Add VMState support for ptimers
[qemu/kevin.git] / hw / mips_malta.c
bloba70d79edb833f3e3cea7bf4202fdff9254744986
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "pci.h"
35 #include "qemu-char.h"
36 #include "sysemu.h"
37 #include "audio/audio.h"
38 #include "boards.h"
39 #include "qemu-log.h"
40 #include "mips-bios.h"
41 #include "ide.h"
43 //#define DEBUG_BOARD_INIT
45 #ifdef TARGET_MIPS64
46 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffULL)
47 #else
48 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffU)
49 #endif
51 #define ENVP_ADDR (int32_t)0x80002000
52 #define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))
54 #define ENVP_NB_ENTRIES 16
55 #define ENVP_ENTRY_SIZE 256
57 #define MAX_IDE_BUS 2
59 typedef struct {
60 uint32_t leds;
61 uint32_t brk;
62 uint32_t gpout;
63 uint32_t i2cin;
64 uint32_t i2coe;
65 uint32_t i2cout;
66 uint32_t i2csel;
67 CharDriverState *display;
68 char display_text[9];
69 SerialState *uart;
70 } MaltaFPGAState;
72 static PITState *pit;
74 static struct _loaderparams {
75 int ram_size;
76 const char *kernel_filename;
77 const char *kernel_cmdline;
78 const char *initrd_filename;
79 } loaderparams;
81 /* Malta FPGA */
82 static void malta_fpga_update_display(void *opaque)
84 char leds_text[9];
85 int i;
86 MaltaFPGAState *s = opaque;
88 for (i = 7 ; i >= 0 ; i--) {
89 if (s->leds & (1 << i))
90 leds_text[i] = '#';
91 else
92 leds_text[i] = ' ';
94 leds_text[8] = '\0';
96 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
97 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
101 * EEPROM 24C01 / 24C02 emulation.
103 * Emulation for serial EEPROMs:
104 * 24C01 - 1024 bit (128 x 8)
105 * 24C02 - 2048 bit (256 x 8)
107 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
110 //~ #define DEBUG
112 #if defined(DEBUG)
113 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
114 #else
115 # define logout(fmt, ...) ((void)0)
116 #endif
118 struct _eeprom24c0x_t {
119 uint8_t tick;
120 uint8_t address;
121 uint8_t command;
122 uint8_t ack;
123 uint8_t scl;
124 uint8_t sda;
125 uint8_t data;
126 //~ uint16_t size;
127 uint8_t contents[256];
130 typedef struct _eeprom24c0x_t eeprom24c0x_t;
132 static eeprom24c0x_t eeprom = {
133 contents: {
134 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
135 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
136 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
137 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
138 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
139 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
140 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
141 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
142 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
149 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
153 static uint8_t eeprom24c0x_read(void)
155 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
156 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
157 return eeprom.sda;
160 static void eeprom24c0x_write(int scl, int sda)
162 if (eeprom.scl && scl && (eeprom.sda != sda)) {
163 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
164 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
165 if (!sda) {
166 eeprom.tick = 1;
167 eeprom.command = 0;
169 } else if (eeprom.tick == 0 && !eeprom.ack) {
170 /* Waiting for start. */
171 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
172 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
173 } else if (!eeprom.scl && scl) {
174 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
175 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
176 if (eeprom.ack) {
177 logout("\ti2c ack bit = 0\n");
178 sda = 0;
179 eeprom.ack = 0;
180 } else if (eeprom.sda == sda) {
181 uint8_t bit = (sda != 0);
182 logout("\ti2c bit = %d\n", bit);
183 if (eeprom.tick < 9) {
184 eeprom.command <<= 1;
185 eeprom.command += bit;
186 eeprom.tick++;
187 if (eeprom.tick == 9) {
188 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
189 eeprom.ack = 1;
191 } else if (eeprom.tick < 17) {
192 if (eeprom.command & 1) {
193 sda = ((eeprom.data & 0x80) != 0);
