arm_fadvise64_64
:
12187 /* arm_fadvise64_64 looks like fadvise64_64 but
12188 * with different argument order: fd, advice, offset, len
12189 * rather than the usual fd, offset, len, advice.
12190 * Note that offset and len are both 64-bit so appear as
12191 * pairs of 32-bit registers.
12193 ret
= posix_fadvise(arg1
, target_offset64(arg3
, arg4
),
12194 target_offset64(arg5
, arg6
), arg2
);
12195 return -host_to_target_errno(ret
);
12198 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12200 #ifdef TARGET_NR_fadvise64_64
12201 case TARGET_NR_fadvise64_64
:
12202 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12203 /* 6 args: fd, advice, offset (high, low), len (high, low) */
12211 /* 6 args: fd, offset (high, low), len (high, low), advice */
12212 if (regpairs_aligned(cpu_env
, num
)) {
12213 /* offset is in (3,4), len in (5,6) and advice in 7 */
12221 ret
= posix_fadvise(arg1
, target_offset64(arg2
, arg3
),
12222 target_offset64(arg4
, arg5
), arg6
);
12223 return -host_to_target_errno(ret
);
12226 #ifdef TARGET_NR_fadvise64
12227 case TARGET_NR_fadvise64
:
12228 /* 5 args: fd, offset (high, low), len, advice */
12229 if (regpairs_aligned(cpu_env
, num
)) {
12230 /* offset is in (3,4), len in 5 and advice in 6 */
12236 ret
= posix_fadvise(arg1
, target_offset64(arg2
, arg3
), arg4
, arg5
);
12237 return -host_to_target_errno(ret
);
12240 #else /* not a 32-bit ABI */
12241 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12242 #ifdef TARGET_NR_fadvise64_64
12243 case TARGET_NR_fadvise64_64
:
12245 #ifdef TARGET_NR_fadvise64
12246 case TARGET_NR_fadvise64
:
12248 #ifdef TARGET_S390X
12250 case 4: arg4
= POSIX_FADV_NOREUSE
+ 1; break; /* make sure it's an invalid value */
12251 case 5: arg4
= POSIX_FADV_NOREUSE
+ 2; break; /* ditto */
12252 case 6: arg4
= POSIX_FADV_DONTNEED
; break;
12253 case 7: arg4
= POSIX_FADV_NOREUSE
; break;
12257 return -host_to_target_errno(posix_fadvise(arg1
, arg2
, arg3
, arg4
));
12259 #endif /* end of 64-bit ABI fadvise handling */
12261 #ifdef TARGET_NR_madvise
12262 case TARGET_NR_madvise
:
12263 return target_madvise(arg1
, arg2
, arg3
);
12265 #ifdef TARGET_NR_fcntl64
12266 case TARGET_NR_fcntl64
:
12270 from_flock64_fn
*copyfrom
= copy_from_user_flock64
;
12271 to_flock64_fn
*copyto
= copy_to_user_flock64
;
12274 if (!cpu_env
->eabi
) {
12275 copyfrom
= copy_from_user_oabi_flock64
;
12276 copyto
= copy_to_user_oabi_flock64
;
12280 cmd
= target_to_host_fcntl_cmd(arg2
);
12281 if (cmd
== -TARGET_EINVAL
) {
12286 case TARGET_F_GETLK64
:
12287 ret
= copyfrom(&fl
, arg3
);
12291 ret
= get_errno(safe_fcntl(arg1
, cmd
, &fl
));
12293 ret
= copyto(arg3
, &fl
);
12297 case TARGET_F_SETLK64
:
12298 case TARGET_F_SETLKW64
:
12299 ret
= copyfrom(&fl
, arg3
);
12303 ret
= get_errno(safe_fcntl(arg1
, cmd
, &fl
));
12306 ret
= do_fcntl(arg1
, arg2
, arg3
);
12312 #ifdef TARGET_NR_cacheflush
12313 case TARGET_NR_cacheflush
:
12314 /* self-modifying code is handled automatically, so nothing needed */
12317 #ifdef TARGET_NR_getpagesize
12318 case TARGET_NR_getpagesize
:
12319 return TARGET_PAGE_SIZE
;
12321 case TARGET_NR_gettid
:
12322 return get_errno(sys_gettid());
12323 #ifdef TARGET_NR_readahead
12324 case TARGET_NR_readahead
:
12325 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12326 if (regpairs_aligned(cpu_env
, num
)) {
12331 ret
= get_errno(readahead(arg1
, target_offset64(arg2
, arg3
) , arg4
));
12333 ret
= get_errno(readahead(arg1
, arg2
, arg3
));
12338 #ifdef TARGET_NR_setxattr
12339 case TARGET_NR_listxattr
:
12340 case TARGET_NR_llistxattr
:
12344 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
12346 return -TARGET_EFAULT
;
12349 p
= lock_user_string(arg1
);
12351 if (num
== TARGET_NR_listxattr
) {
12352 ret
= get_errno(listxattr(p
, b
, arg3
));
12354 ret
= get_errno(llistxattr(p
, b
, arg3
));
12357 ret
= -TARGET_EFAULT
;
12359 unlock_user(p
, arg1
, 0);
12360 unlock_user(b
, arg2
, arg3
);
12363 case TARGET_NR_flistxattr
:
12367 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
12369 return -TARGET_EFAULT
;
12372 ret
= get_errno(flistxattr(arg1
, b
, arg3
));
12373 unlock_user(b
, arg2
, arg3
);
12376 case TARGET_NR_setxattr
