2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
21 #include "migration.h"
22 #include "qemu-file.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
29 #include "qemu/sockets.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/coroutine.h"
32 #include <sys/socket.h>
34 #include <arpa/inet.h>
35 #include <rdma/rdma_cma.h>
39 * Print and error on both the Monitor and the Log file.
41 #define ERROR(errp, fmt, ...) \
43 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
44 if (errp && (*(errp) == NULL)) { \
45 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
49 #define RDMA_RESOLVE_TIMEOUT_MS 10000
51 /* Do not merge data if larger than this. */
52 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
53 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
55 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
58 * This is only for non-live state being migrated.
59 * Instead of RDMA_WRITE messages, we use RDMA_SEND
60 * messages for that state, which requires a different
61 * delivery design than main memory.
63 #define RDMA_SEND_INCREMENT 32768
66 * Maximum size infiniband SEND message
68 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
69 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
71 #define RDMA_CONTROL_VERSION_CURRENT 1
73 * Capabilities for negotiation.
75 #define RDMA_CAPABILITY_PIN_ALL 0x01
78 * Add the other flags above to this list of known capabilities
79 * as they are introduced.
81 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
83 #define CHECK_ERROR_STATE() \
85 if (rdma->error_state) { \
86 if (!rdma->error_reported) { \
87 error_report("RDMA is in an error state waiting migration" \
89 rdma->error_reported = 1; \
91 return rdma->error_state; \
96 * A work request ID is 64-bits and we split up these bits
99 * bits 0-15 : type of control message, 2^16
100 * bits 16-29: ram block index, 2^14
101 * bits 30-63: ram block chunk number, 2^34
103 * The last two bit ranges are only used for RDMA writes,
104 * in order to track their completion and potentially
105 * also track unregistration status of the message.
107 #define RDMA_WRID_TYPE_SHIFT 0UL
108 #define RDMA_WRID_BLOCK_SHIFT 16UL
109 #define RDMA_WRID_CHUNK_SHIFT 30UL
111 #define RDMA_WRID_TYPE_MASK \
112 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
114 #define RDMA_WRID_BLOCK_MASK \
115 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
117 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
120 * RDMA migration protocol:
121 * 1. RDMA Writes (data messages, i.e. RAM)
122 * 2. IB Send/Recv (control channel messages)
126 RDMA_WRID_RDMA_WRITE
= 1,
127 RDMA_WRID_SEND_CONTROL
= 2000,
128 RDMA_WRID_RECV_CONTROL
= 4000,
131 static const char *wrid_desc
[] = {
132 [RDMA_WRID_NONE
] = "NONE",
133 [RDMA_WRID_RDMA_WRITE
] = "WRITE RDMA",
134 [RDMA_WRID_SEND_CONTROL
] = "CONTROL SEND",
135 [RDMA_WRID_RECV_CONTROL
] = "CONTROL RECV",
139 * Work request IDs for IB SEND messages only (not RDMA writes).
140 * This is used by the migration protocol to transmit
141 * control messages (such as device state and registration commands)
143 * We could use more WRs, but we have enough for now.
153 * SEND/RECV IB Control Messages.
156 RDMA_CONTROL_NONE
= 0,
158 RDMA_CONTROL_READY
, /* ready to receive */
159 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
160 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
161 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
162 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
163 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
164 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
165 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
166 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
167 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
172 * Memory and MR structures used to represent an IB Send/Recv work request.
173 * This is *not* used for RDMA writes, only IB Send/Recv.
176 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
177 struct ibv_mr
*control_mr
; /* registration metadata */
178 size_t control_len
; /* length of the message */
179 uint8_t *control_curr
; /* start of unconsumed bytes */
180 } RDMAWorkRequestData
;
183 * Negotiate RDMA capabilities during connection-setup time.
190 static void caps_to_network(RDMACapabilities
*cap
)
192 cap
->version
= htonl(cap
->version
);
193 cap
->flags
= htonl(cap
->flags
);
196 static void network_to_caps(RDMACapabilities
*cap
)
198 cap
->version
= ntohl(cap
->version
);
199 cap
->flags
= ntohl(cap
->flags
);
203 * Representation of a RAMBlock from an RDMA perspective.
204 * This is not transmitted, only local.
205 * This and subsequent structures cannot be linked lists
206 * because we're using a single IB message to transmit
207 * the information. It's small anyway, so a list is overkill.
209 typedef struct RDMALocalBlock
{
211 uint8_t *local_host_addr
; /* local virtual address */
212 uint64_t remote_host_addr
; /* remote virtual address */
215 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
216 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
217 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
218 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
219 int index
; /* which block are we */
220 unsigned int src_index
; /* (Only used on dest) */
223 unsigned long *transit_bitmap
;
224 unsigned long *unregister_bitmap
;
228 * Also represents a RAMblock, but only on the dest.
229 * This gets transmitted by the dest during connection-time
230 * to the source VM and then is used to populate the
231 * corresponding RDMALocalBlock with
232 * the information needed to perform the actual RDMA.
234 typedef struct QEMU_PACKED RDMADestBlock
{
235 uint64_t remote_host_addr
;
238 uint32_t remote_rkey
;
242 static const char *control_desc(unsigned int rdma_control
)
244 static const char *strs
[] = {
245 [RDMA_CONTROL_NONE
] = "NONE",
246 [RDMA_CONTROL_ERROR
] = "ERROR",
247 [RDMA_CONTROL_READY
] = "READY",
248 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
249 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
250 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
251 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
252 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
253 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
254 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
255 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
256 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
259 if (rdma_control
> RDMA_CONTROL_UNREGISTER_FINISHED
) {
260 return "??BAD CONTROL VALUE??";
263 return strs
[rdma_control
];
266 static uint64_t htonll(uint64_t v
)
268 union { uint32_t lv
[2]; uint64_t llv
; } u
;
269 u
.lv
[0] = htonl(v
>> 32);
270 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
274 static uint64_t ntohll(uint64_t v
) {
275 union { uint32_t lv
[2]; uint64_t llv
; } u
;
277 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
280 static void dest_block_to_network(RDMADestBlock
*db
)
282 db
->remote_host_addr
= htonll(db
->remote_host_addr
);
283 db
->offset
= htonll(db
->offset
);
284 db
->length
= htonll(db
->length
);
285 db
->remote_rkey
= htonl(db
->remote_rkey
);
288 static void network_to_dest_block(RDMADestBlock
*db
)
290 db
->remote_host_addr
= ntohll(db
->remote_host_addr
);
291 db
->offset
= ntohll(db
->offset
);
292 db
->length
= ntohll(db
->length
);
293 db
->remote_rkey
= ntohl(db
->remote_rkey
);
297 * Virtual address of the above structures used for transmitting
298 * the RAMBlock descriptions at connection-time.
299 * This structure is *not* transmitted.
301 typedef struct RDMALocalBlocks
{
303 bool init
; /* main memory init complete */
304 RDMALocalBlock
*block
;
308 * Main data structure for RDMA state.
309 * While there is only one copy of this structure being allocated right now,
310 * this is the place where one would start if you wanted to consider
311 * having more than one RDMA connection open at the same time.
313 typedef struct RDMAContext
{
317 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
320 * This is used by *_exchange_send() to figure out whether or not
321 * the initial "READY" message has already been received or not.
322 * This is because other functions may potentially poll() and detect
323 * the READY message before send() does, in which case we need to
324 * know if it completed.
326 int control_ready_expected
;
328 /* number of outstanding writes */
331 /* store info about current buffer so that we can
332 merge it with future sends */
333 uint64_t current_addr
;
334 uint64_t current_length
;
335 /* index of ram block the current buffer belongs to */
337 /* index of the chunk in the current ram block */
343 * infiniband-specific variables for opening the device
344 * and maintaining connection state and so forth.
346 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
347 * cm_id->verbs, cm_id->channel, and cm_id->qp.
349 struct rdma_cm_id
*cm_id
; /* connection manager ID */
350 struct rdma_cm_id
*listen_id
;
353 struct ibv_context
*verbs
;
354 struct rdma_event_channel
*channel
;
355 struct ibv_qp
*qp
; /* queue pair */
356 struct ibv_comp_channel
*comp_channel
; /* completion channel */
357 struct ibv_pd
*pd
; /* protection domain */
358 struct ibv_cq
*cq
; /* completion queue */
361 * If a previous write failed (perhaps because of a failed
362 * memory registration, then do not attempt any future work
363 * and remember the error state.
370 * Description of ram blocks used throughout the code.
372 RDMALocalBlocks local_ram_blocks
;
373 RDMADestBlock
*dest_blocks
;
375 /* Index of the next RAMBlock received during block registration */
376 unsigned int next_src_index
;
379 * Migration on *destination* started.
380 * Then use coroutine yield function.
381 * Source runs in a thread, so we don't care.
383 int migration_started_on_destination
;
385 int total_registrations
;
388 int unregister_current
, unregister_next
;
389 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
391 GHashTable
*blockmap
;
393 /* the RDMAContext for return path */
394 struct RDMAContext
*return_path
;
398 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
399 #define QIO_CHANNEL_RDMA(obj) \
400 OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA)
402 typedef struct QIOChannelRDMA QIOChannelRDMA
;
405 struct QIOChannelRDMA
{
408 RDMAContext
*rdmaout
;
410 bool blocking
; /* XXX we don't actually honour this yet */
414 * Main structure for IB Send/Recv control messages.
415 * This gets prepended at the beginning of every Send/Recv.
417 typedef struct QEMU_PACKED
{
418 uint32_t len
; /* Total length of data portion */
419 uint32_t type
; /* which control command to perform */
420 uint32_t repeat
; /* number of commands in data portion of same type */
424 static void control_to_network(RDMAControlHeader
*control
)
426 control
->type
= htonl(control
->type
);
427 control
->len
= htonl(control
->len
);
428 control
->repeat
= htonl(control
->repeat
);
431 static void network_to_control(RDMAControlHeader
*control
)
433 control
->type
= ntohl(control
->type
);
434 control
->len
= ntohl(control
->len
);
435 control
->repeat
= ntohl(control
->repeat
);
439 * Register a single Chunk.
440 * Information sent by the source VM to inform the dest
441 * to register an single chunk of memory before we can perform
442 * the actual RDMA operation.
444 typedef struct QEMU_PACKED
{
446 uint64_t current_addr
; /* offset into the ram_addr_t space */
447 uint64_t chunk
; /* chunk to lookup if unregistering */
449 uint32_t current_index
; /* which ramblock the chunk belongs to */
451 uint64_t chunks
; /* how many sequential chunks to register */
454 static void register_to_network(RDMAContext
*rdma
, RDMARegister
*reg
)
456 RDMALocalBlock
*local_block
;
457 local_block
= &rdma
->local_ram_blocks
.block
[reg
->current_index
];
459 if (local_block
->is_ram_block
) {
461 * current_addr as passed in is an address in the local ram_addr_t
462 * space, we need to translate this for the destination
464 reg
->key
.current_addr
-= local_block
->offset
;
465 reg
->key
.current_addr
+= rdma
->dest_blocks
[reg
->current_index
].offset
;
467 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
468 reg
->current_index
= htonl(reg
->current_index
);
469 reg
->chunks
= htonll(reg
->chunks
);
472 static void network_to_register(RDMARegister
*reg
)
474 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
475 reg
->current_index
= ntohl(reg
->current_index
);
476 reg
->chunks
= ntohll(reg
->chunks
);
479 typedef struct QEMU_PACKED
{
480 uint32_t value
; /* if zero, we will madvise() */
481 uint32_t block_idx
; /* which ram block index */
482 uint64_t offset
; /* Address in remote ram_addr_t space */
483 uint64_t length
; /* length of the chunk */
486 static void compress_to_network(RDMAContext
*rdma
, RDMACompress
*comp
)
488 comp
->value
= htonl(comp
->value
);
490 * comp->offset as passed in is an address in the local ram_addr_t
491 * space, we need to translate this for the destination
493 comp
->offset
-= rdma
->local_ram_blocks
.block
[comp
->block_idx
].offset
;
494 comp
->offset
+= rdma
->dest_blocks
[comp
->block_idx
].offset
;
495 comp
->block_idx
= htonl(comp
->block_idx
);
496 comp
->offset
= htonll(comp
->offset
);
497 comp
->length
= htonll(comp
->length
);
500 static void network_to_compress(RDMACompress
*comp
)
502 comp
->value
= ntohl(comp
->value
);
503 comp
->block_idx
= ntohl(comp
->block_idx
);
504 comp
->offset
= ntohll(comp
->offset
);
505 comp
->length
= ntohll(comp
->length
);
509 * The result of the dest's memory registration produces an "rkey"
510 * which the source VM must reference in order to perform
511 * the RDMA operation.
