linux-user: Rename cpu_clone_regs to cpu_clone_regs_child
[qemu/kevin.git] / tests / pflash-cfi02-test.c
blobd3b23f4f66191a8ea90cf2060f80939778c599ee
1 /*
2 * QTest testcase for parallel flash with AMD command set
4 * Copyright (c) 2019 Stephen Checkoway
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "libqtest.h"
14 * To test the pflash_cfi02 device, we run QEMU with the musicpal machine with
15 * a pflash drive. This enables us to test some flash configurations, but not
16 * all. In particular, we're limited to a 16-bit wide flash device.
19 #define MP_FLASH_SIZE_MAX (32 * 1024 * 1024)
20 #define BASE_ADDR (0x100000000ULL - MP_FLASH_SIZE_MAX)
22 #define UNIFORM_FLASH_SIZE (8 * 1024 * 1024)
23 #define UNIFORM_FLASH_SECTOR_SIZE (64 * 1024)
25 /* Use a newtype to keep flash addresses separate from byte addresses. */
26 typedef struct {
27 uint64_t addr;
28 } faddr;
29 #define FLASH_ADDR(x) ((faddr) { .addr = (x) })
31 #define CFI_ADDR FLASH_ADDR(0x55)
32 #define UNLOCK0_ADDR FLASH_ADDR(0x555)
33 #define UNLOCK1_ADDR FLASH_ADDR(0x2AA)
35 #define CFI_CMD 0x98
36 #define UNLOCK0_CMD 0xAA
37 #define UNLOCK1_CMD 0x55
38 #define SECOND_UNLOCK_CMD 0x80
39 #define AUTOSELECT_CMD 0x90
40 #define RESET_CMD 0xF0
41 #define PROGRAM_CMD 0xA0
42 #define SECTOR_ERASE_CMD 0x30
43 #define CHIP_ERASE_CMD 0x10
44 #define UNLOCK_BYPASS_CMD 0x20
45 #define UNLOCK_BYPASS_RESET_CMD 0x00
46 #define ERASE_SUSPEND_CMD 0xB0
47 #define ERASE_RESUME_CMD SECTOR_ERASE_CMD
49 typedef struct {
50 int bank_width;
52 /* Nonuniform block size. */
53 int nb_blocs[4];
54 int sector_len[4];
56 QTestState *qtest;
57 } FlashConfig;
59 static char image_path[] = "/tmp/qtest.XXXXXX";
62 * The pflash implementation allows some parameters to be unspecified. We want
63 * to test those configurations but we also need to know the real values in
64 * our testing code. So after we launch qemu, we'll need a new FlashConfig
65 * with the correct values filled in.
67 static FlashConfig expand_config_defaults(const FlashConfig *c)
69 FlashConfig ret = *c;
71 if (ret.bank_width == 0) {
72 ret.bank_width = 2;
74 if (ret.nb_blocs[0] == 0 && ret.sector_len[0] == 0) {
75 ret.sector_len[0] = UNIFORM_FLASH_SECTOR_SIZE;
76 ret.nb_blocs[0] = UNIFORM_FLASH_SIZE / UNIFORM_FLASH_SECTOR_SIZE;
79 /* XXX: Limitations of test harness. */
80 assert(ret.bank_width == 2);
81 return ret;
85 * Return a bit mask suitable for extracting the least significant
86 * status/query response from an interleaved response.
88 static inline uint64_t device_mask(const FlashConfig *c)
90 return (uint64_t)-1;
94 * Return a bit mask exactly as long as the bank_width.