:
12377 case TARGET_NR_lsetxattr
:
12381 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
12383 return -TARGET_EFAULT
;
12386 p
= lock_user_string(arg1
);
12387 n
= lock_user_string(arg2
);
12389 if (num
== TARGET_NR_setxattr
) {
12390 ret
= get_errno(setxattr(p
, n
, v
, arg4
, arg5
));
12392 ret
= get_errno(lsetxattr(p
, n
, v
, arg4
, arg5
));
12395 ret
= -TARGET_EFAULT
;
12397 unlock_user(p
, arg1
, 0);
12398 unlock_user(n
, arg2
, 0);
12399 unlock_user(v
, arg3
, 0);
12402 case TARGET_NR_fsetxattr
:
12406 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
12408 return -TARGET_EFAULT
;
12411 n
= lock_user_string(arg2
);
12413 ret
= get_errno(fsetxattr(arg1
, n
, v
, arg4
, arg5
));
12415 ret
= -TARGET_EFAULT
;
12417 unlock_user(n
, arg2
, 0);
12418 unlock_user(v
, arg3
, 0);
12421 case TARGET_NR_getxattr
:
12422 case TARGET_NR_lgetxattr
:
12426 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
12428 return -TARGET_EFAULT
;
12431 p
= lock_user_string(arg1
);
12432 n
= lock_user_string(arg2
);
12434 if (num
== TARGET_NR_getxattr
) {
12435 ret
= get_errno(getxattr(p
, n
, v
, arg4
));
12437 ret
= get_errno(lgetxattr(p
, n
, v
, arg4
));
12440 ret
= -TARGET_EFAULT
;
12442 unlock_user(p
, arg1
, 0);
12443 unlock_user(n
, arg2
, 0);
12444 unlock_user(v
, arg3
, arg4
);
12447 case TARGET_NR_fgetxattr
:
12451 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
12453 return -TARGET_EFAULT
;
12456 n
= lock_user_string(arg2
);
12458 ret
= get_errno(fgetxattr(arg1
, n
, v
, arg4
));
12460 ret
= -TARGET_EFAULT
;
12462 unlock_user(n
, arg2
, 0);
12463 unlock_user(v
, arg3
, arg4
);
12466 case TARGET_NR_removexattr
:
12467 case TARGET_NR_lremovexattr
:
12470 p
= lock_user_string(arg1
);
12471 n
= lock_user_string(arg2
);
12473 if (num
== TARGET_NR_removexattr
) {
12474 ret
= get_errno(removexattr(p
, n
));
12476 ret
= get_errno(lremovexattr(p
, n
));
12479 ret
= -TARGET_EFAULT
;
12481 unlock_user(p
, arg1
, 0);
12482 unlock_user(n
, arg2
, 0);
12485 case TARGET_NR_fremovexattr
:
12488 n
= lock_user_string(arg2
);
12490 ret
= get_errno(fremovexattr(arg1
, n
));
12492 ret
= -TARGET_EFAULT
;
12494 unlock_user(n
, arg2
, 0);
12498 #endif /* CONFIG_ATTR */
12499 #ifdef TARGET_NR_set_thread_area
12500 case TARGET_NR_set_thread_area
:
12501 #if defined(TARGET_MIPS)
12502 cpu_env
->active_tc
.CP0_UserLocal
= arg1
;
12504 #elif defined(TARGET_CRIS)
12506 ret
= -TARGET_EINVAL
;
12508 cpu_env
->pregs
[PR_PID
] = arg1
;
12512 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12513 return do_set_thread_area(cpu_env
, arg1
);
12514 #elif defined(TARGET_M68K)
12516 TaskState
*ts
= cpu
->opaque
;
12517 ts
->tp_value
= arg1
;
12521 return -TARGET_ENOSYS
;
12524 #ifdef TARGET_NR_get_thread_area
12525 case TARGET_NR_get_thread_area
:
12526 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12527 return do_get_thread_area(cpu_env
, arg1
);
12528 #elif defined(TARGET_M68K)
12530 TaskState
*ts
= cpu
->opaque
;
12531 return ts
->tp_value
;
12534 return -TARGET_ENOSYS
;
12537 #ifdef TARGET_NR_getdomainname
12538 case TARGET_NR_getdomainname
:
12539 return -TARGET_ENOSYS
;
12542 #ifdef TARGET_NR_clock_settime
12543 case TARGET_NR_clock_settime
:
12545 struct timespec ts
;
12547 ret
= target_to_host_timespec(&ts
, arg2
);
12548 if (!is_error(ret
)) {
12549 ret
= get_errno(clock_settime(arg1
, &ts
));
12554 #ifdef TARGET_NR_clock_settime64
12555 case TARGET_NR_clock_settime64
:
12557 struct timespec ts
;
12559 ret
= target_to_host_timespec64(&ts
, arg2
);
12560 if (!is_error(ret
)) {
12561 ret
= get_errno(clock_settime(arg1
, &ts
));
12566 #ifdef TARGET_NR_clock_gettime
12567 case TARGET_NR_clock_gettime
:
12569 struct timespec ts
;
12570 ret
= get_errno(clock_gettime(arg1
, &ts
));
12571 if (!is_error(ret
)) {
12572 ret
= host_to_target_timespec(arg2
, &ts
);
12577 #ifdef TARGET_NR_clock_gettime64
12578 case TARGET_NR_clock_gettime64
:
12580 struct timespec ts
;
12581 ret
= get_errno(clock_gettime(arg1
, &ts
));
12582 if (!is_error(ret
)) {
12583 ret
= host_to_target_timespec64(arg2
, &ts
);
12588 #ifdef TARGET_NR_clock_getres
12589 case TARGET_NR_clock_getres
:
12591 struct timespec ts
;
12592 ret
