hw/arm: QOM'ify strongarm.c
[qemu/kevin.git] / target-arm / internals.h
blob54a0fb1db7ed1814375b18be7e7f545d56a3a6a3
1 /*
2 * QEMU ARM CPU -- internal functions and types
4 * Copyright (c) 2014 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target-arm/ but which are
22 * private to it and not required by the rest of QEMU.
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
28 /* register banks for CPU modes */
29 #define BANK_USRSYS 0
30 #define BANK_SVC 1
31 #define BANK_ABT 2
32 #define BANK_UND 3
33 #define BANK_IRQ 4
34 #define BANK_FIQ 5
35 #define BANK_HYP 6
36 #define BANK_MON 7
38 static inline bool excp_is_internal(int excp)
40 /* Return true if this exception number represents a QEMU-internal
41 * exception that will not be passed to the guest.
43 return excp == EXCP_INTERRUPT
44 || excp == EXCP_HLT
45 || excp == EXCP_DEBUG
46 || excp == EXCP_HALTED
47 || excp == EXCP_EXCEPTION_EXIT
48 || excp == EXCP_KERNEL_TRAP
49 || excp == EXCP_SEMIHOST
50 || excp == EXCP_STREX;
53 /* Exception names for debug logging; note that not all of these
54 * precisely correspond to architectural exceptions.
56 static const char * const excnames[] = {
57 [EXCP_UDEF] = "Undefined Instruction",
58 [EXCP_SWI] = "SVC",
59 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
60 [EXCP_DATA_ABORT] = "Data Abort",
61 [EXCP_IRQ] = "IRQ",
62 [EXCP_FIQ] = "FIQ",
63 [EXCP_BKPT] = "Breakpoint",
64 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
65 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
66 [EXCP_STREX] = "QEMU intercept of STREX",
67 [EXCP_HVC] = "Hypervisor Call",
68 [EXCP_HYP_TRAP] = "Hypervisor Trap",
69 [EXCP_SMC] = "Secure Monitor Call",
70 [EXCP_VIRQ] = "Virtual IRQ",
71 [EXCP_VFIQ] = "Virtual FIQ",
72 [EXCP_SEMIHOST] = "Semihosting call",
75 static inline void arm_log_exception(int idx)
77 if (qemu_loglevel_mask(CPU_LOG_INT)) {
78 const char *exc = NULL;
80 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
81 exc = excnames[idx];
83 if (!exc) {
84 exc = "unknown";
86 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
90 /* Scale factor for generic timers, ie number of ns per tick.
91 * This gives a 62.5MHz timer.
93 #define GTIMER_SCALE 16
96 * For AArch64, map a given EL to an index in the banked_spsr array.
97 * Note that this mapping and the AArch32 mapping defined in bank_number()
98 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
99 * mandated mapping between each other.
101 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
103 static const unsigned int map[4] = {
104 [1] = BANK_SVC, /* EL1. */
105 [2] = BANK_HYP, /* EL2. */
106 [3] = BANK_MON, /* EL3. */
108 assert(el >= 1 && el <= 3);
109 return map[el];
112 /* Map CPU modes onto saved register banks. */
113 static inline int bank_number(int mode)
115 switch (mode) {
116 case ARM_CPU_MODE_USR:
117 case ARM_CPU_MODE_SYS:
118 return BANK_USRSYS;
119 case ARM_CPU_MODE_SVC:
120 return BANK_SVC;
121 case ARM_CPU_MODE_ABT:
122 return BANK_ABT;
123 case ARM_CPU_MODE_UND:
124 return BANK_UND;
125 case ARM_CPU_MODE_IRQ:
126 return BANK_IRQ;
127 case ARM_CPU_MODE_FIQ:
128 return BANK_FIQ;
129 case ARM_CPU_MODE_HYP:
130 return BANK_HYP;
131 case ARM_CPU_MODE_MON:
132 return BANK_MON;
134 g_assert_not_reached();
137 void switch_mode(CPUARMState *, int);
138 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
139 void arm_translate_init(void);
141 enum arm_fprounding {
142 FPROUNDING_TIEEVEN,
143 FPROUNDING_POSINF,
144 FPROUNDING_NEGINF,
145 FPROUNDING_ZERO,
146 FPROUNDING_TIEAWAY,
147 FPROUNDING_ODD
150 int arm_rmode_to_sf(int rmode);
152 static inline void aarch64_save_sp(CPUARMState *env, int el)
154 if (env->pstate & PSTATE_SP) {
155 env->sp_el[el] = env->xregs[31];
156 } else {
157 env->sp_el[0] = env->xregs[31];
161 static inline void aarch64_restore_sp(CPUARMState *env, int el)
163 if (env->pstate & PSTATE_SP) {
164 env->xregs[31] = env->sp_el[el];
165 } else {
166 env->xregs[31] = env->sp_el[0];
170 static inline void update_spsel(CPUARMState *env, uint32_t imm)
172 unsigned int cur_el = arm_current_el(env);
173 /* Update PSTATE SPSel bit; this requires us to update the
174 * working stack pointer in xregs[31].
