4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/kvm_int.h"
30 #include "exec/gdbstub.h"
31 #include "qemu/host-utils.h"
32 #include "qemu/config-file.h"
33 #include "qemu/error-report.h"
34 #include "hw/i386/pc.h"
35 #include "hw/i386/apic.h"
36 #include "hw/i386/apic_internal.h"
37 #include "hw/i386/apic-msidef.h"
38 #include "hw/i386/intel_iommu.h"
39 #include "hw/i386/x86-iommu.h"
41 #include "exec/ioport.h"
42 #include "standard-headers/asm-x86/hyperv.h"
43 #include "hw/pci/pci.h"
44 #include "hw/pci/msi.h"
45 #include "migration/migration.h"
46 #include "exec/memattrs.h"
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #define DPRINTF(fmt, ...) \
59 #define MSR_KVM_WALL_CLOCK 0x11
60 #define MSR_KVM_SYSTEM_TIME 0x12
62 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
63 * 255 kvm_msr_entry structs */
64 #define MSR_BUF_SIZE 4096
67 #define BUS_MCEERR_AR 4
70 #define BUS_MCEERR_AO 5
73 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
74 KVM_CAP_INFO(SET_TSS_ADDR
),
75 KVM_CAP_INFO(EXT_CPUID
),
76 KVM_CAP_INFO(MP_STATE
),
80 static bool has_msr_star
;
81 static bool has_msr_hsave_pa
;
82 static bool has_msr_tsc_aux
;
83 static bool has_msr_tsc_adjust
;
84 static bool has_msr_tsc_deadline
;
85 static bool has_msr_feature_control
;
86 static bool has_msr_misc_enable
;
87 static bool has_msr_smbase
;
88 static bool has_msr_bndcfgs
;
89 static int lm_capable_kernel
;
90 static bool has_msr_hv_hypercall
;
91 static bool has_msr_hv_crash
;
92 static bool has_msr_hv_reset
;
93 static bool has_msr_hv_vpindex
;
94 static bool has_msr_hv_runtime
;
95 static bool has_msr_hv_synic
;
96 static bool has_msr_hv_stimer
;
97 static bool has_msr_xss
;
99 static bool has_msr_architectural_pmu
;
100 static uint32_t num_architectural_pmu_counters
;
102 static int has_xsave
;
104 static int has_pit_state2
;
106 static bool has_msr_mcg_ext_ctl
;
108 static struct kvm_cpuid2
*cpuid_cache
;
110 int kvm_has_pit_state2(void)
112 return has_pit_state2
;
115 bool kvm_has_smm(void)
117 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
120 bool kvm_allows_irq0_override(void)
122 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
125 static bool kvm_x2apic_api_set_flags(uint64_t flags
)
127 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
129 return !kvm_vm_enable_cap(s
, KVM_CAP_X2APIC_API
, 0, flags
);
132 #define MEMORIZE(fn, _result) \
134 static bool _memorized; \
143 static bool has_x2apic_api
;
145 bool kvm_has_x2apic_api(void)
147 return has_x2apic_api
;
150 bool kvm_enable_x2apic(void)
153 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS
|
154 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
),
158 static int kvm_get_tsc(CPUState
*cs
)
160 X86CPU
*cpu
= X86_CPU(cs
);
161 CPUX86State
*env
= &cpu
->env
;
163 struct kvm_msrs info
;
164 struct kvm_msr_entry entries
[1];
168 if (env
->tsc_valid
) {
172 msr_data
.info
.nmsrs
= 1;
173 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
174 env
->tsc_valid
= !runstate_is_running();
176 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
182 env
->tsc
= msr_data
.entries
[0].data
;
186 static inline void do_kvm_synchronize_tsc(CPUState
*cpu
, void *arg
)
191 void kvm_synchronize_all_tsc(void)
197 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, NULL
);
202 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
204 struct kvm_cpuid2
*cpuid
;
207 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
208 cpuid
= g_malloc0(size
);
210 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
211 if (r
== 0 && cpuid
->nent
>= max
) {
219 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
227 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
230 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
232 struct kvm_cpuid2
*cpuid
;
235 if (cpuid_cache
!= NULL
) {
238 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
245 static const struct kvm_para_features
{
248 } para_features
[] = {
249 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
250 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
251 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
252 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
255 static int get_para_features(KVMState
*s
)
259 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
260 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
261 features
|= (1 << para_features
[i
].feature
);
269 /* Returns the value for a specific register on the cpuid entry
271 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
291 /* Find matching entry for function/index on kvm_cpuid2 struct
293 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
298 for (i
= 0; i
< cpuid
->nent
; ++i
) {
299 if (cpuid
->entries
[i
].function
== function
&&
300 cpuid
->entries
[i
].index
== index
) {
301 return &cpuid
->entries
[i
];
308 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
309 uint32_t index
, int reg
)
311 struct kvm_cpuid2
*cpuid
;
313 uint32_t cpuid_1_edx
;
316 cpuid
= get_supported_cpuid(s
);
318 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
321 ret
= cpuid_entry_get_reg(entry
, reg
);
324 /* Fixups for the data returned by KVM, below */
326 if (function
== 1 && reg
== R_EDX
) {
327 /* KVM before 2.6.30 misreports the following features */
328 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
329 } else if (function
== 1 && reg
== R_ECX
) {
330 /* We can set the hypervisor flag, even if KVM does not return it on
331 * GET_SUPPORTED_CPUID
333 ret
|= CPUID_EXT_HYPERVISOR
;
334 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
335 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
336 * and the irqchip is in the kernel.
338 if (kvm_irqchip_in_kernel() &&
339 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
340 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
343 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
344 * without the in-kernel irqchip
346 if (!kvm_irqchip_in_kernel()) {
347 ret
&= ~CPUID_EXT_X2APIC
;
349 } else if (function
== 6 && reg
== R_EAX
) {
350 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
351 } else if (function
== 0x80000001 && reg
== R_EDX
) {
352 /* On Intel, kvm returns cpuid according to the Intel spec,
353 * so add missing bits according to the AMD spec:
355 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
356 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
357 } else if (function
== KVM_CPUID_FEATURES
&& reg
== R_EAX
) {
358 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
359 * be enabled without the in-kernel irqchip
361 if (!kvm_irqchip_in_kernel()) {
362 ret
&= ~(1U << KVM_FEATURE_PV_UNHALT
);
366 /* fallback for older kernels */
367 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
368 ret
= get_para_features(s
);
374 typedef struct HWPoisonPage
{
376 QLIST_ENTRY(HWPoisonPage
) list
;
379 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
380 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
382 static void kvm_unpoison_all(void *param
)
384 HWPoisonPage
*page
, *next_page
;
386 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
387 QLIST_REMOVE(page
, list
);
388 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
393 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
397 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
398 if (page
->ram_addr
== ram_addr
) {
402 page
= g_new(HWPoisonPage
, 1);
403 page
->ram_addr
= ram_addr
;
404 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
407 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
412 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
415 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
420 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
422 CPUState
*cs
= CPU(cpu
);
423 CPUX86State
*env
= &cpu
->env
;
424 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
425 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
426 uint64_t mcg_status
= MCG_STATUS_MCIP
;
429 if (code
== BUS_MCEERR_AR
) {
430 status
|= MCI_STATUS_AR
| 0x134;
431 mcg_status
|= MCG_STATUS_EIPV
;
434 mcg_status
|= MCG_STATUS_RIPV
;
437 flags
= cpu_x86_support_mca_broadcast(env
) ? MCE_INJECT_BROADCAST
: 0;
438 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
439 * guest kernel back into env->mcg_ext_ctl.
441 cpu_synchronize_state(cs
);
442 if (env
->mcg_ext_ctl
& MCG_EXT_CTL_LMCE_EN
) {
443 mcg_status
|= MCG_STATUS_LMCE
;
447 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
448 (MCM_ADDR_PHYS
<< 6) | 0xc, flags
);
451 static void hardware_memory_error(void)
453 fprintf(stderr
, "Hardware memory error!\n");
457 int kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
459 X86CPU
*cpu
= X86_CPU(c
);
460 CPUX86State
*env
= &cpu
->env
;
464 if ((env
->mcg_cap
& MCG_SER_P
) && addr
465 && (code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
)) {
466 ram_addr
= qemu_ram_addr_from_host(addr
);
467 if (ram_addr
== RAM_ADDR_INVALID
||
468 !kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
469 fprintf(stderr
, "Hardware memory error for memory used by "
470 "QEMU itself instead of guest system!\n");
471 /* Hope we are lucky for AO MCE */
472 if (code
== BUS_MCEERR_AO
) {
475 hardware_memory_error();
478 kvm_hwpoison_page_add(ram_addr
);
479 kvm_mce_inject(cpu
, paddr
, code
);
481 if (code
== BUS_MCEERR_AO
) {
483 } else if (code
== BUS_MCEERR_AR
) {
484 hardware_memory_error();
492 int kvm_arch_on_sigbus(int code
, void *addr
)
494 X86CPU
*cpu
= X86_CPU(first_cpu
);
496 if ((cpu
->env
.mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
500 /* Hope we are lucky for AO MCE */
501 ram_addr
= qemu_ram_addr_from_host(addr
);
502 if (ram_addr
== RAM_ADDR_INVALID
||
503 !kvm_physical_memory_addr_from_host(first_cpu
->kvm_state
,
505 fprintf(stderr
, "Hardware memory error for memory used by "
506 "QEMU itself instead of guest system!: %p\n", addr
);
509 kvm_hwpoison_page_add(ram_addr
);
510 kvm_mce_inject(X86_CPU(first_cpu
), paddr
, code
);
512 if (code
== BUS_MCEERR_AO
) {
514 } else if (code
== BUS_MCEERR_AR
) {
515 hardware_memory_error();
523 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
525 CPUX86State
*env
= &cpu
->env
;
527 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
528 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
529 struct kvm_x86_mce mce
;
531 env
->exception_injected
= -1;
534 * There must be at least one bank in use if an MCE is pending.