= get_errno(clock_getres(arg1
, &ts
));
12593 if (!is_error(ret
)) {
12594 host_to_target_timespec(arg2
, &ts
);
12599 #ifdef TARGET_NR_clock_getres_time64
12600 case TARGET_NR_clock_getres_time64
:
12602 struct timespec ts
;
12603 ret
= get_errno(clock_getres(arg1
, &ts
));
12604 if (!is_error(ret
)) {
12605 host_to_target_timespec64(arg2
, &ts
);
12610 #ifdef TARGET_NR_clock_nanosleep
12611 case TARGET_NR_clock_nanosleep
:
12613 struct timespec ts
;
12614 if (target_to_host_timespec(&ts
, arg3
)) {
12615 return -TARGET_EFAULT
;
12617 ret
= get_errno(safe_clock_nanosleep(arg1
, arg2
,
12618 &ts
, arg4
? &ts
: NULL
));
12620 * if the call is interrupted by a signal handler, it fails
12621 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12622 * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12624 if (ret
== -TARGET_EINTR
&& arg4
&& arg2
!= TIMER_ABSTIME
&&
12625 host_to_target_timespec(arg4
, &ts
)) {
12626 return -TARGET_EFAULT
;
12632 #ifdef TARGET_NR_clock_nanosleep_time64
12633 case TARGET_NR_clock_nanosleep_time64
:
12635 struct timespec ts
;
12637 if (target_to_host_timespec64(&ts
, arg3
)) {
12638 return -TARGET_EFAULT
;
12641 ret
= get_errno(safe_clock_nanosleep(arg1
, arg2
,
12642 &ts
, arg4
? &ts
: NULL
));
12644 if (ret
== -TARGET_EINTR
&& arg4
&& arg2
!= TIMER_ABSTIME
&&
12645 host_to_target_timespec64(arg4
, &ts
)) {
12646 return -TARGET_EFAULT
;
12652 #if defined(TARGET_NR_set_tid_address)
12653 case TARGET_NR_set_tid_address
:
12655 TaskState
*ts
= cpu
->opaque
;
12656 ts
->child_tidptr
= arg1
;
12657 /* do not call host set_tid_address() syscall, instead return tid() */
12658 return get_errno(sys_gettid());
12662 case TARGET_NR_tkill
:
12663 return get_errno(safe_tkill((int)arg1
, target_to_host_signal(arg2
)));
12665 case TARGET_NR_tgkill
:
12666 return get_errno(safe_tgkill((int)arg1
, (int)arg2
,
12667 target_to_host_signal(arg3
)));
12669 #ifdef TARGET_NR_set_robust_list
12670 case TARGET_NR_set_robust_list
:
12671 case TARGET_NR_get_robust_list
:
12672 /* The ABI for supporting robust futexes has userspace pass
12673 * the kernel a pointer to a linked list which is updated by
12674 * userspace after the syscall; the list is walked by the kernel
12675 * when the thread exits. Since the linked list in QEMU guest
12676 * memory isn't a valid linked list for the host and we have
12677 * no way to reliably intercept the thread-death event, we can't
12678 * support these. Silently return ENOSYS so that guest userspace
12679 * falls back to a non-robust futex implementation (which should
12680 * be OK except in the corner case of the guest crashing while
12681 * holding a mutex that is shared with another process via
12684 return -TARGET_ENOSYS
;
12687 #if defined(TARGET_NR_utimensat)
12688 case TARGET_NR_utimensat
:
12690 struct timespec
*tsp
, ts
[2];
12694 if (target_to_host_timespec(ts
, arg3
)) {
12695 return -TARGET_EFAULT
;
12697 if (target_to_host_timespec(ts
+ 1, arg3
+
12698 sizeof(struct target_timespec
))) {
12699 return -TARGET_EFAULT
;
12704 ret
= get_errno(sys_utimensat(arg1
, NULL
, tsp
, arg4
));
12706 if (!(p
= lock_user_string(arg2
))) {
12707 return -TARGET_EFAULT
;
12709 ret
= get_errno(sys_utimensat(arg1
, path(p
), tsp
, arg4
));
12710 unlock_user(p
, arg2
, 0);
12715 #ifdef TARGET_NR_utimensat_time64
12716 case TARGET_NR_utimensat_time64
:
12718 struct timespec
*tsp
, ts
[2];
12722 if (target_to_host_timespec64(ts
, arg3
)) {
12723 return -TARGET_EFAULT
;
12725 if (target_to_host_timespec64(ts
+ 1, arg3
+
12726 sizeof(struct target__kernel_timespec
))) {
12727 return -TARGET_EFAULT
;
12732 ret
= get_errno(sys_utimensat(arg1
, NULL
, tsp
, arg4
));
12734 p
= lock_user_string(arg2
);
12736 return -TARGET_EFAULT
;
12738 ret
= get_errno(sys_utimensat(arg1
, path(p
), tsp
, arg4
));
12739 unlock_user(p
, arg2
, 0);
12744 #ifdef TARGET_NR_futex
12745 case TARGET_NR_futex
:
12746 return do_futex(cpu
, false, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
12748 #ifdef TARGET_NR_futex_time64
12749 case TARGET_NR_futex_time64
:
12750 return do_futex(cpu
, true, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
12752 #ifdef CONFIG_INOTIFY
12753 #if defined(TARGET_NR_inotify_init)