176 if (!((imm ^ env->pstate) & PSTATE_SP)) {
177 return;
179 aarch64_save_sp(env, cur_el);
180 env->pstate = deposit32(env->pstate, 0, 1, imm);
182 /* We rely on illegal updates to SPsel from EL0 to get trapped
183 * at translation time.
185 assert(cur_el >= 1 && cur_el <= 3);
186 aarch64_restore_sp(env, cur_el);
190 * arm_pamax
191 * @cpu: ARMCPU
193 * Returns the implementation defined bit-width of physical addresses.
194 * The ARMv8 reference manuals refer to this as PAMax().
196 static inline unsigned int arm_pamax(ARMCPU *cpu)
198 static const unsigned int pamax_map[] = {
199 [0] = 32,
200 [1] = 36,
201 [2] = 40,
202 [3] = 42,
203 [4] = 44,
204 [5] = 48,
206 unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
208 /* id_aa64mmfr0 is a read-only register so values outside of the
209 * supported mappings can be considered an implementation error. */
210 assert(parange < ARRAY_SIZE(pamax_map));
211 return pamax_map[parange];
214 /* Return true if extended addresses are enabled.
215 * This is always the case if our translation regime is 64 bit,
216 * but depends on TTBCR.EAE for 32 bit.
218 static inline bool extended_addresses_enabled(CPUARMState *env)
220 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
221 return arm_el_is_aa64(env, 1) ||
222 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
225 /* Valid Syndrome Register EC field values */
226 enum arm_exception_class {
227 EC_UNCATEGORIZED = 0x00,
228 EC_WFX_TRAP = 0x01,
229 EC_CP15RTTRAP = 0x03,
230 EC_CP15RRTTRAP = 0x04,
231 EC_CP14RTTRAP = 0x05,
232 EC_CP14DTTRAP = 0x06,
233 EC_ADVSIMDFPACCESSTRAP = 0x07,
234 EC_FPIDTRAP = 0x08,
235 EC_CP14RRTTRAP = 0x0c,
236 EC_ILLEGALSTATE = 0x0e,
237 EC_AA32_SVC = 0x11,
238 EC_AA32_HVC = 0x12,
239 EC_AA32_SMC = 0x13,
240 EC_AA64_SVC = 0x15,
241 EC_AA64_HVC = 0x16,
242 EC_AA64_SMC = 0x17,
243 EC_SYSTEMREGISTERTRAP = 0x18,
244 EC_INSNABORT = 0x20,
245 EC_INSNABORT_SAME_EL = 0x21,
246 EC_PCALIGNMENT = 0x22,
247 EC_DATAABORT = 0x24,
248 EC_DATAABORT_SAME_EL = 0x25,
249 EC_SPALIGNMENT = 0x26,
250 EC_AA32_FPTRAP = 0x28,
251 EC_AA64_FPTRAP = 0x2c,
252 EC_SERROR = 0x2f,
253 EC_BREAKPOINT = 0x30,
254 EC_BREAKPOINT_SAME_EL = 0x31,
255 EC_SOFTWARESTEP = 0x32,
256 EC_SOFTWARESTEP_SAME_EL = 0x33,
257 EC_WATCHPOINT = 0x34,
258 EC_WATCHPOINT_SAME_EL = 0x35,
259 EC_AA32_BKPT = 0x38,
260 EC_VECTORCATCH = 0x3a,
261 EC_AA64_BKPT = 0x3c,
264 #define ARM_EL_EC_SHIFT 26
265 #define ARM_EL_IL_SHIFT 25
266 #define ARM_EL_ISV_SHIFT 24
267 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
268 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
270 /* Utility functions for constructing various kinds of syndrome value.
271 * Note that in general we follow the AArch64 syndrome values; in a
272 * few cases the value in HSR for exceptions taken to AArch32 Hyp
273 * mode differs slightly, so if we ever implemented Hyp mode then the
274 * syndrome value would need some massaging on exception entry.
