memory: RCU ram_list.dirty_memory[] for safe RAM hotplug
[qemu/kevin.git] / util / iov.c
blobe802ee15bcb9d74be37de710ffd0eb741ddfe2d8
1 /*
2 * Helpers for getting linearized buffers from iov / filling buffers into iovs
4 * Copyright IBM, Corp. 2007, 2008
5 * Copyright (C) 2010 Red Hat, Inc.
7 * Author(s):
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Amit Shah <amit.shah@redhat.com>
10 * Michael Tokarev <mjt@tls.msk.ru>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
19 #include "qemu/osdep.h"
20 #include "qemu/iov.h"
21 #include "qemu/sockets.h"
23 size_t iov_from_buf(const struct iovec *iov, unsigned int iov_cnt,
24 size_t offset, const void *buf, size_t bytes)
26 size_t done;
27 unsigned int i;
28 for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
29 if (offset < iov[i].iov_len) {
30 size_t len = MIN(iov[i].iov_len - offset, bytes - done);
31 memcpy(iov[i].iov_base + offset, buf + done, len);
32 done += len;
33 offset = 0;
34 } else {
35 offset -= iov[i].iov_len;
38 assert(offset == 0);
39 return done;
42 size_t iov_to_buf(const struct iovec *iov, const unsigned int iov_cnt,
43 size_t offset, void *buf, size_t bytes)
45 size_t done;
46 unsigned int i;
47 for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
48 if (offset < iov[i].iov_len) {
49 size_t len = MIN(iov[i].iov_len - offset, bytes - done);
50 memcpy(buf + done, iov[i].iov_base + offset, len);
51 done += len;
52 offset = 0;
53 } else {
54 offset -= iov[i].iov_len;
57 assert(offset == 0);
58 return done;
61 size_t iov_memset(const struct iovec *iov, const unsigned int iov_cnt,
62 size_t offset, int fillc, size_t bytes)
64 size_t done;
65 unsigned int i;
66 for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
67 if (offset < iov[i].iov_len) {
68 size_t len = MIN(iov[i].iov_len - offset, bytes - done);
69 memset(iov[i].iov_base + offset, fillc, len);
70 done += len;
71 offset = 0;
72 } else {
73 offset -= iov[i].iov_len;
76 assert(offset == 0);
77 return done;
80 size_t iov_size(const struct iovec *iov, const unsigned int iov_cnt)
82 size_t len;
83 unsigned int i;
85 len = 0;
86 for (i = 0; i < iov_cnt; i++) {
87 len += iov[i].iov_len;
89 return len;
92 /* helper function for iov_send_recv() */
93 static ssize_t
94 do_send_recv(int sockfd, struct iovec *iov, unsigned iov_cnt, bool do_send)
96 #ifdef CONFIG_POSIX
97 ssize_t ret;
98 struct msghdr msg;
99 memset(&msg, 0, sizeof(msg));
100 msg.msg_iov = iov;
101 msg.msg_iovlen = iov_cnt;
102 do {
103 ret = do_send
104 ? sendmsg(sockfd, &msg, 0)
105 : recvmsg(sockfd, &msg, 0);
106 } while (ret < 0 && errno == EINTR);
107 return ret;
108 #else
109 /* else send piece-by-piece */
110 /*XXX Note: windows has WSASend() and WSARecv() */
111 unsigned i = 0;
112 ssize_t ret = 0;
113 while (i < iov_cnt) {
114 ssize_t r = do_send
115 ? send(sockfd, iov[i].iov_base, iov[i].iov_len, 0)
116 : recv(sockfd, iov[i].iov_base, iov[i].iov_len, 0);
117 if (r > 0) {
118 ret += r;
119 } else if (!r) {
120 break;
121 } else if (errno == EINTR) {
122 continue;
123 } else {
124 /* else it is some "other" error,
125 * only return if there was no data processed. */
126 if (ret == 0) {
127 ret = -1;
129 break;
131 i++;
133 return ret;
134 #endif
137 ssize_t iov_send_recv(int sockfd, const struct iovec *_iov, unsigned iov_cnt,
138 size_t offset, size_t bytes,
139 bool do_send)
141 ssize_t total = 0;
142 ssize_t ret;
143 size_t orig_len, tail;
144 unsigned niov;
145 struct iovec *local_iov, *iov;
147 if (bytes <= 0) {
148 return 0;
151 local_iov = g_new0(struct iovec, iov_cnt);
152 iov_copy(local_iov, iov_cnt, _iov, iov_cnt, offset, bytes);