96 static inline uint64_t bank_mask(const FlashConfig *c)
98 if (c->bank_width == 8) {
99 return (uint64_t)-1;
101 return (1ULL << (c->bank_width * 8)) - 1ULL;
104 static inline void flash_write(const FlashConfig *c, uint64_t byte_addr,
105 uint64_t data)
107 /* Sanity check our tests. */
108 assert((data & ~bank_mask(c)) == 0);
109 uint64_t addr = BASE_ADDR + byte_addr;
110 switch (c->bank_width) {
111 case 1:
112 qtest_writeb(c->qtest, addr, data);
113 break;
114 case 2:
115 qtest_writew(c->qtest, addr, data);
116 break;
117 case 4:
118 qtest_writel(c->qtest, addr, data);
119 break;
120 case 8:
121 qtest_writeq(c->qtest, addr, data);
122 break;
123 default:
124 abort();
128 static inline uint64_t flash_read(const FlashConfig *c, uint64_t byte_addr)
130 uint64_t addr = BASE_ADDR + byte_addr;
131 switch (c->bank_width) {
132 case 1:
133 return qtest_readb(c->qtest, addr);
134 case 2:
135 return qtest_readw(c->qtest, addr);
136 case 4:
137 return qtest_readl(c->qtest, addr);
138 case 8:
139 return qtest_readq(c->qtest, addr);
140 default:
141 abort();
146 * Convert a flash address expressed in the maximum width of the device as a
147 * byte address.
149 static inline uint64_t as_byte_addr(const FlashConfig *c, faddr flash_addr)
152 * Command addresses are always given as addresses in the maximum
153 * supported bus size for the flash chip. So an x8/x16 chip in x8 mode
154 * uses addresses 0xAAA and 0x555 to unlock because the least significant
155 * bit is ignored. (0x555 rather than 0x554 is traditional.)
157 * In general we need to multiply by the maximum device width.
159 return flash_addr.addr * c->bank_width;
163 * Return the command value or expected status replicated across all devices.
165 static inline uint64_t replicate(const FlashConfig *c, uint64_t data)
167 /* Sanity check our tests. */
168 assert((data & ~device_mask(c)) == 0);
169 return data;
172 static inline void flash_cmd(const FlashConfig *c, faddr cmd_addr,
173 uint8_t cmd)
175 flash_write(c, as_byte_addr(c, cmd_addr), replicate(c, cmd));
178 static inline uint64_t flash_query(const FlashConfig *c, faddr query_addr)
180 return flash_read(c, as_byte_addr(c, query_addr));
183 static inline uint64_t flash_query_1(const FlashConfig *c, faddr query_addr)
185 return flash_query(c, query_addr) & device_mask(c);
188 static void unlock(const FlashConfig *c)
190 flash_cmd(c, UNLOCK0_ADDR, UNLOCK0_CMD);
191 flash_cmd(c, UNLOCK1_ADDR, UNLOCK1_CMD);
194 static void reset(const FlashConfig *c)
196 flash_cmd(c, FLASH_ADDR(0), RESET_CMD);
199 static void sector_erase(const FlashConfig *c, uint64_t byte_addr)
201 unlock(c);
202 flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
203 unlock(c);
204 flash_write(c, byte_addr, replicate(c, SECTOR_ERASE_CMD));
207 static void wait_for_completion(const FlashConfig *c, uint64_t byte_addr)
209 /* If DQ6 is toggling, step the clock and ensure the toggle stops. */
210 const uint64_t dq6 = replicate(c, 0x40);
211 if ((flash_read(c, byte_addr) & dq6) ^ (flash_read(c, byte_addr) & dq6)) {
212 /* Wait for erase or program to finish. */
213 qtest_clock_step_next(c->qtest);
214 /* Ensure that DQ6 has stopped toggling. */
215 g_assert_cmphex(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
219 static void bypass_program(const FlashConfig *c, uint64_t byte_addr,
220 uint16_t data)
222 flash_cmd(c, UNLOCK0_ADDR, PROGRAM_CMD);
223 flash_write(c, byte_addr, data);
225 * Data isn't valid until DQ6 stops toggling. We don't model this as
226 * writes are immediate, but if this changes in the future, we can wait
227 * until the program is complete.
229 wait_for_completion(c, byte_addr);
232 static void program(const FlashConfig *c, uint64_t byte_addr, uint16_t data)
234 unlock(c);
235 bypass_program(c, byte_addr, data);
238 static void chip_erase(const FlashConfig *c)
240 unlock(c);
241 flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
242 unlock(c);
243 flash_cmd(c, UNLOCK0_ADDR, CHIP_ERASE_CMD);
246 static void erase_suspend(const FlashConfig *c)
248 flash_cmd(c, FLASH_ADDR(0), ERASE_SUSPEND_CMD);
251 static void erase_resume(const FlashConfig *c)
253 flash_cmd(c, FLASH_ADDR(0), ERASE_RESUME_CMD);
257 * Test flash commands with a variety of device geometry.