275 * (One example of this is that AArch64 defaults to IL bit set for
276 * exceptions which don't specifically indicate information about the
277 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
279 static inline uint32_t syn_uncategorized(void)
281 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
284 static inline uint32_t syn_aa64_svc(uint32_t imm16)
286 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
289 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
291 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
294 static inline uint32_t syn_aa64_smc(uint32_t imm16)
296 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
299 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
301 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
302 | (is_16bit ? 0 : ARM_EL_IL);
305 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
307 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
310 static inline uint32_t syn_aa32_smc(void)
312 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
315 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
317 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
320 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
322 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
323 | (is_16bit ? 0 : ARM_EL_IL);
326 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
327 int crn, int crm, int rt,
328 int isread)
330 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
331 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
332 | (crm << 1) | isread;
335 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
336 int crn, int crm, int rt, int isread,
337 bool is_16bit)
339 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
340 | (is_16bit ? 0 : ARM_EL_IL)
341 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
342 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
345 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
346 int crn, int crm, int rt, int isread,
347 bool is_16bit)
349 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
350 | (is_16bit ? 0 : ARM_EL_IL)
351 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
352 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
355 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
356 int rt, int rt2, int isread,
357 bool is_16bit)
359 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
360 | (is_16bit ? 0 : ARM_EL_IL)
361 | (cv << 24) | (cond << 20) | (opc1 << 16)
362 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
365 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
366 int rt, int rt2, int isread,
367 bool is_16bit)
369 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
370 | (is_16bit ? 0 : ARM_EL_IL)
371 | (cv << 24) | (cond << 20) | (opc1 << 16)
372 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
375 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
377 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
378 | (is_16bit ? 0 : ARM_EL_IL)
379 | (cv << 24) | (cond << 20);
382 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
384 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
385 | (ea << 9) | (s1ptw << 7) | fsc;
388 static inline uint32_t syn_data_abort_no_iss(int same_el,
389 int ea, int cm, int s1ptw,
390 int wnr, int fsc)
392 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
393 | ARM_EL_IL
394 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
397 static inline uint32_t syn_data_abort_with_iss(int same_el,
398 int sas, int sse, int srt,
399 int sf, int ar,
400 int ea, int cm, int s1ptw,
401 int wnr, int fsc,
402 bool is_16bit)
404 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
405 | (is_16bit ? 0 : ARM_EL_IL)
406 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
407 | (sf << 15) | (ar << 14)
408 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
411 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
413 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
414 | (isv << 24) | (ex << 6) | 0x22;
417 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
419 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
420 | (cm << 8) | (wnr << 6) | 0x22;
423 static inline uint32_t syn_breakpoint(int same_el)
425 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
426 | ARM_EL_IL | 0x22;
429 static inline uint32_t syn_wfx(int cv, int cond, int ti)
431 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
432 (cv << 24) | (cond << 20) | ti;
435 /* Update a QEMU watchpoint based on the information the guest has set in the
436 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
438 void hw_watchpoint_update(ARMCPU *cpu, int n);
439 /* Update the QEMU watchpoints for every guest watchpoint. This does a
440 * complete delete-and-reinstate of the QEMU watchpoint list and so is
441 * suitable for use after migration or on reset.
443 void hw_watchpoint_update_all(ARMCPU *cpu);
444 /* Update a QEMU breakpoint based on the information the guest has set in the
445 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
447 void hw_breakpoint_update(ARMCPU *cpu, int n);
448 /* Update the QEMU breakpoints for every guest breakpoint. This does a
449 * complete delete-and-reinstate of the QEMU breakpoint list and so is
450 * suitable for use after migration or on reset.
452 void hw_breakpoint_update_all(ARMCPU *cpu);
454 /* Callback function for checking if a watchpoint should trigger. */
455 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
457 /* Callback function for when a watchpoint or breakpoint triggers. */
458 void arm_debug_excp_handler(CPUState *cs);
460 #ifdef CONFIG_USER_ONLY
461 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
463 return false;
465 #else
466 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
467 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
468 /* Actually handle a PSCI call */
469 void arm_handle_psci_call(ARMCPU *cpu);
470 #endif
473 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
474 * @s2addr: Address that caused a fault at stage 2
475 * @stage2: True if we faulted at stage 2
476 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
478 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
479 struct ARMMMUFaultInfo {
480 target_ulong s2addr;
481 bool stage2;
482 bool s1ptw;
485 /* Do a page table walk and add page to TLB if possible */
486 bool arm_tlb_fill(CPUState *cpu, vaddr address, int rw, int mmu_idx,
487 uint32_t *fsr, ARMMMUFaultInfo *fi);
489 /* Return true if the stage 1 translation regime is using LPAE format page
490 * tables */
491 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
493 /* Raise a data fault alignment exception for the specified virtual address */
494 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, int is_write,
495 int is_user, uintptr_t retaddr);
497 #endif