195 eeprom.address <<= 1;
196 eeprom.address += bit;
197 eeprom.tick++;
198 eeprom.data <<= 1;
199 if (eeprom.tick == 17) {
200 eeprom.data = eeprom.contents[eeprom.address];
201 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
202 eeprom.ack = 1;
203 eeprom.tick = 0;
205 } else if (eeprom.tick >= 17) {
206 sda = 0;
208 } else {
209 logout("\tsda changed with raising scl\n");
211 } else {
212 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
214 eeprom.scl = scl;
215 eeprom.sda = sda;
218 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
220 MaltaFPGAState *s = opaque;
221 uint32_t val = 0;
222 uint32_t saddr;
224 saddr = (addr & 0xfffff);
226 switch (saddr) {
228 /* SWITCH Register */
229 case 0x00200:
230 val = 0x00000000; /* All switches closed */
231 break;
233 /* STATUS Register */
234 case 0x00208:
235 #ifdef TARGET_WORDS_BIGENDIAN
236 val = 0x00000012;
237 #else
238 val = 0x00000010;
239 #endif
240 break;
242 /* JMPRS Register */
243 case 0x00210:
244 val = 0x00;
245 break;
247 /* LEDBAR Register */
248 case 0x00408:
249 val = s->leds;
250 break;
252 /* BRKRES Register */
253 case 0x00508:
254 val = s->brk;
255 break;
257 /* UART Registers are handled directly by the serial device */
259 /* GPOUT Register */
260 case 0x00a00:
261 val = s->gpout;
262 break;
264 /* XXX: implement a real I2C controller */
266 /* GPINP Register */
267 case 0x00a08:
268 /* IN = OUT until a real I2C control is implemented */
269 if (s->i2csel)
270 val = s->i2cout;
271 else
272 val = 0x00;
273 break;
275 /* I2CINP Register */
276 case 0x00b00:
277 val = ((s->i2cin & ~1) | eeprom24c0x_read());
278 break;
280 /* I2COE Register */
281 case 0x00b08:
282 val = s->i2coe;
283 break;
285 /* I2COUT Register */
286 case 0x00b10:
287 val = s->i2cout;
288 break;
290 /* I2CSEL Register */
291 case 0x00b18:
292 val = s->i2csel;
293 break;
295 default:
296 #if 0
297 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
298 addr);
299 #endif
300 break;
302 return val;
305 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
306 uint32_t val)
308 MaltaFPGAState *s = opaque;
309 uint32_t saddr;
311 saddr = (addr & 0xfffff);
313 switch (saddr) {
315 /* SWITCH Register */
316 case 0x00200:
317 break;
319 /* JMPRS Register */
320 case 0x00210:
321 break;
323 /* LEDBAR Register */
324 /* XXX: implement a 8-LED array */
325 case 0x00408:
326 s->leds = val & 0xff;
327 break;
329 /* ASCIIWORD Register */
330 case 0x00410:
331 snprintf(s->display_text, 9, "%08X", val);
332 malta_fpga_update_display(s);
333 break;
335 /* ASCIIPOS0 to ASCIIPOS7 Registers */
336 case 0x00418:
337 case 0x00420:
338 case 0x00428:
339 case 0x00430:
340 case 0x00438:
341 case 0x00440:
342 case 0x00448:
343 case 0x00450:
344 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
345 malta_fpga_update_display(s);
346 break;
348 /* SOFTRES Register */
349 case 0x00500:
350 if (val == 0x42)
351 qemu_system_reset_request ();
352 break;
354 /* BRKRES Register */
355 case 0x00508:
356 s->brk = val & 0xff;
357 break;
359 /* UART Registers are handled directly by the serial device */
361 /* GPOUT Register */
362 case 0x00a00:
363 s->gpout = val & 0xff;
364 break;
366 /* I2COE Register */
367 case 0x00b08:
368 s->i2coe = val & 0x03;
369 break;
371 /* I2COUT Register */
372 case 0x00b10:
373 eeprom24c0x_write(val & 0x02, val & 0x01);
374 s->i2cout = val;
375 break;
377 /* I2CSEL Register */
378 case 0x00b18:
379 s->i2csel = val & 0x01;
380 break;
382 default:
383 #if 0
384 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
385 addr);
386 #endif
387 break;
391 static CPUReadMemoryFunc * const malta_fpga_read[] = {
392 malta_fpga_readl,
393 malta_fpga_readl,
394 malta_fpga_readl
397 static CPUWriteMemoryFunc * const malta_fpga_write[] = {
398 malta_fpga_writel,
399 malta_fpga_writel,
400 malta_fpga_writel
403 static void malta_fpga_reset(void *opaque)
405 MaltaFPGAState *s = opaque;
407 s->leds = 0x00;
408 s->brk = 0x0a;
409 s->gpout = 0x00;
410 s->i2cin = 0x3;
411 s->i2coe = 0x0;
412 s->i2cout = 0x3;
413 s->i2csel = 0x1;
415 s->display_text[8] = '\0';
416 snprintf(s->display_text, 9, " ");
419 static void malta_fpga_led_init(CharDriverState *chr)
