pseries: Correctly create ibm,segment-page-sizes property
[qemu/kevin.git] / hw / spapr.c
blob1b01d6475d183f35743e1095db718c68225586d6
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "sysemu.h"
28 #include "hw.h"
29 #include "elf.h"
30 #include "net.h"
31 #include "blockdev.h"
32 #include "cpus.h"
33 #include "kvm.h"
34 #include "kvm_ppc.h"
36 #include "hw/boards.h"
37 #include "hw/ppc.h"
38 #include "hw/loader.h"
40 #include "hw/spapr.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
43 #include "hw/xics.h"
45 #include "kvm.h"
46 #include "kvm_ppc.h"
47 #include "pci.h"
49 #include "exec-memory.h"
51 #include <libfdt.h>
53 /* SLOF memory layout:
55 * SLOF raw image loaded at 0, copies its romfs right below the flat
56 * device-tree, then position SLOF itself 31M below that
58 * So we set FW_OVERHEAD to 40MB which should account for all of that
59 * and more
61 * We load our kernel at 4M, leaving space for SLOF initial image
63 #define FDT_MAX_SIZE 0x10000
64 #define RTAS_MAX_SIZE 0x10000
65 #define FW_MAX_SIZE 0x400000
66 #define FW_FILE_NAME "slof.bin"
67 #define FW_OVERHEAD 0x2800000
68 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
70 #define MIN_RMA_SLOF 128UL
72 #define TIMEBASE_FREQ 512000000ULL
74 #define MAX_CPUS 256
75 #define XICS_IRQS 1024
77 #define SPAPR_PCI_BUID 0x800000020000001ULL
78 #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000)
79 #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000
80 #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000)
82 #define PHANDLE_XICP 0x00001111
84 sPAPREnvironment *spapr;
86 qemu_irq spapr_allocate_irq(uint32_t hint, uint32_t *irq_num,
87 enum xics_irq_type type)
89 uint32_t irq;
90 qemu_irq qirq;
92 if (hint) {
93 irq = hint;
94 /* FIXME: we should probably check for collisions somehow */
95 } else {
96 irq = spapr->next_irq++;
99 qirq = xics_assign_irq(spapr->icp, irq, type);
100 if (!qirq) {
101 return NULL;
104 if (irq_num) {
105 *irq_num = irq;
108 return qirq;
111 static int spapr_set_associativity(void *fdt, sPAPREnvironment *spapr)
113 int ret = 0, offset;
114 CPUPPCState *env;
115 char cpu_model[32];
116 int smt = kvmppc_smt_threads();
118 assert(spapr->cpu_model);
120 for (env = first_cpu; env != NULL; env = env->next_cpu) {
121 uint32_t associativity[] = {cpu_to_be32(0x5),
122 cpu_to_be32(0x0),
123 cpu_to_be32(0x0),
124 cpu_to_be32(0x0),
125 cpu_to_be32(env->numa_node),
126 cpu_to_be32(env->cpu_index)};
128 if ((env->cpu_index % smt) != 0) {
129 continue;
132 snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
133 env->cpu_index);
135 offset = fdt_path_offset(fdt, cpu_model);
136 if (offset < 0) {
137 return offset;
140 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
141 sizeof(associativity));
142 if (ret < 0) {
143 return ret;
146 return ret;
150 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
151 size_t maxsize)
153 size_t maxcells = maxsize / sizeof(uint32_t);
154 int i, j, count;
155 uint32_t *p = prop;
157 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
158 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
160 if (!sps->page_shift) {
161 break;
163 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
164 if (sps->enc[count].page_shift == 0) {
165 break;
168 if ((p - prop) >= (maxcells - 3 - count * 2)) {
169 break;
171 *(p++) = cpu_to_be32(sps->page_shift);
172 *(p++) = cpu_to_be32(sps->slb_enc);
173 *(p++) = cpu_to_be32(count);
174 for (j = 0; j < count; j++) {
175 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
176 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
180 return (p - prop) * sizeof(uint32_t);
183 static void *spapr_create_fdt_skel(const char *cpu_model,
184 target_phys_addr_t rma_size,
185 target_phys_addr_t initrd_base,
186 target_phys_addr_t initrd_size,
187 target_phys_addr_t kernel_size,
188 const char *boot_device,
189 const char *kernel_cmdline,
190 long hash_shift)
192 void *fdt;
193 CPUPPCState *env;
194 uint64_t mem_reg_property[2];
195 uint32_t start_prop = cpu_to_be32(initrd_base);
196 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
197 uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
198 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
199 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
200 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
201 int i;
202 char *modelname;
203 int smt = kvmppc_smt_threads();
