2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
36 #include "hw/boards.h"
38 #include "hw/loader.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
49 #include "exec-memory.h"
53 /* SLOF memory layout:
55 * SLOF raw image loaded at 0, copies its romfs right below the flat
56 * device-tree, then position SLOF itself 31M below that
58 * So we set FW_OVERHEAD to 40MB which should account for all of that
61 * We load our kernel at 4M, leaving space for SLOF initial image
63 #define FDT_MAX_SIZE 0x10000
64 #define RTAS_MAX_SIZE 0x10000
65 #define FW_MAX_SIZE 0x400000
66 #define FW_FILE_NAME "slof.bin"
67 #define FW_OVERHEAD 0x2800000
68 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
70 #define MIN_RMA_SLOF 128UL
72 #define TIMEBASE_FREQ 512000000ULL
75 #define XICS_IRQS 1024
77 #define SPAPR_PCI_BUID 0x800000020000001ULL
78 #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000)
79 #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000
80 #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000)
82 #define PHANDLE_XICP 0x00001111
84 sPAPREnvironment
*spapr
;
86 qemu_irq
spapr_allocate_irq(uint32_t hint
, uint32_t *irq_num
,
87 enum xics_irq_type type
)
94 /* FIXME: we should probably check for collisions somehow */
96 irq
= spapr
->next_irq
++;
99 qirq
= xics_assign_irq(spapr
->icp
, irq
, type
);
111 static int spapr_set_associativity(void *fdt
, sPAPREnvironment
*spapr
)
116 int smt
= kvmppc_smt_threads();
118 assert(spapr
->cpu_model
);
120 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
121 uint32_t associativity
[] = {cpu_to_be32(0x5),
125 cpu_to_be32(env
->numa_node
),
126 cpu_to_be32(env
->cpu_index
)};
128 if ((env
->cpu_index
% smt
) != 0) {
132 snprintf(cpu_model
, 32, "/cpus/%s@%x", spapr
->cpu_model
,
135 offset
= fdt_path_offset(fdt
, cpu_model
);
140 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
141 sizeof(associativity
));
150 static size_t create_page_sizes_prop(CPUPPCState
*env
, uint32_t *prop
,
153 size_t maxcells
= maxsize
/ sizeof(uint32_t);
157 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
158 struct ppc_one_seg_page_size
*sps
= &env
->sps
.sps
[i
];
160 if (!sps
->page_shift
) {
163 for (count
= 0; count
< PPC_PAGE_SIZES_MAX_SZ
; count
++) {
164 if (sps
->enc
[count
].page_shift
== 0) {
168 if ((p
- prop
) >= (maxcells
- 3 - count
* 2)) {
171 *(p
++) = cpu_to_be32(sps
->page_shift
);
172 *(p
++) = cpu_to_be32(sps
->slb_enc
);
173 *(p
++) = cpu_to_be32(count
);
174 for (j
= 0; j
< count
; j
++) {
175 *(p
++) = cpu_to_be32(sps
->enc
[j
].page_shift
);
176 *(p
++) = cpu_to_be32(sps
->enc
[j
].pte_enc
);
180 return (p
- prop
) * sizeof(uint32_t);
183 static void *spapr_create_fdt_skel(const char *cpu_model
,
184 target_phys_addr_t rma_size
,
185 target_phys_addr_t initrd_base
,
186 target_phys_addr_t initrd_size
,
187 target_phys_addr_t kernel_size
,
188 const char *boot_device
,
189 const char *kernel_cmdline
,
194 uint64_t mem_reg_property
[2];
195 uint32_t start_prop
= cpu_to_be32(initrd_base
);
196 uint32_t end_prop
= cpu_to_be32(initrd_base
+ initrd_size
);
197 uint32_t pft_size_prop
[] = {0, cpu_to_be32(hash_shift
)};
198 char hypertas_prop
[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
199 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
200 uint32_t interrupt_server_ranges_prop
[] = {0, cpu_to_be32(smp_cpus
)};
203 int smt
= kvmppc_smt_threads();