153 offset = 0;
154 iov = local_iov;
156 while (bytes > 0) {
157 /* Find the start position, skipping `offset' bytes:
158 * first, skip all full-sized vector elements, */
159 for (niov = 0; niov < iov_cnt && offset >= iov[niov].iov_len; ++niov) {
160 offset -= iov[niov].iov_len;
163 /* niov == iov_cnt would only be valid if bytes == 0, which
164 * we already ruled out in the loop condition. */
165 assert(niov < iov_cnt);
166 iov += niov;
167 iov_cnt -= niov;
169 if (offset) {
170 /* second, skip `offset' bytes from the (now) first element,
171 * undo it on exit */
172 iov[0].iov_base += offset;
173 iov[0].iov_len -= offset;
175 /* Find the end position skipping `bytes' bytes: */
176 /* first, skip all full-sized elements */
177 tail = bytes;
178 for (niov = 0; niov < iov_cnt && iov[niov].iov_len <= tail; ++niov) {
179 tail -= iov[niov].iov_len;
181 if (tail) {
182 /* second, fixup the last element, and remember the original
183 * length */
184 assert(niov < iov_cnt);
185 assert(iov[niov].iov_len > tail);
186 orig_len = iov[niov].iov_len;
187 iov[niov++].iov_len = tail;
188 ret = do_send_recv(sockfd, iov, niov, do_send);
189 /* Undo the changes above before checking for errors */
190 iov[niov-1].iov_len = orig_len;
191 } else {
192 ret = do_send_recv(sockfd, iov, niov, do_send);
194 if (offset) {
195 iov[0].iov_base -= offset;
196 iov[0].iov_len += offset;
199 if (ret < 0) {
200 assert(errno != EINTR);
201 g_free(local_iov);
202 if (errno == EAGAIN && total > 0) {
203 return total;
205 return -1;
208 if (ret == 0 && !do_send) {
209 /* recv returns 0 when the peer has performed an orderly
210 * shutdown. */
211 break;
214 /* Prepare for the next iteration */
215 offset += ret;
216 total += ret;
217 bytes -= ret;
220 g_free(local_iov);
221 return total;
225 void iov_hexdump(const struct iovec *iov, const unsigned int iov_cnt,
226 FILE *fp, const char *prefix, size_t limit)
228 int v;
229 size_t size = 0;
230 char *buf;
232 for (v = 0; v < iov_cnt; v++) {
233 size += iov[v].iov_len;
235 size = size > limit ? limit : size;
236 buf = g_malloc(size);
237 iov_to_buf(iov, iov_cnt, 0, buf, size);
238 qemu_hexdump(buf, fp, prefix, size);
239 g_free(buf);
242 unsigned iov_copy(struct iovec *dst_iov, unsigned int dst_iov_cnt,
243 const struct iovec *iov, unsigned int iov_cnt,
244 size_t offset, size_t bytes)
246 size_t len;
247 unsigned int i, j;
248 for (i = 0, j = 0; i < iov_cnt && j < dst_iov_cnt && bytes; i++) {
249 if (offset >= iov[i].iov_len) {
250 offset -= iov[i].iov_len;
251 continue;
253 len = MIN(bytes, iov[i].iov_len - offset);
255 dst_iov[j].iov_base = iov[i].iov_base + offset;
256 dst_iov[j].iov_len = len;
257 j++;
258 bytes -= len;
259 offset = 0;
261 assert(offset == 0);
262 return j;
265 /* io vectors */
267 void qemu_iovec_init(QEMUIOVector *qiov, int alloc_hint)
269 qiov->iov = g_new(struct iovec, alloc_hint);
270 qiov->niov = 0;
271 qiov->nalloc = alloc_hint;
272 qiov->size = 0;
275 void qemu_iovec_init_external(QEMUIOVector *qiov, struct iovec *iov, int niov)
277 int i;
279 qiov->iov = iov;
280 qiov->niov = niov;
281 qiov->nalloc = -1;
282 qiov->size = 0;
283 for (i = 0; i < niov; i++)
284 qiov->size += iov[i].iov_len;
287 void qemu_iovec_add(QEMUIOVector *qiov, void *base, size_t len)
289 assert(qiov->nalloc != -1);
291 if (qiov->niov == qiov->nalloc) {
292 qiov->nalloc = 2 * qiov->nalloc + 1;
293 qiov->iov = g_renew(struct iovec, qiov->iov, qiov->nalloc);
295 qiov->iov[qiov->niov].iov_base = base;
296 qiov->iov[qiov->niov].iov_len = len;
297 qiov->size += len;
298 ++qiov->niov;
302 * Concatenates (partial) iovecs from src_iov to the end of dst.