421 qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
422 qemu_chr_printf(chr, "+--------+\r\n");
423 qemu_chr_printf(chr, "+ +\r\n");
424 qemu_chr_printf(chr, "+--------+\r\n");
425 qemu_chr_printf(chr, "\n");
426 qemu_chr_printf(chr, "Malta ASCII\r\n");
427 qemu_chr_printf(chr, "+--------+\r\n");
428 qemu_chr_printf(chr, "+ +\r\n");
429 qemu_chr_printf(chr, "+--------+\r\n");
432 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
434 MaltaFPGAState *s;
435 int malta;
437 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
439 malta = cpu_register_io_memory(malta_fpga_read,
440 malta_fpga_write, s);
442 cpu_register_physical_memory(base, 0x900, malta);
443 /* 0xa00 is less than a page, so will still get the right offsets. */
444 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
446 s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
448 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1);
450 malta_fpga_reset(s);
451 qemu_register_reset(malta_fpga_reset, s);
453 return s;
456 /* Audio support */
457 #ifdef HAS_AUDIO
458 static void audio_init (PCIBus *pci_bus)
460 struct soundhw *c;
461 int audio_enabled = 0;
463 for (c = soundhw; !audio_enabled && c->name; ++c) {
464 audio_enabled = c->enabled;
467 if (audio_enabled) {
468 for (c = soundhw; c->name; ++c) {
469 if (c->enabled) {
470 c->init.init_pci(pci_bus);
475 #endif
477 /* Network support */
478 static void network_init(void)
480 int i;
482 for(i = 0; i < nb_nics; i++) {
483 NICInfo *nd = &nd_table[i];
484 const char *default_devaddr = NULL;
486 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
487 /* The malta board has a PCNet card using PCI SLOT 11 */
488 default_devaddr = "0b";
490 pci_nic_init(nd, "pcnet", default_devaddr);
494 /* ROM and pseudo bootloader
496 The following code implements a very very simple bootloader. It first
497 loads the registers a0 to a3 to the values expected by the OS, and
498 then jump at the kernel address.
500 The bootloader should pass the locations of the kernel arguments and
501 environment variables tables. Those tables contain the 32-bit address
502 of NULL terminated strings. The environment variables table should be
503 terminated by a NULL address.
505 For a simpler implementation, the number of kernel arguments is fixed
506 to two (the name of the kernel and the command line), and the two
507 tables are actually the same one.
509 The registers a0 to a3 should contain the following values:
510 a0 - number of kernel arguments
511 a1 - 32-bit address of the kernel arguments table
512 a2 - 32-bit address of the environment variables table
513 a3 - RAM size in bytes
516 static void write_bootloader (CPUState *env, uint8_t *base,
517 int64_t kernel_entry)
519 uint32_t *p;
521 /* Small bootloader */
522 p = (uint32_t *)base;
523 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
524 stl_raw(p++, 0x00000000); /* nop */
526 /* YAMON service vector */
527 stl_raw(base + 0x500, 0xbfc00580); /* start: */
528 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
529 stl_raw(base + 0x520, 0xbfc00580); /* start: */
530 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
531 stl_raw(base + 0x534, 0xbfc00808); /* print: */
532 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
533 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
534 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
535 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
536 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
537 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
538 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
539 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
542 /* Second part of the bootloader */
543 p = (uint32_t *) (base + 0x580);
544 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
545 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
546 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
547 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
548 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
549 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