535 * Find it and use its values for the event injection.
537 for (bank
= 0; bank
< bank_num
; bank
++) {
538 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
542 assert(bank
< bank_num
);
545 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
546 mce
.mcg_status
= env
->mcg_status
;
547 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
548 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
550 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
555 static void cpu_update_state(void *opaque
, int running
, RunState state
)
557 CPUX86State
*env
= opaque
;
560 env
->tsc_valid
= false;
564 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
566 X86CPU
*cpu
= X86_CPU(cs
);
570 #ifndef KVM_CPUID_SIGNATURE_NEXT
571 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
574 static bool hyperv_hypercall_available(X86CPU
*cpu
)
576 return cpu
->hyperv_vapic
||
577 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
580 static bool hyperv_enabled(X86CPU
*cpu
)
582 CPUState
*cs
= CPU(cpu
);
583 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
584 (hyperv_hypercall_available(cpu
) ||
586 cpu
->hyperv_relaxed_timing
||
589 cpu
->hyperv_vpindex
||
590 cpu
->hyperv_runtime
||
595 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
597 X86CPU
*cpu
= X86_CPU(cs
);
598 CPUX86State
*env
= &cpu
->env
;
605 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
606 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
609 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
610 * TSC frequency doesn't match the one we want.
612 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
613 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
615 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
616 error_report("warning: TSC frequency mismatch between "
617 "VM (%" PRId64
" kHz) and host (%d kHz), "
618 "and TSC scaling unavailable",
619 env
->tsc_khz
, cur_freq
);
627 static int hyperv_handle_properties(CPUState
*cs
)
629 X86CPU
*cpu
= X86_CPU(cs
);
630 CPUX86State
*env
= &cpu
->env
;
632 if (cpu
->hyperv_time
&&
633 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) <= 0) {
634 cpu
->hyperv_time
= false;
637 if (cpu
->hyperv_relaxed_timing
) {
638 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
640 if (cpu
->hyperv_vapic
) {
641 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
642 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
644 if (cpu
->hyperv_time
) {
645 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
646 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE
;
647 env
->features
[FEAT_HYPERV_EAX
] |= 0x200;
649 if (cpu
->hyperv_crash
&& has_msr_hv_crash
) {
650 env
->features
[FEAT_HYPERV_EDX
] |= HV_X64_GUEST_CRASH_MSR_AVAILABLE
;
652 env
->features
[FEAT_HYPERV_EDX
] |= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
653 if (cpu
->hyperv_reset
&& has_msr_hv_reset
) {
654 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_RESET_AVAILABLE
;
656 if (cpu
->hyperv_vpindex
&& has_msr_hv_vpindex
) {
657 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_VP_INDEX_AVAILABLE
;
659 if (cpu
->hyperv_runtime
&& has_msr_hv_runtime
) {
660 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_VP_RUNTIME_AVAILABLE
;
662 if (cpu
->hyperv_synic
) {
665 if (!has_msr_hv_synic
||
666 kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_SYNIC
, 0)) {
667 fprintf(stderr
, "Hyper-V SynIC is not supported by kernel\n");
671 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_SYNIC_AVAILABLE
;
672 env
->msr_hv_synic_version
= HV_SYNIC_VERSION_1
;
673 for (sint
= 0; sint
< ARRAY_SIZE(env
->msr_hv_synic_sint
); sint
++) {
674 env
->msr_hv_synic_sint
[sint
] = HV_SYNIC_SINT_MASKED
;
677 if (cpu
->hyperv_stimer
) {
678 if (!has_msr_hv_stimer
) {
679 fprintf(stderr
, "Hyper-V timers aren't supported by kernel\n");
682 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_SYNTIMER_AVAILABLE
;
687 static Error
*invtsc_mig_blocker
;
689 #define KVM_MAX_CPUID_ENTRIES 100
691 int kvm_arch_init_vcpu(CPUState
*cs
)
694 struct kvm_cpuid2 cpuid
;
695 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
696 } QEMU_PACKED cpuid_data
;
697 X86CPU
*cpu
= X86_CPU(cs
);
698 CPUX86State
*env
= &cpu
->env
;
699 uint32_t limit
, i
, j
, cpuid_i
;
701 struct kvm_cpuid_entry2
*c
;
702 uint32_t signature
[3];
703 int kvm_base
= KVM_CPUID_SIGNATURE
;
706 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
710 /* Paravirtualization CPUIDs */
711 if (hyperv_enabled(cpu
)) {
712 c
= &cpuid_data
.entries
[cpuid_i
++];
713 c
->function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
714 if (!cpu
->hyperv_vendor_id
) {
715 memcpy(signature
, "Microsoft Hv", 12);
717 size_t len
= strlen(cpu
->hyperv_vendor_id
);
720 error_report("hv-vendor-id truncated to 12 characters");
723 memset(signature
, 0, 12);
724 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
726 c
->eax
= HYPERV_CPUID_MIN
;
727 c
->ebx
= signature
[0];
728 c
->ecx
= signature
[1];
729 c
->edx
= signature
[2];
731 c
= &cpuid_data
.entries
[cpuid_i
++];
732 c
->function
= HYPERV_CPUID_INTERFACE
;
733 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
734 c
->eax
= signature
[0];
739 c
= &cpuid_data
.entries
[cpuid_i
++];
740 c
->function
= HYPERV_CPUID_VERSION
;
744 c
= &cpuid_data
.entries
[cpuid_i
++];
745 c
->function
= HYPERV_CPUID_FEATURES
;
746 r
= hyperv_handle_properties(cs
);
750 c
->eax
= env
->features
[FEAT_HYPERV_EAX
];
751 c
->ebx
= env
->features
[FEAT_HYPERV_EBX
];
752 c
->edx
= env
->features
[FEAT_HYPERV_EDX
];
754 c
= &cpuid_data
.entries
[cpuid_i
++];
755 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
756 if (cpu
->hyperv_relaxed_timing
) {
757 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
759 if (cpu
->hyperv_vapic
) {
760 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
762 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
764 c
= &cpuid_data
.entries
[cpuid_i
++];
765 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
769 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
770 has_msr_hv_hypercall
= true;
773 if (cpu
->expose_kvm
) {
774 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
775 c
= &cpuid_data
.entries
[cpuid_i
++];
776 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
777 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
778 c
->ebx
= signature
[0];
779 c
->ecx
= signature
[1];
780 c
->edx
= signature
[2];
782 c
= &cpuid_data
.entries
[cpuid_i
++];
783 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
784 c
->eax
= env
->features
[FEAT_KVM
];
787 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
789 for (i
= 0; i
<= limit
; i
++) {
790 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
791 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
794 c
= &cpuid_data
.entries
[cpuid_i
++];
798 /* Keep reading function 2 till all the input is received */
802 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
803 KVM_CPUID_FLAG_STATE_READ_NEXT
;
804 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
805 times
= c
->eax
& 0xff;
807 for (j
= 1; j
< times
; ++j
) {
808 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
809 fprintf(stderr
, "cpuid_data is full, no space for "
810 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
813 c
= &cpuid_data
.entries
[cpuid_i
++];
815 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
816 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
824 if (i
== 0xd && j
== 64) {
828 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
830 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
832 if (i
== 4 && c
->eax
== 0) {
835 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
838 if (i
== 0xd && c
->eax
== 0) {
841 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
842 fprintf(stderr
, "cpuid_data is full, no space for "
843 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
846 c
= &cpuid_data
.entries
[cpuid_i
++];
852 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
860 cpu_x86_cpuid(env
, 0x0a, 0, &ver
, &unused
, &unused
, &unused
);
861 if ((ver
& 0xff) > 0) {
862 has_msr_architectural_pmu
= true;
863 num_architectural_pmu_counters
= (ver
& 0xff00) >> 8;
865 /* Shouldn't be more than 32, since that's the number of bits
866 * available in EBX to tell us _which_ counters are available.
869 if (num_architectural_pmu_counters
> MAX_GP_COUNTERS
) {
870 num_architectural_pmu_counters
= MAX_GP_COUNTERS
;
875 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
877 for (i
= 0x80000000; i
<= limit
; i
++) {
878 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
879 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
882 c
= &cpuid_data
.entries
[cpuid_i
++];
886 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
889 /* Call Centaur's CPUID instructions they are supported. */
890 if (env
->cpuid_xlevel2
> 0) {
891 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
893 for (i
= 0xC0000000; i
<= limit
; i
++) {
894 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
895 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
898 c
= &cpuid_data
.entries
[cpuid_i
++];
902 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
906 cpuid_data
.cpuid
.nent
= cpuid_i
;
908 if (((env
->cpuid_version
>> 8)&0xF) >= 6
909 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
910 (CPUID_MCE
| CPUID_MCA
)
911 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
912 uint64_t mcg_cap
, unsupported_caps
;
916 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
918 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
922 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
923 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
924 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
928 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
929 if (unsupported_caps
) {
930 if (unsupported_caps
& MCG_LMCE_P
) {
931 error_report("kvm: LMCE not supported");
934 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64
,
938 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
939 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
941 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
946 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
948 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
950 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
951 !!(c
->ecx
& CPUID_EXT_SMX
);
954 if (env
->mcg_cap
& MCG_LMCE_P
) {
955 has_msr_mcg_ext_ctl
= has_msr_feature_control
= true;
958 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 0x80000007, 0);
959 if (c
&& (c
->edx
& 1<<8) && invtsc_mig_blocker
== NULL
) {
961 error_setg(&invtsc_mig_blocker
,
962 "State blocked by non-migratable CPU device"
964 migrate_add_blocker(invtsc_mig_blocker
);
966 vmstate_x86_cpu
.unmigratable
= 1;
969 cpuid_data
.cpuid
.padding
= 0;
970 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
975 r
= kvm_arch_set_tsc_khz(cs
);
980 /* vcpu's TSC frequency is either specified by user, or following
981 * the value used by KVM if the former is not present. In the
982 * latter case, we query it from KVM and record in env->tsc_khz,
983 * so that vcpu's TSC frequency can be migrated later via this field.