12754 case TARGET_NR_inotify_init
:
12755 ret
= get_errno(inotify_init());
12757 fd_trans_register(ret
, &target_inotify_trans
);
12761 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12762 case TARGET_NR_inotify_init1
:
12763 ret
= get_errno(inotify_init1(target_to_host_bitmask(arg1
,
12764 fcntl_flags_tbl
)));
12766 fd_trans_register(ret
, &target_inotify_trans
);
12770 #if defined(TARGET_NR_inotify_add_watch)
12771 case TARGET_NR_inotify_add_watch
:
12772 p
= lock_user_string(arg2
);
12773 ret
= get_errno(inotify_add_watch(arg1
, path(p
), arg3
));
12774 unlock_user(p
, arg2
, 0);
12777 #if defined(TARGET_NR_inotify_rm_watch)
12778 case TARGET_NR_inotify_rm_watch
:
12779 return get_errno(inotify_rm_watch(arg1
, arg2
));
12783 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12784 case TARGET_NR_mq_open
:
12786 struct mq_attr posix_mq_attr
;
12787 struct mq_attr
*pposix_mq_attr
;
12790 host_flags
= target_to_host_bitmask(arg2
, fcntl_flags_tbl
);
12791 pposix_mq_attr
= NULL
;
12793 if (copy_from_user_mq_attr(&posix_mq_attr
, arg4
) != 0) {
12794 return -TARGET_EFAULT
;
12796 pposix_mq_attr
= &posix_mq_attr
;
12798 p
= lock_user_string(arg1
- 1);
12800 return -TARGET_EFAULT
;
12802 ret
= get_errno(mq_open(p
, host_flags
, arg3
, pposix_mq_attr
));
12803 unlock_user (p
, arg1
, 0);
12807 case TARGET_NR_mq_unlink
:
12808 p
= lock_user_string(arg1
- 1);
12810 return -TARGET_EFAULT
;
12812 ret
= get_errno(mq_unlink(p
));
12813 unlock_user (p
, arg1
, 0);
12816 #ifdef TARGET_NR_mq_timedsend
12817 case TARGET_NR_mq_timedsend
:
12819 struct timespec ts
;
12821 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
12823 if (target_to_host_timespec(&ts
, arg5
)) {
12824 return -TARGET_EFAULT
;
12826 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, &ts
));
12827 if (!is_error(ret
) && host_to_target_timespec(arg5
, &ts
)) {
12828 return -TARGET_EFAULT
;
12831 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, NULL
));
12833 unlock_user (p
, arg2
, arg3
);
12837 #ifdef TARGET_NR_mq_timedsend_time64
12838 case TARGET_NR_mq_timedsend_time64
:
12840 struct timespec ts
;
12842 p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1);
12844 if (target_to_host_timespec64(&ts
, arg5
)) {
12845 return -TARGET_EFAULT
;
12847 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, &ts
));
12848 if (!is_error(ret
) && host_to_target_timespec64(arg5
, &ts
)) {
12849 return -TARGET_EFAULT
;
12852 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, NULL
));
12854 unlock_user(p
, arg2
, arg3
);
12859 #ifdef TARGET_NR_mq_timedreceive
12860 case TARGET_NR_mq_timedreceive
:
12862 struct timespec ts
;
12865 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
12867 if (target_to_host_timespec(&ts
, arg5
)) {
12868 return -TARGET_EFAULT
;
12870 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
12872 if (!is_error(ret
) && host_to_target_timespec(arg5
, &ts
)) {
12873 return -TARGET_EFAULT
;
12876 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
12879 unlock_user (p
, arg2
, arg3
);
12881 put_user_u32(prio
, arg4
);
12885 #ifdef TARGET_NR_mq_timedreceive_time64
12886 case TARGET_NR_mq_timedreceive_time64
:
12888 struct timespec ts
;
12891 p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1);
12893 if (target_to_host_timespec64(&ts
, arg5
)) {
12894 return -TARGET_EFAULT
;
12896 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
12898 if (!is_error(ret
) && host_to_target_timespec64(arg5
, &ts
)) {
12899 return -TARGET_EFAULT
;
12902 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
12905 unlock_user(p
, arg2
, arg3
);
12907 put_user_u32(prio
, arg4
);
12913 /* Not implemented for now... */
12914 /* case TARGET_NR_mq_notify: */
12917 case TARGET_NR_mq_getsetattr
:
12919 struct mq_attr posix_mq_attr_in
, posix_mq_attr_out
;
12922 copy_from_user_mq_attr(&posix_mq_attr_in
, arg2
);
12923 ret
= get_errno(mq_setattr(arg1
, &posix_mq_attr_in
,
12924 &posix_mq_attr_out
));
12925 } else if (arg3
!= 0) {
12926 ret
= get_errno(mq_getattr(arg1
, &posix_mq_attr_out
));
12928 if (ret
== 0 && arg3
!= 0) {
12929 copy_to_user_mq_attr(arg3
, &posix_mq_attr_out
);
12935 #ifdef CONFIG_SPLICE