259 static void test_geometry(const void *opaque)
261 const FlashConfig *config = opaque;
262 QTestState *qtest;
263 qtest = qtest_initf("-M musicpal,accel=qtest"
264 " -drive if=pflash,file=%s,format=raw,copy-on-read"
265 /* Device geometry properties. */
266 " -global driver=cfi.pflash02,"
267 "property=num-blocks0,value=%d"
268 " -global driver=cfi.pflash02,"
269 "property=sector-length0,value=%d"
270 " -global driver=cfi.pflash02,"
271 "property=num-blocks1,value=%d"
272 " -global driver=cfi.pflash02,"
273 "property=sector-length1,value=%d"
274 " -global driver=cfi.pflash02,"
275 "property=num-blocks2,value=%d"
276 " -global driver=cfi.pflash02,"
277 "property=sector-length2,value=%d"
278 " -global driver=cfi.pflash02,"
279 "property=num-blocks3,value=%d"
280 " -global driver=cfi.pflash02,"
281 "property=sector-length3,value=%d",
282 image_path,
283 config->nb_blocs[0],
284 config->sector_len[0],
285 config->nb_blocs[1],
286 config->sector_len[1],
287 config->nb_blocs[2],
288 config->sector_len[2],
289 config->nb_blocs[3],
290 config->sector_len[3]);
291 FlashConfig explicit_config = expand_config_defaults(config);
292 explicit_config.qtest = qtest;
293 const FlashConfig *c = &explicit_config;
295 /* Check the IDs. */
296 unlock(c);
297 flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD);
298 g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
299 if (c->bank_width >= 2) {
301 * XXX: The ID returned by the musicpal flash chip is 16 bits which
302 * wouldn't happen with an 8-bit device. It would probably be best to
303 * prohibit addresses larger than the device width in pflash_cfi02.c,
304 * but then we couldn't test smaller device widths at all.
306 g_assert_cmphex(flash_query(c, FLASH_ADDR(1)), ==,
307 replicate(c, 0x236D));
309 reset(c);
311 /* Check the erase blocks. */
312 flash_cmd(c, CFI_ADDR, CFI_CMD);
313 g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q'));
314 g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R'));
315 g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));
317 /* Num erase regions. */
318 int nb_erase_regions = flash_query_1(c, FLASH_ADDR(0x2C));
319 g_assert_cmphex(nb_erase_regions, ==,
320 !!c->nb_blocs[0] + !!c->nb_blocs[1] + !!c->nb_blocs[2] +
321 !!c->nb_blocs[3]);
323 /* Check device length. */
324 uint32_t device_len = 1 << flash_query_1(c, FLASH_ADDR(0x27));
325 g_assert_cmphex(device_len, ==, UNIFORM_FLASH_SIZE);
327 /* Check that erase suspend to read/write is supported. */
328 uint16_t pri = flash_query_1(c, FLASH_ADDR(0x15)) +
329 (flash_query_1(c, FLASH_ADDR(0x16)) << 8);
330 g_assert_cmpint(pri, >=, 0x2D + 4 * nb_erase_regions);
331 g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 0)), ==, replicate(c, 'P'));
332 g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 1)), ==, replicate(c, 'R'));
333 g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 2)), ==, replicate(c, 'I'));
334 g_assert_cmpint(flash_query_1(c, FLASH_ADDR(pri + 6)), ==, 2); /* R/W */
335 reset(c);
337 const uint64_t dq7 = replicate(c, 0x80);
338 const uint64_t dq6 = replicate(c, 0x40);
339 const uint64_t dq3 = replicate(c, 0x08);
340 const uint64_t dq2 = replicate(c, 0x04);
342 uint64_t byte_addr = 0;
343 for (int region = 0; region < nb_erase_regions; ++region) {
344 uint64_t base = 0x2D + 4 * region;
345 flash_cmd(c, CFI_ADDR, CFI_CMD);
346 uint32_t nb_sectors = flash_query_1(c, FLASH_ADDR(base + 0)) +
347 (flash_query_1(c, FLASH_ADDR(base + 1)) << 8) + 1;
348 uint32_t sector_len = (flash_query_1(c, FLASH_ADDR(base + 2)) << 8) +