986 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
987 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
995 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
997 cpu
->kvm_msr_buf
= g_malloc0(MSR_BUF_SIZE
);
999 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_RDTSCP
)) {
1000 has_msr_tsc_aux
= false;
1006 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
1008 CPUX86State
*env
= &cpu
->env
;
1010 env
->exception_injected
= -1;
1011 env
->interrupt_injected
= -1;
1013 if (kvm_irqchip_in_kernel()) {
1014 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
1015 KVM_MP_STATE_UNINITIALIZED
;
1017 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
1021 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
1023 CPUX86State
*env
= &cpu
->env
;
1025 /* APs get directly into wait-for-SIPI state. */
1026 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
1027 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
1031 static int kvm_get_supported_msrs(KVMState
*s
)
1033 static int kvm_supported_msrs
;
1037 if (kvm_supported_msrs
== 0) {
1038 struct kvm_msr_list msr_list
, *kvm_msr_list
;
1040 kvm_supported_msrs
= -1;
1042 /* Obtain MSR list from KVM. These are the MSRs that we must
1045 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
1046 if (ret
< 0 && ret
!= -E2BIG
) {
1049 /* Old kernel modules had a bug and could write beyond the provided
1050 memory. Allocate at least a safe amount of 1K. */
1051 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
1053 sizeof(msr_list
.indices
[0])));
1055 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
1056 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
1060 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
1061 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
1062 has_msr_star
= true;
1065 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
1066 has_msr_hsave_pa
= true;
1069 if (kvm_msr_list
->indices
[i
] == MSR_TSC_AUX
) {
1070 has_msr_tsc_aux
= true;
1073 if (kvm_msr_list
->indices
[i
] == MSR_TSC_ADJUST
) {
1074 has_msr_tsc_adjust
= true;
1077 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
1078 has_msr_tsc_deadline
= true;
1081 if (kvm_msr_list
->indices
[i
] == MSR_IA32_SMBASE
) {
1082 has_msr_smbase
= true;
1085 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
1086 has_msr_misc_enable
= true;
1089 if (kvm_msr_list
->indices
[i
] == MSR_IA32_BNDCFGS
) {
1090 has_msr_bndcfgs
= true;
1093 if (kvm_msr_list
->indices
[i
] == MSR_IA32_XSS
) {
1097 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_CRASH_CTL
) {
1098 has_msr_hv_crash
= true;
1101 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_RESET
) {
1102 has_msr_hv_reset
= true;
1105 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_INDEX
) {
1106 has_msr_hv_vpindex
= true;
1109 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_RUNTIME
) {
1110 has_msr_hv_runtime
= true;
1113 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_SCONTROL
) {
1114 has_msr_hv_synic
= true;
1117 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_STIMER0_CONFIG
) {
1118 has_msr_hv_stimer
= true;
1124 g_free(kvm_msr_list
);
1130 static Notifier smram_machine_done
;
1131 static KVMMemoryListener smram_listener
;
1132 static AddressSpace smram_address_space
;
1133 static MemoryRegion smram_as_root
;
1134 static MemoryRegion smram_as_mem
;
1136 static void register_smram_listener(Notifier
*n
, void *unused
)
1138 MemoryRegion
*smram
=
1139 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1141 /* Outer container... */
1142 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1143 memory_region_set_enabled(&smram_as_root
, true);
1145 /* ... with two regions inside: normal system memory with low
1148 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1149 get_system_memory(), 0, ~0ull);
1150 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1151 memory_region_set_enabled(&smram_as_mem
, true);
1154 /* ... SMRAM with higher priority */
1155 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1156 memory_region_set_enabled(smram
, true);
1159 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1160 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1161 &smram_address_space
, 1);
1164 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1166 uint64_t identity_base
= 0xfffbc000;
1167 uint64_t shadow_mem
;
1169 struct utsname utsname
;
1171 #ifdef KVM_CAP_XSAVE
1172 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1176 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1179 #ifdef KVM_CAP_PIT_STATE2
1180 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1183 ret
= kvm_get_supported_msrs(s
);
1189 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1192 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1193 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1194 * Since these must be part of guest physical memory, we need to allocate
1195 * them, both by setting their start addresses in the kernel and by
1196 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1198 * Older KVM versions may not support setting the identity map base. In
1199 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1202 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1203 /* Allows up to 16M BIOSes. */
1204 identity_base
= 0xfeffc000;
1206 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1212 /* Set TSS base one page after EPT identity map. */
1213 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1218 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1219 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1221 fprintf(stderr
, "e820_add_entry() table is full\n");
1224 qemu_register_reset(kvm_unpoison_all
, NULL
);
1226 shadow_mem
= machine_kvm_shadow_mem(ms
);
1227 if (shadow_mem
!= -1) {
1229 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1235 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
)) {
1236 smram_machine_done
.notify
= register_smram_listener
;
1237 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1242 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1244 lhs
->selector
= rhs
->selector
;
1245 lhs
->base
= rhs
->base
;
1246 lhs
->limit
= rhs
->limit
;
1258 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1260 unsigned flags
= rhs
->flags
;
1261 lhs
->selector
= rhs
->selector
;
1262 lhs
->base
= rhs
->base
;
1263 lhs
->limit
= rhs
->limit
;
1264 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1265 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1266 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1267 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1268 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1269 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1270 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1271 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1272 lhs
->unusable
= !lhs
->present
;
1276 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1278 lhs
->selector
= rhs
->selector
;
1279 lhs
->base
= rhs
->base
;
1280 lhs
->limit
= rhs
->limit
;
1281 if (rhs
->unusable
) {
1284 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1285 (rhs
->present
* DESC_P_MASK
) |
1286 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1287 (rhs
->db
<< DESC_B_SHIFT
) |
1288 (rhs
->s
* DESC_S_MASK
) |
1289 (rhs
->l
<< DESC_L_SHIFT
) |
1290 (rhs
->g
* DESC_G_MASK
) |
1291 (rhs
->avl
* DESC_AVL_MASK
);
1295 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1298 *kvm_reg
= *qemu_reg
;
1300 *qemu_reg
= *kvm_reg
;
1304 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1306 CPUX86State
*env
= &cpu
->env
;
1307 struct kvm_regs regs
;
1311 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1317 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1318 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1319 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1320 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1321 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1322 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1323 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1324 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1325 #ifdef TARGET_X86_64
1326 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1327 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1328 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1329 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1330 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1331 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1332 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1333 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1336 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1337 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1340 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1346 static int kvm_put_fpu(X86CPU
*cpu
)
1348 CPUX86State
*env
= &cpu
->env
;
1352 memset(&fpu
, 0, sizeof fpu
);
1353 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1354 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1355 fpu