513 typedef struct QEMU_PACKED
{
517 } RDMARegisterResult
;
519 static void result_to_network(RDMARegisterResult
*result
)
521 result
->rkey
= htonl(result
->rkey
);
522 result
->host_addr
= htonll(result
->host_addr
);
525 static void network_to_result(RDMARegisterResult
*result
)
527 result
->rkey
= ntohl(result
->rkey
);
528 result
->host_addr
= ntohll(result
->host_addr
);
531 const char *print_wrid(int wrid
);
532 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
533 uint8_t *data
, RDMAControlHeader
*resp
,
535 int (*callback
)(RDMAContext
*rdma
));
537 static inline uint64_t ram_chunk_index(const uint8_t *start
,
540 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
543 static inline uint8_t *ram_chunk_start(const RDMALocalBlock
*rdma_ram_block
,
546 return (uint8_t *)(uintptr_t)(rdma_ram_block
->local_host_addr
+
547 (i
<< RDMA_REG_CHUNK_SHIFT
));
550 static inline uint8_t *ram_chunk_end(const RDMALocalBlock
*rdma_ram_block
,
553 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
554 (1UL << RDMA_REG_CHUNK_SHIFT
);
556 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
557 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
563 static int rdma_add_block(RDMAContext
*rdma
, const char *block_name
,
565 ram_addr_t block_offset
, uint64_t length
)
567 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
568 RDMALocalBlock
*block
;
569 RDMALocalBlock
*old
= local
->block
;
571 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
+ 1);
573 if (local
->nb_blocks
) {
576 if (rdma
->blockmap
) {
577 for (x
= 0; x
< local
->nb_blocks
; x
++) {
578 g_hash_table_remove(rdma
->blockmap
,
579 (void *)(uintptr_t)old
[x
].offset
);
580 g_hash_table_insert(rdma
->blockmap
,
581 (void *)(uintptr_t)old
[x
].offset
,
585 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
589 block
= &local
->block
[local
->nb_blocks
];
591 block
->block_name
= g_strdup(block_name
);
592 block
->local_host_addr
= host_addr
;
593 block
->offset
= block_offset
;
594 block
->length
= length
;
595 block
->index
= local
->nb_blocks
;
596 block
->src_index
= ~0U; /* Filled in by the receipt of the block list */
597 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
598 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
599 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
600 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
601 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
602 block
->remote_keys
= g_new0(uint32_t, block
->nb_chunks
);
604 block
->is_ram_block
= local
->init
? false : true;
606 if (rdma
->blockmap
) {
607 g_hash_table_insert(rdma
->blockmap
, (void *)(uintptr_t)block_offset
, block
);
610 trace_rdma_add_block(block_name
, local
->nb_blocks
,
611 (uintptr_t) block
->local_host_addr
,
612 block
->offset
, block
->length
,
613 (uintptr_t) (block
->local_host_addr
+ block
->length
),
614 BITS_TO_LONGS(block
->nb_chunks
) *
615 sizeof(unsigned long) * 8,
624 * Memory regions need to be registered with the device and queue pairs setup
625 * in advanced before the migration starts. This tells us where the RAM blocks
626 * are so that we can register them individually.
628 static int qemu_rdma_init_one_block(RAMBlock
*rb
, void *opaque
)
630 const char *block_name
= qemu_ram_get_idstr(rb
);
631 void *host_addr
= qemu_ram_get_host_addr(rb
);
632 ram_addr_t block_offset
= qemu_ram_get_offset(rb
);
633 ram_addr_t length
= qemu_ram_get_used_length(rb
);
634 return rdma_add_block(opaque
, block_name
, host_addr
, block_offset
, length
);
638 * Identify the RAMBlocks and their quantity. They will be references to
639 * identify chunk boundaries inside each RAMBlock and also be referenced
640 * during dynamic page registration.
642 static int qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
644 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
647 assert(rdma
->blockmap
== NULL
);
648 memset(local
, 0, sizeof *local
);
649 ret
= foreach_not_ignored_block(qemu_rdma_init_one_block
, rdma
);
653 trace_qemu_rdma_init_ram_blocks(local
->nb_blocks
);
654 rdma
->dest_blocks
= g_new0(RDMADestBlock
,
655 rdma
->local_ram_blocks
.nb_blocks
);
661 * Note: If used outside of cleanup, the caller must ensure that the destination
662 * block structures are also updated
664 static int rdma_delete_block(RDMAContext
*rdma
, RDMALocalBlock
*block
)
666 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
667 RDMALocalBlock
*old
= local
->block
;
670 if (rdma
->blockmap
) {
671 g_hash_table_remove(rdma
->blockmap
, (void *)(uintptr_t)block
->offset
);
676 for (j
= 0; j
< block
->nb_chunks
; j
++) {
677 if (!block
->pmr
[j
]) {
680 ibv_dereg_mr(block
->pmr
[j
]);
681 rdma
->total_registrations
--;
688 ibv_dereg_mr(block
->mr
);
689 rdma
->total_registrations
--;
693 g_free(block
->transit_bitmap
);
694 block
->transit_bitmap
= NULL
;
696 g_free(block
->unregister_bitmap
);
697 block
->unregister_bitmap
= NULL
;
699 g_free(block
->remote_keys
);
700 block
->remote_keys
= NULL
;
702 g_free(block
->block_name
);
703 block
->block_name
= NULL
;
705 if (rdma
->blockmap
) {
706 for (x
= 0; x
< local
->nb_blocks
; x
++) {
707 g_hash_table_remove(rdma
->blockmap
,
708 (void *)(uintptr_t)old
[x
].offset
);
712 if (local
->nb_blocks
> 1) {
714 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
- 1);
717 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
720 if (block
->index
< (local
->nb_blocks
- 1)) {
721 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
722 sizeof(RDMALocalBlock
) *
723 (local
->nb_blocks
- (block
->index
+ 1)));
724 for (x
= block
->index
; x
< local
->nb_blocks
- 1; x
++) {
725 local
->block
[x
].index
--;
729 assert(block
== local
->block
);
733 trace_rdma_delete_block(block
, (uintptr_t)block
->local_host_addr
,
734 block
->offset
, block
->length
,
735 (uintptr_t)(block
->local_host_addr
+ block
->length
),
736 BITS_TO_LONGS(block
->nb_chunks
) *
737 sizeof(unsigned long) * 8, block
->nb_chunks
);
743 if (local
->nb_blocks
&& rdma
->blockmap
) {
744 for (x
= 0; x
< local
->nb_blocks
; x
++) {
745 g_hash_table_insert(rdma
->blockmap
,
746 (void *)(uintptr_t)local
->block
[x
].offset
,
755 * Put in the log file which RDMA device was opened and the details
756 * associated with that device.
758 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
760 struct ibv_port_attr port
;
762 if (ibv_query_port(verbs
, 1, &port
)) {
763 error_report("Failed to query port information");
767 printf("%s RDMA Device opened: kernel name %s "
768 "uverbs device name %s, "
769 "infiniband_verbs class device path %s, "
770 "infiniband class device path %s, "
771 "transport: (%d) %s\n",
774 verbs
->device
->dev_name
,
775 verbs
->device
->dev_path
,
776 verbs
->device
->ibdev_path
,
778 (port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) ? "Infiniband" :
779 ((port
.link_layer
== IBV_LINK_LAYER_ETHERNET
)
780 ? "Ethernet" : "Unknown"));
784 * Put in the log file the RDMA gid addressing information,
785 * useful for folks who have trouble understanding the
786 * RDMA device hierarchy in the kernel.
788 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
792 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
793 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
794 trace_qemu_rdma_dump_gid(who
, sgid
, dgid
);
798 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
799 * We will try the next addrinfo struct, and fail if there are
800 * no other valid addresses to bind against.
802 * If user is listening on '[::]', then we will not have a opened a device
803 * yet and have no way of verifying if the device is RoCE or not.
805 * In this case, the source VM will throw an error for ALL types of
806 * connections (both IPv4 and IPv6) if the destination machine does not have
807 * a regular infiniband network available for use.
809 * The only way to guarantee that an error is thrown for broken kernels is
810 * for the management software to choose a *specific* interface at bind time
811 * and validate what time of hardware it is.
813 * Unfortunately, this puts the user in a fix:
815 * If the source VM connects with an IPv4 address without knowing that the
816 * destination has bound to '[::]' the migration will unconditionally fail
817 * unless the management software is explicitly listening on the IPv4
818 * address while using a RoCE-based device.
820 * If the source VM connects with an IPv6 address, then we're OK because we can
821 * throw an error on the source (and similarly on the destination).
823 * But in mixed environments, this will be broken for a while until it is fixed
826 * We do provide a *tiny* bit of help in this function: We can list all of the
827 * devices in the system and check to see if all the devices are RoCE or
830 * If we detect that we have a *pure* RoCE environment, then we can safely
831 * thrown an error even if the management software has specified '[::]' as the
834 * However, if there is are multiple hetergeneous devices, then we cannot make
835 * this assumption and the user just has to be sure they know what they are
838 * Patches are being reviewed on linux-rdma.
840 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context
*verbs
, Error
**errp
)
842 /* This bug only exists in linux, to our knowledge. */
844 struct ibv_port_attr port_attr
;
847 * Verbs are only NULL if management has bound to '[::]'.
849 * Let's iterate through all the devices and see if there any pure IB
850 * devices (non-ethernet).
852 * If not, then we can safely proceed with the migration.
853 * Otherwise, there are no guarantees until the bug is fixed in linux.
857 struct ibv_device
** dev_list
= ibv_get_device_list(&num_devices
);
858 bool roce_found
= false;
859 bool ib_found
= false;
861 for (x
= 0; x
< num_devices
; x
++) {
862 verbs
= ibv_open_device(dev_list
[x
]);
864 if (errno
== EPERM
) {
871 if (ibv_query_port(verbs
, 1, &port_attr
)) {
872 ibv_close_device(verbs
);
873 ERROR(errp
, "Could not query initial IB port");
877 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
879 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
883 ibv_close_device(verbs
);
889 fprintf(stderr
, "WARN: migrations may fail:"
890 " IPv6 over RoCE / iWARP in linux"
891 " is broken. But since you appear to have a"
892 " mixed RoCE / IB environment, be sure to only"
893 " migrate over the IB fabric until the kernel "
894 " fixes the bug.\n");
896 ERROR(errp
, "You only have RoCE / iWARP devices in your systems"
897 " and your management software has specified '[::]'"
898 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
907 * If we have a verbs context, that means that some other than '[::]' was
908 * used by the management software for binding. In which case we can
909 * actually warn the user about a potentially broken kernel.
912 /* IB ports start with 1, not 0 */
913 if (ibv_query_port(verbs
, 1, &port_attr
)) {
914 ERROR(errp
, "Could not query initial IB port");
918 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
919 ERROR(errp
, "Linux kernel's RoCE / iWARP does not support IPv6 "
920 "(but patches on linux-rdma in progress)");
930 * Figure out which RDMA device corresponds to the requested IP hostname
931 * Also create the initial connection manager identifiers for opening
934 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
937 struct rdma_addrinfo
*res
;
939 struct rdma_cm_event
*cm_event
;
940 char ip
[40] = "unknown";
941 struct rdma_addrinfo
*e
;
943 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
944 ERROR(errp
, "RDMA hostname has not been set");
948 /* create CM channel */
949 rdma
->channel
= rdma_create_event_channel();
950 if (!rdma
->channel
) {
951 ERROR(errp
, "could not create CM channel");
956 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
958 ERROR(errp
, "could not create channel id");
959 goto err_resolve_create_id
;
962 snprintf(port_str
, 16, "%d", rdma
->port
);
965 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
967 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
968 goto err_resolve_get_addr
;
971 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
972 inet_ntop(e
->ai_family
,
973 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
974 trace_qemu_rdma_resolve_host_trying(rdma
->host
, ip
);
976 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
977 RDMA_RESOLVE_TIMEOUT_MS
);
979 if (e
->ai_family
== AF_INET6
) {
980 ret
= qemu_rdma_broken_ipv6_kernel(rdma
->cm_id
->verbs
, errp
);
989 ERROR(errp
, "could not resolve address %s", rdma
->host
);
990 goto err_resolve_get_addr
;
993 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
995 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
997 ERROR(errp
, "could not perform event_addr_resolved");
998 goto err_resolve_get_addr
;
1001 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
1002 ERROR(errp
, "result not equal to event_addr_resolved %s",
1003 rdma_event_str(cm_event
->event
));
1004 perror("rdma_resolve_addr");
1005 rdma_ack_cm_event(cm_event
);
1007 goto err_resolve_get_addr
;
1009 rdma_ack_cm_event(cm_event
);
1012 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
1014 ERROR(errp
, "could not resolve rdma route");
1015 goto err_resolve_get_addr
;
1018 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1020 ERROR(errp
, "could not perform event_route_resolved");
1021 goto err_resolve_get_addr
;
1023 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
1024 ERROR(errp
, "result not equal to event_route_resolved: %s",
1025 rdma_event_str(cm_event
->event
));
1026 rdma_ack_cm_event(cm_event
);
1028 goto err_resolve_get_addr
;
1030 rdma_ack_cm_event(cm_event
);
1031 rdma
->verbs
= rdma
->cm_id
->verbs
;
1032 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
1033 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
1036 err_resolve_get_addr
:
1037 rdma_destroy_id(rdma
->cm_id
);
1039 err_resolve_create_id
:
1040 rdma_destroy_event_channel(rdma
->channel
);
1041 rdma
->channel
= NULL
;
1046 * Create protection domain and completion queues
1048 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
)
1051 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
1053 error_report("failed to allocate protection domain");
1057 /* create completion channel */
1058 rdma
->comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1059 if (!rdma
->comp_channel
) {
1060 error_report("failed to allocate completion channel");
1061 goto err_alloc_pd_cq
;
1065 * Completion queue can be filled by both read and write work requests,
1066 * so must reflect the sum of both possible queue sizes.