349 (flash_query_1(c, FLASH_ADDR(base + 3)) << 16);
350 g_assert_cmphex(nb_sectors, ==, c->nb_blocs[region]);
351 g_assert_cmphex(sector_len, ==, c->sector_len[region]);
352 reset(c);
354 /* Erase and program sector. */
355 for (uint32_t i = 0; i < nb_sectors; ++i) {
356 sector_erase(c, byte_addr);
358 /* Check that DQ3 is 0. */
359 g_assert_cmphex(flash_read(c, byte_addr) & dq3, ==, 0);
360 qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */
362 /* Check that DQ3 is 1. */
363 uint64_t status0 = flash_read(c, byte_addr);
364 g_assert_cmphex(status0 & dq3, ==, dq3);
366 /* DQ7 is 0 during an erase. */
367 g_assert_cmphex(status0 & dq7, ==, 0);
368 uint64_t status1 = flash_read(c, byte_addr);
370 /* DQ6 toggles during an erase. */
371 g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
373 /* Wait for erase to complete. */
374 wait_for_completion(c, byte_addr);
376 /* Ensure DQ6 has stopped toggling. */
377 g_assert_cmphex(flash_read(c, byte_addr), ==,
378 flash_read(c, byte_addr));
380 /* Now the data should be valid. */
381 g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
383 /* Program a bit pattern. */
384 program(c, byte_addr, 0x55);
385 g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x55);
386 program(c, byte_addr, 0xA5);
387 g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x05);
388 byte_addr += sector_len;
392 /* Erase the chip. */
393 chip_erase(c);
394 /* Read toggle. */
395 uint64_t status0 = flash_read(c, 0);
396 /* DQ7 is 0 during an erase. */
397 g_assert_cmphex(status0 & dq7, ==, 0);
398 uint64_t status1 = flash_read(c, 0);
399 /* DQ6 toggles during an erase. */
400 g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
401 /* Wait for erase to complete. */
402 qtest_clock_step_next(c->qtest);
403 /* Ensure DQ6 has stopped toggling. */
404 g_assert_cmphex(flash_read(c, 0), ==, flash_read(c, 0));
405 /* Now the data should be valid. */
407 for (int region = 0; region < nb_erase_regions; ++region) {
408 for (uint32_t i = 0; i < c->nb_blocs[region]; ++i) {
409 uint64_t byte_addr = i * c->sector_len[region];
410 g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
414 /* Unlock bypass */
415 unlock(c);
416 flash_cmd(c, UNLOCK0_ADDR, UNLOCK_BYPASS_CMD);
417 bypass_program(c, 0 * c->bank_width, 0x01);
418 bypass_program(c, 1 * c->bank_width, 0x23);
419 bypass_program(c, 2 * c->bank_width, 0x45);
421 * Test that bypass programming, unlike normal programming can use any
422 * address for the PROGRAM_CMD.
424 flash_cmd(c, FLASH_ADDR(3 * c->bank_width), PROGRAM_CMD);
425 flash_write(c, 3 * c->bank_width, 0x67);
426 wait_for_completion(c, 3 * c->bank_width);
427 flash_cmd(c, FLASH_ADDR(0), UNLOCK_BYPASS_RESET_CMD);
428 bypass_program(c, 4 * c->bank_width, 0x89); /* Should fail. */
429 g_assert_cmphex(flash_read(c, 0 * c->bank_width), ==, 0x01);
430 g_assert_cmphex(flash_read(c, 1 * c->bank_width), ==, 0x23);
431 g_assert_cmphex(flash_read(c, 2 * c->bank_width), ==, 0x45);
432 g_assert_cmphex(flash_read(c, 3 * c->bank_width), ==, 0x67);
433 g_assert_cmphex(flash_read(c, 4 * c->bank_width), ==, bank_mask(c));
435 /* Test ignored high order bits of address. */
436 flash_cmd(c, FLASH_ADDR(0x5555), UNLOCK0_CMD);
437 flash_cmd(c, FLASH_ADDR(0x2AAA), UNLOCK1_CMD);
438 flash_cmd(c, FLASH_ADDR(0x5555), AUTOSELECT_CMD);
439 g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
440 reset(c);
443 * Program a word on each sector, erase one or two sectors per region, and
444 * verify that all of those, and only those, are erased.