12936 #ifdef TARGET_NR_tee
12937 case TARGET_NR_tee
:
12939 ret
= get_errno(tee(arg1
,arg2
,arg3
,arg4
));
12943 #ifdef TARGET_NR_splice
12944 case TARGET_NR_splice
:
12946 loff_t loff_in
, loff_out
;
12947 loff_t
*ploff_in
= NULL
, *ploff_out
= NULL
;
12949 if (get_user_u64(loff_in
, arg2
)) {
12950 return -TARGET_EFAULT
;
12952 ploff_in
= &loff_in
;
12955 if (get_user_u64(loff_out
, arg4
)) {
12956 return -TARGET_EFAULT
;
12958 ploff_out
= &loff_out
;
12960 ret
= get_errno(splice(arg1
, ploff_in
, arg3
, ploff_out
, arg5
, arg6
));
12962 if (put_user_u64(loff_in
, arg2
)) {
12963 return -TARGET_EFAULT
;
12967 if (put_user_u64(loff_out
, arg4
)) {
12968 return -TARGET_EFAULT
;
12974 #ifdef TARGET_NR_vmsplice
12975 case TARGET_NR_vmsplice
:
12977 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
12979 ret
= get_errno(vmsplice(arg1
, vec
, arg3
, arg4
));
12980 unlock_iovec(vec
, arg2
, arg3
, 0);
12982 ret
= -host_to_target_errno(errno
);
12987 #endif /* CONFIG_SPLICE */
12988 #ifdef CONFIG_EVENTFD
12989 #if defined(TARGET_NR_eventfd)
12990 case TARGET_NR_eventfd
:
12991 ret
= get_errno(eventfd(arg1
, 0));
12993 fd_trans_register(ret
, &target_eventfd_trans
);
12997 #if defined(TARGET_NR_eventfd2)
12998 case TARGET_NR_eventfd2
:
13000 int host_flags
= arg2
& (~(TARGET_O_NONBLOCK_MASK
| TARGET_O_CLOEXEC
));
13001 if (arg2
& TARGET_O_NONBLOCK
) {
13002 host_flags
|= O_NONBLOCK
;
13004 if (arg2
& TARGET_O_CLOEXEC
) {
13005 host_flags
|= O_CLOEXEC
;
13007 ret
= get_errno(eventfd(arg1
, host_flags
));
13009 fd_trans_register(ret
, &target_eventfd_trans
);
13014 #endif /* CONFIG_EVENTFD */
13015 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13016 case TARGET_NR_fallocate
:
13017 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13018 ret
= get_errno(fallocate(arg1
, arg2
, target_offset64(arg3
, arg4
),
13019 target_offset64(arg5
, arg6
)));
13021 ret
= get_errno(fallocate(arg1
, arg2
, arg3
, arg4
));
13025 #if defined(CONFIG_SYNC_FILE_RANGE)
13026 #if defined(TARGET_NR_sync_file_range)
13027 case TARGET_NR_sync_file_range
:
13028 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13029 #if defined(TARGET_MIPS)
13030 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
13031 target_offset64(arg5
, arg6
), arg7
));
13033 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg2
, arg3
),
13034 target_offset64(arg4
, arg5
), arg6
));
13035 #endif /* !TARGET_MIPS */
13037 ret
= get_errno(sync_file_range(arg1
, arg2
, arg3
, arg4
));
13041 #if defined(TARGET_NR_sync_file_range2) || \
13042 defined(TARGET_NR_arm_sync_file_range)
13043 #if defined(TARGET_NR_sync_file_range2)
13044 case TARGET_NR_sync_file_range2
:
13046 #if defined(TARGET_NR_arm_sync_file_range)
13047 case TARGET_NR_arm_sync_file_range
:
13049 /* This is like sync_file_range but the arguments are reordered */
13050 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13051 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
13052 target_offset64(arg5
, arg6
), arg2
));
13054 ret
= get_errno(sync_file_range(arg1
, arg3
, arg4
, arg2
));
13059 #if defined(TARGET_NR_signalfd4)
13060 case TARGET_NR_signalfd4
:
13061 return do_signalfd4(arg1
, arg2
, arg4
);
13063 #if defined(TARGET_NR_signalfd)
13064 case TARGET_NR_signalfd
:
13065 return do_signalfd4(arg1
, arg2
, 0);
13067 #if defined(CONFIG_EPOLL)
13068 #if defined(TARGET_NR_epoll_create)
13069 case TARGET_NR_epoll_create
:
13070 return get_errno(epoll_create(arg1
));
13072 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13073 case TARGET_NR_epoll_create1
:
13074 return get_errno(epoll_create1(target_to_host_bitmask(arg1
, fcntl_flags_tbl
)));
13076 #if defined(TARGET_NR_epoll_ctl)
13077 case TARGET_NR_epoll_ctl
:
13079 struct epoll_event ep
;
13080 struct epoll_event
*epp
= 0;
13082 if (arg2
!= EPOLL_CTL_DEL
) {
13083 struct target_epoll_event
*target_ep
;
13084 if (!lock_user_struct(VERIFY_READ
, target_ep
, arg4
, 1)) {
13085 return -TARGET_EFAULT
;
13087 ep
.events
= tswap32(target_ep
->events
);
13089 * The epoll_data_t union is just opaque data to the kernel,
13090 * so we transfer all 64 bits across and need not worry what
13091 * actual data type it is.