.fcw
= env
->fpuc
;
1356 fpu
.last_opcode
= env
->fpop
;
1357 fpu
.last_ip
= env
->fpip
;
1358 fpu
.last_dp
= env
->fpdp
;
1359 for (i
= 0; i
< 8; ++i
) {
1360 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1362 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1363 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1364 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
1365 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
1367 fpu
.mxcsr
= env
->mxcsr
;
1369 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1372 #define XSAVE_FCW_FSW 0
1373 #define XSAVE_FTW_FOP 1
1374 #define XSAVE_CWD_RIP 2
1375 #define XSAVE_CWD_RDP 4
1376 #define XSAVE_MXCSR 6
1377 #define XSAVE_ST_SPACE 8
1378 #define XSAVE_XMM_SPACE 40
1379 #define XSAVE_XSTATE_BV 128
1380 #define XSAVE_YMMH_SPACE 144
1381 #define XSAVE_BNDREGS 240
1382 #define XSAVE_BNDCSR 256
1383 #define XSAVE_OPMASK 272
1384 #define XSAVE_ZMM_Hi256 288
1385 #define XSAVE_Hi16_ZMM 416
1386 #define XSAVE_PKRU 672
1388 #define XSAVE_BYTE_OFFSET(word_offset) \
1389 ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0]))
1391 #define ASSERT_OFFSET(word_offset, field) \
1392 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1393 offsetof(X86XSaveArea, field))
1395 ASSERT_OFFSET(XSAVE_FCW_FSW
, legacy
.fcw
);
1396 ASSERT_OFFSET(XSAVE_FTW_FOP
, legacy
.ftw
);
1397 ASSERT_OFFSET(XSAVE_CWD_RIP
, legacy
.fpip
);
1398 ASSERT_OFFSET(XSAVE_CWD_RDP
, legacy
.fpdp
);
1399 ASSERT_OFFSET(XSAVE_MXCSR
, legacy
.mxcsr
);
1400 ASSERT_OFFSET(XSAVE_ST_SPACE
, legacy
.fpregs
);
1401 ASSERT_OFFSET(XSAVE_XMM_SPACE
, legacy
.xmm_regs
);
1402 ASSERT_OFFSET(XSAVE_XSTATE_BV
, header
.xstate_bv
);
1403 ASSERT_OFFSET(XSAVE_YMMH_SPACE
, avx_state
);
1404 ASSERT_OFFSET(XSAVE_BNDREGS
, bndreg_state
);
1405 ASSERT_OFFSET(XSAVE_BNDCSR
, bndcsr_state
);
1406 ASSERT_OFFSET(XSAVE_OPMASK
, opmask_state
);
1407 ASSERT_OFFSET(XSAVE_ZMM_Hi256
, zmm_hi256_state
);
1408 ASSERT_OFFSET(XSAVE_Hi16_ZMM
, hi16_zmm_state
);
1409 ASSERT_OFFSET(XSAVE_PKRU
, pkru_state
);
1411 static int kvm_put_xsave(X86CPU
*cpu
)
1413 CPUX86State
*env
= &cpu
->env
;
1414 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1415 uint16_t cwd
, swd
, twd
;
1419 return kvm_put_fpu(cpu
);
1422 memset(xsave
, 0, sizeof(struct kvm_xsave
));
1424 swd
= env
->fpus
& ~(7 << 11);
1425 swd
|= (env
->fpstt
& 7) << 11;
1427 for (i
= 0; i
< 8; ++i
) {
1428 twd
|= (!env
->fptags
[i
]) << i
;
1430 xsave
->legacy
.fcw
= cwd
;
1431 xsave
->legacy
.fsw
= swd
;
1432 xsave
->legacy
.ftw
= twd
;
1433 xsave
->legacy
.fpop
= env
->fpop
;
1434 xsave
->legacy
.fpip
= env
->fpip
;
1435 xsave
->legacy
.fpdp
= env
->fpdp
;
1436 memcpy(&xsave
->legacy
.fpregs
, env
->fpregs
,
1437 sizeof env
->fpregs
);
1438 xsave
->legacy
.mxcsr
= env
->mxcsr
;
1439 xsave
->header
.xstate_bv
= env
->xstate_bv
;
1440 memcpy(&xsave
->bndreg_state
.bnd_regs
, env
->bnd_regs
,
1441 sizeof env
->bnd_regs
);
1442 xsave
->bndcsr_state
.bndcsr
= env
->bndcs_regs
;
1443 memcpy(&xsave
->opmask_state
.opmask_regs
, env
->opmask_regs
,
1444 sizeof env
->opmask_regs
);
1446 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1447 uint8_t *xmm
= xsave
->legacy
.xmm_regs
[i
];
1448 uint8_t *ymmh
= xsave
->avx_state
.ymmh
[i
];
1449 uint8_t *zmmh
= xsave
->zmm_hi256_state
.zmm_hi256
[i
];
1450 stq_p(xmm
, env
->xmm_regs
[i
].ZMM_Q(0));
1451 stq_p(xmm
+8, env
->xmm_regs
[i
].ZMM_Q(1));
1452 stq_p(ymmh
, env
->xmm_regs
[i
].ZMM_Q(2));
1453 stq_p(ymmh
+8, env
->xmm_regs
[i
].ZMM_Q(3));
1454 stq_p(zmmh
, env
->xmm_regs
[i
].ZMM_Q(4));
1455 stq_p(zmmh
+8, env
->xmm_regs
[i
].ZMM_Q(5));
1456 stq_p(zmmh
+16, env
->xmm_regs
[i
].ZMM_Q(6));
1457 stq_p(zmmh
+24, env
->xmm_regs
[i
].ZMM_Q(7));
1460 #ifdef TARGET_X86_64
1461 memcpy(&xsave
->hi16_zmm_state
.hi16_zmm
, &env
->xmm_regs
[16],
1462 16 * sizeof env
->xmm_regs
[16]);
1463 memcpy(&xsave
->pkru_state
, &env
->pkru
, sizeof env
->pkru
);
1465 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1468 static int kvm_put_xcrs(X86CPU
*cpu
)
1470 CPUX86State
*env
= &cpu
->env
;
1471 struct kvm_xcrs xcrs
= {};
1479 xcrs
.xcrs
[0].xcr
= 0;
1480 xcrs
.xcrs
[0].value
= env
->xcr0
;
1481 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1484 static int kvm_put_sregs(X86CPU
*cpu
)
1486 CPUX86State
*env
= &cpu
->env
;
1487 struct kvm_sregs sregs
;
1489 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1490 if (env
->interrupt_injected
>= 0) {
1491 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1492 (uint64_t)1 << (env
->interrupt_injected
% 64);
1495 if ((env
->eflags
& VM_MASK
)) {
1496 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1497 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1498 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1499 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1500 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1501 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1503 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1504 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1505 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1506 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1507 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1508 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1511 set_seg(&sregs
.tr
, &env
->tr
);
1512 set_seg(&sregs
.ldt
, &env
->ldt
);
1514 sregs
.idt
.limit
= env
->idt
.limit
;
1515 sregs
.idt
.base
= env
->idt
.base
;
1516 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1517 sregs
.gdt
.limit
= env
->gdt
.limit
;
1518 sregs
.gdt
.base
= env
->gdt
.base
;
1519 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1521 sregs
.cr0
= env
->cr
[0];
1522 sregs
.cr2
= env
->cr
[2];
1523 sregs
.cr3
= env
->cr
[3];
1524 sregs
.cr4
= env
->cr
[4];
1526 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1527 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1529 sregs
.efer
= env
->efer
;
1531 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1534 static void kvm_msr_buf_reset(X86CPU
*cpu
)
1536 memset(cpu
->kvm_msr_buf
, 0, MSR_BUF_SIZE
);
1539 static void kvm_msr_entry_add(X86CPU
*cpu
, uint32_t index
, uint64_t value
)
1541 struct kvm_msrs
*msrs
= cpu
->kvm_msr_buf
;
1542 void *limit
= ((void *)msrs
) + MSR_BUF_SIZE
;
1543 struct kvm_msr_entry
*entry
= &msrs
->entries
[msrs
->nmsrs
];
1545 assert((void *)(entry
+ 1) <= limit
);
1547 entry
->index
= index
;
1548 entry
->reserved
= 0;
1549 entry
->data
= value
;
1553 static int kvm_put_one_msr(X86CPU
*cpu
, int index
, uint64_t value
)
1555 kvm_msr_buf_reset(cpu
);
1556 kvm_msr_entry_add(cpu
, index
, value
);
1558 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1561 void kvm_put_apicbase(X86CPU
*cpu
, uint64_t value
)
1565 ret
= kvm_put_one_msr(cpu
, MSR_IA32_APICBASE
, value
);
1569 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1571 CPUX86State
*env
= &cpu
->env
;
1574 if (!has_msr_tsc_deadline
) {
1578 ret
= kvm_put_one_msr(cpu
, MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1588 * Provide a separate write service for the feature control MSR in order to
1589 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1590 * before writing any other state because forcibly leaving nested mode
1591 * invalidates the VCPU state.
1593 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1597 if (!has_msr_feature_control
) {
1601 ret
= kvm_put_one_msr(cpu
, MSR_IA32_FEATURE_CONTROL
,
1602 cpu
->env
.msr_ia32_feature_control
);
1611 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1613 CPUX86State
*env
= &cpu
->env
;
1617 kvm_msr_buf_reset(cpu
);
1619 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1620 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1621 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1622 kvm_msr_entry_add(cpu
, MSR_PAT
, env
->pat
);
1624 kvm_msr_entry_add(cpu
, MSR_STAR
, env
->star
);
1626 if (has_msr_hsave_pa
) {
1627 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1629 if (has_msr_tsc_aux
) {
1630 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, env
->tsc_aux
);
1632 if (has_msr_tsc_adjust
) {
1633 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, env
->tsc_adjust
);
1635 if (has_msr_misc_enable
) {
1636 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
,
1637 env
->msr_ia32_misc_enable
);
1639 if (has_msr_smbase
) {
1640 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, env
->smbase
);
1642 if (has_msr_bndcfgs
) {
1643 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1646 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, env
->xss
);
1648 #ifdef TARGET_X86_64
1649 if (lm_capable_kernel
) {
1650 kvm_msr_entry_add(cpu
, MSR_CSTAR
, env
->cstar
);
1651 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, env
->kernelgsbase
);
1652 kvm_msr_entry_add(cpu
, MSR_FMASK
, env
->fmask
);
1653 kvm_msr_entry_add(cpu
, MSR_LSTAR
, env
->lstar
);
1657 * The following MSRs have side effects on the guest or are too heavy
1658 * for normal writeback. Limit them to reset or full state updates.