1068 rdma
->cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1069 NULL
, rdma
->comp_channel
, 0);
1071 error_report("failed to allocate completion queue");
1072 goto err_alloc_pd_cq
;
1079 ibv_dealloc_pd(rdma
->pd
);
1081 if (rdma
->comp_channel
) {
1082 ibv_destroy_comp_channel(rdma
->comp_channel
);
1085 rdma
->comp_channel
= NULL
;
1091 * Create queue pairs.
1093 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1095 struct ibv_qp_init_attr attr
= { 0 };
1098 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1099 attr
.cap
.max_recv_wr
= 3;
1100 attr
.cap
.max_send_sge
= 1;
1101 attr
.cap
.max_recv_sge
= 1;
1102 attr
.send_cq
= rdma
->cq
;
1103 attr
.recv_cq
= rdma
->cq
;
1104 attr
.qp_type
= IBV_QPT_RC
;
1106 ret
= rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
);
1111 rdma
->qp
= rdma
->cm_id
->qp
;
1115 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
)
1118 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1120 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1121 local
->block
[i
].mr
=
1122 ibv_reg_mr(rdma
->pd
,
1123 local
->block
[i
].local_host_addr
,
1124 local
->block
[i
].length
,
1125 IBV_ACCESS_LOCAL_WRITE
|
1126 IBV_ACCESS_REMOTE_WRITE
1128 if (!local
->block
[i
].mr
) {
1129 perror("Failed to register local dest ram block!\n");
1132 rdma
->total_registrations
++;
1135 if (i
>= local
->nb_blocks
) {
1139 for (i
--; i
>= 0; i
--) {
1140 ibv_dereg_mr(local
->block
[i
].mr
);
1141 rdma
->total_registrations
--;
1149 * Find the ram block that corresponds to the page requested to be
1150 * transmitted by QEMU.
1152 * Once the block is found, also identify which 'chunk' within that
1153 * block that the page belongs to.
1155 * This search cannot fail or the migration will fail.
1157 static int qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1158 uintptr_t block_offset
,
1161 uint64_t *block_index
,
1162 uint64_t *chunk_index
)
1164 uint64_t current_addr
= block_offset
+ offset
;
1165 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1166 (void *) block_offset
);
1168 assert(current_addr
>= block
->offset
);
1169 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1171 *block_index
= block
->index
;
1172 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1173 block
->local_host_addr
+ (current_addr
- block
->offset
));
1179 * Register a chunk with IB. If the chunk was already registered
1180 * previously, then skip.
1182 * Also return the keys associated with the registration needed
1183 * to perform the actual RDMA operation.
1185 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1186 RDMALocalBlock
*block
, uintptr_t host_addr
,
1187 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1188 uint8_t *chunk_start
, uint8_t *chunk_end
)
1192 *lkey
= block
->mr
->lkey
;
1195 *rkey
= block
->mr
->rkey
;
1200 /* allocate memory to store chunk MRs */
1202 block
->pmr
= g_new0(struct ibv_mr
*, block
->nb_chunks
);
1206 * If 'rkey', then we're the destination, so grant access to the source.
1208 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1210 if (!block
->pmr
[chunk
]) {
1211 uint64_t len
= chunk_end
- chunk_start
;
1213 trace_qemu_rdma_register_and_get_keys(len
, chunk_start
);
1215 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
,
1217 (rkey
? (IBV_ACCESS_LOCAL_WRITE
|
1218 IBV_ACCESS_REMOTE_WRITE
) : 0));
1220 if (!block
->pmr
[chunk
]) {
1221 perror("Failed to register chunk!");
1222 fprintf(stderr
, "Chunk details: block: %d chunk index %d"
1223 " start %" PRIuPTR
" end %" PRIuPTR
1225 " local %" PRIuPTR
" registrations: %d\n",
1226 block
->index
, chunk
, (uintptr_t)chunk_start
,
1227 (uintptr_t)chunk_end
, host_addr
,
1228 (uintptr_t)block
->local_host_addr
,
1229 rdma
->total_registrations
);
1232 rdma
->total_registrations
++;
1236 *lkey
= block
->pmr
[chunk
]->lkey
;
1239 *rkey
= block
->pmr
[chunk
]->rkey
;
1245 * Register (at connection time) the memory used for control
1248 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1250 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1251 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1252 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1253 if (rdma
->wr_data
[idx
].control_mr
) {
1254 rdma
->total_registrations
++;
1257 error_report("qemu_rdma_reg_control failed");
1261 const char *print_wrid(int wrid
)
1263 if (wrid
>= RDMA_WRID_RECV_CONTROL
) {
1264 return wrid_desc
[RDMA_WRID_RECV_CONTROL
];
1266 return wrid_desc
[wrid
];
1270 * RDMA requires memory registration (mlock/pinning), but this is not good for
1273 * In preparation for the future where LRU information or workload-specific
1274 * writable writable working set memory access behavior is available to QEMU
1275 * it would be nice to have in place the ability to UN-register/UN-pin
1276 * particular memory regions from the RDMA hardware when it is determine that
1277 * those regions of memory will likely not be accessed again in the near future.
1279 * While we do not yet have such information right now, the following
1280 * compile-time option allows us to perform a non-optimized version of this
1283 * By uncommenting this option, you will cause *all* RDMA transfers to be
1284 * unregistered immediately after the transfer completes on both sides of the
1285 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1287 * This will have a terrible impact on migration performance, so until future
1288 * workload information or LRU information is available, do not attempt to use
1289 * this feature except for basic testing.
1291 //#define RDMA_UNREGISTRATION_EXAMPLE
1294 * Perform a non-optimized memory unregistration after every transfer
1295 * for demonstration purposes, only if pin-all is not requested.
1297 * Potential optimizations:
1298 * 1. Start a new thread to run this function continuously
1300 - and for receipt of unregister messages
1302 * 3. Use workload hints.
1304 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1306 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1308 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1310 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1312 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1313 RDMALocalBlock
*block
=
1314 &(rdma
->local_ram_blocks
.block
[index
]);
1315 RDMARegister reg
= { .current_index
= index
};
1316 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1318 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1319 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1323 trace_qemu_rdma_unregister_waiting_proc(chunk
,
1324 rdma
->unregister_current
);
1326 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1327 rdma
->unregister_current
++;
1329 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1330 rdma
->unregister_current
= 0;
1335 * Unregistration is speculative (because migration is single-threaded
1336 * and we cannot break the protocol's inifinband message ordering).
1337 * Thus, if the memory is currently being used for transmission,
1338 * then abort the attempt to unregister and try again
1339 * later the next time a completion is received for this memory.
1341 clear_bit(chunk
, block
->unregister_bitmap
);
1343 if (test_bit(chunk
, block
->transit_bitmap
)) {
1344 trace_qemu_rdma_unregister_waiting_inflight(chunk
);
1348 trace_qemu_rdma_unregister_waiting_send(chunk
);
1350 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1351 block
->pmr
[chunk
] = NULL
;
1352 block
->remote_keys
[chunk
] = 0;
1355 perror("unregistration chunk failed");
1358 rdma
->total_registrations
--;
1360 reg
.key
.chunk
= chunk
;
1361 register_to_network(rdma
, ®
);
1362 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1368 trace_qemu_rdma_unregister_waiting_complete(chunk
);
1374 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1377 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1379 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1380 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1386 * Set bit for unregistration in the next iteration.
1387 * We cannot transmit right here, but will unpin later.
1389 static void qemu_rdma_signal_unregister(RDMAContext
*rdma
, uint64_t index
,
1390 uint64_t chunk
, uint64_t wr_id
)
1392 if (rdma
->unregistrations
[rdma
->unregister_next
] != 0) {
1393 error_report("rdma migration: queue is full");
1395 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1397 if (!test_and_set_bit(chunk
, block
->unregister_bitmap
)) {
1398 trace_qemu_rdma_signal_unregister_append(chunk
,
1399 rdma
->unregister_next
);
1401 rdma
->unregistrations
[rdma
->unregister_next
++] =
1402 qemu_rdma_make_wrid(wr_id
, index
, chunk
);
1404 if (rdma
->unregister_next
== RDMA_SIGNALED_SEND_MAX
) {
1405 rdma
->unregister_next
= 0;
1408 trace_qemu_rdma_signal_unregister_already(chunk
);
1414 * Consult the connection manager to see a work request
1415 * (of any kind) has completed.
1416 * Return the work request ID that completed.
1418 static uint64_t qemu_rdma_poll(RDMAContext
*rdma
, uint64_t *wr_id_out
,
1425 ret
= ibv_poll_cq(rdma
->cq
, 1, &wc
);
1428 *wr_id_out
= RDMA_WRID_NONE
;
1433 error_report("ibv_poll_cq return %d", ret
);
1437 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1439 if (wc
.status
!= IBV_WC_SUCCESS
) {
1440 fprintf(stderr
, "ibv_poll_cq wc.status=%d %s!\n",
1441 wc
.status
, ibv_wc_status_str(wc
.status
));
1442 fprintf(stderr
, "ibv_poll_cq wrid=%s!\n", wrid_desc
[wr_id
]);
1447 if (rdma
->control_ready_expected
&&
1448 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1449 trace_qemu_rdma_poll_recv(wrid_desc
[RDMA_WRID_RECV_CONTROL
],
1450 wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
, rdma
->nb_sent
);
1451 rdma
->control_ready_expected
= 0;
1454 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1456 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1458 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1459 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1461 trace_qemu_rdma_poll_write(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
,
1462 index
, chunk
, block
->local_host_addr
,
1463 (void *)(uintptr_t)block
->remote_host_addr
);
1465 clear_bit(chunk
, block
->transit_bitmap
);
1467 if (rdma
->nb_sent
> 0) {
1471 if (!rdma
->pin_all
) {
1473 * FYI: If one wanted to signal a specific chunk to be unregistered
1474 * using LRU or workload-specific information, this is the function
1475 * you would call to do so. That chunk would then get asynchronously
1476 * unregistered later.
1478 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1479 qemu_rdma_signal_unregister(rdma
, index
, chunk
, wc
.wr_id
);
1483 trace_qemu_rdma_poll_other(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
);
1486 *wr_id_out
= wc
.wr_id
;
1488 *byte_len
= wc
.byte_len
;
1494 /* Wait for activity on the completion channel.
1495 * Returns 0 on success, none-0 on error.
1497 static int qemu_rdma_wait_comp_channel(RDMAContext
*rdma
)
1499 struct rdma_cm_event
*cm_event
;
1503 * Coroutine doesn't start until migration_fd_process_incoming()
1504 * so don't yield unless we know we're running inside of a coroutine.
1506 if (rdma
->migration_started_on_destination
&&
1507 migration_incoming_get_current()->state
== MIGRATION_STATUS_ACTIVE
) {
1508 yield_until_fd_readable(rdma
->comp_channel
->fd
);
1510 /* This is the source side, we're in a separate thread
1511 * or destination prior to migration_fd_process_incoming()
1512 * after postcopy, the destination also in a seprate thread.