550 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
551 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
552 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
554 /* Load BAR registers as done by YAMON */
555 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
557 #ifdef TARGET_WORDS_BIGENDIAN
558 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
559 #else
560 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
561 #endif
562 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
564 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
566 #ifdef TARGET_WORDS_BIGENDIAN
567 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
568 #else
569 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
570 #endif
571 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
572 #ifdef TARGET_WORDS_BIGENDIAN
573 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
574 #else
575 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
576 #endif
577 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
579 #ifdef TARGET_WORDS_BIGENDIAN
580 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
581 #else
582 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
583 #endif
584 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
585 #ifdef TARGET_WORDS_BIGENDIAN
586 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
587 #else
588 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
589 #endif
590 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
592 #ifdef TARGET_WORDS_BIGENDIAN
593 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
594 #else
595 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
596 #endif
597 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
598 #ifdef TARGET_WORDS_BIGENDIAN
599 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
600 #else
601 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
602 #endif
603 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
605 /* Jump to kernel code */
606 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
607 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
608 stl_raw(p++, 0x03e00008); /* jr ra */
609 stl_raw(p++, 0x00000000); /* nop */
611 /* YAMON subroutines */
612 p = (uint32_t *) (base + 0x800);
613 stl_raw(p++, 0x03e00008); /* jr ra */
614 stl_raw(p++, 0x24020000); /* li v0,0 */
615 /* 808 YAMON print */
616 stl_raw(p++, 0x03e06821); /* move t5,ra */
617 stl_raw(p++, 0x00805821); /* move t3,a0 */
618 stl_raw(p++, 0x00a05021); /* move t2,a1 */
619 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
620 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
621 stl_raw(p++, 0x10800005); /* beqz a0,834 */
622 stl_raw(p++, 0x00000000); /* nop */
623 stl_raw(p++, 0x0ff0021c); /* jal 870 */
624 stl_raw(p++, 0x00000000); /* nop */
625 stl_raw(p++, 0x08000205); /* j 814 */
626 stl_raw(p++, 0x00000000); /* nop */
627 stl_raw(p++, 0x01a00008); /* jr t5 */
628 stl_raw(p++, 0x01602021); /* move a0,t3 */
629 /* 0x83c YAMON print_count */
630 stl_raw(p++, 0x03e06821); /* move t5,ra */
631 stl_raw(p++, 0x00805821); /* move t3,a0 */
632 stl_raw(p++, 0x00a05021); /* move t2,a1 */
633 stl_raw(p++, 0x00c06021); /* move t4,a2 */
634 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
635 stl_raw(p++, 0x0ff0021c); /* jal 870 */
636 stl_raw(p++, 0x00000000); /* nop */
637 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
638 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
639 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
640 stl_raw(p++, 0x00000000); /* nop */
641 stl_raw(p++, 0x01a00008); /* jr t5 */
642 stl_raw(p++, 0x01602021); /* move a0,t3 */
643 /* 0x870 */
644 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
645 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
646 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
647 stl_raw(p++, 0x00000000); /* nop */
648 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
649 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
650 stl_raw(p++, 0x00000000); /* nop */
651 stl_raw(p++, 0x03e00008); /* jr ra */
652 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
656 static void prom_set(int index, const char *string, ...)