13093 ep
.data
.u64
= tswap64(target_ep
->data
.u64
);
13094 unlock_user_struct(target_ep
, arg4
, 0);
13097 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13098 * non-null pointer, even though this argument is ignored.
13103 return get_errno(epoll_ctl(arg1
, arg2
, arg3
, epp
));
13107 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13108 #if defined(TARGET_NR_epoll_wait)
13109 case TARGET_NR_epoll_wait
:
13111 #if defined(TARGET_NR_epoll_pwait)
13112 case TARGET_NR_epoll_pwait
:
13115 struct target_epoll_event
*target_ep
;
13116 struct epoll_event
*ep
;
13118 int maxevents
= arg3
;
13119 int timeout
= arg4
;
13121 if (maxevents
<= 0 || maxevents
> TARGET_EP_MAX_EVENTS
) {
13122 return -TARGET_EINVAL
;
13125 target_ep
= lock_user(VERIFY_WRITE
, arg2
,
13126 maxevents
* sizeof(struct target_epoll_event
), 1);
13128 return -TARGET_EFAULT
;
13131 ep
= g_try_new(struct epoll_event
, maxevents
);
13133 unlock_user(target_ep
, arg2
, 0);
13134 return -TARGET_ENOMEM
;
13138 #if defined(TARGET_NR_epoll_pwait)
13139 case TARGET_NR_epoll_pwait
:
13141 sigset_t
*set
= NULL
;
13144 ret
= process_sigsuspend_mask(&set
, arg5
, arg6
);
13150 ret
= get_errno(safe_epoll_pwait(epfd
, ep
, maxevents
, timeout
,
13151 set
, SIGSET_T_SIZE
));
13154 finish_sigsuspend_mask(ret
);
13159 #if defined(TARGET_NR_epoll_wait)
13160 case TARGET_NR_epoll_wait
:
13161 ret
= get_errno(safe_epoll_pwait(epfd
, ep
, maxevents
, timeout
,
13166 ret
= -TARGET_ENOSYS
;
13168 if (!is_error(ret
)) {
13170 for (i
= 0; i
< ret
; i
++) {
13171 target_ep
[i
].events
= tswap32(ep
[i
].events
);
13172 target_ep
[i
].data
.u64
= tswap64(ep
[i
].data
.u64
);
13174 unlock_user(target_ep
, arg2
,
13175 ret
* sizeof(struct target_epoll_event
));
13177 unlock_user(target_ep
, arg2
, 0);
13184 #ifdef TARGET_NR_prlimit64
13185 case TARGET_NR_prlimit64
:
13187 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13188 struct target_rlimit64
*target_rnew
, *target_rold
;
13189 struct host_rlimit64 rnew
, rold
, *rnewp
= 0;
13190 int resource
= target_to_host_resource(arg2
);
13192 if (arg3
&& (resource
!= RLIMIT_AS
&&
13193 resource
!= RLIMIT_DATA
&&
13194 resource
!= RLIMIT_STACK
)) {
13195 if (!lock_user_struct(VERIFY_READ
, target_rnew
, arg3
, 1)) {
13196 return -TARGET_EFAULT
;
13198 __get_user(rnew
.rlim_cur
, &target_rnew
->rlim_cur
);
13199 __get_user(rnew
.rlim_max
, &target_rnew
->rlim_max
);
13200 unlock_user_struct(target_rnew
, arg3
, 0);
13204 ret
= get_errno(sys_prlimit64(arg1
, resource
, rnewp
, arg4
? &rold
: 0));
13205 if (!is_error(ret
) && arg4
) {
13206 if (!lock_user_struct(VERIFY_WRITE
, target_rold
, arg4
, 1)) {
13207 return -TARGET_EFAULT
;
13209 __put_user(rold
.rlim_cur
, &target_rold
->rlim_cur
);
13210 __put_user(rold
.rlim_max
, &target_rold
->rlim_max
);
13211 unlock_user_struct(target_rold
, arg4
, 1);
13216 #ifdef TARGET_NR_gethostname
13217 case TARGET_NR_gethostname
:
13219 char *name
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
13221 ret
= get_errno(gethostname(name
, arg2
));
13222 unlock_user(name
, arg1
, arg2
);
13224 ret
= -TARGET_EFAULT
;
13229 #ifdef TARGET_NR_atomic_cmpxchg_32
13230 case TARGET_NR_atomic_cmpxchg_32
:
13232 /* should use start_exclusive from main.c */
13233 abi_ulong mem_value
;
13234 if (get_user_u32(mem_value
, arg6
)) {
13235 target_siginfo_t info
;
13236 info
.si_signo
= SIGSEGV
;
13238 info
.si_code
= TARGET_SEGV_MAPERR
;
13239 info
._sifields
._sigfault
._addr
= arg6
;
13240 queue_signal(cpu_env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
13244 if (mem_value
== arg2
)
13245 put_user_u32(arg1
, arg6
);
13249 #ifdef TARGET_NR_atomic_barrier
13250 case TARGET_NR_atomic_barrier
:
13251 /* Like the kernel implementation and the
13252 qemu arm barrier, no-op this? */
13256 #ifdef TARGET_NR_timer_create
13257 case TARGET_NR_timer_create
:
13259 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13261 struct sigevent host_sevp
= { {0}, }, *phost_sevp
= NULL
;
13264 int timer_index
= next_free_host_timer();
13266 if (timer_index
< 0) {
13267 ret
= -TARGET_EAGAIN
;
13269 timer_t
*phtimer
= g_posix_timers
+ timer_index
;
13272 phost_sevp