204 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
205 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
206 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
207 cpu_to_be32(0x0), cpu_to_be32(0x0),
208 cpu_to_be32(0x0)};
209 char mem_name[32];
210 target_phys_addr_t node0_size, mem_start;
212 #define _FDT(exp) \
213 do { \
214 int ret = (exp); \
215 if (ret < 0) { \
216 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
217 #exp, fdt_strerror(ret)); \
218 exit(1); \
220 } while (0)
222 fdt = g_malloc0(FDT_MAX_SIZE);
223 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
225 if (kernel_size) {
226 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
228 if (initrd_size) {
229 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
231 _FDT((fdt_finish_reservemap(fdt)));
233 /* Root node */
234 _FDT((fdt_begin_node(fdt, "")));
235 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
236 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
238 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
239 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
241 /* /chosen */
242 _FDT((fdt_begin_node(fdt, "chosen")));
244 /* Set Form1_affinity */
245 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
247 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
248 _FDT((fdt_property(fdt, "linux,initrd-start",
249 &start_prop, sizeof(start_prop))));
250 _FDT((fdt_property(fdt, "linux,initrd-end",
251 &end_prop, sizeof(end_prop))));
252 if (kernel_size) {
253 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
254 cpu_to_be64(kernel_size) };
256 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
258 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
260 _FDT((fdt_end_node(fdt)));
262 /* memory node(s) */
263 node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
264 if (rma_size > node0_size) {
265 rma_size = node0_size;
268 /* RMA */
269 mem_reg_property[0] = 0;
270 mem_reg_property[1] = cpu_to_be64(rma_size);
271 _FDT((fdt_begin_node(fdt, "memory@0")));
272 _FDT((fdt_property_string(fdt, "device_type", "memory")));
273 _FDT((fdt_property(fdt, "reg", mem_reg_property,
274 sizeof(mem_reg_property))));
275 _FDT((fdt_property(fdt, "ibm,associativity", associativity,
276 sizeof(associativity))));
277 _FDT((fdt_end_node(fdt)));
279 /* RAM: Node 0 */
280 if (node0_size > rma_size) {
281 mem_reg_property[0] = cpu_to_be64(rma_size);
282 mem_reg_property[1] = cpu_to_be64(node0_size - rma_size);
284 sprintf(mem_name, "memory@" TARGET_FMT_lx, rma_size);
285 _FDT((fdt_begin_node(fdt, mem_name)));
286 _FDT((fdt_property_string(fdt, "device_type", "memory")));
287 _FDT((fdt_property(fdt, "reg", mem_reg_property,
288 sizeof(mem_reg_property))));
289 _FDT((fdt_property(fdt, "ibm,associativity", associativity,
290 sizeof(associativity))));
291 _FDT((fdt_end_node(fdt)));
294 /* RAM: Node 1 and beyond */
295 mem_start = node0_size;
296 for (i = 1; i < nb_numa_nodes; i++) {
297 mem_reg_property[0] = cpu_to_be64(mem_start);
298 mem_reg_property[1] = cpu_to_be64(node_mem[i]);
299 associativity[3] = associativity[4] = cpu_to_be32(i);
300 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
301 _FDT((fdt_begin_node(fdt, mem_name)));
302 _FDT((fdt_property_string(fdt, "device_type", "memory")));
303 _FDT((fdt_property(fdt, "reg", mem_reg_property,
304 sizeof(mem_reg_property))));
305 _FDT((fdt_property(fdt, "ibm,associativity", associativity,
306 sizeof(associativity))));
307 _FDT((fdt_end_node(fdt)));
308 mem_start += node_mem[i];
311 /* cpus */
312 _FDT((fdt_begin_node(fdt, "cpus")));
314 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
315 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
317 modelname = g_strdup(cpu_model);
319 for (i = 0; i < strlen(modelname); i++) {
320 modelname[i] = toupper(modelname[i]);
323 /* This is needed during FDT finalization */
324 spapr->cpu_model = g_strdup(modelname);
326 for (env = first_cpu; env != NULL; env = env->next_cpu) {
327 int index = env->cpu_index;
328 uint32_t servers_prop[smp_threads];
329 uint32_t gservers_prop[smp_threads * 2];
330 char *nodename;
331 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
332 0xffffffff, 0xffffffff};
333 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
334 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
335 uint32_t page_sizes_prop[64];
336 size_t page_sizes_prop_size;
338 if ((index % smt) != 0) {
339 continue;