1660 if (level
>= KVM_PUT_RESET_STATE
) {
1661 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, env
->tsc
);
1662 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, env
->system_time_msr
);
1663 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1664 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
1665 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, env
->async_pf_en_msr
);
1667 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
1668 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, env
->pv_eoi_en_msr
);
1670 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
1671 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, env
->steal_time_msr
);
1673 if (has_msr_architectural_pmu
) {
1674 /* Stop the counter. */
1675 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1676 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1678 /* Set the counter values. */
1679 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1680 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
,
1681 env
->msr_fixed_counters
[i
]);
1683 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1684 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
,
1685 env
->msr_gp_counters
[i
]);
1686 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
,
1687 env
->msr_gp_evtsel
[i
]);
1689 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
,
1690 env
->msr_global_status
);
1691 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1692 env
->msr_global_ovf_ctrl
);
1694 /* Now start the PMU. */
1695 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
,
1696 env
->msr_fixed_ctr_ctrl
);
1697 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
,
1698 env
->msr_global_ctrl
);
1700 if (has_msr_hv_hypercall
) {
1701 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
,
1702 env
->msr_hv_guest_os_id
);
1703 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
,
1704 env
->msr_hv_hypercall
);
1706 if (cpu
->hyperv_vapic
) {
1707 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
,
1710 if (cpu
->hyperv_time
) {
1711 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, env
->msr_hv_tsc
);
1713 if (has_msr_hv_crash
) {
1716 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++)
1717 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
,
1718 env
->msr_hv_crash_params
[j
]);
1720 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_CTL
,
1721 HV_X64_MSR_CRASH_CTL_NOTIFY
);
1723 if (has_msr_hv_runtime
) {
1724 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, env
->msr_hv_runtime
);
1726 if (cpu
->hyperv_synic
) {
1729 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
,
1730 env
->msr_hv_synic_control
);
1731 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
,
1732 env
->msr_hv_synic_version
);
1733 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
,
1734 env
->msr_hv_synic_evt_page
);
1735 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
,
1736 env
->msr_hv_synic_msg_page
);
1738 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
1739 kvm_msr_entry_add(cpu
, HV_X64_MSR_SINT0
+ j
,
1740 env
->msr_hv_synic_sint
[j
]);
1743 if (has_msr_hv_stimer
) {
1746 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
1747 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_CONFIG
+ j
* 2,
1748 env
->msr_hv_stimer_config
[j
]);
1751 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
1752 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_COUNT
+ j
* 2,
1753 env
->msr_hv_stimer_count
[j
]);
1756 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
1757 uint64_t phys_mask
= MAKE_64BIT_MASK(0, cpu
->phys_bits
);
1759 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, env
->mtrr_deftype
);
1760 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1761 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1762 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1763 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1764 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1765 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1766 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1767 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1768 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1769 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1770 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1771 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1772 /* The CPU GPs if we write to a bit above the physical limit of
1773 * the host CPU (and KVM emulates that)
1775 uint64_t mask
= env
->mtrr_var
[i
].mask
;
1778 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
),
1779 env
->mtrr_var
[i
].base
);
1780 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), mask
);
1784 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1785 * kvm_put_msr_feature_control. */
1790 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, env
->mcg_status
);
1791 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, env
->mcg_ctl
);
1792 if (has_msr_mcg_ext_ctl
) {
1793 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, env
->mcg_ext_ctl
);
1795 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1796 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1800 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1805 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
1810 static int kvm_get_fpu(X86CPU
*cpu
)
1812 CPUX86State
*env
= &cpu
->env
;
1816 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1821 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1822 env
->fpus
= fpu
.fsw
;
1823 env
->fpuc
= fpu
.fcw
;
1824 env
->fpop
= fpu
.last_opcode
;
1825 env
->fpip
= fpu
.last_ip
;
1826 env
->fpdp
= fpu
.last_dp
;
1827 for (i
= 0; i
< 8; ++i
) {
1828 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1830 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1831 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1832 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1833 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1835 env
->mxcsr
= fpu
.mxcsr
;
1840 static int kvm_get_xsave(X86CPU
*cpu
)
1842 CPUX86State
*env
= &cpu
->env
;
1843 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1845 uint16_t cwd
, swd
, twd
;
1848 return kvm_get_fpu(cpu
);
1851 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1856 cwd
= xsave
->legacy
.fcw
;
1857 swd
= xsave
->legacy
.fsw
;
1858 twd
= xsave
->legacy
.ftw
;
1859 env
->fpop
= xsave
->legacy
.fpop
;
1860 env
->fpstt
= (swd
>> 11) & 7;
1863 for (i
= 0; i
< 8; ++i
) {
1864 env
->fptags
[i
] = !((twd
>> i
) & 1);
1866 env
->fpip
= xsave
->legacy
.fpip
;
1867 env
->fpdp
= xsave
->legacy
.fpdp
;
1868 env
->mxcsr
= xsave
->legacy
.mxcsr
;
1869 memcpy(env
->fpregs
, &xsave
->legacy
.fpregs
,
1870 sizeof env
->fpregs
);
1871 env
->xstate_bv
= xsave
->header
.xstate_bv
;
1872 memcpy(env
->bnd_regs
, &xsave
->bndreg_state
.bnd_regs
,
1873 sizeof env
->bnd_regs
);
1874 env
->bndcs_regs
= xsave
->bndcsr_state
.bndcsr
;
1875 memcpy(env
->opmask_regs
, &xsave
->opmask_state
.opmask_regs
,
1876 sizeof env
->opmask_regs
);
1878 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1879 uint8_t *xmm
= xsave
->legacy
.xmm_regs
[i
];
1880 uint8_t *ymmh
= xsave
->avx_state
.ymmh
[i
];
1881 uint8_t *zmmh
= xsave
->zmm_hi256_state
.zmm_hi256
[i
];
1882 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(xmm
);
1883 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(xmm
+8);
1884 env
->xmm_regs
[i
].ZMM_Q(2) = ldq_p(ymmh
);
1885 env
->xmm_regs
[i
].ZMM_Q(3) = ldq_p(ymmh
+8);
1886 env
->xmm_regs
[i
].ZMM_Q(4) = ldq_p(zmmh
);
1887 env
->xmm_regs
[i
].ZMM_Q(5) = ldq_p(zmmh
+8);
1888 env
->xmm_regs
[i
].ZMM_Q(6) = ldq_p(zmmh
+16);
1889 env
->xmm_regs
[i
].ZMM_Q(7) = ldq_p(zmmh
+24);
1892 #ifdef TARGET_X86_64
1893 memcpy(&env
->xmm_regs
[16], &xsave
->hi16_zmm_state
.hi16_zmm
,
1894 16 * sizeof env
->xmm_regs
[16]);
1895 memcpy(&env
->pkru
, &xsave
->pkru_state
, sizeof env
->pkru
);
1900 static int kvm_get_xcrs(X86CPU
*cpu
)
1902 CPUX86State
*env
= &cpu
->env
;
1904 struct kvm_xcrs xcrs
;
1910 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1915 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1916 /* Only support xcr0 now */
1917 if (xcrs
.xcrs
[i
].xcr
== 0) {
1918 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1925 static int kvm_get_sregs(X86CPU
*cpu
)
1927 CPUX86State
*env
= &cpu
->env
;
1928 struct kvm_sregs sregs
;
1932 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1937 /* There can only be one pending IRQ set in the bitmap at a time, so try
1938 to find it and save its number instead (-1 for none). */
1939 env
->interrupt_injected
= -1;
1940 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1941 if (sregs
.interrupt_bitmap
[i
]) {
1942 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1943 env
->interrupt_injected
= i
* 64 + bit
;
1948 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1949 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1950 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1951 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1952 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1953 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1955 get_seg(&env
->tr
, &sregs
.tr
);
1956 get_seg(&env
->ldt
, &sregs
.ldt
);
1958 env
->idt
.limit
= sregs
.idt
.limit
;
1959 env
->idt
.base
= sregs
.idt
.base
;
1960 env
->gdt
.limit
= sregs
.gdt
.limit
;
1961 env
->gdt
.base
= sregs
.gdt
.base
;
1963 env
->cr
[0] = sregs
.cr0
;
1964 env
->cr
[2] = sregs
.cr2
;
1965 env
->cr
[3] = sregs
.cr3
;
1966 env
->cr
[4] = sregs
.cr4
;
1968 env
->efer
= sregs
.efer
;
1970 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1972 #define HFLAG_COPY_MASK \
1973 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1974 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1975 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1976 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1978 hflags
= env
->hflags
& HFLAG_COPY_MASK
;
1979 hflags
|= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1980 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1981 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1982 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1983 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1985 if (env
->cr
[4] & CR4_OSFXSR_MASK
) {
1986 hflags
|= HF_OSFXSR_MASK
;
1989 if (env
->efer
& MSR_EFER_LMA
) {
1990 hflags
|= HF_LMA_MASK
;
1993 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1994 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1996 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1997 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1998 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1999 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
2000 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
2001 !(hflags
& HF_CS32_MASK
)) {
2002 hflags
|= HF_ADDSEG_MASK
;
2004 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
2005 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
2008 env
->hflags
= hflags
;
2013 static int kvm_get_msrs(X86CPU
*cpu
)
2015 CPUX86State
*env
= &cpu
->env
;
2016 struct kvm_msr_entry
*msrs
= cpu
->kvm_msr_buf
->entries
;
2018 uint64_t mtrr_top_bits
;
2020 kvm_msr_buf_reset(cpu
);
2022 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, 0);
2023 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, 0);
2024 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, 0);
2025 kvm_msr_entry_add(cpu
, MSR_PAT
, 0);
2027 kvm_msr_entry_add(cpu
, MSR_STAR
, 0);
2029 if (has_msr_hsave_pa
) {
2030 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, 0);
2032 if (has_msr_tsc_aux
) {
2033 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, 0);
2035 if (has_msr_tsc_adjust
) {
2036 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, 0);
2038 if (has_msr_tsc_deadline
) {
2039 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, 0);
2041 if (has_msr_misc_enable
) {
2042 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
, 0);
2044 if (has_msr_smbase
) {
2045 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, 0);
2047 if (has_msr_feature_control
) {
2048 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
, 0);
2050 if (has_msr_bndcfgs
) {
2051 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, 0);
2054 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, 0);
2058 if (!env
->tsc_valid
) {
2059 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, 0);
2060 env
->tsc_valid
= !runstate_is_running();
2063 #ifdef TARGET_X86_64
2064 if (lm_capable_kernel
) {
2065 kvm_msr_entry_add(cpu
, MSR_CSTAR
, 0);
2066 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, 0);
2067 kvm_msr_entry_add(cpu
, MSR_FMASK
, 0);
2068 kvm_msr_entry_add(cpu
, MSR_LSTAR
, 0);
2071 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, 0);
2072 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, 0);
2073 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
2074 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, 0);
2076 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
2077 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, 0);
2079 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
2080 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, 0);
2082 if (has_msr_architectural_pmu
) {
2083 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
2084 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2085 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
, 0);
2086 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
, 0);
2087 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
2088 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
, 0);
2090 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
2091 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
, 0);
2092 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
, 0);
2097 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, 0);
2098 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, 0);
2099 if (has_msr_mcg_ext_ctl
) {
2100 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, 0);
2102 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2103 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, 0);
2107 if (has_msr_hv_hypercall
) {
2108 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
, 0);
2109 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
, 0);
2111 if (cpu
->hyperv_vapic
) {
2112 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
, 0);
2114 if (cpu
->hyperv_time
) {
2115 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, 0);
2117 if (has_msr_hv_crash
) {
2120 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++) {
2121 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
, 0);
2124 if (has_msr_hv_runtime
) {
2125 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, 0);
2127 if (cpu
->hyperv_synic
) {
2130 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
, 0);
2131 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
, 0);
2132 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
, 0);
2133 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
, 0);
2134 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
2135 kvm_msr_entry_add(cpu
, msr
, 0);
2138 if (has_msr_hv_stimer
) {
2141 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
2143 kvm_msr_entry_add(cpu
, msr
, 0);
2146 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
2147 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, 0);
2148 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, 0);
2149 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, 0);
2150 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, 0);
2151 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, 0);
2152 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, 0);
2153 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, 0);
2154 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, 0);
2155 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, 0);
2156 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, 0);
2157 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, 0);
2158 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, 0);
2159 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2160 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
), 0);
2161 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), 0);
2165 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, cpu
->kvm_msr_buf
);
2170 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
2172 * MTRR masks: Each mask consists of 5 parts
2173 * a 10..0: must be zero
2175 * c n-1.12: actual mask bits
2176 * d 51..n: reserved must be zero
2177 * e 63.52: reserved must be zero
2179 * 'n' is the number of physical bits supported by the CPU and is
2180 * apparently always <= 52. We know our 'n' but don't know what
2181 * the destinations 'n' is; it might be smaller, in which case
2182 * it masks (c) on loading. It might be larger, in which case
2183 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2184 * we're migrating to.