658 char buf[ENVP_ENTRY_SIZE];
659 target_phys_addr_t p;
660 va_list ap;
661 int32_t table_addr;
663 if (index >= ENVP_NB_ENTRIES)
664 return;
666 p = ENVP_ADDR + VIRT_TO_PHYS_ADDEND + index * 4;
668 if (string == NULL) {
669 stl_phys(p, 0);
670 return;
673 table_addr = ENVP_ADDR + sizeof(int32_t) * ENVP_NB_ENTRIES
674 + index * ENVP_ENTRY_SIZE;
675 stl_phys(p, table_addr);
677 va_start(ap, string);
678 vsnprintf(buf, ENVP_ENTRY_SIZE, string, ap);
679 va_end(ap);
680 pstrcpy_targphys(table_addr + VIRT_TO_PHYS_ADDEND, ENVP_ENTRY_SIZE, buf);
683 /* Kernel */
684 static int64_t load_kernel (CPUState *env)
686 int64_t kernel_entry, kernel_low, kernel_high;
687 int index = 0;
688 long initrd_size;
689 ram_addr_t initrd_offset;
691 if (load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND,
692 (uint64_t *)&kernel_entry, (uint64_t *)&kernel_low,
693 (uint64_t *)&kernel_high) < 0) {
694 fprintf(stderr, "qemu: could not load kernel '%s'\n",
695 loaderparams.kernel_filename);
696 exit(1);
699 /* load initrd */
700 initrd_size = 0;
701 initrd_offset = 0;
702 if (loaderparams.initrd_filename) {
703 initrd_size = get_image_size (loaderparams.initrd_filename);
704 if (initrd_size > 0) {
705 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
706 if (initrd_offset + initrd_size > ram_size) {
707 fprintf(stderr,
708 "qemu: memory too small for initial ram disk '%s'\n",
709 loaderparams.initrd_filename);
710 exit(1);
712 initrd_size = load_image_targphys(loaderparams.initrd_filename,
713 initrd_offset,
714 ram_size - initrd_offset);
716 if (initrd_size == (target_ulong) -1) {
717 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
718 loaderparams.initrd_filename);
719 exit(1);
723 /* Store command line. */
724 prom_set(index++, loaderparams.kernel_filename);
725 if (initrd_size > 0)
726 prom_set(index++, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s",
727 PHYS_TO_VIRT(initrd_offset), initrd_size,
728 loaderparams.kernel_cmdline);
729 else
730 prom_set(index++, loaderparams.kernel_cmdline);
732 /* Setup minimum environment variables */
733 prom_set(index++, "memsize");
734 prom_set(index++, "%i", loaderparams.ram_size);
735 prom_set(index++, "modetty0");
736 prom_set(index++, "38400n8r");
737 prom_set(index++, NULL);
739 return kernel_entry;
742 static void main_cpu_reset(void *opaque)
744 CPUState *env = opaque;
745 cpu_reset(env);
747 /* The bootload does not need to be rewritten as it is located in a
748 read only location. The kernel location and the arguments table
749 location does not change. */
750 if (loaderparams.kernel_filename) {
751 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
752 load_kernel (env);
756 static
757 void mips_malta_init (ram_addr_t ram_size,
758 const char *boot_device,
759 const char *kernel_filename, const char *kernel_cmdline,
760 const char *initrd_filename, const char *cpu_model)
762 char *filename;
763 ram_addr_t ram_offset;
764 ram_addr_t bios_offset;
765 target_long bios_size;
766 int64_t kernel_entry;
767 PCIBus *pci_bus;
768 CPUState *env;
769 RTCState *rtc_state;
770 fdctrl_t *floppy_controller;
771 MaltaFPGAState *malta_fpga;
772 qemu_irq *i8259;
773 int piix4_devfn;
774 uint8_t *eeprom_buf;
775 i2c_bus *smbus;
776 int i;
777 DriveInfo *dinfo;
778 BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
779 BlockDriverState *fd[MAX_FD];
780 int fl_idx = 0;
781 int fl_sectors = 0;
783 /* init CPUs */
784 if (cpu_model == NULL) {
785 #ifdef TARGET_MIPS64
786 cpu_model = "20Kc";
787 #else
788 cpu_model = "24Kf";
789 #endif
791 env = cpu_init(cpu_model);
792 if (!env) {
793 fprintf(stderr, "Unable to find CPU definition\n");
794 exit(1);
796 qemu_register_reset(main_cpu_reset, env);
798 /* allocate RAM */
799 if (ram_size > (256 << 20)) {
800 fprintf(stderr,
801 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
802 ((unsigned int)ram_size / (1 << 20)));
803 exit(1);
805 ram_offset = qemu_ram_alloc(ram_size);
806 bios_offset = qemu_ram_alloc(BIOS_SIZE);
809 cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
811 /* Map the bios at two physical locations, as on the real board. */
812 cpu_register_physical_memory(0x1e000000LL,
813 BIOS_SIZE, bios_offset | IO_MEM_ROM);
814 cpu_register_physical_memory(0x1fc00000LL,
815 BIOS_SIZE, bios_offset | IO_MEM_ROM);
817 /* FPGA */
818 malta_fpga = malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