= &host_sevp
;
13273 ret
= target_to_host_sigevent(phost_sevp
, arg2
);
13275 free_host_timer_slot(timer_index
);
13280 ret
= get_errno(timer_create(clkid
, phost_sevp
, phtimer
));
13282 free_host_timer_slot(timer_index
);
13284 if (put_user(TIMER_MAGIC
| timer_index
, arg3
, target_timer_t
)) {
13285 timer_delete(*phtimer
);
13286 free_host_timer_slot(timer_index
);
13287 return -TARGET_EFAULT
;
13295 #ifdef TARGET_NR_timer_settime
13296 case TARGET_NR_timer_settime
:
13298 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13299 * struct itimerspec * old_value */
13300 target_timer_t timerid
= get_timer_id(arg1
);
13304 } else if (arg3
== 0) {
13305 ret
= -TARGET_EINVAL
;
13307 timer_t htimer
= g_posix_timers
[timerid
];
13308 struct itimerspec hspec_new
= {{0},}, hspec_old
= {{0},};
13310 if (target_to_host_itimerspec(&hspec_new
, arg3
)) {
13311 return -TARGET_EFAULT
;
13314 timer_settime(htimer
, arg2
, &hspec_new
, &hspec_old
));
13315 if (arg4
&& host_to_target_itimerspec(arg4
, &hspec_old
)) {
13316 return -TARGET_EFAULT
;
13323 #ifdef TARGET_NR_timer_settime64
13324 case TARGET_NR_timer_settime64
:
13326 target_timer_t timerid
= get_timer_id(arg1
);
13330 } else if (arg3
== 0) {
13331 ret
= -TARGET_EINVAL
;
13333 timer_t htimer
= g_posix_timers
[timerid
];
13334 struct itimerspec hspec_new
= {{0},}, hspec_old
= {{0},};
13336 if (target_to_host_itimerspec64(&hspec_new
, arg3
)) {
13337 return -TARGET_EFAULT
;
13340 timer_settime(htimer
, arg2
, &hspec_new
, &hspec_old
));
13341 if (arg4
&& host_to_target_itimerspec64(arg4
, &hspec_old
)) {
13342 return -TARGET_EFAULT
;
13349 #ifdef TARGET_NR_timer_gettime
13350 case TARGET_NR_timer_gettime
:
13352 /* args: timer_t timerid, struct itimerspec *curr_value */
13353 target_timer_t timerid
= get_timer_id(arg1
);
13357 } else if (!arg2
) {
13358 ret
= -TARGET_EFAULT
;
13360 timer_t htimer
= g_posix_timers
[timerid
];
13361 struct itimerspec hspec
;
13362 ret
= get_errno(timer_gettime(htimer
, &hspec
));
13364 if (host_to_target_itimerspec(arg2
, &hspec
)) {
13365 ret
= -TARGET_EFAULT
;
13372 #ifdef TARGET_NR_timer_gettime64
13373 case TARGET_NR_timer_gettime64
:
13375 /* args: timer_t timerid, struct itimerspec64 *curr_value */
13376 target_timer_t timerid
= get_timer_id(arg1
);
13380 } else if (!arg2
) {
13381 ret
= -TARGET_EFAULT
;
13383 timer_t htimer
= g_posix_timers
[timerid
];
13384 struct itimerspec hspec
;
13385 ret
= get_errno(timer_gettime(htimer
, &hspec
));
13387 if (host_to_target_itimerspec64(arg2
, &hspec
)) {
13388 ret
= -TARGET_EFAULT
;
13395 #ifdef TARGET_NR_timer_getoverrun
13396 case TARGET_NR_timer_getoverrun
:
13398 /* args: timer_t timerid */
13399 target_timer_t timerid
= get_timer_id(arg1
);
13404 timer_t htimer
= g_posix_timers
[timerid
];
13405 ret
= get_errno(timer_getoverrun(htimer
));
13411 #ifdef TARGET_NR_timer_delete
13412 case TARGET_NR_timer_delete
:
13414 /* args: timer_t timerid */
13415 target_timer_t timerid
= get_timer_id(arg1
);
13420 timer_t htimer
= g_posix_timers
[timerid
];
13421 ret
= get_errno(timer_delete(htimer
));
13422 free_host_timer_slot(timerid
);
13428 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13429 case TARGET_NR_timerfd_create
:
13430 ret
= get_errno(timerfd_create(arg1
,
13431 target_to_host_bitmask(arg2
, fcntl_flags_tbl
)));
13433 fd_trans_register(ret
, &target_timerfd_trans
);
13438 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13439 case TARGET_NR_timerfd_gettime
:
13441 struct itimerspec its_curr
;
13443 ret
= get_errno(timerfd_gettime(arg1
, &its_curr
));
13445 if (arg2
&& host_to_target_itimerspec(arg2
, &its_curr
)) {
13446 return -TARGET_EFAULT
;
13452 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13453 case TARGET_NR_timerfd_gettime64
:
13455 struct itimerspec its_curr
;
13457 ret
= get_errno(timerfd_gettime(arg1
, &its_curr
));
13459 if (arg2
&& host_to_target_itimerspec64(arg2
, &its_curr
)) {
13460 return -TARGET_EFAULT
;
13466 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13467 case TARGET_NR_timerfd_settime
:
13469 struct itimerspec its_new
, its_old
, *p_new
;
13472 if (target_to_host_itimerspec(&its_new
, arg3
)) {