2187 if (cpu
->fill_mtrr_mask
) {
2188 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS
> 52);
2189 assert(cpu
->phys_bits
<= TARGET_PHYS_ADDR_SPACE_BITS
);
2190 mtrr_top_bits
= MAKE_64BIT_MASK(cpu
->phys_bits
, 52 - cpu
->phys_bits
);
2195 for (i
= 0; i
< ret
; i
++) {
2196 uint32_t index
= msrs
[i
].index
;
2198 case MSR_IA32_SYSENTER_CS
:
2199 env
->sysenter_cs
= msrs
[i
].data
;
2201 case MSR_IA32_SYSENTER_ESP
:
2202 env
->sysenter_esp
= msrs
[i
].data
;
2204 case MSR_IA32_SYSENTER_EIP
:
2205 env
->sysenter_eip
= msrs
[i
].data
;
2208 env
->pat
= msrs
[i
].data
;
2211 env
->star
= msrs
[i
].data
;
2213 #ifdef TARGET_X86_64
2215 env
->cstar
= msrs
[i
].data
;
2217 case MSR_KERNELGSBASE
:
2218 env
->kernelgsbase
= msrs
[i
].data
;
2221 env
->fmask
= msrs
[i
].data
;
2224 env
->lstar
= msrs
[i
].data
;
2228 env
->tsc
= msrs
[i
].data
;
2231 env
->tsc_aux
= msrs
[i
].data
;
2233 case MSR_TSC_ADJUST
:
2234 env
->tsc_adjust
= msrs
[i
].data
;
2236 case MSR_IA32_TSCDEADLINE
:
2237 env
->tsc_deadline
= msrs
[i
].data
;
2239 case MSR_VM_HSAVE_PA
:
2240 env
->vm_hsave
= msrs
[i
].data
;
2242 case MSR_KVM_SYSTEM_TIME
:
2243 env
->system_time_msr
= msrs
[i
].data
;
2245 case MSR_KVM_WALL_CLOCK
:
2246 env
->wall_clock_msr
= msrs
[i
].data
;
2248 case MSR_MCG_STATUS
:
2249 env
->mcg_status
= msrs
[i
].data
;
2252 env
->mcg_ctl
= msrs
[i
].data
;
2254 case MSR_MCG_EXT_CTL
:
2255 env
->mcg_ext_ctl
= msrs
[i
].data
;
2257 case MSR_IA32_MISC_ENABLE
:
2258 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
2260 case MSR_IA32_SMBASE
:
2261 env
->smbase
= msrs
[i
].data
;
2263 case MSR_IA32_FEATURE_CONTROL
:
2264 env
->msr_ia32_feature_control
= msrs
[i
].data
;
2266 case MSR_IA32_BNDCFGS
:
2267 env
->msr_bndcfgs
= msrs
[i
].data
;
2270 env
->xss
= msrs
[i
].data
;
2273 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
2274 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
2275 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
2278 case MSR_KVM_ASYNC_PF_EN
:
2279 env
->async_pf_en_msr
= msrs
[i
].data
;
2281 case MSR_KVM_PV_EOI_EN
:
2282 env
->pv_eoi_en_msr
= msrs
[i
].data
;
2284 case MSR_KVM_STEAL_TIME
:
2285 env
->steal_time_msr
= msrs
[i
].data
;
2287 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2288 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2290 case MSR_CORE_PERF_GLOBAL_CTRL
:
2291 env
->msr_global_ctrl
= msrs
[i
].data
;
2293 case MSR_CORE_PERF_GLOBAL_STATUS
:
2294 env
->msr_global_status
= msrs
[i
].data
;
2296 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2297 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2299 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2300 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2302 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2303 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2305 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2306 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2308 case HV_X64_MSR_HYPERCALL
:
2309 env
->msr_hv_hypercall
= msrs
[i
].data
;
2311 case HV_X64_MSR_GUEST_OS_ID
:
2312 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2314 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2315 env
->msr_hv_vapic
= msrs
[i
].data
;
2317 case HV_X64_MSR_REFERENCE_TSC
:
2318 env
->msr_hv_tsc
= msrs
[i
].data
;
2320 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2321 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2323 case HV_X64_MSR_VP_RUNTIME
:
2324 env
->msr_hv_runtime
= msrs
[i
].data
;
2326 case HV_X64_MSR_SCONTROL
:
2327 env
->msr_hv_synic_control
= msrs
[i
].data
;
2329 case HV_X64_MSR_SVERSION
:
2330 env
->msr_hv_synic_version
= msrs
[i
].data
;
2332 case HV_X64_MSR_SIEFP
:
2333 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
2335 case HV_X64_MSR_SIMP
:
2336 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
2338 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
2339 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
2341 case HV_X64_MSR_STIMER0_CONFIG
:
2342 case HV_X64_MSR_STIMER1_CONFIG
:
2343 case HV_X64_MSR_STIMER2_CONFIG
:
2344 case HV_X64_MSR_STIMER3_CONFIG
:
2345 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
2348 case HV_X64_MSR_STIMER0_COUNT
:
2349 case HV_X64_MSR_STIMER1_COUNT
:
2350 case HV_X64_MSR_STIMER2_COUNT
:
2351 case HV_X64_MSR_STIMER3_COUNT
:
2352 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
2355 case MSR_MTRRdefType
:
2356 env
->mtrr_deftype
= msrs
[i
].data
;
2358 case MSR_MTRRfix64K_00000
:
2359 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2361 case MSR_MTRRfix16K_80000
:
2362 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2364 case MSR_MTRRfix16K_A0000
:
2365 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2367 case MSR_MTRRfix4K_C0000
:
2368 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2370 case MSR_MTRRfix4K_C8000
:
2371 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2373 case MSR_MTRRfix4K_D0000
:
2374 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2376 case MSR_MTRRfix4K_D8000
:
2377 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2379 case MSR_MTRRfix4K_E0000
:
2380 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2382 case MSR_MTRRfix4K_E8000
:
2383 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2385 case MSR_MTRRfix4K_F0000
:
2386 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2388 case MSR_MTRRfix4K_F8000
:
2389 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2391 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2393 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
|
2396 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2405 static int kvm_put_mp_state(X86CPU
*cpu
)
2407 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2409 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2412 static int kvm_get_mp_state(X86CPU
*cpu
)
2414 CPUState
*cs
= CPU(cpu
);
2415 CPUX86State
*env
= &cpu
->env
;
2416 struct kvm_mp_state mp_state
;
2419 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2423 env
->mp_state
= mp_state
.mp_state
;
2424 if (kvm_irqchip_in_kernel()) {
2425 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2430 static int kvm_get_apic(X86CPU
*cpu
)
2432 DeviceState
*apic
= cpu
->apic_state
;
2433 struct kvm_lapic_state kapic
;
2436 if (apic
&& kvm_irqchip_in_kernel()) {
2437 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2442 kvm_get_apic_state(apic
, &kapic
);
2447 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2449 CPUState
*cs
= CPU(cpu
);
2450 CPUX86State
*env
= &cpu
->env
;
2451 struct kvm_vcpu_events events
= {};
2453 if (!kvm_has_vcpu_events()) {
2457 events
.exception
.injected
= (env
->exception_injected
>= 0);
2458 events
.exception
.nr
= env
->exception_injected
;
2459 events
.exception
.has_error_code
= env
->has_error_code
;
2460 events
.exception
.error_code
= env
->error_code
;
2461 events
.exception
.pad
= 0;
2463 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2464 events
.interrupt
.nr
= env
->interrupt_injected
;
2465 events
.interrupt
.soft
= env
->soft_interrupt
;
2467 events
.nmi
.injected
= env
->nmi_injected
;
2468 events
.nmi
.pending
= env
->nmi_pending
;
2469 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2472 events
.sipi_vector
= env
->sipi_vector
;
2475 if (has_msr_smbase
) {
2476 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2477 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2478 if (kvm_irqchip_in_kernel()) {
2479 /* As soon as these are moved to the kernel, remove them
2480 * from cs->interrupt_request.