1513 * we can't yield; so we have to poll the fd.
1514 * But we need to be able to handle 'cancel' or an error
1515 * without hanging forever.
1517 while (!rdma
->error_state
&& !rdma
->received_error
) {
1519 pfds
[0].fd
= rdma
->comp_channel
->fd
;
1520 pfds
[0].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1521 pfds
[0].revents
= 0;
1523 pfds
[1].fd
= rdma
->channel
->fd
;
1524 pfds
[1].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1525 pfds
[1].revents
= 0;
1527 /* 0.1s timeout, should be fine for a 'cancel' */
1528 switch (qemu_poll_ns(pfds
, 2, 100 * 1000 * 1000)) {
1530 case 1: /* fd active */
1531 if (pfds
[0].revents
) {
1535 if (pfds
[1].revents
) {
1536 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1538 rdma_ack_cm_event(cm_event
);
1541 error_report("receive cm event while wait comp channel,"
1542 "cm event is %d", cm_event
->event
);
1543 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
1544 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
1550 case 0: /* Timeout, go around again */
1553 default: /* Error of some type -
1554 * I don't trust errno from qemu_poll_ns
1556 error_report("%s: poll failed", __func__
);
1560 if (migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) {
1561 /* Bail out and let the cancellation happen */
1567 if (rdma
->received_error
) {
1570 return rdma
->error_state
;
1574 * Block until the next work request has completed.
1576 * First poll to see if a work request has already completed,
1579 * If we encounter completed work requests for IDs other than
1580 * the one we're interested in, then that's generally an error.
1582 * The only exception is actual RDMA Write completions. These
1583 * completions only need to be recorded, but do not actually
1584 * need further processing.
1586 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
, int wrid_requested
,
1589 int num_cq_events
= 0, ret
= 0;
1592 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1594 if (ibv_req_notify_cq(rdma
->cq
, 0)) {
1598 while (wr_id
!= wrid_requested
) {
1599 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1604 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1606 if (wr_id
== RDMA_WRID_NONE
) {
1609 if (wr_id
!= wrid_requested
) {
1610 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1611 wrid_requested
, print_wrid(wr_id
), wr_id
);
1615 if (wr_id
== wrid_requested
) {
1620 ret
= qemu_rdma_wait_comp_channel(rdma
);
1622 goto err_block_for_wrid
;
1625 ret
= ibv_get_cq_event(rdma
->comp_channel
, &cq
, &cq_ctx
);
1627 perror("ibv_get_cq_event");
1628 goto err_block_for_wrid
;
1633 ret
= -ibv_req_notify_cq(cq
, 0);
1635 goto err_block_for_wrid
;
1638 while (wr_id
!= wrid_requested
) {
1639 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1641 goto err_block_for_wrid
;
1644 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1646 if (wr_id
== RDMA_WRID_NONE
) {
1649 if (wr_id
!= wrid_requested
) {
1650 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1651 wrid_requested
, print_wrid(wr_id
), wr_id
);
1655 if (wr_id
== wrid_requested
) {
1656 goto success_block_for_wrid
;
1660 success_block_for_wrid
:
1661 if (num_cq_events
) {
1662 ibv_ack_cq_events(cq
, num_cq_events
);
1667 if (num_cq_events
) {
1668 ibv_ack_cq_events(cq
, num_cq_events
);
1671 rdma
->error_state
= ret
;
1676 * Post a SEND message work request for the control channel
1677 * containing some data and block until the post completes.
1679 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1680 RDMAControlHeader
*head
)
1683 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1684 struct ibv_send_wr
*bad_wr
;
1685 struct ibv_sge sge
= {
1686 .addr
= (uintptr_t)(wr
->control
),
1687 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1688 .lkey
= wr
->control_mr
->lkey
,
1690 struct ibv_send_wr send_wr
= {
1691 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1692 .opcode
= IBV_WR_SEND
,
1693 .send_flags
= IBV_SEND_SIGNALED
,
1698 trace_qemu_rdma_post_send_control(control_desc(head
->type
));
1701 * We don't actually need to do a memcpy() in here if we used
1702 * the "sge" properly, but since we're only sending control messages
1703 * (not RAM in a performance-critical path), then its OK for now.
1705 * The copy makes the RDMAControlHeader simpler to manipulate
1706 * for the time being.
1708 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1709 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1710 control_to_network((void *) wr
->control
);
1713 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1717 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
1720 error_report("Failed to use post IB SEND for control");
1724 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1726 error_report("rdma migration: send polling control error");
1733 * Post a RECV work request in anticipation of some future receipt
1734 * of data on the control channel.
1736 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
)
1738 struct ibv_recv_wr
*bad_wr
;
1739 struct ibv_sge sge
= {
1740 .addr
= (uintptr_t)(rdma
->wr_data
[idx
].control
),
1741 .length
= RDMA_CONTROL_MAX_BUFFER
,
1742 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1745 struct ibv_recv_wr recv_wr
= {
1746 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1752 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1760 * Block and wait for a RECV control channel message to arrive.
1762 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1763 RDMAControlHeader
*head
, int expecting
, int idx
)
1766 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1770 error_report("rdma migration: recv polling control error!");
1774 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1775 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1777 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting
));
1779 if (expecting
== RDMA_CONTROL_NONE
) {
1780 trace_qemu_rdma_exchange_get_response_none(control_desc(head
->type
),
1782 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1783 error_report("Was expecting a %s (%d) control message"
1784 ", but got: %s (%d), length: %d",
1785 control_desc(expecting
), expecting
,
1786 control_desc(head
->type
), head
->type
, head
->len
);
1787 if (head
->type
== RDMA_CONTROL_ERROR
) {
1788 rdma
->received_error
= true;
1792 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1793 error_report("too long length: %d", head
->len
);
1796 if (sizeof(*head
) + head
->len
!= byte_len
) {
1797 error_report("Malformed length: %d byte_len %d", head
->len
, byte_len
);
1805 * When a RECV work request has completed, the work request's
1806 * buffer is pointed at the header.
1808 * This will advance the pointer to the data portion
1809 * of the control message of the work request's buffer that
1810 * was populated after the work request finished.
1812 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1813 RDMAControlHeader
*head
)
1815 rdma
->wr_data
[idx
].control_len
= head
->len
;
1816 rdma
->wr_data
[idx
].control_curr
=
1817 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1821 * This is an 'atomic' high-level operation to deliver a single, unified
1822 * control-channel message.
1824 * Additionally, if the user is expecting some kind of reply to this message,
1825 * they can request a 'resp' response message be filled in by posting an
1826 * additional work request on behalf of the user and waiting for an additional
1829 * The extra (optional) response is used during registration to us from having
1830 * to perform an *additional* exchange of message just to provide a response by
1831 * instead piggy-backing on the acknowledgement.
1833 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1834 uint8_t *data
, RDMAControlHeader
*resp
,
1836 int (*callback
)(RDMAContext
*rdma
))
1841 * Wait until the dest is ready before attempting to deliver the message
1842 * by waiting for a READY message.
1844 if (rdma
->control_ready_expected
) {
1845 RDMAControlHeader resp
;
1846 ret
= qemu_rdma_exchange_get_response(rdma
,
1847 &resp
, RDMA_CONTROL_READY
, RDMA_WRID_READY
);
1854 * If the user is expecting a response, post a WR in anticipation of it.
1857 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
);
1859 error_report("rdma migration: error posting"
1860 " extra control recv for anticipated result!");
1866 * Post a WR to replace the one we just consumed for the READY message.
1868 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1870 error_report("rdma migration: error posting first control recv!");
1875 * Deliver the control message that was requested.
1877 ret
= qemu_rdma_post_send_control(rdma
, data
, head
);
1880 error_report("Failed to send control buffer!");
1885 * If we're expecting a response, block and wait for it.
1889 trace_qemu_rdma_exchange_send_issue_callback();
1890 ret
= callback(rdma
);
1896 trace_qemu_rdma_exchange_send_waiting(control_desc(resp
->type
));
1897 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1898 resp
->type
, RDMA_WRID_DATA
);
1904 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1906 *resp_idx
= RDMA_WRID_DATA
;
1908 trace_qemu_rdma_exchange_send_received(control_desc(resp
->type
));
1911 rdma
->control_ready_expected
= 1;
1917 * This is an 'atomic' high-level operation to receive a single, unified
1918 * control-channel message.
1920 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1923 RDMAControlHeader ready
= {
1925 .type
= RDMA_CONTROL_READY
,
1931 * Inform the source that we're ready to receive a message.
1933 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
);
1936 error_report("Failed to send control buffer!");
1941 * Block and wait for the message.
1943 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
1944 expecting
, RDMA_WRID_READY
);
1950 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
1953 * Post a new RECV work request to replace the one we just consumed.
1955 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1957 error_report("rdma migration: error posting second control recv!");
1965 * Write an actual chunk of memory using RDMA.
1967 * If we're using dynamic registration on the dest-side, we have to
1968 * send a registration command first.
1970 static int qemu_rdma_write_one(QEMUFile
*f
, RDMAContext
*rdma
,
1971 int current_index
, uint64_t current_addr
,
1975 struct ibv_send_wr send_wr
= { 0 };
1976 struct ibv_send_wr
*bad_wr
;
1977 int reg_result_idx
, ret
, count
= 0;
1978 uint64_t chunk
, chunks
;
1979 uint8_t *chunk_start
, *chunk_end
;
1980 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
1982 RDMARegisterResult
*reg_result
;
1983 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
1984 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1985 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
1990 sge
.addr
= (uintptr_t)(block
->local_host_addr
+
1991 (current_addr
- block
->offset
));
1992 sge
.length
= length
;
1994 chunk
= ram_chunk_index(block
->local_host_addr
,
1995 (uint8_t *)(uintptr_t)sge
.addr
);
1996 chunk_start
= ram_chunk_start(block
, chunk
);
1998 if (block
->is_ram_block
) {
1999 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2001 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2005 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2007 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2012 trace_qemu_rdma_write_one_top(chunks
+ 1,
2014 (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
2016 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
2018 if (!rdma
->pin_all
) {
2019 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2020 qemu_rdma_unregister_waiting(rdma
);
2024 while (test_bit(chunk
, block
->transit_bitmap
)) {
2026 trace_qemu_rdma_write_one_block(count
++, current_index
, chunk
,
2027 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
2029 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2032 error_report("Failed to Wait for previous write to complete "
2033 "block %d chunk %" PRIu64
2034 " current %" PRIu64
" len %" PRIu64
" %d",
2035 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
2040 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
2041 if (!block
->remote_keys
[chunk
]) {
2043 * This chunk has not yet been registered, so first check to see
2044 * if the entire chunk is zero. If so, tell the other size to
2045 * memset() + madvise() the entire chunk without RDMA.
2048 if (buffer_is_zero((void *)(uintptr_t)sge
.addr
, length
)) {
2049 RDMACompress comp
= {
2050 .offset
= current_addr
,
2052 .block_idx
= current_index
,
2056 head
.len
= sizeof(comp
);
2057 head
.type
= RDMA_CONTROL_COMPRESS
;
2059 trace_qemu_rdma_write_one_zero(chunk
, sge
.length
,
2060 current_index
, current_addr
);
2062 compress_to_network(rdma
, &comp
);
2063 ret
= qemu_rdma_exchange_send(rdma
, &head
,
2064 (uint8_t *) &comp
, NULL
, NULL
, NULL
);
2070 acct_update_position(f
, sge
.length
, true);
2076 * Otherwise, tell other side to register.
2078 reg
.current_index
= current_index
;
2079 if (block
->is_ram_block
) {
2080 reg
.key
.current_addr
= current_addr
;
2082 reg
.key
.chunk
= chunk
;
2084 reg
.chunks
= chunks
;
2086 trace_qemu_rdma_write_one_sendreg(chunk
, sge
.length
, current_index
,
2089 register_to_network(rdma
, ®
);
2090 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
2091 &resp
, ®_result_idx
, NULL
);
2096 /* try to overlap this single registration with the one we sent. */
2097 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2098 &sge
.lkey
, NULL
, chunk
,
2099 chunk_start
, chunk_end
)) {
2100 error_report("cannot get lkey");
2104 reg_result
= (RDMARegisterResult
*)
2105 rdma
->wr_data
[reg_result_idx
].control_curr
;
2107 network_to_result(reg_result
);
2109 trace_qemu_rdma_write_one_recvregres(block
->remote_keys
[chunk
],
2110 reg_result
->rkey
, chunk
);
2112 block
->remote_keys
[chunk
] = reg_result
->rkey
;
2113 block
->remote_host_addr
= reg_result
->host_addr
;
2115 /* already registered before */
2116 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2117 &sge
.lkey
, NULL
, chunk
,
2118 chunk_start
, chunk_end
)) {
2119 error_report("cannot get lkey!");
2124 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2126 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2128 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2129 &sge
.lkey
, NULL
, chunk
,
2130 chunk_start
, chunk_end
)) {
2131 error_report("cannot get lkey!");
2137 * Encode the ram block index and chunk within this wrid.
