4 * Copyright (c) 2008 OK Labs
5 * Copyright (c) 2011 NICTA Pty Ltd
6 * Originally written by Hans Jiang
7 * Updated by Peter Chubb
8 * Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
9 * Updated by Axel Heider
11 * This code is licensed under GPL version 2 or later. See
12 * the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include "hw/timer/imx_epit.h"
18 #include "migration/vmstate.h"
20 #include "hw/misc/imx_ccm.h"
21 #include "qemu/module.h"
24 #ifndef DEBUG_IMX_EPIT
25 #define DEBUG_IMX_EPIT 0
28 #define DPRINTF(fmt, args...) \
30 if (DEBUG_IMX_EPIT) { \
31 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_EPIT, \
36 static const char *imx_epit_reg_name(uint32_t reg
)
55 * Exact clock frequencies vary from board to board.
58 static const IMXClk imx_epit_clocks
[] = {
59 CLK_NONE
, /* 00 disabled */
60 CLK_IPG
, /* 01 ipg_clk, ~532MHz */
61 CLK_IPG_HIGH
, /* 10 ipg_clk_highfreq */
62 CLK_32k
, /* 11 ipg_clk_32k -- ~32kHz */
66 * Update interrupt status
68 static void imx_epit_update_int(IMXEPITState
*s
)
70 if ((s
->sr
& SR_OCIF
) && (s
->cr
& CR_OCIEN
) && (s
->cr
& CR_EN
)) {
71 qemu_irq_raise(s
->irq
);
73 qemu_irq_lower(s
->irq
);
77 static uint32_t imx_epit_get_freq(IMXEPITState
*s
)
79 uint32_t clksrc
= extract32(s
->cr
, CR_CLKSRC_SHIFT
, CR_CLKSRC_BITS
);
80 uint32_t prescaler
= 1 + extract32(s
->cr
, CR_PRESCALE_SHIFT
, CR_PRESCALE_BITS
);
81 uint32_t f_in
= imx_ccm_get_clock_frequency(s
->ccm
, imx_epit_clocks
[clksrc
]);
82 uint32_t freq
= f_in
/ prescaler
;
83 DPRINTF("ptimer frequency is %u\n", freq
);
88 * This is called both on hardware (device) reset and software reset.
90 static void imx_epit_reset(IMXEPITState
*s
, bool is_hard_reset
)
92 /* Soft reset doesn't touch some bits; hard reset clears them */
96 s
->cr
&= (CR_EN
|CR_ENMOD
|CR_STOPEN
|CR_DOZEN
|CR_WAITEN
|CR_DBGEN
);
99 s
->lr
= EPIT_TIMER_MAX
;
101 ptimer_transaction_begin(s
->timer_cmp
);
102 ptimer_transaction_begin(s
->timer_reload
);
105 * The reset switches off the input clock, so even if the CR.EN is still
106 * set, the timers are no longer running.
108 assert(imx_epit_get_freq(s
) == 0);
109 ptimer_stop(s
->timer_cmp
);
110 ptimer_stop(s
->timer_reload
);
111 /* init both timers to EPIT_TIMER_MAX */
112 ptimer_set_limit(s
->timer_cmp
, EPIT_TIMER_MAX
, 1);
113 ptimer_set_limit(s
->timer_reload
, EPIT_TIMER_MAX
, 1);
114 ptimer_transaction_commit(s
->timer_cmp
);
115 ptimer_transaction_commit(s
->timer_reload
);
118 static uint64_t imx_epit_read(void *opaque
, hwaddr offset
, unsigned size
)
120 IMXEPITState
*s
= IMX_EPIT(opaque
);
121 uint32_t reg_value
= 0;
123 switch (offset
>> 2) {
124 case 0: /* Control Register */
128 case 1: /* Status Register */
132 case 2: /* LR - ticks*/
141 reg_value
= ptimer_get_count(s
->timer_reload
);
145 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Bad register at offset 0x%"
146 HWADDR_PRIx
"\n", TYPE_IMX_EPIT
, __func__
, offset
);
150 DPRINTF("(%s) = 0x%08x\n", imx_epit_reg_name(offset
>> 2), reg_value
);
156 * Must be called from a ptimer_transaction_begin/commit block for
157 * s->timer_cmp, but outside of a transaction block of s->timer_reload,
158 * so the proper counter value is read.
160 static void imx_epit_update_compare_timer(IMXEPITState
*s
)
162 uint64_t counter
= 0;
163 bool is_oneshot
= false;
165 * The compare timer only has to run if the timer peripheral is active
166 * and there is an input clock, Otherwise it can be switched off.
168 bool is_active
= (s
->cr
& CR_EN
) && imx_epit_get_freq(s
);
171 * Calculate next timeout for compare timer. Reading the reload
172 * counter returns proper results only if pending transactions
173 * on it are committed here. Otherwise stale values are be read.