446 byte_addr = 0;
447 for (int region = 0; region < nb_erase_regions; ++region) {
448 for (int i = 0; i < config->nb_blocs[region]; ++i) {
449 program(c, byte_addr, 0);
450 byte_addr += config->sector_len[region];
453 unlock(c);
454 flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
455 unlock(c);
456 byte_addr = 0;
457 const uint64_t erase_cmd = replicate(c, SECTOR_ERASE_CMD);
458 for (int region = 0; region < nb_erase_regions; ++region) {
459 flash_write(c, byte_addr, erase_cmd);
460 if (c->nb_blocs[region] > 1) {
461 flash_write(c, byte_addr + c->sector_len[region], erase_cmd);
463 byte_addr += c->sector_len[region] * c->nb_blocs[region];
466 qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */
467 wait_for_completion(c, 0);
468 byte_addr = 0;
469 for (int region = 0; region < nb_erase_regions; ++region) {
470 for (int i = 0; i < config->nb_blocs[region]; ++i) {
471 if (i < 2) {
472 g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
473 } else {
474 g_assert_cmphex(flash_read(c, byte_addr), ==, 0);
476 byte_addr += config->sector_len[region];
480 /* Test erase suspend/resume during erase timeout. */
481 sector_erase(c, 0);
483 * Check that DQ 3 is 0 and DQ6 and DQ2 are toggling in the sector being
484 * erased as well as in a sector not being erased.
486 byte_addr = c->sector_len[0];
487 status0 = flash_read(c, 0);
488 status1 = flash_read(c, 0);
489 g_assert_cmpint(status0 & dq3, ==, 0);
490 g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
491 g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
492 status0 = flash_read(c, byte_addr);
493 status1 = flash_read(c, byte_addr);
494 g_assert_cmpint(status0 & dq3, ==, 0);
495 g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
496 g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
499 * Check that after suspending, DQ6 does not toggle but DQ2 does toggle in
500 * an erase suspended sector but that neither toggle (we should be
501 * getting data) in a sector not being erased.
503 erase_suspend(c);
504 status0 = flash_read(c, 0);
505 status1 = flash_read(c, 0);
506 g_assert_cmpint(status0 & dq6, ==, status1 & dq6);
507 g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
508 g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
510 /* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */
511 erase_resume(c);
512 status0 = flash_read(c, 0);
513 status1 = flash_read(c, 0);
514 g_assert_cmpint(status0 & dq3, ==, dq3);
515 g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
516 g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
517 status0 = flash_read(c, byte_addr);
518 status1 = flash_read(c, byte_addr);
519 g_assert_cmpint(status0 & dq3, ==, dq3);
520 g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
521 g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
522 wait_for_completion(c, 0);
524 /* Repeat this process but this time suspend after the timeout. */
525 sector_erase(c, 0);
526 qtest_clock_step_next(c->qtest);
528 * Check that DQ 3 is 1 and DQ6 and DQ2 are toggling in the sector being
529 * erased as well as in a sector not being erased.
531 byte_addr = c->sector_len[0];
532 status0 = flash_read(c, 0);
533 status1 = flash_read(c, 0);
534 g_assert_cmpint(status0 & dq3, ==, dq3);
535 g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
536 g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
537 status0 = flash_read(c, byte_addr);
538 status1 = flash_read(c, byte_addr);
539 g_assert_cmpint(status0 & dq3, ==, dq3);
540 g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
541 g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
544 * Check that after suspending, DQ6 does not toggle but DQ2 does toggle in
545 * an erase suspended sector but that neither toggle (we should be
546 * getting data) in a sector not being erased.