13473 return -TARGET_EFAULT
;
13480 ret
= get_errno(timerfd_settime(arg1
, arg2
, p_new
, &its_old
));
13482 if (arg4
&& host_to_target_itimerspec(arg4
, &its_old
)) {
13483 return -TARGET_EFAULT
;
13489 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13490 case TARGET_NR_timerfd_settime64
:
13492 struct itimerspec its_new
, its_old
, *p_new
;
13495 if (target_to_host_itimerspec64(&its_new
, arg3
)) {
13496 return -TARGET_EFAULT
;
13503 ret
= get_errno(timerfd_settime(arg1
, arg2
, p_new
, &its_old
));
13505 if (arg4
&& host_to_target_itimerspec64(arg4
, &its_old
)) {
13506 return -TARGET_EFAULT
;
13512 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13513 case TARGET_NR_ioprio_get
:
13514 return get_errno(ioprio_get(arg1
, arg2
));
13517 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13518 case TARGET_NR_ioprio_set
:
13519 return get_errno(ioprio_set(arg1
, arg2
, arg3
));
13522 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13523 case TARGET_NR_setns
:
13524 return get_errno(setns(arg1
, arg2
));
13526 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13527 case TARGET_NR_unshare
:
13528 return get_errno(unshare(arg1
));
13530 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13531 case TARGET_NR_kcmp
:
13532 return get_errno(kcmp(arg1
, arg2
, arg3
, arg4
, arg5
));
13534 #ifdef TARGET_NR_swapcontext
13535 case TARGET_NR_swapcontext
:
13536 /* PowerPC specific. */
13537 return do_swapcontext(cpu_env
, arg1
, arg2
, arg3
);
13539 #ifdef TARGET_NR_memfd_create
13540 case TARGET_NR_memfd_create
:
13541 p
= lock_user_string(arg1
);
13543 return -TARGET_EFAULT
;
13545 ret
= get_errno(memfd_create(p
, arg2
));
13546 fd_trans_unregister(ret
);
13547 unlock_user(p
, arg1
, 0);
13550 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13551 case TARGET_NR_membarrier
:
13552 return get_errno(membarrier(arg1
, arg2
));
13555 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13556 case TARGET_NR_copy_file_range
:
13558 loff_t inoff
, outoff
;
13559 loff_t
*pinoff
= NULL
, *poutoff
= NULL
;
13562 if (get_user_u64(inoff
, arg2
)) {
13563 return -TARGET_EFAULT
;
13568 if (get_user_u64(outoff
, arg4
)) {
13569 return -TARGET_EFAULT
;
13573 /* Do not sign-extend the count parameter. */
13574 ret
= get_errno(safe_copy_file_range(arg1
, pinoff
, arg3
, poutoff
,
13575 (abi_ulong
)arg5
, arg6
));
13576 if (!is_error(ret
) && ret
> 0) {
13578 if (put_user_u64(inoff
, arg2
)) {
13579 return -TARGET_EFAULT
;
13583 if (put_user_u64(outoff
, arg4
)) {
13584 return -TARGET_EFAULT
;
13592 #if defined(TARGET_NR_pivot_root)
13593 case TARGET_NR_pivot_root
:
13596 p
= lock_user_string(arg1
); /* new_root */
13597 p2
= lock_user_string(arg2
); /* put_old */
13599 ret
= -TARGET_EFAULT
;
13601 ret
= get_errno(pivot_root(p
, p2
));
13603 unlock_user(p2
, arg2
, 0);
13604 unlock_user(p
, arg1
, 0);
13609 #if defined(TARGET_NR_riscv_hwprobe)
13610 case TARGET_NR_riscv_hwprobe
:
13611 return do_riscv_hwprobe(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
);
13615 qemu_log_mask(LOG_UNIMP
, "Unsupported syscall: %d\n", num
);
13616 return -TARGET_ENOSYS
;
13621 abi_long
do_syscall(CPUArchState
*cpu_env
, int num
, abi_long arg1
,
13622 abi_long arg2
, abi_long arg3
, abi_long arg4
,
13623 abi_long arg5
, abi_long arg6
, abi_long arg7
,
13626 CPUState
*cpu
= env_cpu(cpu_env
);
13629 #ifdef DEBUG_ERESTARTSYS
13630 /* Debug-only code for exercising the syscall-restart code paths
13631 * in the per-architecture cpu main loops: restart every syscall
13632 * the guest makes once before letting it through.
13638 return -QEMU_ERESTARTSYS
;
13643 record_syscall_start(cpu
, num
, arg1
,
13644 arg2
, arg3
, arg4
, arg5
, arg6
, arg7
, arg8
);
13646 if (unlikely(qemu_loglevel_mask(LOG_STRACE
))) {
13647 print_syscall(cpu_env
, num
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
13650 ret
= do_syscall1(cpu_env
, num
, arg1
, arg2
, arg3
, arg4
,
13651 arg5
, arg6
, arg7
, arg8
);
13653 if (unlikely(qemu_loglevel_mask(LOG_STRACE
))) {
13654 print_syscall_ret(cpu_env
, num
, ret
, arg1
, arg2
,
13655 arg3
, arg4
, arg5
, arg6
);
13658 record_syscall_return(cpu
, num
, ret
);