204 unsigned char vec5
[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
205 uint32_t refpoints
[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
206 uint32_t associativity
[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
207 cpu_to_be32(0x0), cpu_to_be32(0x0),
210 target_phys_addr_t node0_size
, mem_start
;
216 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
217 #exp, fdt_strerror(ret)); \
222 fdt
= g_malloc0(FDT_MAX_SIZE
);
223 _FDT((fdt_create(fdt
, FDT_MAX_SIZE
)));
226 _FDT((fdt_add_reservemap_entry(fdt
, KERNEL_LOAD_ADDR
, kernel_size
)));
229 _FDT((fdt_add_reservemap_entry(fdt
, initrd_base
, initrd_size
)));
231 _FDT((fdt_finish_reservemap(fdt
)));
234 _FDT((fdt_begin_node(fdt
, "")));
235 _FDT((fdt_property_string(fdt
, "device_type", "chrp")));
236 _FDT((fdt_property_string(fdt
, "model", "IBM pSeries (emulated by qemu)")));
238 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x2)));
239 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x2)));
242 _FDT((fdt_begin_node(fdt
, "chosen")));
244 /* Set Form1_affinity */
245 _FDT((fdt_property(fdt
, "ibm,architecture-vec-5", vec5
, sizeof(vec5
))));
247 _FDT((fdt_property_string(fdt
, "bootargs", kernel_cmdline
)));
248 _FDT((fdt_property(fdt
, "linux,initrd-start",
249 &start_prop
, sizeof(start_prop
))));
250 _FDT((fdt_property(fdt
, "linux,initrd-end",
251 &end_prop
, sizeof(end_prop
))));
253 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
254 cpu_to_be64(kernel_size
) };
256 _FDT((fdt_property(fdt
, "qemu,boot-kernel", &kprop
, sizeof(kprop
))));
258 _FDT((fdt_property_string(fdt
, "qemu,boot-device", boot_device
)));
260 _FDT((fdt_end_node(fdt
)));
263 node0_size
= (nb_numa_nodes
> 1) ? node_mem
[0] : ram_size
;
264 if (rma_size
> node0_size
) {
265 rma_size
= node0_size
;
269 mem_reg_property
[0] = 0;
270 mem_reg_property
[1] = cpu_to_be64(rma_size
);
271 _FDT((fdt_begin_node(fdt
, "memory@0")));
272 _FDT((fdt_property_string(fdt
, "device_type", "memory")));
273 _FDT((fdt_property(fdt
, "reg", mem_reg_property
,
274 sizeof(mem_reg_property
))));
275 _FDT((fdt_property(fdt
, "ibm,associativity", associativity
,
276 sizeof(associativity
))));
277 _FDT((fdt_end_node(fdt
)));
280 if (node0_size
> rma_size
) {
281 mem_reg_property
[0] = cpu_to_be64(rma_size
);
282 mem_reg_property
[1] = cpu_to_be64(node0_size
- rma_size
);
284 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, rma_size
);
285 _FDT((fdt_begin_node(fdt
, mem_name
)));
286 _FDT((fdt_property_string(fdt
, "device_type", "memory")));
287 _FDT((fdt_property(fdt
, "reg", mem_reg_property
,
288 sizeof(mem_reg_property
))));
289 _FDT((fdt_property(fdt
, "ibm,associativity", associativity
,
290 sizeof(associativity
))));
291 _FDT((fdt_end_node(fdt
)));
294 /* RAM: Node 1 and beyond */
295 mem_start
= node0_size
;
296 for (i
= 1; i
< nb_numa_nodes
; i
++) {
297 mem_reg_property
[0] = cpu_to_be64(mem_start
);
298 mem_reg_property
[1] = cpu_to_be64(node_mem
[i
]);
299 associativity
[3] = associativity
[4] = cpu_to_be32(i
);
300 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, mem_start
);
301 _FDT((fdt_begin_node(fdt
, mem_name
)));
302 _FDT((fdt_property_string(fdt
, "device_type", "memory")));
303 _FDT((fdt_property(fdt
, "reg", mem_reg_property
,
304 sizeof(mem_reg_property
))));
305 _FDT((fdt_property(fdt
, "ibm,associativity", associativity
,
306 sizeof(associativity