2482 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2483 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2484 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2486 /* Keep these in cs->interrupt_request. */
2487 events
.smi
.pending
= 0;
2488 events
.smi
.latched_init
= 0;
2490 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2493 if (level
>= KVM_PUT_RESET_STATE
) {
2495 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2498 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2501 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2503 CPUX86State
*env
= &cpu
->env
;
2504 struct kvm_vcpu_events events
;
2507 if (!kvm_has_vcpu_events()) {
2511 memset(&events
, 0, sizeof(events
));
2512 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2516 env
->exception_injected
=
2517 events
.exception
.injected
? events
.exception
.nr
: -1;
2518 env
->has_error_code
= events
.exception
.has_error_code
;
2519 env
->error_code
= events
.exception
.error_code
;
2521 env
->interrupt_injected
=
2522 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2523 env
->soft_interrupt
= events
.interrupt
.soft
;
2525 env
->nmi_injected
= events
.nmi
.injected
;
2526 env
->nmi_pending
= events
.nmi
.pending
;
2527 if (events
.nmi
.masked
) {
2528 env
->hflags2
|= HF2_NMI_MASK
;
2530 env
->hflags2
&= ~HF2_NMI_MASK
;
2533 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2534 if (events
.smi
.smm
) {
2535 env
->hflags
|= HF_SMM_MASK
;
2537 env
->hflags
&= ~HF_SMM_MASK
;
2539 if (events
.smi
.pending
) {
2540 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2542 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2544 if (events
.smi
.smm_inside_nmi
) {
2545 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2547 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2549 if (events
.smi
.latched_init
) {
2550 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2552 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2556 env
->sipi_vector
= events
.sipi_vector
;
2561 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2563 CPUState
*cs
= CPU(cpu
);
2564 CPUX86State
*env
= &cpu
->env
;
2566 unsigned long reinject_trap
= 0;
2568 if (!kvm_has_vcpu_events()) {
2569 if (env
->exception_injected
== 1) {
2570 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2571 } else if (env
->exception_injected
== 3) {
2572 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2574 env
->exception_injected
= -1;
2578 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2579 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2580 * by updating the debug state once again if single-stepping is on.
2581 * Another reason to call kvm_update_guest_debug here is a pending debug
2582 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2583 * reinject them via SET_GUEST_DEBUG.
2585 if (reinject_trap
||
2586 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2587 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2592 static int kvm_put_debugregs(X86CPU
*cpu
)
2594 CPUX86State
*env
= &cpu
->env
;
2595 struct kvm_debugregs dbgregs
;
2598 if (!kvm_has_debugregs()) {
2602 for (i
= 0; i
< 4; i
++) {
2603 dbgregs
.db
[i
] = env
->dr
[i
];
2605 dbgregs
.dr6
= env
->dr
[6];
2606 dbgregs
.dr7
= env
->dr
[7];
2609 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2612 static int kvm_get_debugregs(X86CPU
*cpu
)
2614 CPUX86State
*env
= &cpu
->env
;
2615 struct kvm_debugregs dbgregs
;
2618 if (!kvm_has_debugregs()) {
2622 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2626 for (i
= 0; i
< 4; i
++) {
2627 env
->dr
[i
] = dbgregs
.db
[i
];
2629 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2630 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2635 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2637 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2640 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2642 if (level
>= KVM_PUT_RESET_STATE
) {
2643 ret
= kvm_put_msr_feature_control(x86_cpu
);
2649 if (level
== KVM_PUT_FULL_STATE
) {
2650 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2651 * because TSC frequency mismatch shouldn't abort migration,
2652 * unless the user explicitly asked for a more strict TSC
2653 * setting (e.g. using an explicit "tsc-freq" option).
2655 kvm_arch_set_tsc_khz(cpu
);
2658 ret
= kvm_getput_regs(x86_cpu
, 1);
2662 ret
= kvm_put_xsave(x86_cpu
);
2666 ret
= kvm_put_xcrs(x86_cpu
);
2670 ret
= kvm_put_sregs(x86_cpu
);
2674 /* must be before kvm_put_msrs */
2675 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2679 ret
= kvm_put_msrs(x86_cpu
, level
);
2683 if (level
>= KVM_PUT_RESET_STATE
) {
2684 ret
= kvm_put_mp_state(x86_cpu
);
2690 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2695 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2699 ret
= kvm_put_debugregs(x86_cpu
);
2704 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2711 int kvm_arch_get_registers(CPUState
*cs
)
2713 X86CPU
*cpu
= X86_CPU(cs
);
2716 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2718 ret
= kvm_getput_regs(cpu
, 0);
2722 ret
= kvm_get_xsave(cpu
);
2726 ret
= kvm_get_xcrs(cpu
);
2730 ret
= kvm_get_sregs(cpu
);
2734 ret
= kvm_get_msrs(cpu
);
2738 ret
= kvm_get_mp_state(cpu
);
2742 ret
= kvm_get_apic(cpu
);
2746 ret
= kvm_get_vcpu_events(cpu
);
2750 ret
= kvm_get_debugregs(cpu
);
2756 cpu_sync_bndcs_hflags(&cpu
->env
);
2760 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2762 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2763 CPUX86State
*env
= &x86_cpu
->env
;
2767 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2768 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2769 qemu_mutex_lock_iothread();
2770 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2771 qemu_mutex_unlock_iothread();
2772 DPRINTF("injected NMI\n");
2773 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2775 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2779 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2780 qemu_mutex_lock_iothread();
2781 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2782 qemu_mutex_unlock_iothread();
2783 DPRINTF("injected SMI\n");
2784 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2786 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2792 if (!kvm_pic_in_kernel()) {
2793 qemu_mutex_lock_iothread();
2796 /* Force the VCPU out of its inner loop to process any INIT requests
2797 * or (for userspace APIC, but it is cheap to combine the checks here)
2798 * pending TPR access reports.
2800 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2801 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2802 !(env
->hflags
& HF_SMM_MASK
)) {
2803 cpu
->exit_request
= 1;
2805 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2806 cpu
->exit_request
= 1;
2810 if (!kvm_pic_in_kernel()) {
2811 /* Try to inject an interrupt if the guest can accept it */
2812 if (run
->ready_for_interrupt_injection
&&
2813 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2814 (env
->eflags
& IF_MASK
)) {
2817 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2818 irq
= cpu_get_pic_interrupt(env
);
2820 struct kvm_interrupt intr
;
2823 DPRINTF("injected interrupt %d\n", irq
);
2824 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2827 "KVM: injection failed, interrupt lost (%s)\n",
2833 /* If we have an interrupt but the guest is not ready to receive an
2834 * interrupt, request an interrupt window exit. This will
2835 * cause a return to userspace as soon as the guest is ready to
2836 * receive interrupts. */
2837 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2838 run
->request_interrupt_window
= 1;
2840 run
->request_interrupt_window
= 0;
2843 DPRINTF("setting tpr\n");
2844 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2846 qemu_mutex_unlock_iothread();
2850 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2852 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2853 CPUX86State
*env
= &x86_cpu
->env
;
2855 if (run
->flags
& KVM_RUN_X86_SMM
) {
2856 env
->hflags
|= HF_SMM_MASK
;
2858 env
->hflags
&= HF_SMM_MASK
;
2861 env
->eflags
|= IF_MASK
;
2863 env
->eflags
&= ~IF_MASK
;
2866 /* We need to protect the apic state against concurrent accesses from
2867 * different threads in case the userspace irqchip is used. */
2868 if (!kvm_irqchip_in_kernel()) {
2869 qemu_mutex_lock_iothread();
2871 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2872 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2873 if (!kvm_irqchip_in_kernel()) {
2874 qemu_mutex_unlock_iothread();
2876 return cpu_get_mem_attrs(env
);
2879 int kvm_arch_process_async_events(CPUState
*cs
)
2881 X86CPU
*cpu
= X86_CPU(cs
);
2882 CPUX86State
*env
= &cpu
->env
;
2884 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2885 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2886 assert(env
->mcg_cap
);
2888 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2890 kvm_cpu_synchronize_state(cs
);
2892 if (env
->exception_injected
== EXCP08_DBLE
) {
2893 /* this means triple fault */
2894 qemu_system_reset_request();
2895 cs
->exit_request
= 1;
2898 env
->exception_injected
= EXCP12_MCHK
;
2899 env
->has_error_code
= 0;
2902 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2903 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2907 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2908 !(env
->hflags
& HF_SMM_MASK
)) {
2909 kvm_cpu_synchronize_state(cs
);
2913 if (kvm_irqchip_in_kernel()) {
2917 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2918 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2919 apic_poll_irq(cpu
->apic_state
);
2921 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2922 (env
->eflags
& IF_MASK
)) ||
2923 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2926 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2927 kvm_cpu_synchronize_state(cs
);
2930 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2931 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2932 kvm_cpu_synchronize_state(cs
);
2933 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2934 env
->tpr_access_type
);
2940 static int kvm_handle_halt(X86CPU
*cpu
)
2942 CPUState
*cs
= CPU(cpu
);
2943 CPUX86State
*env
= &cpu
->env
;
2945 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2946 (env
->eflags
& IF_MASK
)) &&
2947 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2955 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2957 CPUState
*cs
= CPU(cpu
);
2958 struct kvm_run
*run
= cs
->kvm_run
;
2960 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
2961 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
2966 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2968 static const uint8_t int3
= 0xcc;
2970 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
2971 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
2977 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2981 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
2982 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
2994 static int nb_hw_breakpoint
;
2996 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
3000 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3001 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
3002 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
3009 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
3010 target_ulong len
, int type
)
3013 case GDB_BREAKPOINT_HW
:
3016 case GDB_WATCHPOINT_WRITE
:
3017 case GDB_WATCHPOINT_ACCESS
:
3024 if (addr
& (len
- 1)) {
3036 if (nb_hw_breakpoint
== 4) {
3039 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
3042 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
3043 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
3044 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
3050 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
3051 target_ulong len
, int type
)
3055 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
3060 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
3065 void kvm_arch_remove_all_hw_breakpoints(void)
3067 nb_hw_breakpoint
= 0;
3070 static CPUWatchpoint hw_watchpoint
;
3072 static int kvm_handle_debug(X86CPU
*cpu
,
3073 struct kvm_debug_exit_arch
*arch_info
)
3075 CPUState
*cs
= CPU(cpu
);
3076 CPUX86State
*env
= &cpu
->env
;
3080 if (arch_info
->exception
== 1) {
3081 if (arch_info
->dr6
& (1 << 14)) {
3082 if (cs
->singlestep_enabled
) {
3086 for (n
= 0; n
< 4; n
++) {
3087 if (arch_info
->dr6
& (1 << n
)) {
3088 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
3094 cs
->watchpoint_hit
= &hw_watchpoint
;
3095 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3096 hw_watchpoint
.flags
= BP_MEM_WRITE
;
3100 cs
->watchpoint_hit
= &hw_watchpoint
;
3101 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3102 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
3108 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
3112 cpu_synchronize_state(cs
);
3113 assert(env
->exception_injected
== -1);
3116 env
->exception_injected
= arch_info
->exception
;
3117 env
->has_error_code
= 0;
3123 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
3125 const uint8_t type_code
[] = {
3126 [GDB_BREAKPOINT_HW
] = 0x0,
3127 [GDB_WATCHPOINT_WRITE
] = 0x1,
3128 [GDB_WATCHPOINT_ACCESS
] = 0x3
3130 const uint8_t len_code
[] = {
3131 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3135 if (kvm_sw_breakpoints_active(cpu
)) {
3136 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
3138 if (nb_hw_breakpoint
> 0) {
3139 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
3140 dbg
->arch
.debugreg
[7] = 0x0600;
3141 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3142 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
3143 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
3144 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
3145 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
3150 static bool host_supports_vmx(void)
3152 uint32_t ecx
, unused
;
3154 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
3155 return ecx
& CPUID_EXT_VMX
;
3158 #define VMX_INVALID_GUEST_STATE 0x80000021
3160 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
3162 X86CPU
*cpu
= X86_CPU(cs
);
3166 switch (run
->exit_reason
) {
3168 DPRINTF("handle_hlt\n");
3169 qemu_mutex_lock_iothread();
3170 ret
= kvm_handle_halt(cpu
);
3171 qemu_mutex_unlock_iothread();
3173 case KVM_EXIT_SET_TPR
:
3176 case KVM_EXIT_TPR_ACCESS
:
3177 qemu_mutex_lock_iothread();
3178 ret
= kvm_handle_tpr_access(cpu
);
3179 qemu_mutex_unlock_iothread();
3181 case KVM_EXIT_FAIL_ENTRY
:
3182 code
= run
->fail_entry
.hardware_entry_failure_reason
;
3183 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
3185 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
3187 "\nIf you're running a guest on an Intel machine without "
3188 "unrestricted mode\n"
3189 "support, the failure can be most likely due to the guest "
3190 "entering an invalid\n"
3191 "state for Intel VT. For example, the guest maybe running "
3192 "in big real mode\n"
3193 "which is not supported on less recent Intel processors."