175 counter
= ptimer_get_count(s
->timer_reload
);
176 uint64_t limit
= ptimer_get_limit(s
->timer_cmp
);
178 * The compare timer is a periodic timer if the limit is at least
179 * the compare value. Otherwise it may fire at most once in the
182 is_oneshot
= (limit
< s
->cmp
);
183 if (counter
>= s
->cmp
) {
184 /* The compare timer fires in the current round. */
186 } else if (!is_oneshot
) {
188 * The compare timer fires after a reload, as it is below the
189 * compare value already in this round. Note that the counter
190 * value calculated below can be above the 32-bit limit, which
191 * is legal here because the compare timer is an internal
192 * helper ptimer only.
194 counter
+= limit
- s
->cmp
;
197 * The compare timer won't fire in this round, and the limit is
198 * set to a value below the compare value. This practically means
199 * it will never fire, so it can be switched off.
206 * Set the compare timer and let it run, or stop it. This is agnostic
207 * of CR.OCIEN bit, as this bit affects interrupt generation only. The
208 * compare timer needs to run even if no interrupts are to be generated,
209 * because the SR.OCIF bit must be updated also.
210 * Note that the timer might already be stopped or be running with
211 * counter values. However, finding out when an update is needed and
212 * when not is not trivial. It's much easier applying the setting again,
213 * as this does not harm either and the overhead is negligible.
216 ptimer_set_count(s
->timer_cmp
, counter
);
217 ptimer_run(s
->timer_cmp
, is_oneshot
? 1 : 0);
219 ptimer_stop(s
->timer_cmp
);
224 static void imx_epit_write_cr(IMXEPITState
*s
, uint32_t value
)
226 uint32_t oldcr
= s
->cr
;
228 s
->cr
= value
& 0x03ffffff;
230 if (s
->cr
& CR_SWR
) {
232 * Reset clears CR.SWR again. It does not touch CR.EN, but the timers
233 * are still stopped because the input clock is disabled.
235 imx_epit_reset(s
, false);
238 uint32_t toggled_cr_bits
= oldcr
^ s
->cr
;
239 /* re-initialize the limits if CR.RLD has changed */
240 bool set_limit
= toggled_cr_bits
& CR_RLD
;
241 /* set the counter if the timer got just enabled and CR.ENMOD is set */
242 bool is_switched_on
= (toggled_cr_bits
& s
->cr
) & CR_EN
;
243 bool set_counter
= is_switched_on
&& (s
->cr
& CR_ENMOD
);
245 ptimer_transaction_begin(s
->timer_cmp
);
246 ptimer_transaction_begin(s
->timer_reload
);
247 freq
= imx_epit_get_freq(s
);
249 ptimer_set_freq(s
->timer_reload
, freq
);
250 ptimer_set_freq(s
->timer_cmp
, freq
);
253 if (set_limit
|| set_counter
) {
254 uint64_t limit
= (s
->cr
& CR_RLD
) ? s
->lr
: EPIT_TIMER_MAX
;
255 ptimer_set_limit(s
->timer_reload
, limit
, set_counter
? 1 : 0);
257 ptimer_set_limit(s
->timer_cmp
, limit
, 0);
261 * If there is an input clock and the peripheral is enabled, then
262 * ensure the wall clock timer is ticking. Otherwise stop the timers.
263 * The compare timer will be updated later.
265 if (freq
&& (s
->cr
& CR_EN
)) {
266 ptimer_run(s
->timer_reload
, 0);
268 ptimer_stop(s
->timer_reload
);
270 /* Commit changes to reload timer, so they can propagate. */
271 ptimer_transaction_commit(s
->timer_reload
);
272 /* Update compare timer based on the committed reload timer value. */
273 imx_epit_update_compare_timer(s
);
274 ptimer_transaction_commit(s
->timer_cmp
);
278 * The interrupt state can change due to:
279 * - reset clears both SR.OCIF and CR.OCIE
280 * - write to CR.EN or CR.OCIE
282 imx_epit_update_int(s
);
285 static void imx_epit_write_sr(IMXEPITState
*s
, uint32_t value
)
287 /* writing 1 to SR.OCIF clears this bit and turns the interrupt off */
288 if (value
& SR_OCIF
) {
289 s
->sr
= 0; /* SR.OCIF is the only bit in this register anyway */
290 imx_epit_update_int(s
);
294 static void imx_epit_write_lr(IMXEPITState
*s
, uint32_t value
)
298 ptimer_transaction_begin(s
->timer_cmp
);
299 ptimer_transaction_begin(s
->timer_reload
);
300 if (s
->cr
& CR_RLD
) {
301 /* Also set the limit if the LRD bit is set */
302 /* If IOVW bit is set then set the timer value */