))));
307 _FDT((fdt_end_node(fdt
)));
308 mem_start
+= node_mem
[i
];
312 _FDT((fdt_begin_node(fdt
, "cpus")));
314 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
315 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
317 modelname
= g_strdup(cpu_model
);
319 for (i
= 0; i
< strlen(modelname
); i
++) {
320 modelname
[i
] = toupper(modelname
[i
]);
323 /* This is needed during FDT finalization */
324 spapr
->cpu_model
= g_strdup(modelname
);
326 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
327 int index
= env
->cpu_index
;
328 uint32_t servers_prop
[smp_threads
];
329 uint32_t gservers_prop
[smp_threads
* 2];
331 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
332 0xffffffff, 0xffffffff};
333 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ
;
334 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
335 uint32_t page_sizes_prop
[64];
336 size_t page_sizes_prop_size
;
338 if ((index
% smt
) != 0) {
342 if (asprintf(&nodename
, "%s@%x", modelname
, index
) < 0) {
343 fprintf(stderr
, "Allocation failure\n");
347 _FDT((fdt_begin_node(fdt
, nodename
)));
351 _FDT((fdt_property_cell(fdt
, "reg", index
)));
352 _FDT((fdt_property_string(fdt
, "device_type", "cpu")));
354 _FDT((fdt_property_cell(fdt
, "cpu-version", env
->spr
[SPR_PVR
])));
355 _FDT((fdt_property_cell(fdt
, "dcache-block-size",
356 env
->dcache_line_size
)));
357 _FDT((fdt_property_cell(fdt
, "icache-block-size",
358 env
->icache_line_size
)));
359 _FDT((fdt_property_cell(fdt
, "timebase-frequency", tbfreq
)));
360 _FDT((fdt_property_cell(fdt
, "clock-frequency", cpufreq
)));
361 _FDT((fdt_property_cell(fdt
, "ibm,slb-size", env
->slb_nr
)));
362 _FDT((fdt_property(fdt
, "ibm,pft-size",
363 pft_size_prop
, sizeof(pft_size_prop
))));
364 _FDT((fdt_property_string(fdt
, "status", "okay")));
365 _FDT((fdt_property(fdt
, "64-bit", NULL
, 0)));
367 /* Build interrupt servers and gservers properties */
368 for (i
= 0; i
< smp_threads
; i
++) {
369 servers_prop
[i
] = cpu_to_be32(index
+ i
);
370 /* Hack, direct the group queues back to cpu 0 */
371 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
372 gservers_prop
[i
*2 + 1] = 0;
374 _FDT((fdt_property(fdt
, "ibm,ppc-interrupt-server#s",
375 servers_prop
, sizeof(servers_prop
))));
376 _FDT((fdt_property(fdt
, "ibm,ppc-interrupt-gserver#s",
377 gservers_prop
, sizeof(gservers_prop
))));
379 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
380 _FDT((fdt_property(fdt
, "ibm,processor-segment-sizes",
381 segs
, sizeof(segs
))));
384 /* Advertise VMX/VSX (vector extensions) if available
385 * 0 / no property == no vector extensions
386 * 1 == VMX / Altivec available
387 * 2 == VSX available */
388 if (env
->insns_flags
& PPC_ALTIVEC
) {
389 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
391 _FDT((fdt_property_cell(fdt
, "ibm,vmx", vmx
)));
394 /* Advertise DFP (Decimal Floating Point) if available
395 * 0 / no property == no DFP
396 * 1 == DFP available */
397 if (env
->insns_flags2
& PPC2_DFP
) {
398 _FDT((fdt_property_cell(fdt
, "ibm,dfp", 1)));
401 page_sizes_prop_size
= create_page_sizes_prop(env
, page_sizes_prop
,
402 sizeof(page_sizes_prop
));
403 if (page_sizes_prop_size
) {
404 _FDT((fdt_property(fdt
, "ibm,segment-page-sizes",
405 page_sizes_prop
, page_sizes_prop_size
)));
408 _FDT((fdt_end_node(fdt
)));
413 _FDT((fdt_end_node(fdt
)));
416 _FDT((fdt_begin_node(fdt