342 if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
343 fprintf(stderr, "Allocation failure\n");
344 exit(1);
347 _FDT((fdt_begin_node(fdt, nodename)));
349 free(nodename);
351 _FDT((fdt_property_cell(fdt, "reg", index)));
352 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
354 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
355 _FDT((fdt_property_cell(fdt, "dcache-block-size",
356 env->dcache_line_size)));
357 _FDT((fdt_property_cell(fdt, "icache-block-size",
358 env->icache_line_size)));
359 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
360 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
361 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
362 _FDT((fdt_property(fdt, "ibm,pft-size",
363 pft_size_prop, sizeof(pft_size_prop))));
364 _FDT((fdt_property_string(fdt, "status", "okay")));
365 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
367 /* Build interrupt servers and gservers properties */
368 for (i = 0; i < smp_threads; i++) {
369 servers_prop[i] = cpu_to_be32(index + i);
370 /* Hack, direct the group queues back to cpu 0 */
371 gservers_prop[i*2] = cpu_to_be32(index + i);
372 gservers_prop[i*2 + 1] = 0;
374 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
375 servers_prop, sizeof(servers_prop))));
376 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
377 gservers_prop, sizeof(gservers_prop))));
379 if (env->mmu_model & POWERPC_MMU_1TSEG) {
380 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
381 segs, sizeof(segs))));
384 /* Advertise VMX/VSX (vector extensions) if available
385 * 0 / no property == no vector extensions
386 * 1 == VMX / Altivec available
387 * 2 == VSX available */
388 if (env->insns_flags & PPC_ALTIVEC) {
389 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
391 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
394 /* Advertise DFP (Decimal Floating Point) if available
395 * 0 / no property == no DFP
396 * 1 == DFP available */
397 if (env->insns_flags2 & PPC2_DFP) {
398 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
401 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
402 sizeof(page_sizes_prop));
403 if (page_sizes_prop_size) {
404 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
405 page_sizes_prop, page_sizes_prop_size)));
408 _FDT((fdt_end_node(fdt)));
411 g_free(modelname);
413 _FDT((fdt_end_node(fdt)));
415 /* RTAS */
416 _FDT((fdt_begin_node(fdt, "rtas")));
418 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
419 sizeof(hypertas_prop))));
421 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
422 refpoints, sizeof(refpoints))));
424 _FDT((fdt_end_node(fdt)));
426 /* interrupt controller */
427 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
429 _FDT((fdt_property_string(fdt, "device_type",
430 "PowerPC-External-Interrupt-Presentation")));
431 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
432 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
433 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
434 interrupt_server_ranges_prop,
435 sizeof(interrupt_server_ranges_prop))));
436 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
437 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
438 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
440 _FDT((fdt_end_node(fdt)));
442 /* vdevice */
443 _FDT((fdt_begin_node(fdt, "vdevice")));
445 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
446 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
447 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
448 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
449 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
450 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
452 _FDT((fdt_end_node(fdt)));
454 _FDT((fdt_end_node(fdt))); /* close root node */
455 _FDT((fdt_finish(fdt)));
457 return fdt;
460 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
461 target_phys_addr_t fdt_addr,
462 target_phys_addr_t rtas_addr,
463 target_phys_addr_t rtas_size)
465 int ret;
466 void *fdt;
467 sPAPRPHBState *phb;
469 fdt = g_malloc(FDT_MAX_SIZE);
471 /* open out the base tree into a temp buffer for the final tweaks */
472 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
474 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
475 if (ret < 0) {
476 fprintf(stderr, "couldn't setup vio devices in fdt\n");
477 exit(1);
480 QLIST_FOREACH(phb, &spapr->phbs, list) {