548 erase_suspend(c);
549 status0 = flash_read(c, 0);
550 status1 = flash_read(c, 0);
551 g_assert_cmpint(status0 & dq6, ==, status1 & dq6);
552 g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
553 g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
555 /* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */
556 erase_resume(c);
557 status0 = flash_read(c, 0);
558 status1 = flash_read(c, 0);
559 g_assert_cmpint(status0 & dq3, ==, dq3);
560 g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
561 g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
562 status0 = flash_read(c, byte_addr);
563 status1 = flash_read(c, byte_addr);
564 g_assert_cmpint(status0 & dq3, ==, dq3);
565 g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
566 g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
567 wait_for_completion(c, 0);
569 qtest_quit(qtest);
573 * Test that
574 * 1. enter autoselect mode;
575 * 2. enter CFI mode; and then
576 * 3. exit CFI mode
577 * leaves the flash device in autoselect mode.
579 static void test_cfi_in_autoselect(const void *opaque)
581 const FlashConfig *config = opaque;
582 QTestState *qtest;
583 qtest = qtest_initf("-M musicpal,accel=qtest"
584 " -drive if=pflash,file=%s,format=raw,copy-on-read",
585 image_path);
586 FlashConfig explicit_config = expand_config_defaults(config);
587 explicit_config.qtest = qtest;
588 const FlashConfig *c = &explicit_config;
590 /* 1. Enter autoselect. */
591 unlock(c);
592 flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD);
593 g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
595 /* 2. Enter CFI. */
596 flash_cmd(c, CFI_ADDR, CFI_CMD);
597 g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q'));
598 g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R'));
599 g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));
601 /* 3. Exit CFI. */
602 reset(c);
603 g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
605 qtest_quit(qtest);
608 static void cleanup(void *opaque)
610 unlink(image_path);
614 * XXX: Tests are limited to bank_width = 2 for now because that's what
615 * hw/arm/musicpal.c has.
617 static const FlashConfig configuration[] = {
618 /* One x16 device. */
620 .bank_width = 2,
622 /* Nonuniform sectors (top boot). */
624 .bank_width = 2,
625 .nb_blocs = { 127, 1, 2, 1 },
626 .sector_len = { 0x10000, 0x08000, 0x02000, 0x04000 },
628 /* Nonuniform sectors (bottom boot). */
630 .bank_width = 2,
631 .nb_blocs = { 1, 2, 1, 127 },
632 .sector_len = { 0x04000, 0x02000, 0x08000, 0x10000 },
636 int main(int argc, char **argv)
638 int fd = mkstemp(image_path);
639 if (fd == -1) {
640 g_printerr("Failed to create temporary file %s: %s\n", image_path,
641 strerror(errno));
642 exit(EXIT_FAILURE);
644 if (ftruncate(fd, UNIFORM_FLASH_SIZE) < 0) {
645 int error_code = errno;
646 close(fd);
647 unlink(image_path);
648 g_printerr("Failed to truncate file %s to %u MB: %s\n", image_path,
649 UNIFORM_FLASH_SIZE, strerror(error_code));
650 exit(EXIT_FAILURE);
652 close(fd);
654 qtest_add_abrt_handler(cleanup, NULL);
655 g_test_init(&argc, &argv, NULL);
657 size_t nb_configurations = sizeof configuration / sizeof configuration[0];
658 for (size_t i = 0; i < nb_configurations; ++i) {
659 const FlashConfig *config = &configuration[i];
660 char *path = g_strdup_printf("pflash-cfi02"
661 "/geometry/%dx%x-%dx%x-%dx%x-%dx%x"
662 "/%d",
663 config->nb_blocs[0],
664 config->sector_len[0],
665 config->nb_blocs[1],
666 config->sector_len[1],
667 config->nb_blocs[2],
668 config->sector_len[2],
669 config->nb_blocs[3],
670 config->sector_len[3],
671 config->bank_width);
672 qtest_add_data_func(path, config, test_geometry);
673 g_free(path);
676 qtest_add_data_func("pflash-cfi02/cfi-in-autoselect", &configuration[0],
677 test_cfi_in_autoselect);
678 int result = g_test_run();
679 cleanup(NULL);
680 return result;