, "rtas")));
418 _FDT((fdt_property(fdt
, "ibm,hypertas-functions", hypertas_prop
,
419 sizeof(hypertas_prop
))));
421 _FDT((fdt_property(fdt
, "ibm,associativity-reference-points",
422 refpoints
, sizeof(refpoints
))));
424 _FDT((fdt_end_node(fdt
)));
426 /* interrupt controller */
427 _FDT((fdt_begin_node(fdt
, "interrupt-controller")));
429 _FDT((fdt_property_string(fdt
, "device_type",
430 "PowerPC-External-Interrupt-Presentation")));
431 _FDT((fdt_property_string(fdt
, "compatible", "IBM,ppc-xicp")));
432 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
433 _FDT((fdt_property(fdt
, "ibm,interrupt-server-ranges",
434 interrupt_server_ranges_prop
,
435 sizeof(interrupt_server_ranges_prop
))));
436 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 2)));
437 _FDT((fdt_property_cell(fdt
, "linux,phandle", PHANDLE_XICP
)));
438 _FDT((fdt_property_cell(fdt
, "phandle", PHANDLE_XICP
)));
440 _FDT((fdt_end_node(fdt
)));
443 _FDT((fdt_begin_node(fdt
, "vdevice")));
445 _FDT((fdt_property_string(fdt
, "device_type", "vdevice")));
446 _FDT((fdt_property_string(fdt
, "compatible", "IBM,vdevice")));
447 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
448 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
449 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 0x2)));
450 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
452 _FDT((fdt_end_node(fdt
)));
454 _FDT((fdt_end_node(fdt
))); /* close root node */
455 _FDT((fdt_finish(fdt
)));
460 static void spapr_finalize_fdt(sPAPREnvironment
*spapr
,
461 target_phys_addr_t fdt_addr
,
462 target_phys_addr_t rtas_addr
,
463 target_phys_addr_t rtas_size
)
469 fdt
= g_malloc(FDT_MAX_SIZE
);
471 /* open out the base tree into a temp buffer for the final tweaks */
472 _FDT((fdt_open_into(spapr
->fdt_skel
, fdt
, FDT_MAX_SIZE
)));
474 ret
= spapr_populate_vdevice(spapr
->vio_bus
, fdt
);
476 fprintf(stderr
, "couldn't setup vio devices in fdt\n");
480 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
481 ret
= spapr_populate_pci_devices(phb
, PHANDLE_XICP
, fdt
);
485 fprintf(stderr
, "couldn't setup PCI devices in fdt\n");
490 ret
= spapr_rtas_device_tree_setup(fdt
, rtas_addr
, rtas_size
);
492 fprintf(stderr
, "Couldn't set up RTAS device tree properties\n");
495 /* Advertise NUMA via ibm,associativity */
496 if (nb_numa_nodes
> 1) {
497 ret
= spapr_set_associativity(fdt
, spapr
);
499 fprintf(stderr
, "Couldn't set up NUMA device tree properties\n");
503 spapr_populate_chosen_stdout(fdt
, spapr
->vio_bus
);
505 _FDT((fdt_pack(fdt
)));
507 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
508 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
509 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
513 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
518 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
520 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
523 static void emulate_spapr_hypercall(CPUPPCState
*env
)
525 env
->gpr
[3] = spapr_hypercall(env
, env
->gpr
[3], &env
->gpr
[4]);
528 static void spapr_reset(void *opaque
)
530 sPAPREnvironment
*spapr
= (sPAPREnvironment
*)opaque
;
532 fprintf(stderr
, "sPAPR reset\n");
534 /* flush out the hash table */
535 memset(spapr
->htab
, 0, spapr
->htab_size
);
538 spapr_finalize_fdt(spapr
, spapr
->fdt_addr
, spapr
->rtas_addr
,
541 /* Set up the entry state */
542 first_cpu
->gpr
[3] = spapr