2138 * We will use this information at the time of completion
2139 * to figure out which bitmap to check against and then which
2140 * chunk in the bitmap to look for.
2142 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2143 current_index
, chunk
);
2145 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2146 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2147 send_wr
.sg_list
= &sge
;
2148 send_wr
.num_sge
= 1;
2149 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2150 (current_addr
- block
->offset
);
2152 trace_qemu_rdma_write_one_post(chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2156 * ibv_post_send() does not return negative error numbers,
2157 * per the specification they are positive - no idea why.
2159 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2161 if (ret
== ENOMEM
) {
2162 trace_qemu_rdma_write_one_queue_full();
2163 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2165 error_report("rdma migration: failed to make "
2166 "room in full send queue! %d", ret
);
2172 } else if (ret
> 0) {
2173 perror("rdma migration: post rdma write failed");
2177 set_bit(chunk
, block
->transit_bitmap
);
2178 acct_update_position(f
, sge
.length
, false);
2179 rdma
->total_writes
++;
2185 * Push out any unwritten RDMA operations.
2187 * We support sending out multiple chunks at the same time.
2188 * Not all of them need to get signaled in the completion queue.
2190 static int qemu_rdma_write_flush(QEMUFile
*f
, RDMAContext
*rdma
)
2194 if (!rdma
->current_length
) {
2198 ret
= qemu_rdma_write_one(f
, rdma
,
2199 rdma
->current_index
, rdma
->current_addr
, rdma
->current_length
);
2207 trace_qemu_rdma_write_flush(rdma
->nb_sent
);
2210 rdma
->current_length
= 0;
2211 rdma
->current_addr
= 0;
2216 static inline int qemu_rdma_buffer_mergable(RDMAContext
*rdma
,
2217 uint64_t offset
, uint64_t len
)
2219 RDMALocalBlock
*block
;
2223 if (rdma
->current_index
< 0) {
2227 if (rdma
->current_chunk
< 0) {
2231 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2232 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2233 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2235 if (rdma
->current_length
== 0) {
2240 * Only merge into chunk sequentially.
2242 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2246 if (offset
< block
->offset
) {
2250 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2254 if ((host_addr
+ len
) > chunk_end
) {
2262 * We're not actually writing here, but doing three things:
2264 * 1. Identify the chunk the buffer belongs to.
2265 * 2. If the chunk is full or the buffer doesn't belong to the current
2266 * chunk, then start a new chunk and flush() the old chunk.
2267 * 3. To keep the hardware busy, we also group chunks into batches
2268 * and only require that a batch gets acknowledged in the completion
2269 * qeueue instead of each individual chunk.
2271 static int qemu_rdma_write(QEMUFile
*f
, RDMAContext
*rdma
,
2272 uint64_t block_offset
, uint64_t offset
,
2275 uint64_t current_addr
= block_offset
+ offset
;
2276 uint64_t index
= rdma
->current_index
;
2277 uint64_t chunk
= rdma
->current_chunk
;
2280 /* If we cannot merge it, we flush the current buffer first. */
2281 if (!qemu_rdma_buffer_mergable(rdma
, current_addr
, len
)) {
2282 ret
= qemu_rdma_write_flush(f
, rdma
);
2286 rdma
->current_length
= 0;
2287 rdma
->current_addr
= current_addr
;
2289 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2290 offset
, len
, &index
, &chunk
);
2292 error_report("ram block search failed");
2295 rdma
->current_index
= index
;
2296 rdma
->current_chunk
= chunk
;
2300 rdma
->current_length
+= len
;
2302 /* flush it if buffer is too large */
2303 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2304 return qemu_rdma_write_flush(f
, rdma
);
2310 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2314 if (rdma
->cm_id
&& rdma
->connected
) {
2315 if ((rdma
->error_state
||
2316 migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) &&
2317 !rdma
->received_error
) {
2318 RDMAControlHeader head
= { .len
= 0,
2319 .type
= RDMA_CONTROL_ERROR
,
2322 error_report("Early error. Sending error.");
2323 qemu_rdma_post_send_control(rdma
, NULL
, &head
);
2326 rdma_disconnect(rdma
->cm_id
);
2327 trace_qemu_rdma_cleanup_disconnect();
2328 rdma
->connected
= false;
2331 if (rdma
->channel
) {
2332 qemu_set_fd_handler(rdma
->channel
->fd
, NULL
, NULL
, NULL
);
2334 g_free(rdma
->dest_blocks
);
2335 rdma
->dest_blocks
= NULL
;
2337 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2338 if (rdma
->wr_data
[idx
].control_mr
) {
2339 rdma
->total_registrations
--;
2340 ibv_dereg_mr(rdma
->wr_data
[idx
].control_mr
);
2342 rdma
->wr_data
[idx
].control_mr
= NULL
;
2345 if (rdma
->local_ram_blocks
.block
) {
2346 while (rdma
->local_ram_blocks
.nb_blocks
) {
2347 rdma_delete_block(rdma
, &rdma
->local_ram_blocks
.block
[0]);
2352 rdma_destroy_qp(rdma
->cm_id
);
2356 ibv_destroy_cq(rdma
->cq
);
2359 if (rdma
->comp_channel
) {
2360 ibv_destroy_comp_channel(rdma
->comp_channel
);
2361 rdma
->comp_channel
= NULL
;
2364 ibv_dealloc_pd(rdma
->pd
);
2368 rdma_destroy_id(rdma
->cm_id
);
2372 /* the destination side, listen_id and channel is shared */
2373 if (rdma
->listen_id
) {
2374 if (!rdma
->is_return_path
) {
2375 rdma_destroy_id(rdma
->listen_id
);
2377 rdma
->listen_id
= NULL
;
2379 if (rdma
->channel
) {
2380 if (!rdma
->is_return_path
) {
2381 rdma_destroy_event_channel(rdma
->channel
);
2383 rdma
->channel
= NULL
;
2387 if (rdma
->channel
) {
2388 rdma_destroy_event_channel(rdma
->channel
);
2389 rdma
->channel
= NULL
;
2396 static int qemu_rdma_source_init(RDMAContext
*rdma
, bool pin_all
, Error
**errp
)
2399 Error
*local_err
= NULL
, **temp
= &local_err
;
2402 * Will be validated against destination's actual capabilities
2403 * after the connect() completes.
2405 rdma
->pin_all
= pin_all
;
2407 ret
= qemu_rdma_resolve_host(rdma
, temp
);
2409 goto err_rdma_source_init
;
2412 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2414 ERROR(temp
, "rdma migration: error allocating pd and cq! Your mlock()"
2415 " limits may be too low. Please check $ ulimit -a # and "
2416 "search for 'ulimit -l' in the output");
2417 goto err_rdma_source_init
;
2420 ret
= qemu_rdma_alloc_qp(rdma
);
2422 ERROR(temp
, "rdma migration: error allocating qp!");
2423 goto err_rdma_source_init
;
2426 ret
= qemu_rdma_init_ram_blocks(rdma
);
2428 ERROR(temp
, "rdma migration: error initializing ram blocks!");
2429 goto err_rdma_source_init
;
2432 /* Build the hash that maps from offset to RAMBlock */
2433 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2434 for (idx
= 0; idx
< rdma
->local_ram_blocks
.nb_blocks
; idx
++) {
2435 g_hash_table_insert(rdma
->blockmap
,
2436 (void *)(uintptr_t)rdma
->local_ram_blocks
.block
[idx
].offset
,
2437 &rdma
->local_ram_blocks
.block
[idx
]);
2440 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2441 ret
= qemu_rdma_reg_control(rdma
, idx
);
2443 ERROR(temp
, "rdma migration: error registering %d control!",
2445 goto err_rdma_source_init
;
2451 err_rdma_source_init
:
2452 error_propagate(errp
, local_err
);
2453 qemu_rdma_cleanup(rdma
);
2457 static int qemu_rdma_connect(RDMAContext
*rdma
, Error
**errp
)
2459 RDMACapabilities cap
= {
2460 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2463 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2465 .private_data
= &cap
,
2466 .private_data_len
= sizeof(cap
),
2468 struct rdma_cm_event
*cm_event
;
2472 * Only negotiate the capability with destination if the user
2473 * on the source first requested the capability.
2475 if (rdma
->pin_all
) {
2476 trace_qemu_rdma_connect_pin_all_requested();
2477 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2480 caps_to_network(&cap
);
2482 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2484 ERROR(errp
, "posting second control recv");
2485 goto err_rdma_source_connect
;
2488 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2490 perror("rdma_connect");
2491 ERROR(errp
, "connecting to destination!");
2492 goto err_rdma_source_connect
;
2495 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2497 perror("rdma_get_cm_event after rdma_connect");
2498 ERROR(errp
, "connecting to destination!");
2499 rdma_ack_cm_event(cm_event
);
2500 goto err_rdma_source_connect
;
2503 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2504 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2505 ERROR(errp
, "connecting to destination!");
2506 rdma_ack_cm_event(cm_event
);
2507 goto err_rdma_source_connect
;
2509 rdma
->connected
= true;
2511 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2512 network_to_caps(&cap
);
2515 * Verify that the *requested* capabilities are supported by the destination
2516 * and disable them otherwise.
2518 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2519 ERROR(errp
, "Server cannot support pinning all memory. "
2520 "Will register memory dynamically.");
2521 rdma
->pin_all
= false;
2524 trace_qemu_rdma_connect_pin_all_outcome(rdma
->pin_all
);
2526 rdma_ack_cm_event(cm_event
);
2528 rdma
->control_ready_expected
= 1;
2532 err_rdma_source_connect
:
2533 qemu_rdma_cleanup(rdma
);
2537 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2540 struct rdma_cm_id
*listen_id
;
2541 char ip
[40] = "unknown";
2542 struct rdma_addrinfo
*res
, *e
;
2545 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2546 rdma
->wr_data
[idx
].control_len
= 0;
2547 rdma
->wr_data
[idx
].control_curr
= NULL
;
2550 if (!rdma
->host
|| !rdma
->host
[0]) {
2551 ERROR(errp
, "RDMA host is not set!");
2552 rdma
->error_state
= -EINVAL
;
2555 /* create CM channel */
2556 rdma
->channel
= rdma_create_event_channel();
2557 if (!rdma
->channel
) {
2558 ERROR(errp
, "could not create rdma event channel");
2559 rdma
->error_state
= -EINVAL
;
2564 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2566 ERROR(errp
, "could not create cm_id!");
2567 goto err_dest_init_create_listen_id
;
2570 snprintf(port_str
, 16, "%d", rdma
->port
);
2571 port_str
[15] = '\0';
2573 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2575 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
2576 goto err_dest_init_bind_addr
;
2579 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2580 inet_ntop(e
->ai_family
,
2581 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2582 trace_qemu_rdma_dest_init_trying(rdma
->host
, ip
);
2583 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2587 if (e
->ai_family
== AF_INET6
) {
2588 ret
= qemu_rdma_broken_ipv6_kernel(listen_id
->verbs
, errp
);
2597 ERROR(errp
, "Error: could not rdma_bind_addr!");
2598 goto err_dest_init_bind_addr
;
2601 rdma
->listen_id
= listen_id
;
2602 qemu_rdma_dump_gid("dest_init", listen_id
);
2605 err_dest_init_bind_addr
:
2606 rdma_destroy_id(listen_id
);
2607 err_dest_init_create_listen_id
:
2608 rdma_destroy_event_channel(rdma
->channel
);
2609 rdma
->channel
= NULL
;
2610 rdma
->error_state
= ret
;
2615 static void qemu_rdma_return_path_dest_init(RDMAContext
*rdma_return_path
,
2620 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2621 rdma_return_path
->wr_data
[idx
].control_len
= 0;
2622 rdma_return_path
->wr_data
[idx
].control_curr
= NULL
;
2625 /*the CM channel and CM id is shared*/
2626 rdma_return_path
->channel
= rdma
->channel
;
2627 rdma_return_path
->listen_id
= rdma
->listen_id
;
2629 rdma
->return_path
= rdma_return_path
;
2630 rdma_return_path
->return_path
= rdma
;
2631 rdma_return_path
->is_return_path
= true;
2634 static void *qemu_rdma_data_init(const char *host_port
, Error
**errp
)
2636 RDMAContext
*rdma
= NULL
;
2637 InetSocketAddress
*addr
;
2640 rdma
= g_new0(RDMAContext
, 1);
2641 rdma
->current_index
= -1;
2642 rdma
->current_chunk
= -1;
2644 addr
= g_new(InetSocketAddress
, 1);
2645 if (!inet_parse(addr
, host_port
, NULL
)) {
2646 rdma
->port
= atoi(addr
->port
);
2647 rdma
->host
= g_strdup(addr
->host
);
2649 ERROR(errp
, "bad RDMA migration address '%s'", host_port
);
2654 qapi_free_InetSocketAddress(addr
);
2661 * QEMUFile interface to the control channel.