481 ret = spapr_populate_pci_devices(phb, PHANDLE_XICP, fdt);
484 if (ret < 0) {
485 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
486 exit(1);
489 /* RTAS */
490 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
491 if (ret < 0) {
492 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
495 /* Advertise NUMA via ibm,associativity */
496 if (nb_numa_nodes > 1) {
497 ret = spapr_set_associativity(fdt, spapr);
498 if (ret < 0) {
499 fprintf(stderr, "Couldn't set up NUMA device tree properties\n");
503 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
505 _FDT((fdt_pack(fdt)));
507 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
508 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
509 fdt_totalsize(fdt), FDT_MAX_SIZE);
510 exit(1);
513 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
515 g_free(fdt);
518 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
520 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
523 static void emulate_spapr_hypercall(CPUPPCState *env)
525 env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
528 static void spapr_reset(void *opaque)
530 sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
532 fprintf(stderr, "sPAPR reset\n");
534 /* flush out the hash table */
535 memset(spapr->htab, 0, spapr->htab_size);
537 /* Load the fdt */
538 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
539 spapr->rtas_size);
541 /* Set up the entry state */
542 first_cpu->gpr[3] = spapr->fdt_addr;
543 first_cpu->gpr[5] = 0;
544 first_cpu->halted = 0;
545 first_cpu->nip = spapr->entry_point;
549 static void spapr_cpu_reset(void *opaque)
551 PowerPCCPU *cpu = opaque;
553 cpu_reset(CPU(cpu));
556 /* pSeries LPAR / sPAPR hardware init */
557 static void ppc_spapr_init(ram_addr_t ram_size,
558 const char *boot_device,
559 const char *kernel_filename,
560 const char *kernel_cmdline,
561 const char *initrd_filename,
562 const char *cpu_model)
564 PowerPCCPU *cpu;
565 CPUPPCState *env;
566 int i;
567 MemoryRegion *sysmem = get_system_memory();
568 MemoryRegion *ram = g_new(MemoryRegion, 1);
569 target_phys_addr_t rma_alloc_size, rma_size;
570 uint32_t initrd_base = 0;
571 long kernel_size = 0, initrd_size = 0;
572 long load_limit, rtas_limit, fw_size;
573 long pteg_shift = 17;
574 char *filename;
576 spapr = g_malloc0(sizeof(*spapr));
577 QLIST_INIT(&spapr->phbs);
579 cpu_ppc_hypercall = emulate_spapr_hypercall;
581 /* Allocate RMA if necessary */
582 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
584 if (rma_alloc_size == -1) {
585 hw_error("qemu: Unable to create RMA\n");
586 exit(1);
588 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
589 rma_size = rma_alloc_size;
590 } else {
591 rma_size = ram_size;
594 /* We place the device tree and RTAS just below either the top of the RMA,
595 * or just below 2GB, whichever is lowere, so that it can be
596 * processed with 32-bit real mode code if necessary */
597 rtas_limit = MIN(rma_size, 0x80000000);
598 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
599 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
600 load_limit = spapr->fdt_addr - FW_OVERHEAD;
602 /* init CPUs */
603 if (cpu_model == NULL) {
604 cpu_model = kvm_enabled() ? "host" : "POWER7";
606 for (i = 0; i < smp_cpus; i++) {
607 cpu = cpu_ppc_init(cpu_model);
608 if (cpu == NULL) {
609 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
610 exit(1);
612 env = &cpu->env;
614 /* Set time-base frequency to 512 MHz */
615 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
616 qemu_register_reset(spapr_cpu_reset, cpu);
618 env->hreset_vector = 0x60;
619 env->hreset_excp_prefix = 0;
620 env->gpr[3] = env->cpu_index;
623 /* allocate RAM */
624 spapr->ram_limit = ram_size;
625 if (spapr->ram_limit > rma_alloc_size) {
626 ram_addr_t nonrma_base = rma_alloc_size;
627 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
629 memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
630 vmstate_register_ram_global(ram);
631 memory_region_add_subregion(sysmem, nonrma_base, ram);
634 /* allocate hash page table. For now we always make this 16mb,
635 * later we should probably make it scale to the size of guest
636 * RAM */
637 spapr->htab_size = 1ULL << (pteg_shift + 7);
638 spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size);
640 for (env = first_cpu; env != NULL; env = env->next_cpu) {
641 env->external_htab = spapr->htab;
642 env->htab_base = -1;