->fdt_addr
;
543 first_cpu
->gpr
[5] = 0;
544 first_cpu
->halted
= 0;
545 first_cpu
->nip
= spapr
->entry_point
;
549 static void spapr_cpu_reset(void *opaque
)
551 PowerPCCPU
*cpu
= opaque
;
556 /* pSeries LPAR / sPAPR hardware init */
557 static void ppc_spapr_init(ram_addr_t ram_size
,
558 const char *boot_device
,
559 const char *kernel_filename
,
560 const char *kernel_cmdline
,
561 const char *initrd_filename
,
562 const char *cpu_model
)
567 MemoryRegion
*sysmem
= get_system_memory();
568 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
569 target_phys_addr_t rma_alloc_size
, rma_size
;
570 uint32_t initrd_base
= 0;
571 long kernel_size
= 0, initrd_size
= 0;
572 long load_limit
, rtas_limit
, fw_size
;
573 long pteg_shift
= 17;
576 spapr
= g_malloc0(sizeof(*spapr
));
577 QLIST_INIT(&spapr
->phbs
);
579 cpu_ppc_hypercall
= emulate_spapr_hypercall
;
581 /* Allocate RMA if necessary */
582 rma_alloc_size
= kvmppc_alloc_rma("ppc_spapr.rma", sysmem
);
584 if (rma_alloc_size
== -1) {
585 hw_error("qemu: Unable to create RMA\n");
588 if (rma_alloc_size
&& (rma_alloc_size
< ram_size
)) {
589 rma_size
= rma_alloc_size
;
594 /* We place the device tree and RTAS just below either the top of the RMA,
595 * or just below 2GB, whichever is lowere, so that it can be
596 * processed with 32-bit real mode code if necessary */
597 rtas_limit
= MIN(rma_size
, 0x80000000);
598 spapr
->rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
599 spapr
->fdt_addr
= spapr
->rtas_addr
- FDT_MAX_SIZE
;
600 load_limit
= spapr
->fdt_addr
- FW_OVERHEAD
;
603 if (cpu_model
== NULL
) {
604 cpu_model
= kvm_enabled() ? "host" : "POWER7";
606 for (i
= 0; i
< smp_cpus
; i
++) {
607 cpu
= cpu_ppc_init(cpu_model
);
609 fprintf(stderr
, "Unable to find PowerPC CPU definition\n");
614 /* Set time-base frequency to 512 MHz */
615 cpu_ppc_tb_init(env
, TIMEBASE_FREQ
);
616 qemu_register_reset(spapr_cpu_reset
, cpu
);
618 env
->hreset_vector
= 0x60;
619 env
->hreset_excp_prefix
= 0;
620 env
->gpr
[3] = env
->cpu_index
;
624 spapr
->ram_limit
= ram_size
;
625 if (spapr
->ram_limit
> rma_alloc_size
) {
626 ram_addr_t nonrma_base
= rma_alloc_size
;
627 ram_addr_t nonrma_size
= spapr
->ram_limit
- rma_alloc_size
;
629 memory_region_init_ram(ram
, "ppc_spapr.ram", nonrma_size
);
630 vmstate_register_ram_global(ram
);
631 memory_region_add_subregion(sysmem
, nonrma_base
, ram
);
634 /* allocate hash page table. For now we always make this 16mb,
635 * later we should probably make it scale to the size of guest
637 spapr
->htab_size
= 1ULL << (pteg_shift
+ 7);
638 spapr
->htab
= qemu_memalign(spapr
->htab_size
, spapr
->htab_size
);
640 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
641 env
->external_htab
= spapr
->htab
;
643 env
->htab_mask
= spapr
->htab_size
- 1;
645 /* Tell KVM that we're in PAPR mode */
646 env
->spr
[SPR_SDR1
] = (unsigned long)spapr
->htab
|
647 ((pteg_shift
+ 7) - 18);
648 env
->spr
[SPR_HIOR
] = 0;
651 kvmppc_set_papr(env
);
655 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
656 spapr
->rtas_size
= load_image_targphys(filename
, spapr
->rtas_addr
,
657 rtas_limit
- spapr
->rtas_addr
);
658 if (spapr
->rtas_size
< 0) {
659 hw_error("qemu: could not load LPAR rtas '%s'\n", filename
);
662 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
663 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
664 spapr
->rtas_size