2662 * SEND messages for control only.
2663 * VM's ram is handled with regular RDMA messages.
2665 static ssize_t
qio_channel_rdma_writev(QIOChannel
*ioc
,
2666 const struct iovec
*iov
,
2672 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2673 QEMUFile
*f
= rioc
->file
;
2680 RCU_READ_LOCK_GUARD();
2681 rdma
= atomic_rcu_read(&rioc
->rdmaout
);
2687 CHECK_ERROR_STATE();
2690 * Push out any writes that
2691 * we're queued up for VM's ram.
2693 ret
= qemu_rdma_write_flush(f
, rdma
);
2695 rdma
->error_state
= ret
;
2699 for (i
= 0; i
< niov
; i
++) {
2700 size_t remaining
= iov
[i
].iov_len
;
2701 uint8_t * data
= (void *)iov
[i
].iov_base
;
2703 RDMAControlHeader head
;
2705 len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2709 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2711 ret
= qemu_rdma_exchange_send(rdma
, &head
, data
, NULL
, NULL
, NULL
);
2714 rdma
->error_state
= ret
;
2726 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2727 size_t size
, int idx
)
2731 if (rdma
->wr_data
[idx
].control_len
) {
2732 trace_qemu_rdma_fill(rdma
->wr_data
[idx
].control_len
, size
);
2734 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2735 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2736 rdma
->wr_data
[idx
].control_curr
+= len
;
2737 rdma
->wr_data
[idx
].control_len
-= len
;
2744 * QEMUFile interface to the control channel.
2745 * RDMA links don't use bytestreams, so we have to
2746 * return bytes to QEMUFile opportunistically.
2748 static ssize_t
qio_channel_rdma_readv(QIOChannel
*ioc
,
2749 const struct iovec
*iov
,
2755 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2757 RDMAControlHeader head
;
2762 RCU_READ_LOCK_GUARD();
2763 rdma
= atomic_rcu_read(&rioc
->rdmain
);
2769 CHECK_ERROR_STATE();
2771 for (i
= 0; i
< niov
; i
++) {
2772 size_t want
= iov
[i
].iov_len
;
2773 uint8_t *data
= (void *)iov
[i
].iov_base
;
2776 * First, we hold on to the last SEND message we
2777 * were given and dish out the bytes until we run
2780 ret
= qemu_rdma_fill(rdma
, data
, want
, 0);
2783 /* Got what we needed, so go to next iovec */
2788 /* If we got any data so far, then don't wait
2789 * for more, just return what we have */
2795 /* We've got nothing at all, so lets wait for
2798 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
);
2801 rdma
->error_state
= ret
;
2806 * SEND was received with new bytes, now try again.
2808 ret
= qemu_rdma_fill(rdma
, data
, want
, 0);
2812 /* Still didn't get enough, so lets just return */
2815 return QIO_CHANNEL_ERR_BLOCK
;
2825 * Block until all the outstanding chunks have been delivered by the hardware.
2827 static int qemu_rdma_drain_cq(QEMUFile
*f
, RDMAContext
*rdma
)
2831 if (qemu_rdma_write_flush(f
, rdma
) < 0) {
2835 while (rdma
->nb_sent
) {
2836 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2838 error_report("rdma migration: complete polling error!");
2843 qemu_rdma_unregister_waiting(rdma
);
2849 static int qio_channel_rdma_set_blocking(QIOChannel
*ioc
,
2853 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2854 /* XXX we should make readv/writev actually honour this :-) */
2855 rioc
->blocking
= blocking
;
2860 typedef struct QIOChannelRDMASource QIOChannelRDMASource
;
2861 struct QIOChannelRDMASource
{
2863 QIOChannelRDMA
*rioc
;
2864 GIOCondition condition
;
2868 qio_channel_rdma_source_prepare(GSource
*source
,
2871 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2873 GIOCondition cond
= 0;
2876 RCU_READ_LOCK_GUARD();
2877 if (rsource
->condition
== G_IO_IN
) {
2878 rdma
= atomic_rcu_read(&rsource
->rioc
->rdmain
);
2880 rdma
= atomic_rcu_read(&rsource
->rioc
->rdmaout
);
2884 error_report("RDMAContext is NULL when prepare Gsource");
2888 if (rdma
->wr_data
[0].control_len
) {
2893 return cond
& rsource
->condition
;
2897 qio_channel_rdma_source_check(GSource
*source
)
2899 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2901 GIOCondition cond
= 0;
2903 RCU_READ_LOCK_GUARD();
2904 if (rsource
->condition
== G_IO_IN
) {
2905 rdma
= atomic_rcu_read(&rsource
->rioc
->rdmain
);
2907 rdma
= atomic_rcu_read(&rsource
->rioc
->rdmaout
);
2911 error_report("RDMAContext is NULL when check Gsource");
2915 if (rdma
->wr_data
[0].control_len
) {
2920 return cond
& rsource
->condition
;
2924 qio_channel_rdma_source_dispatch(GSource
*source
,
2925 GSourceFunc callback
,
2928 QIOChannelFunc func
= (QIOChannelFunc
)callback
;
2929 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2931 GIOCondition cond
= 0;
2933 RCU_READ_LOCK_GUARD();
2934 if (rsource
->condition
== G_IO_IN
) {
2935 rdma
= atomic_rcu_read(&rsource
->rioc
->rdmain
);
2937 rdma
= atomic_rcu_read(&rsource
->rioc
->rdmaout
);
2941 error_report("RDMAContext is NULL when dispatch Gsource");
2945 if (rdma
->wr_data
[0].control_len
) {
2950 return (*func
)(QIO_CHANNEL(rsource
->rioc
),
2951 (cond
& rsource
->condition
),
2956 qio_channel_rdma_source_finalize(GSource
*source
)
2958 QIOChannelRDMASource
*ssource
= (QIOChannelRDMASource
*)source
;
2960 object_unref(OBJECT(ssource
->rioc
));
2963 GSourceFuncs qio_channel_rdma_source_funcs
= {
2964 qio_channel_rdma_source_prepare
,
2965 qio_channel_rdma_source_check
,
2966 qio_channel_rdma_source_dispatch
,
2967 qio_channel_rdma_source_finalize
2970 static GSource
*qio_channel_rdma_create_watch(QIOChannel
*ioc
,
2971 GIOCondition condition
)
2973 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2974 QIOChannelRDMASource
*ssource
;
2977 source
= g_source_new(&qio_channel_rdma_source_funcs
,
2978 sizeof(QIOChannelRDMASource
));
2979 ssource
= (QIOChannelRDMASource
*)source
;
2981 ssource
->rioc
= rioc
;
2982 object_ref(OBJECT(rioc
));
2984 ssource
->condition
= condition
;
2989 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel
*ioc
,
2992 IOHandler
*io_write
,
2995 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2997 aio_set_fd_handler(ctx
, rioc
->rdmain
->comp_channel
->fd
,
2998 false, io_read
, io_write
, NULL
, opaque
);
3000 aio_set_fd_handler(ctx
, rioc
->rdmaout
->comp_channel
->fd
,
3001 false, io_read
, io_write
, NULL
, opaque
);
3005 struct rdma_close_rcu
{
3006 struct rcu_head rcu
;
3007 RDMAContext
*rdmain
;
3008 RDMAContext
*rdmaout
;
3011 /* callback from qio_channel_rdma_close via call_rcu */
3012 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu
*rcu
)
3015 qemu_rdma_cleanup(rcu
->rdmain
);
3019 qemu_rdma_cleanup(rcu
->rdmaout
);
3022 g_free(rcu
->rdmain
);
3023 g_free(rcu
->rdmaout
);
3027 static int qio_channel_rdma_close(QIOChannel
*ioc
,
3030 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3031 RDMAContext
*rdmain
, *rdmaout
;
3032 struct rdma_close_rcu
*rcu
= g_new(struct rdma_close_rcu
, 1);
3034 trace_qemu_rdma_close();
3036 rdmain
= rioc
->rdmain
;
3038 atomic_rcu_set(&rioc
->rdmain
, NULL
);
3041 rdmaout
= rioc
->rdmaout
;
3043 atomic_rcu_set(&rioc
->rdmaout
, NULL
);
3046 rcu
->rdmain
= rdmain
;
3047 rcu
->rdmaout
= rdmaout
;
3048 call_rcu(rcu
, qio_channel_rdma_close_rcu
, rcu
);
3054 qio_channel_rdma_shutdown(QIOChannel
*ioc
,
3055 QIOChannelShutdown how
,
3058 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3059 RDMAContext
*rdmain
, *rdmaout
;
3061 RCU_READ_LOCK_GUARD();
3063 rdmain
= atomic_rcu_read(&rioc
->rdmain
);
3064 rdmaout
= atomic_rcu_read(&rioc
->rdmain
);
3067 case QIO_CHANNEL_SHUTDOWN_READ
:
3069 rdmain
->error_state
= -1;
3072 case QIO_CHANNEL_SHUTDOWN_WRITE
:
3074 rdmaout
->error_state
= -1;
3077 case QIO_CHANNEL_SHUTDOWN_BOTH
:
3080 rdmain
->error_state
= -1;
3083 rdmaout
->error_state
= -1;
3094 * This means that 'block_offset' is a full virtual address that does not
3095 * belong to a RAMBlock of the virtual machine and instead
3096 * represents a private malloc'd memory area that the caller wishes to
3100 * Offset is an offset to be added to block_offset and used
3101 * to also lookup the corresponding RAMBlock.
3104 * Initiate an transfer this size.
3107 * A 'hint' or 'advice' that means that we wish to speculatively
3108 * and asynchronously unregister this memory. In this case, there is no
3109 * guarantee that the unregister will actually happen, for example,
3110 * if the memory is being actively transmitted. Additionally, the memory
3111 * may be re-registered at any future time if a write within the same
3112 * chunk was requested again, even if you attempted to unregister it
3115 * @size < 0 : TODO, not yet supported
3116 * Unregister the memory NOW. This means that the caller does not
3117 * expect there to be any future RDMA transfers and we just want to clean
3118 * things up. This is used in case the upper layer owns the memory and
3119 * cannot wait for qemu_fclose() to occur.
3121 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3122 * sent. Usually, this will not be more than a few bytes of
3123 * the protocol because most transfers are sent asynchronously.
3125 static size_t qemu_rdma_save_page(QEMUFile
*f
, void *opaque
,
3126 ram_addr_t block_offset
, ram_addr_t offset
,
3127 size_t size
, uint64_t *bytes_sent
)
3129 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3133 RCU_READ_LOCK_GUARD();
3134 rdma
= atomic_rcu_read(&rioc
->rdmaout
);
3140 CHECK_ERROR_STATE();
3142 if (migration_in_postcopy()) {
3143 return RAM_SAVE_CONTROL_NOT_SUPP
;
3150 * Add this page to the current 'chunk'. If the chunk
3151 * is full, or the page doen't belong to the current chunk,
3152 * an actual RDMA write will occur and a new chunk will be formed.
3154 ret
= qemu_rdma_write(f
, rdma
, block_offset
, offset
, size
);
3156 error_report("rdma migration: write error! %d", ret
);
3161 * We always return 1 bytes because the RDMA
3162 * protocol is completely asynchronous. We do not yet know
3163 * whether an identified chunk is zero or not because we're
3164 * waiting for other pages to potentially be merged with
3165 * the current chunk. So, we have to call qemu_update_position()
3166 * later on when the actual write occurs.