643 env->htab_mask = spapr->htab_size - 1;
645 /* Tell KVM that we're in PAPR mode */
646 env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
647 ((pteg_shift + 7) - 18);
648 env->spr[SPR_HIOR] = 0;
650 if (kvm_enabled()) {
651 kvmppc_set_papr(env);
655 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
656 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
657 rtas_limit - spapr->rtas_addr);
658 if (spapr->rtas_size < 0) {
659 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
660 exit(1);
662 if (spapr->rtas_size > RTAS_MAX_SIZE) {
663 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
664 spapr->rtas_size, RTAS_MAX_SIZE);
665 exit(1);
667 g_free(filename);
670 /* Set up Interrupt Controller */
671 spapr->icp = xics_system_init(XICS_IRQS);
672 spapr->next_irq = 16;
674 /* Set up VIO bus */
675 spapr->vio_bus = spapr_vio_bus_init();
677 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
678 if (serial_hds[i]) {
679 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
683 /* Set up PCI */
684 spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
685 SPAPR_PCI_MEM_WIN_ADDR,
686 SPAPR_PCI_MEM_WIN_SIZE,
687 SPAPR_PCI_IO_WIN_ADDR);
689 for (i = 0; i < nb_nics; i++) {
690 NICInfo *nd = &nd_table[i];
692 if (!nd->model) {
693 nd->model = g_strdup("ibmveth");
696 if (strcmp(nd->model, "ibmveth") == 0) {
697 spapr_vlan_create(spapr->vio_bus, nd);
698 } else {
699 pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
703 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
704 spapr_vscsi_create(spapr->vio_bus);
707 if (rma_size < (MIN_RMA_SLOF << 20)) {
708 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
709 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
710 exit(1);
713 fprintf(stderr, "sPAPR memory map:\n");
714 fprintf(stderr, "RTAS : 0x%08lx..%08lx\n",
715 (unsigned long)spapr->rtas_addr,
716 (unsigned long)(spapr->rtas_addr + spapr->rtas_size - 1));
717 fprintf(stderr, "FDT : 0x%08lx..%08lx\n",
718 (unsigned long)spapr->fdt_addr,
719 (unsigned long)(spapr->fdt_addr + FDT_MAX_SIZE - 1));
721 if (kernel_filename) {
722 uint64_t lowaddr = 0;
724 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
725 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
726 if (kernel_size < 0) {
727 kernel_size = load_image_targphys(kernel_filename,
728 KERNEL_LOAD_ADDR,
729 load_limit - KERNEL_LOAD_ADDR);
731 if (kernel_size < 0) {
732 fprintf(stderr, "qemu: could not load kernel '%s'\n",
733 kernel_filename);
734 exit(1);
736 fprintf(stderr, "Kernel : 0x%08x..%08lx\n",
737 KERNEL_LOAD_ADDR, KERNEL_LOAD_ADDR + kernel_size - 1);
739 /* load initrd */
740 if (initrd_filename) {
741 /* Try to locate the initrd in the gap between the kernel
742 * and the firmware. Add a bit of space just in case
744 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
745 initrd_size = load_image_targphys(initrd_filename, initrd_base,
746 load_limit - initrd_base);
747 if (initrd_size < 0) {
748 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
749 initrd_filename);
750 exit(1);
752 fprintf(stderr, "Ramdisk : 0x%08lx..%08lx\n",
753 (long)initrd_base, (long)(initrd_base + initrd_size - 1));
754 } else {
755 initrd_base = 0;
756 initrd_size = 0;
760 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
761 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
762 if (fw_size < 0) {
763 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
764 exit(1);
766 g_free(filename);
767 fprintf(stderr, "Firmware load : 0x%08x..%08lx\n",
768 0, fw_size);
769 fprintf(stderr, "Firmware runtime : 0x%08lx..%08lx\n",
770 load_limit, (unsigned long)spapr->fdt_addr);
772 spapr->entry_point = 0x100;
774 /* SLOF will startup the secondary CPUs using RTAS */
775 for (env = first_cpu; env != NULL; env = env->next_cpu) {
776 env->halted = 1;
779 /* Prepare the device tree */
780 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size,
781 initrd_base, initrd_size,
782 kernel_size,
783 boot_device, kernel_cmdline,
784 pteg_shift + 7);
785 assert(spapr->fdt_skel != NULL);
787 qemu_register_reset(spapr_reset, spapr);
790 static QEMUMachine spapr_machine = {
791 .name = "pseries",
792 .desc = "pSeries Logical Partition (PAPR compliant)",
793 .init = ppc_spapr_init,
794 .max_cpus = MAX_CPUS,
795 .no_parallel = 1,
796 .use_scsi = 1,
799 static void spapr_machine_init(void)
801 qemu_register_machine(&spapr_machine);
804 machine_init(spapr_machine_init);