303 * It starts copying after skipping `soffset' bytes at the
304 * beginning of src and adds individual vectors from src to
305 * dst copies up to `sbytes' bytes total, or up to the end
306 * of src_iov if it comes first. This way, it is okay to specify
307 * very large value for `sbytes' to indicate "up to the end
308 * of src".
309 * Only vector pointers are processed, not the actual data buffers.
311 size_t qemu_iovec_concat_iov(QEMUIOVector *dst,
312 struct iovec *src_iov, unsigned int src_cnt,
313 size_t soffset, size_t sbytes)
315 int i;
316 size_t done;
318 if (!sbytes) {
319 return 0;
321 assert(dst->nalloc != -1);
322 for (i = 0, done = 0; done < sbytes && i < src_cnt; i++) {
323 if (soffset < src_iov[i].iov_len) {
324 size_t len = MIN(src_iov[i].iov_len - soffset, sbytes - done);
325 qemu_iovec_add(dst, src_iov[i].iov_base + soffset, len);
326 done += len;
327 soffset = 0;
328 } else {
329 soffset -= src_iov[i].iov_len;
332 assert(soffset == 0); /* offset beyond end of src */
334 return done;
338 * Concatenates (partial) iovecs from src to the end of dst.
339 * It starts copying after skipping `soffset' bytes at the
340 * beginning of src and adds individual vectors from src to
341 * dst copies up to `sbytes' bytes total, or up to the end
342 * of src if it comes first. This way, it is okay to specify
343 * very large value for `sbytes' to indicate "up to the end
344 * of src".
345 * Only vector pointers are processed, not the actual data buffers.
347 void qemu_iovec_concat(QEMUIOVector *dst,
348 QEMUIOVector *src, size_t soffset, size_t sbytes)
350 qemu_iovec_concat_iov(dst, src->iov, src->niov, soffset, sbytes);
354 * Check if the contents of the iovecs are all zero
356 bool qemu_iovec_is_zero(QEMUIOVector *qiov)
358 int i;
359 for (i = 0; i < qiov->niov; i++) {
360 size_t offs = QEMU_ALIGN_DOWN(qiov->iov[i].iov_len, 4 * sizeof(long));
361 uint8_t *ptr = qiov->iov[i].iov_base;
362 if (offs && !buffer_is_zero(qiov->iov[i].iov_base, offs)) {
363 return false;
365 for (; offs < qiov->iov[i].iov_len; offs++) {
366 if (ptr[offs]) {
367 return false;
371 return true;
374 void qemu_iovec_destroy(QEMUIOVector *qiov)
376 assert(qiov->nalloc != -1);
378 qemu_iovec_reset(qiov);
379 g_free(qiov->iov);
380 qiov->nalloc = 0;
381 qiov->iov = NULL;
384 void qemu_iovec_reset(QEMUIOVector *qiov)
386 assert(qiov->nalloc != -1);
388 qiov->niov = 0;
389 qiov->size = 0;
392 size_t qemu_iovec_to_buf(QEMUIOVector *qiov, size_t offset,
393 void *buf, size_t bytes)
395 return iov_to_buf(qiov->iov, qiov->niov, offset, buf, bytes);
398 size_t qemu_iovec_from_buf(QEMUIOVector *qiov, size_t offset,
399 const void *buf, size_t bytes)
401 return iov_from_buf(qiov->iov, qiov->niov, offset, buf, bytes);
404 size_t qemu_iovec_memset(QEMUIOVector *qiov, size_t offset,
405 int fillc, size_t bytes)
407 return iov_memset(qiov->iov, qiov->niov, offset, fillc, bytes);
411 * Check that I/O vector contents are identical
413 * The IO vectors must have the same structure (same length of all parts).
414 * A typical usage is to compare vectors created with qemu_iovec_clone().