3172 uint64_t index
, chunk
;
3174 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3176 ret = qemu_rdma_drain_cq(f, rdma);
3178 fprintf(stderr, "rdma: failed to synchronously drain"
3179 " completion queue before unregistration.\n");
3185 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
3186 offset
, size
, &index
, &chunk
);
3189 error_report("ram block search failed");
3193 qemu_rdma_signal_unregister(rdma
, index
, chunk
, 0);
3196 * TODO: Synchronous, guaranteed unregistration (should not occur during
3197 * fast-path). Otherwise, unregisters will process on the next call to
3198 * qemu_rdma_drain_cq()
3200 qemu_rdma_unregister_waiting(rdma);
3206 * Drain the Completion Queue if possible, but do not block,
3209 * If nothing to poll, the end of the iteration will do this
3210 * again to make sure we don't overflow the request queue.
3213 uint64_t wr_id
, wr_id_in
;
3214 int ret
= qemu_rdma_poll(rdma
, &wr_id_in
, NULL
);
3216 error_report("rdma migration: polling error! %d", ret
);
3220 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3222 if (wr_id
== RDMA_WRID_NONE
) {
3227 return RAM_SAVE_CONTROL_DELAYED
;
3229 rdma
->error_state
= ret
;
3233 static void rdma_accept_incoming_migration(void *opaque
);
3235 static void rdma_cm_poll_handler(void *opaque
)
3237 RDMAContext
*rdma
= opaque
;
3239 struct rdma_cm_event
*cm_event
;
3240 MigrationIncomingState
*mis
= migration_incoming_get_current();
3242 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3244 error_report("get_cm_event failed %d", errno
);
3247 rdma_ack_cm_event(cm_event
);
3249 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
3250 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
3251 if (!rdma
->error_state
&&
3252 migration_incoming_get_current()->state
!=
3253 MIGRATION_STATUS_COMPLETED
) {
3254 error_report("receive cm event, cm event is %d", cm_event
->event
);
3255 rdma
->error_state
= -EPIPE
;
3256 if (rdma
->return_path
) {
3257 rdma
->return_path
->error_state
= -EPIPE
;
3261 if (mis
->migration_incoming_co
) {
3262 qemu_coroutine_enter(mis
->migration_incoming_co
);
3268 static int qemu_rdma_accept(RDMAContext
*rdma
)
3270 RDMACapabilities cap
;
3271 struct rdma_conn_param conn_param
= {
3272 .responder_resources
= 2,
3273 .private_data
= &cap
,
3274 .private_data_len
= sizeof(cap
),
3276 struct rdma_cm_event
*cm_event
;
3277 struct ibv_context
*verbs
;
3281 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3283 goto err_rdma_dest_wait
;
3286 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
3287 rdma_ack_cm_event(cm_event
);
3288 goto err_rdma_dest_wait
;
3291 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
3293 network_to_caps(&cap
);
3295 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
3296 error_report("Unknown source RDMA version: %d, bailing...",
3298 rdma_ack_cm_event(cm_event
);
3299 goto err_rdma_dest_wait
;
3303 * Respond with only the capabilities this version of QEMU knows about.
3305 cap
.flags
&= known_capabilities
;
3308 * Enable the ones that we do know about.
3309 * Add other checks here as new ones are introduced.
3311 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
3312 rdma
->pin_all
= true;
3315 rdma
->cm_id
= cm_event
->id
;
3316 verbs
= cm_event
->id
->verbs
;
3318 rdma_ack_cm_event(cm_event
);
3320 trace_qemu_rdma_accept_pin_state(rdma
->pin_all
);
3322 caps_to_network(&cap
);
3324 trace_qemu_rdma_accept_pin_verbsc(verbs
);
3327 rdma
->verbs
= verbs
;
3328 } else if (rdma
->verbs
!= verbs
) {
3329 error_report("ibv context not matching %p, %p!", rdma
->verbs
,
3331 goto err_rdma_dest_wait
;
3334 qemu_rdma_dump_id("dest_init", verbs
);
3336 ret
= qemu_rdma_alloc_pd_cq(rdma
);
3338 error_report("rdma migration: error allocating pd and cq!");
3339 goto err_rdma_dest_wait
;
3342 ret
= qemu_rdma_alloc_qp(rdma
);
3344 error_report("rdma migration: error allocating qp!");
3345 goto err_rdma_dest_wait
;
3348 ret
= qemu_rdma_init_ram_blocks(rdma
);
3350 error_report("rdma migration: error initializing ram blocks!");
3351 goto err_rdma_dest_wait
;
3354 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
3355 ret
= qemu_rdma_reg_control(rdma
, idx
);
3357 error_report("rdma: error registering %d control", idx
);
3358 goto err_rdma_dest_wait
;
3362 /* Accept the second connection request for return path */
3363 if (migrate_postcopy() && !rdma
->is_return_path
) {
3364 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
3366 (void *)(intptr_t)rdma
->return_path
);
3368 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_cm_poll_handler
,
3372 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
3374 error_report("rdma_accept returns %d", ret
);
3375 goto err_rdma_dest_wait
;
3378 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3380 error_report("rdma_accept get_cm_event failed %d", ret
);
3381 goto err_rdma_dest_wait
;
3384 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
3385 error_report("rdma_accept not event established");
3386 rdma_ack_cm_event(cm_event
);
3387 goto err_rdma_dest_wait
;
3390 rdma_ack_cm_event(cm_event
);
3391 rdma
->connected
= true;
3393 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
3395 error_report("rdma migration: error posting second control recv");
3396 goto err_rdma_dest_wait
;
3399 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
3404 rdma
->error_state
= ret
;
3405 qemu_rdma_cleanup(rdma
);
3409 static int dest_ram_sort_func(const void *a
, const void *b
)
3411 unsigned int a_index
= ((const RDMALocalBlock
*)a
)->src_index
;
3412 unsigned int b_index
= ((const RDMALocalBlock
*)b
)->src_index
;
3414 return (a_index
< b_index
) ? -1 : (a_index
!= b_index
);
3418 * During each iteration of the migration, we listen for instructions
3419 * by the source VM to perform dynamic page registrations before they
3420 * can perform RDMA operations.
3422 * We respond with the 'rkey'.
3424 * Keep doing this until the source tells us to stop.
3426 static int qemu_rdma_registration_handle(QEMUFile
*f
, void *opaque
)
3428 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
3429 .type
= RDMA_CONTROL_REGISTER_RESULT
,
3432 RDMAControlHeader unreg_resp
= { .len
= 0,
3433 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
3436 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
3438 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3440 RDMALocalBlocks
*local
;
3441 RDMAControlHeader head
;
3442 RDMARegister
*reg
, *registers
;
3444 RDMARegisterResult
*reg_result
;
3445 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
3446 RDMALocalBlock
*block
;
3453 RCU_READ_LOCK_GUARD();
3454 rdma
= atomic_rcu_read(&rioc
->rdmain
);
3460 CHECK_ERROR_STATE();
3462 local
= &rdma
->local_ram_blocks
;
3464 trace_qemu_rdma_registration_handle_wait();
3466 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
);
3472 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
3473 error_report("rdma: Too many requests in this message (%d)."
3474 "Bailing.", head
.repeat
);
3479 switch (head
.type
) {
3480 case RDMA_CONTROL_COMPRESS
:
3481 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
3482 network_to_compress(comp
);
3484 trace_qemu_rdma_registration_handle_compress(comp
->length
,
3487 if (comp
->block_idx
>= rdma
->local_ram_blocks
.nb_blocks
) {
3488 error_report("rdma: 'compress' bad block index %u (vs %d)",
3489 (unsigned int)comp
->block_idx
,
3490 rdma
->local_ram_blocks
.nb_blocks
);
3494 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
3496 host_addr
= block
->local_host_addr
+
3497 (comp
->offset
- block
->offset
);
3499 ram_handle_compressed(host_addr
, comp
->value
, comp
->length
);
3502 case RDMA_CONTROL_REGISTER_FINISHED
:
3503 trace_qemu_rdma_registration_handle_finished();
3506 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3507 trace_qemu_rdma_registration_handle_ram_blocks();
3509 /* Sort our local RAM Block list so it's the same as the source,
3510 * we can do this since we've filled in a src_index in the list
3511 * as we received the RAMBlock list earlier.
3513 qsort(rdma
->local_ram_blocks
.block
,
3514 rdma
->local_ram_blocks
.nb_blocks
,
3515 sizeof(RDMALocalBlock
), dest_ram_sort_func
);
3516 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3517 local
->block
[i
].index
= i
;
3520 if (rdma
->pin_all
) {
3521 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
);
3523 error_report("rdma migration: error dest "
3524 "registering ram blocks");
3530 * Dest uses this to prepare to transmit the RAMBlock descriptions
3531 * to the source VM after connection setup.
3532 * Both sides use the "remote" structure to communicate and update
3533 * their "local" descriptions with what was sent.
3535 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3536 rdma
->dest_blocks
[i
].remote_host_addr
=
3537 (uintptr_t)(local
->block
[i
].local_host_addr
);
3539 if (rdma
->pin_all
) {
3540 rdma
->dest_blocks
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3543 rdma
->dest_blocks
[i
].offset
= local
->block
[i
].offset
;
3544 rdma
->dest_blocks
[i
].length
= local
->block
[i
].length
;
3546 dest_block_to_network(&rdma
->dest_blocks
[i
]);
3547 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3548 local
->block
[i
].block_name
,
3549 local
->block
[i
].offset
,
3550 local
->block
[i
].length
,
3551 local
->block
[i
].local_host_addr
,
3552 local
->block
[i
].src_index
);
3555 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3556 * sizeof(RDMADestBlock
);
3559 ret
= qemu_rdma_post_send_control(rdma
,
3560 (uint8_t *) rdma
->dest_blocks
, &blocks
);
3563 error_report("rdma migration: error sending remote info");
3568 case RDMA_CONTROL_REGISTER_REQUEST
:
3569 trace_qemu_rdma_registration_handle_register(head
.repeat
);
3571 reg_resp
.repeat
= head
.repeat
;
3572 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3574 for (count
= 0; count
< head
.repeat
; count
++) {
3576 uint8_t *chunk_start
, *chunk_end
;
3578 reg
= ®isters
[count
];
3579 network_to_register(reg
);
3581 reg_result
= &results
[count
];
3583 trace_qemu_rdma_registration_handle_register_loop(count
,
3584 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3586 if (reg
->current_index
>= rdma
->local_ram_blocks
.nb_blocks
) {
3587 error_report("rdma: 'register' bad block index %u (vs %d)",
3588 (unsigned int)reg
->current_index
,
3589 rdma
->local_ram_blocks
.nb_blocks
);
3593 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3594 if (block
->is_ram_block
) {
3595 if (block
->offset
> reg
->key
.current_addr
) {
3596 error_report("rdma: bad register address for block %s"
3597 " offset: %" PRIx64
" current_addr: %" PRIx64
,
3598 block
->block_name
, block
->offset
,
3599 reg
->key
.current_addr
);
3603 host_addr
= (block
->local_host_addr
+
3604 (reg
->key
.current_addr
- block
->offset
));
3605 chunk
= ram_chunk_index(block
->local_host_addr
,
3606 (uint8_t *) host_addr
);
3608 chunk
= reg
->key
.chunk
;
3609 host_addr
= block
->local_host_addr
+
3610 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3611 /* Check for particularly bad chunk value */
3612 if (host_addr
< (void *)block
->local_host_addr
) {
3613 error_report("rdma: bad chunk for block %s"
3615 block
->block_name
, reg
->key
.chunk
);
3620 chunk_start
= ram_chunk_start(block
, chunk
);
3621 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3622 /* avoid "-Waddress-of-packed-member" warning */
3623 uint32_t tmp_rkey
= 0;
3624 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3625 (uintptr_t)host_addr
, NULL
, &tmp_rkey
,
3626 chunk
, chunk_start
, chunk_end
)) {
3627 error_report("cannot get rkey");
3631 reg_result
->rkey
= tmp_rkey
;
3633 reg_result
->host_addr
= (uintptr_t)block
->local_host_addr
;
3635 trace_qemu_rdma_registration_handle_register_rkey(
3638 result_to_network(reg_result
);
3641 ret
= qemu_rdma_post_send_control(rdma
,
3642 (uint8_t *) results
, ®_resp
);
3645 error_report("Failed to send control buffer");
3649 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3650 trace_qemu_rdma_registration_handle_unregister(head
.repeat
);
3651 unreg_resp
.repeat
= head
.repeat
;
3652 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3654 for (count
= 0; count
< head
.repeat
; count
++) {
3655 reg
= ®isters
[count
];
3656 network_to_register(reg
);
3658 trace_qemu_rdma_registration_handle_unregister_loop(count
,
3659 reg
->current_index
, reg
->key
.chunk
);
3661 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3663 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3664 block
->pmr
[reg
->key
.chunk
] = NULL
;
3667 perror("rdma unregistration chunk failed");
3672 rdma
->total_registrations
--;
3674 trace_qemu_rdma_registration_handle_unregister_success(
3678 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
);
3681 error_report("Failed to send control buffer");
3685 case RDMA_CONTROL_REGISTER_RESULT
:
3686 error_report("Invalid RESULT message at dest.");
3690 error_report("Unknown control message %s", control_desc(head
.type
));
3697 rdma
->error_state
= ret
;
3703 * Called via a ram_control_load_hook during the initial RAM load section which
3704 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3706 * We've already built our local RAMBlock list, but not yet sent the list to
3710 rdma_block_notification_handle(QIOChannelRDMA
*rioc
, const char *name
)
3716 RCU_READ_LOCK_GUARD();
3717 rdma
= atomic_rcu_read(&rioc
->rdmain
);
3723 /* Find the matching RAMBlock in our local list */
3724 for (curr
= 0; curr
< rdma
->local_ram_blocks
.nb_blocks
; curr
++) {
3725 if (!strcmp(rdma
->local_ram_blocks
.block
[curr
].block_name
, name
)) {
3732 error_report("RAMBlock '%s' not found on destination", name
);
3736 rdma
->local_ram_blocks
.block
[curr
].src_index
= rdma
->next_src_index
;
3737 trace_rdma_block_notification_handle(name
, rdma
->next_src_index
);
3738 rdma
->next_src_index
++;
3743 static int rdma_load_hook(QEMUFile
*f
, void *opaque
, uint64_t flags
, void *data
)
3746 case RAM_CONTROL_BLOCK_REG
:
3747 return rdma_block_notification_handle(opaque
, data
);
3749 case RAM_CONTROL_HOOK
:
3750 return qemu_rdma_registration_handle(f
, opaque
);
3753 /* Shouldn't be called with any other values */
3758 static int qemu_rdma_registration_start(QEMUFile
*f
, void *opaque
,
3759 uint64_t flags
, void *data
)
3761 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3764 RCU_READ_LOCK_GUARD();
3765 rdma
= atomic_rcu_read(&rioc
->rdmaout
);
3770 CHECK_ERROR_STATE();
3772 if (migration_in_postcopy()) {
3776 trace_qemu_rdma_registration_start(flags
);
3777 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3784 * Inform dest that dynamic registrations are done for now.