820 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
821 if (kernel_filename) {
822 /* Write a small bootloader to the flash location. */
823 loaderparams.ram_size = ram_size;
824 loaderparams.kernel_filename = kernel_filename;
825 loaderparams.kernel_cmdline = kernel_cmdline;
826 loaderparams.initrd_filename = initrd_filename;
827 kernel_entry = load_kernel(env);
828 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
829 write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
830 } else {
831 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
832 if (dinfo) {
833 /* Load firmware from flash. */
834 bios_size = 0x400000;
835 fl_sectors = bios_size >> 16;
836 #ifdef DEBUG_BOARD_INIT
837 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
838 "offset %08lx addr %08llx '%s' %x\n",
839 fl_idx, bios_size, bios_offset, 0x1e000000LL,
840 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
841 #endif
842 pflash_cfi01_register(0x1e000000LL, bios_offset,
843 dinfo->bdrv, 65536, fl_sectors,
844 4, 0x0000, 0x0000, 0x0000, 0x0000);
845 fl_idx++;
846 } else {
847 /* Load a BIOS image. */
848 if (bios_name == NULL)
849 bios_name = BIOS_FILENAME;
850 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
851 if (filename) {
852 bios_size = load_image_targphys(filename, 0x1fc00000LL,
853 BIOS_SIZE);
854 qemu_free(filename);
855 } else {
856 bios_size = -1;
858 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
859 fprintf(stderr,
860 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
861 bios_name);
862 exit(1);
865 /* In little endian mode the 32bit words in the bios are swapped,
866 a neat trick which allows bi-endian firmware. */
867 #ifndef TARGET_WORDS_BIGENDIAN
869 uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
870 uint32_t *end = addr + bios_size;
871 while (addr < end) {
872 bswap32s(addr);
875 #endif
878 /* Board ID = 0x420 (Malta Board with CoreLV)
879 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
880 map to the board ID. */
881 stl_phys(0x1fc00010LL, 0x00000420);
883 /* Init internal devices */
884 cpu_mips_irq_init_cpu(env);
885 cpu_mips_clock_init(env);
887 /* Interrupt controller */
888 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
889 i8259 = i8259_init(env->irq[2]);
891 /* Northbridge */
892 pci_bus = pci_gt64120_init(i8259);
894 /* Southbridge */
896 if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
897 fprintf(stderr, "qemu: too many IDE bus\n");
898 exit(1);
901 for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
902 dinfo = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
903 hd[i] = dinfo ? dinfo->bdrv : NULL;
906 piix4_devfn = piix4_init(pci_bus, 80);
907 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1, i8259);
908 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
909 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, i8259[9]);
910 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
911 for (i = 0; i < 8; i++) {
912 /* TODO: Populate SPD eeprom data. */
913 DeviceState *eeprom;
914 eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
915 qdev_prop_set_uint32(eeprom, "address", 0x50 + i);
916 qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
917 qdev_init(eeprom);
919 pit = pit_init(0x40, i8259[0]);
920 DMA_init(0);
922 /* Super I/O */
923 i8042_init(i8259[1], i8259[12], 0x60);
924 rtc_state = rtc_init(0x70, i8259[8], 2000);
925 serial_init(0x3f8, i8259[4], 115200, serial_hds[0]);
926 serial_init(0x2f8, i8259[3], 115200, serial_hds[1]);
927 if (parallel_hds[0])
928 parallel_init(0x378, i8259[7], parallel_hds[0]);
929 for(i = 0; i < MAX_FD; i++) {
930 dinfo = drive_get(IF_FLOPPY, 0, i);
931 fd[i] = dinfo ? dinfo->bdrv : NULL;
933 floppy_controller = fdctrl_init_isa(6, 2, 0x3f0, fd);
935 /* Sound card */
936 #ifdef HAS_AUDIO
937 audio_init(pci_bus);
938 #endif
940 /* Network card */
941 network_init();
943 /* Optional PCI video card */
944 if (cirrus_vga_enabled) {
945 pci_cirrus_vga_init(pci_bus);
946 } else if (vmsvga_enabled) {
947 pci_vmsvga_init(pci_bus);
948 } else if (std_vga_enabled) {
949 pci_vga_init(pci_bus, 0, 0);
953 static QEMUMachine mips_malta_machine = {
954 .name = "malta",
955 .desc = "MIPS Malta Core LV",
956 .init = mips_malta_init,
957 .is_default = 1,
960 static void mips_malta_machine_init(void)
962 qemu_register_machine(&mips_malta_machine);
965 machine_init(mips_malta_machine_init);