303 ptimer_set_limit(s
->timer_reload
, s
->lr
, s
->cr
& CR_IOVW
);
304 ptimer_set_limit(s
->timer_cmp
, s
->lr
, 0);
305 } else if (s
->cr
& CR_IOVW
) {
306 /* If IOVW bit is set then set the timer value */
307 ptimer_set_count(s
->timer_reload
, s
->lr
);
309 /* Commit the changes to s->timer_reload, so they can propagate. */
310 ptimer_transaction_commit(s
->timer_reload
);
311 /* Update the compare timer based on the committed reload timer value. */
312 imx_epit_update_compare_timer(s
);
313 ptimer_transaction_commit(s
->timer_cmp
);
316 static void imx_epit_write_cmp(IMXEPITState
*s
, uint32_t value
)
320 /* Update the compare timer based on the committed reload timer value. */
321 ptimer_transaction_begin(s
->timer_cmp
);
322 imx_epit_update_compare_timer(s
);
323 ptimer_transaction_commit(s
->timer_cmp
);
326 static void imx_epit_write(void *opaque
, hwaddr offset
, uint64_t value
,
329 IMXEPITState
*s
= IMX_EPIT(opaque
);
331 DPRINTF("(%s, value = 0x%08x)\n", imx_epit_reg_name(offset
>> 2),
334 switch (offset
>> 2) {
336 imx_epit_write_cr(s
, (uint32_t)value
);
340 imx_epit_write_sr(s
, (uint32_t)value
);
344 imx_epit_write_lr(s
, (uint32_t)value
);
348 imx_epit_write_cmp(s
, (uint32_t)value
);
352 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Bad register at offset 0x%"
353 HWADDR_PRIx
"\n", TYPE_IMX_EPIT
, __func__
, offset
);
358 static void imx_epit_cmp(void *opaque
)
360 IMXEPITState
*s
= IMX_EPIT(opaque
);
362 /* The cmp ptimer can't be running when the peripheral is disabled */
363 assert(s
->cr
& CR_EN
);
365 DPRINTF("sr was %d\n", s
->sr
);
366 /* Set interrupt status bit SR.OCIF and update the interrupt state */
368 imx_epit_update_int(s
);
371 static void imx_epit_reload(void *opaque
)
373 /* No action required on rollover of timer_reload */
376 static const MemoryRegionOps imx_epit_ops
= {
377 .read
= imx_epit_read
,
378 .write
= imx_epit_write
,
379 .endianness
= DEVICE_NATIVE_ENDIAN
,
382 static const VMStateDescription vmstate_imx_timer_epit
= {
383 .name
= TYPE_IMX_EPIT
,
385 .minimum_version_id
= 3,
386 .fields
= (const VMStateField
[]) {
387 VMSTATE_UINT32(cr
, IMXEPITState
),
388 VMSTATE_UINT32(sr
, IMXEPITState
),
389 VMSTATE_UINT32(lr
, IMXEPITState
),
390 VMSTATE_UINT32(cmp
, IMXEPITState
),
391 VMSTATE_PTIMER(timer_reload
, IMXEPITState
),
392 VMSTATE_PTIMER(timer_cmp
, IMXEPITState
),
393 VMSTATE_END_OF_LIST()
397 static void imx_epit_realize(DeviceState
*dev
, Error
**errp
)
399 IMXEPITState
*s
= IMX_EPIT(dev
);
400 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
404 sysbus_init_irq(sbd
, &s
->irq
);
405 memory_region_init_io(&s
->iomem
, OBJECT(s
), &imx_epit_ops
, s
, TYPE_IMX_EPIT
,
407 sysbus_init_mmio(sbd
, &s
->iomem
);
410 * The reload timer keeps running when the peripheral is enabled. It is a
411 * kind of wall clock that does not generate any interrupts. The callback
412 * needs to be provided, but it does nothing as the ptimer already supports
413 * all necessary reloading functionality.
415 s
->timer_reload
= ptimer_init(imx_epit_reload
, s
, PTIMER_POLICY_LEGACY
);
418 * The compare timer is running only when the peripheral configuration is
419 * in a state that will generate compare interrupts.
421 s
->timer_cmp
= ptimer_init(imx_epit_cmp
, s
, PTIMER_POLICY_LEGACY
);
424 static void imx_epit_dev_reset(DeviceState
*dev
)
426 IMXEPITState
*s
= IMX_EPIT(dev
);
427 imx_epit_reset(s
, true);
430 static void imx_epit_class_init(ObjectClass
*klass
, void *data
)
432 DeviceClass
*dc
= DEVICE_CLASS(klass
);
434 dc
->realize
= imx_epit_realize
;
435 dc
->reset
= imx_epit_dev_reset
;
436 dc
->vmsd
= &vmstate_imx_timer_epit
;
437 dc
->desc
= "i.MX periodic timer";
440 static const TypeInfo imx_epit_info
= {
441 .name
= TYPE_IMX_EPIT
,
442 .parent
= TYPE_SYS_BUS_DEVICE
,
443 .instance_size
= sizeof(IMXEPITState
),
444 .class_init
= imx_epit_class_init
,
447 static void imx_epit_register_types(void)
449 type_register_static(&imx_epit_info
);
452 type_init(imx_epit_register_types
)