3785 * First, flush writes, if any.
3787 static int qemu_rdma_registration_stop(QEMUFile
*f
, void *opaque
,
3788 uint64_t flags
, void *data
)
3790 Error
*local_err
= NULL
, **errp
= &local_err
;
3791 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3793 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3796 RCU_READ_LOCK_GUARD();
3797 rdma
= atomic_rcu_read(&rioc
->rdmaout
);
3802 CHECK_ERROR_STATE();
3804 if (migration_in_postcopy()) {
3809 ret
= qemu_rdma_drain_cq(f
, rdma
);
3815 if (flags
== RAM_CONTROL_SETUP
) {
3816 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3817 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3818 int reg_result_idx
, i
, nb_dest_blocks
;
3820 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3821 trace_qemu_rdma_registration_stop_ram();
3824 * Make sure that we parallelize the pinning on both sides.
3825 * For very large guests, doing this serially takes a really
3826 * long time, so we have to 'interleave' the pinning locally
3827 * with the control messages by performing the pinning on this
3828 * side before we receive the control response from the other
3829 * side that the pinning has completed.
3831 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3832 ®_result_idx
, rdma
->pin_all
?
3833 qemu_rdma_reg_whole_ram_blocks
: NULL
);
3835 ERROR(errp
, "receiving remote info!");
3839 nb_dest_blocks
= resp
.len
/ sizeof(RDMADestBlock
);
3842 * The protocol uses two different sets of rkeys (mutually exclusive):
3843 * 1. One key to represent the virtual address of the entire ram block.
3844 * (dynamic chunk registration disabled - pin everything with one rkey.)
3845 * 2. One to represent individual chunks within a ram block.
3846 * (dynamic chunk registration enabled - pin individual chunks.)
3848 * Once the capability is successfully negotiated, the destination transmits
3849 * the keys to use (or sends them later) including the virtual addresses
3850 * and then propagates the remote ram block descriptions to his local copy.
3853 if (local
->nb_blocks
!= nb_dest_blocks
) {
3854 ERROR(errp
, "ram blocks mismatch (Number of blocks %d vs %d) "
3855 "Your QEMU command line parameters are probably "
3856 "not identical on both the source and destination.",
3857 local
->nb_blocks
, nb_dest_blocks
);
3858 rdma
->error_state
= -EINVAL
;
3862 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3863 memcpy(rdma
->dest_blocks
,
3864 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3865 for (i
= 0; i
< nb_dest_blocks
; i
++) {
3866 network_to_dest_block(&rdma
->dest_blocks
[i
]);
3868 /* We require that the blocks are in the same order */
3869 if (rdma
->dest_blocks
[i
].length
!= local
->block
[i
].length
) {
3870 ERROR(errp
, "Block %s/%d has a different length %" PRIu64
3871 "vs %" PRIu64
, local
->block
[i
].block_name
, i
,
3872 local
->block
[i
].length
,
3873 rdma
->dest_blocks
[i
].length
);
3874 rdma
->error_state
= -EINVAL
;
3877 local
->block
[i
].remote_host_addr
=
3878 rdma
->dest_blocks
[i
].remote_host_addr
;
3879 local
->block
[i
].remote_rkey
= rdma
->dest_blocks
[i
].remote_rkey
;
3883 trace_qemu_rdma_registration_stop(flags
);
3885 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
3886 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
);
3894 rdma
->error_state
= ret
;
3898 static const QEMUFileHooks rdma_read_hooks
= {
3899 .hook_ram_load
= rdma_load_hook
,
3902 static const QEMUFileHooks rdma_write_hooks
= {
3903 .before_ram_iterate
= qemu_rdma_registration_start
,
3904 .after_ram_iterate
= qemu_rdma_registration_stop
,
3905 .save_page
= qemu_rdma_save_page
,
3909 static void qio_channel_rdma_finalize(Object
*obj
)
3911 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(obj
);
3913 qemu_rdma_cleanup(rioc
->rdmain
);
3914 g_free(rioc
->rdmain
);
3915 rioc
->rdmain
= NULL
;
3917 if (rioc
->rdmaout
) {
3918 qemu_rdma_cleanup(rioc
->rdmaout
);
3919 g_free(rioc
->rdmaout
);
3920 rioc
->rdmaout
= NULL
;
3924 static void qio_channel_rdma_class_init(ObjectClass
*klass
,
3925 void *class_data G_GNUC_UNUSED
)
3927 QIOChannelClass
*ioc_klass
= QIO_CHANNEL_CLASS(klass
);
3929 ioc_klass
->io_writev
= qio_channel_rdma_writev
;
3930 ioc_klass
->io_readv
= qio_channel_rdma_readv
;
3931 ioc_klass
->io_set_blocking
= qio_channel_rdma_set_blocking
;
3932 ioc_klass
->io_close
= qio_channel_rdma_close
;
3933 ioc_klass
->io_create_watch
= qio_channel_rdma_create_watch
;
3934 ioc_klass
->io_set_aio_fd_handler
= qio_channel_rdma_set_aio_fd_handler
;
3935 ioc_klass
->io_shutdown
= qio_channel_rdma_shutdown
;
3938 static const TypeInfo qio_channel_rdma_info
= {
3939 .parent
= TYPE_QIO_CHANNEL
,
3940 .name
= TYPE_QIO_CHANNEL_RDMA
,
3941 .instance_size
= sizeof(QIOChannelRDMA
),
3942 .instance_finalize
= qio_channel_rdma_finalize
,
3943 .class_init
= qio_channel_rdma_class_init
,
3946 static void qio_channel_rdma_register_types(void)
3948 type_register_static(&qio_channel_rdma_info
);
3951 type_init(qio_channel_rdma_register_types
);
3953 static QEMUFile
*qemu_fopen_rdma(RDMAContext
*rdma
, const char *mode
)
3955 QIOChannelRDMA
*rioc
;
3957 if (qemu_file_mode_is_not_valid(mode
)) {
3961 rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
3963 if (mode
[0] == 'w') {
3964 rioc
->file
= qemu_fopen_channel_output(QIO_CHANNEL(rioc
));
3965 rioc
->rdmaout
= rdma
;
3966 rioc
->rdmain
= rdma
->return_path
;
3967 qemu_file_set_hooks(rioc
->file
, &rdma_write_hooks
);
3969 rioc
->file
= qemu_fopen_channel_input(QIO_CHANNEL(rioc
));
3970 rioc
->rdmain
= rdma
;
3971 rioc
->rdmaout
= rdma
->return_path
;
3972 qemu_file_set_hooks(rioc
->file
, &rdma_read_hooks
);
3978 static void rdma_accept_incoming_migration(void *opaque
)
3980 RDMAContext
*rdma
= opaque
;
3983 Error
*local_err
= NULL
, **errp
= &local_err
;
3985 trace_qemu_rdma_accept_incoming_migration();
3986 ret
= qemu_rdma_accept(rdma
);
3989 ERROR(errp
, "RDMA Migration initialization failed!");
3993 trace_qemu_rdma_accept_incoming_migration_accepted();
3995 if (rdma
->is_return_path
) {
3999 f
= qemu_fopen_rdma(rdma
, "rb");
4001 ERROR(errp
, "could not qemu_fopen_rdma!");
4002 qemu_rdma_cleanup(rdma
);
4006 rdma
->migration_started_on_destination
= 1;
4007 migration_fd_process_incoming(f
);
4010 void rdma_start_incoming_migration(const char *host_port
, Error
**errp
)
4013 RDMAContext
*rdma
, *rdma_return_path
= NULL
;
4014 Error
*local_err
= NULL
;
4016 trace_rdma_start_incoming_migration();
4017 rdma
= qemu_rdma_data_init(host_port
, &local_err
);
4023 ret
= qemu_rdma_dest_init(rdma
, &local_err
);
4029 trace_rdma_start_incoming_migration_after_dest_init();
4031 ret
= rdma_listen(rdma
->listen_id
, 5);
4034 ERROR(errp
, "listening on socket!");
4038 trace_rdma_start_incoming_migration_after_rdma_listen();
4040 /* initialize the RDMAContext for return path */
4041 if (migrate_postcopy()) {
4042 rdma_return_path
= qemu_rdma_data_init(host_port
, &local_err
);
4044 if (rdma_return_path
== NULL
) {
4048 qemu_rdma_return_path_dest_init(rdma_return_path
, rdma
);
4051 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
4052 NULL
, (void *)(intptr_t)rdma
);
4055 error_propagate(errp
, local_err
);
4057 g_free(rdma_return_path
);
4060 void rdma_start_outgoing_migration(void *opaque
,
4061 const char *host_port
, Error
**errp
)
4063 MigrationState
*s
= opaque
;
4064 RDMAContext
*rdma
= qemu_rdma_data_init(host_port
, errp
);
4065 RDMAContext
*rdma_return_path
= NULL
;
4072 ret
= qemu_rdma_source_init(rdma
,
4073 s
->enabled_capabilities
[MIGRATION_CAPABILITY_RDMA_PIN_ALL
], errp
);
4079 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4080 ret
= qemu_rdma_connect(rdma
, errp
);
4086 /* RDMA postcopy need a seprate queue pair for return path */
4087 if (migrate_postcopy()) {
4088 rdma_return_path
= qemu_rdma_data_init(host_port
, errp
);
4090 if (rdma_return_path
== NULL
) {
4094 ret
= qemu_rdma_source_init(rdma_return_path
,
4095 s
->enabled_capabilities
[MIGRATION_CAPABILITY_RDMA_PIN_ALL
], errp
);
4101 ret
= qemu_rdma_connect(rdma_return_path
, errp
);
4107 rdma
->return_path
= rdma_return_path
;
4108 rdma_return_path
->return_path
= rdma
;
4109 rdma_return_path
->is_return_path
= true;
4112 trace_rdma_start_outgoing_migration_after_rdma_connect();
4114 s
->to_dst_file
= qemu_fopen_rdma(rdma
, "wb");
4115 migrate_fd_connect(s
, NULL
);
4119 g_free(rdma_return_path
);