416 * @a: I/O vector
417 * @b: I/O vector
418 * @ret: Offset to first mismatching byte or -1 if match
420 ssize_t qemu_iovec_compare(QEMUIOVector *a, QEMUIOVector *b)
422 int i;
423 ssize_t offset = 0;
425 assert(a->niov == b->niov);
426 for (i = 0; i < a->niov; i++) {
427 size_t len = 0;
428 uint8_t *p = (uint8_t *)a->iov[i].iov_base;
429 uint8_t *q = (uint8_t *)b->iov[i].iov_base;
431 assert(a->iov[i].iov_len == b->iov[i].iov_len);
432 while (len < a->iov[i].iov_len && *p++ == *q++) {
433 len++;
436 offset += len;
438 if (len != a->iov[i].iov_len) {
439 return offset;
442 return -1;
445 typedef struct {
446 int src_index;
447 struct iovec *src_iov;
448 void *dest_base;
449 } IOVectorSortElem;
451 static int sortelem_cmp_src_base(const void *a, const void *b)
453 const IOVectorSortElem *elem_a = a;
454 const IOVectorSortElem *elem_b = b;
456 /* Don't overflow */
457 if (elem_a->src_iov->iov_base < elem_b->src_iov->iov_base) {
458 return -1;
459 } else if (elem_a->src_iov->iov_base > elem_b->src_iov->iov_base) {
460 return 1;
461 } else {
462 return 0;
466 static int sortelem_cmp_src_index(const void *a, const void *b)
468 const IOVectorSortElem *elem_a = a;
469 const IOVectorSortElem *elem_b = b;
471 return elem_a->src_index - elem_b->src_index;
475 * Copy contents of I/O vector
477 * The relative relationships of overlapping iovecs are preserved. This is
478 * necessary to ensure identical semantics in the cloned I/O vector.
480 void qemu_iovec_clone(QEMUIOVector *dest, const QEMUIOVector *src, void *buf)
482 IOVectorSortElem sortelems[src->niov];
483 void *last_end;
484 int i;
486 /* Sort by source iovecs by base address */
487 for (i = 0; i < src->niov; i++) {
488 sortelems[i].src_index = i;
489 sortelems[i].src_iov = &src->iov[i];
491 qsort(sortelems, src->niov, sizeof(sortelems[0]), sortelem_cmp_src_base);
493 /* Allocate buffer space taking into account overlapping iovecs */
494 last_end = NULL;
495 for (i = 0; i < src->niov; i++) {
496 struct iovec *cur = sortelems[i].src_iov;
497 ptrdiff_t rewind = 0;
499 /* Detect overlap */
500 if (last_end && last_end > cur->iov_base) {
501 rewind = last_end - cur->iov_base;
504 sortelems[i].dest_base = buf - rewind;
505 buf += cur->iov_len - MIN(rewind, cur->iov_len);
506 last_end = MAX(cur->iov_base + cur->iov_len, last_end);
509 /* Sort by source iovec index and build destination iovec */
510 qsort(sortelems, src->niov, sizeof(sortelems[0]), sortelem_cmp_src_index);
511 for (i = 0; i < src->niov; i++) {
512 qemu_iovec_add(dest, sortelems[i].dest_base, src->iov[i].iov_len);
516 size_t iov_discard_front(struct iovec **iov, unsigned int *iov_cnt,
517 size_t bytes)
519 size_t total = 0;
520 struct iovec *cur;
522 for (cur = *iov; *iov_cnt > 0; cur++) {
523 if (cur->iov_len > bytes) {
524 cur->iov_base += bytes;
525 cur->iov_len -= bytes;
526 total += bytes;
527 break;
530 bytes -= cur->iov_len;
531 total += cur->iov_len;
532 *iov_cnt -= 1;
535 *iov = cur;
536 return total;
539 size_t iov_discard_back(struct iovec *iov, unsigned int *iov_cnt,
540 size_t bytes)
542 size_t total = 0;
543 struct iovec *cur;
545 if (*iov_cnt == 0) {
546 return 0;
549 cur = iov + (*iov_cnt - 1);
551 while (*iov_cnt > 0) {
552 if (cur->iov_len > bytes) {
553 cur->iov_len -= bytes;
554 total += bytes;
555 break;
558 bytes -= cur->iov_len;
559 total += cur->iov_len;
560 cur--;
561 *iov_cnt -= 1;
564 return total;
567 void qemu_iovec_discard_back(QEMUIOVector *qiov, size_t bytes)
569 size_t total;
570 unsigned int niov = qiov->niov;
572 assert(qiov->size >= bytes);
573 total = iov_discard_back(qiov->iov, &niov, bytes);
574 assert(total == bytes);
576 qiov->niov = niov;
577 qiov->size -= bytes;