3198 case KVM_EXIT_EXCEPTION
:
3199 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
3200 run
->ex
.exception
, run
->ex
.error_code
);
3203 case KVM_EXIT_DEBUG
:
3204 DPRINTF("kvm_exit_debug\n");
3205 qemu_mutex_lock_iothread();
3206 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
3207 qemu_mutex_unlock_iothread();
3209 case KVM_EXIT_HYPERV
:
3210 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
3212 case KVM_EXIT_IOAPIC_EOI
:
3213 ioapic_eoi_broadcast(run
->eoi
.vector
);
3217 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
3225 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
3227 X86CPU
*cpu
= X86_CPU(cs
);
3228 CPUX86State
*env
= &cpu
->env
;
3230 kvm_cpu_synchronize_state(cs
);
3231 return !(env
->cr
[0] & CR0_PE_MASK
) ||
3232 ((env
->segs
[R_CS
].selector
& 3) != 3);
3235 void kvm_arch_init_irq_routing(KVMState
*s
)
3237 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
3238 /* If kernel can't do irq routing, interrupt source
3239 * override 0->2 cannot be set up as required by HPET.
3240 * So we have to disable it.
3244 /* We know at this point that we're using the in-kernel
3245 * irqchip, so we can use irqfds, and on x86 we know
3246 * we can use msi via irqfd and GSI routing.
3248 kvm_msi_via_irqfd_allowed
= true;
3249 kvm_gsi_routing_allowed
= true;
3251 if (kvm_irqchip_is_split()) {
3254 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3255 MSI routes for signaling interrupts to the local apics. */
3256 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
3257 if (kvm_irqchip_add_msi_route(s
, 0, NULL
) < 0) {
3258 error_report("Could not enable split IRQ mode.");
3265 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
3268 if (machine_kernel_irqchip_split(ms
)) {
3269 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
3271 error_report("Could not enable split irqchip mode: %s",
3275 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3276 kvm_split_irqchip
= true;
3284 /* Classic KVM device assignment interface. Will remain x86 only. */
3285 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
3286 uint32_t flags
, uint32_t *dev_id
)
3288 struct kvm_assigned_pci_dev dev_data
= {
3289 .segnr
= dev_addr
->domain
,
3290 .busnr
= dev_addr
->bus
,
3291 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
3296 dev_data
.assigned_dev_id
=
3297 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
3299 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
3304 *dev_id
= dev_data
.assigned_dev_id
;
3309 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
3311 struct kvm_assigned_pci_dev dev_data
= {
3312 .assigned_dev_id
= dev_id
,
3315 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
3318 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3319 uint32_t irq_type
, uint32_t guest_irq
)
3321 struct kvm_assigned_irq assigned_irq
= {
3322 .assigned_dev_id
= dev_id
,
3323 .guest_irq
= guest_irq
,
3327 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
3328 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
3330 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
3334 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
3337 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
3338 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
3340 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
3343 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
3345 struct kvm_assigned_pci_dev dev_data
= {
3346 .assigned_dev_id
= dev_id
,
3347 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
3350 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3353 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3356 struct kvm_assigned_irq assigned_irq
= {
3357 .assigned_dev_id
= dev_id
,
3361 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3364 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3366 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3367 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3370 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3372 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3373 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3376 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3378 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3379 KVM_DEV_IRQ_HOST_MSI
);
3382 bool kvm_device_msix_supported(KVMState
*s
)
3384 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3385 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3386 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3389 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3390 uint32_t nr_vectors
)
3392 struct kvm_assigned_msix_nr msix_nr
= {
3393 .assigned_dev_id
= dev_id
,
3394 .entry_nr
= nr_vectors
,
3397 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3400 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3403 struct kvm_assigned_msix_entry msix_entry
= {
3404 .assigned_dev_id
= dev_id
,
3409 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3412 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3414 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3415 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3418 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3420 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3421 KVM_DEV_IRQ_HOST_MSIX
);
3424 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3425 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3427 X86IOMMUState
*iommu
= x86_iommu_get_default();
3431 MSIMessage src
, dst
;
3432 X86IOMMUClass
*class = X86_IOMMU_GET_CLASS(iommu
);
3434 src
.address
= route
->u
.msi
.address_hi
;
3435 src
.address
<<= VTD_MSI_ADDR_HI_SHIFT
;
3436 src
.address
|= route
->u
.msi
.address_lo
;
3437 src
.data
= route
->u
.msi
.data
;
3439 ret
= class->int_remap(iommu
, &src
, &dst
, dev
? \
3440 pci_requester_id(dev
) : \
3441 X86_IOMMU_SID_INVALID
);
3443 trace_kvm_x86_fixup_msi_error(route
->gsi
);
3447 route
->u
.msi
.address_hi
= dst
.address
>> VTD_MSI_ADDR_HI_SHIFT
;
3448 route
->u
.msi
.address_lo
= dst
.address
& VTD_MSI_ADDR_LO_MASK
;
3449 route
->u
.msi
.data
= dst
.data
;
3455 typedef struct MSIRouteEntry MSIRouteEntry
;
3457 struct MSIRouteEntry
{
3458 PCIDevice
*dev
; /* Device pointer */
3459 int vector
; /* MSI/MSIX vector index */
3460 int virq
; /* Virtual IRQ index */
3461 QLIST_ENTRY(MSIRouteEntry
) list
;
3464 /* List of used GSI routes */
3465 static QLIST_HEAD(, MSIRouteEntry
) msi_route_list
= \
3466 QLIST_HEAD_INITIALIZER(msi_route_list
);
3468 static void kvm_update_msi_routes_all(void *private, bool global
,
3469 uint32_t index
, uint32_t mask
)
3472 MSIRouteEntry
*entry
;
3474 /* TODO: explicit route update */
3475 QLIST_FOREACH(entry
, &msi_route_list
, list
) {
3477 msg
= pci_get_msi_message(entry
->dev
, entry
->vector
);
3478 kvm_irqchip_update_msi_route(kvm_state
, entry
->virq
,
3481 kvm_irqchip_commit_routes(kvm_state
);
3482 trace_kvm_x86_update_msi_routes(cnt
);
3485 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
3486 int vector
, PCIDevice
*dev
)
3488 static bool notify_list_inited
= false;
3489 MSIRouteEntry
*entry
;
3492 /* These are (possibly) IOAPIC routes only used for split
3493 * kernel irqchip mode, while what we are housekeeping are
3494 * PCI devices only. */
3498 entry
= g_new0(MSIRouteEntry
, 1);
3500 entry
->vector
= vector
;
3501 entry
->virq
= route
->gsi
;
3502 QLIST_INSERT_HEAD(&msi_route_list
, entry
, list
);
3504 trace_kvm_x86_add_msi_route(route
->gsi
);
3506 if (!notify_list_inited
) {
3507 /* For the first time we do add route, add ourselves into
3508 * IOMMU's IEC notify list if needed. */
3509 X86IOMMUState
*iommu
= x86_iommu_get_default();
3511 x86_iommu_iec_register_notifier(iommu
,
3512 kvm_update_msi_routes_all
,
3515 notify_list_inited
= true;
3520 int kvm_arch_release_virq_post(int virq
)
3522 MSIRouteEntry
*entry
, *next
;
3523 QLIST_FOREACH_SAFE(entry
, &msi_route_list
, list
, next
) {
3524 if (entry
->virq
== virq
) {
3525 trace_kvm_x86_remove_msi_route(virq
);
3526 QLIST_REMOVE(entry
, list
);
3533 int kvm_arch_msi_data_to_gsi(uint32_t data
)