, RTAS_MAX_SIZE
);
670 /* Set up Interrupt Controller */
671 spapr
->icp
= xics_system_init(XICS_IRQS
);
672 spapr
->next_irq
= 16;
675 spapr
->vio_bus
= spapr_vio_bus_init();
677 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
679 spapr_vty_create(spapr
->vio_bus
, serial_hds
[i
]);
684 spapr_create_phb(spapr
, "pci", SPAPR_PCI_BUID
,
685 SPAPR_PCI_MEM_WIN_ADDR
,
686 SPAPR_PCI_MEM_WIN_SIZE
,
687 SPAPR_PCI_IO_WIN_ADDR
);
689 for (i
= 0; i
< nb_nics
; i
++) {
690 NICInfo
*nd
= &nd_table
[i
];
693 nd
->model
= g_strdup("ibmveth");
696 if (strcmp(nd
->model
, "ibmveth") == 0) {
697 spapr_vlan_create(spapr
->vio_bus
, nd
);
699 pci_nic_init_nofail(&nd_table
[i
], nd
->model
, NULL
);
703 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
704 spapr_vscsi_create(spapr
->vio_bus
);
707 if (rma_size
< (MIN_RMA_SLOF
<< 20)) {
708 fprintf(stderr
, "qemu: pSeries SLOF firmware requires >= "
709 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF
);
713 fprintf(stderr
, "sPAPR memory map:\n");
714 fprintf(stderr
, "RTAS : 0x%08lx..%08lx\n",
715 (unsigned long)spapr
->rtas_addr
,
716 (unsigned long)(spapr
->rtas_addr
+ spapr
->rtas_size
- 1));
717 fprintf(stderr
, "FDT : 0x%08lx..%08lx\n",
718 (unsigned long)spapr
->fdt_addr
,
719 (unsigned long)(spapr
->fdt_addr
+ FDT_MAX_SIZE
- 1));
721 if (kernel_filename
) {
722 uint64_t lowaddr
= 0;
724 kernel_size
= load_elf(kernel_filename
, translate_kernel_address
, NULL
,
725 NULL
, &lowaddr
, NULL
, 1, ELF_MACHINE
, 0);
726 if (kernel_size
< 0) {
727 kernel_size
= load_image_targphys(kernel_filename
,
729 load_limit
- KERNEL_LOAD_ADDR
);
731 if (kernel_size
< 0) {
732 fprintf(stderr
, "qemu: could not load kernel '%s'\n",
736 fprintf(stderr
, "Kernel : 0x%08x..%08lx\n",
737 KERNEL_LOAD_ADDR
, KERNEL_LOAD_ADDR
+ kernel_size
- 1);
740 if (initrd_filename
) {
741 /* Try to locate the initrd in the gap between the kernel
742 * and the firmware. Add a bit of space just in case
744 initrd_base
= (KERNEL_LOAD_ADDR
+ kernel_size
+ 0x1ffff) & ~0xffff;
745 initrd_size
= load_image_targphys(initrd_filename
, initrd_base
,
746 load_limit
- initrd_base
);
747 if (initrd_size
< 0) {
748 fprintf(stderr
, "qemu: could not load initial ram disk '%s'\n",
752 fprintf(stderr
, "Ramdisk : 0x%08lx..%08lx\n",
753 (long)initrd_base
, (long)(initrd_base
+ initrd_size
- 1));
760 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, FW_FILE_NAME
);
761 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
763 hw_error("qemu: could not load LPAR rtas '%s'\n", filename
);
767 fprintf(stderr
, "Firmware load : 0x%08x..%08lx\n",
769 fprintf(stderr
, "Firmware runtime : 0x%08lx..%08lx\n",
770 load_limit
, (unsigned long)spapr
->fdt_addr
);
772 spapr
->entry_point
= 0x100;
774 /* SLOF will startup the secondary CPUs using RTAS */
775 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
779 /* Prepare the device tree */
780 spapr
->fdt_skel
= spapr_create_fdt_skel(cpu_model
, rma_size
,
781 initrd_base
, initrd_size
,
783 boot_device
, kernel_cmdline
,
785 assert(spapr
->fdt_skel
!= NULL
);
787 qemu_register_reset(spapr_reset
, spapr
);
790 static QEMUMachine spapr_machine
= {
792 .desc
= "pSeries Logical Partition (PAPR compliant)",
793 .init
= ppc_spapr_init
,
794 .max_cpus
= MAX_CPUS
,
799 static void spapr_machine_init(void)
801 qemu_register_machine(&spapr_machine
);
804 machine_init(spapr_machine_init
);