ivshmem: Implement shm=... with a memory backend
[qemu/kevin.git] / hw / ppc / spapr_pci.c
blob79baa7b17705d057c9c8cf4e206a8cbe20e19a5f
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/sysbus.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/msi.h"
30 #include "hw/pci/msix.h"
31 #include "hw/pci/pci_host.h"
32 #include "hw/ppc/spapr.h"
33 #include "hw/pci-host/spapr.h"
34 #include "exec/address-spaces.h"
35 #include <libfdt.h>
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qapi/qmp/qerror.h"
40 #include "hw/pci/pci_bridge.h"
41 #include "hw/pci/pci_bus.h"
42 #include "hw/ppc/spapr_drc.h"
43 #include "sysemu/device_tree.h"
45 #include "hw/vfio/vfio.h"
47 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
48 #define RTAS_QUERY_FN 0
49 #define RTAS_CHANGE_FN 1
50 #define RTAS_RESET_FN 2
51 #define RTAS_CHANGE_MSI_FN 3
52 #define RTAS_CHANGE_MSIX_FN 4
54 /* Interrupt types to return on RTAS_CHANGE_* */
55 #define RTAS_TYPE_MSI 1
56 #define RTAS_TYPE_MSIX 2
58 #define FDT_NAME_MAX 128
60 #define _FDT(exp) \
61 do { \
62 int ret = (exp); \
63 if (ret < 0) { \
64 return ret; \
65 } \
66 } while (0)
68 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
70 sPAPRPHBState *sphb;
72 QLIST_FOREACH(sphb, &spapr->phbs, list) {
73 if (sphb->buid != buid) {
74 continue;
76 return sphb;
79 return NULL;
82 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
83 uint32_t config_addr)
85 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
86 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
87 int bus_num = (config_addr >> 16) & 0xFF;
88 int devfn = (config_addr >> 8) & 0xFF;
90 if (!phb) {
91 return NULL;
94 return pci_find_device(phb->bus, bus_num, devfn);
97 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
99 /* This handles the encoding of extended config space addresses */
100 return ((arg >> 20) & 0xf00) | (arg & 0xff);
103 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
104 uint32_t addr, uint32_t size,
105 target_ulong rets)
107 PCIDevice *pci_dev;
108 uint32_t val;
110 if ((size != 1) && (size != 2) && (size != 4)) {
111 /* access must be 1, 2 or 4 bytes */
112 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
113 return;
116 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
117 addr = rtas_pci_cfgaddr(addr);
119 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
120 /* Access must be to a valid device, within bounds and
121 * naturally aligned */
122 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
123 return;
126 val = pci_host_config_read_common(pci_dev, addr,
127 pci_config_size(pci_dev), size);
129 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
130 rtas_st(rets, 1, val);
133 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
134 uint32_t token, uint32_t nargs,
135 target_ulong args,
136 uint32_t nret, target_ulong rets)
138 uint64_t buid;
139 uint32_t size, addr;
141 if ((nargs != 4) || (nret != 2)) {
142 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
143 return;
146 buid = rtas_ldq(args, 1);
147 size = rtas_ld(args, 3);
148 addr = rtas_ld(args, 0);
150 finish_read_pci_config(spapr, buid, addr, size, rets);
153 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
154 uint32_t token, uint32_t nargs,
155 target_ulong args,
156 uint32_t nret, target_ulong rets)
158 uint32_t size, addr;
160 if ((nargs != 2) || (nret != 2)) {
161 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
162 return;
165 size = rtas_ld(args, 1);
166 addr = rtas_ld(args, 0);
168 finish_read_pci_config(spapr, 0, addr, size, rets);
171 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
172 uint32_t addr, uint32_t size,
173 uint32_t val, target_ulong rets)
175 PCIDevice *pci_dev;
177 if ((size != 1) && (size != 2) && (size != 4)) {
178 /* access must be 1, 2 or 4 bytes */
179 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
180 return;
183 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
184 addr = rtas_pci_cfgaddr(addr);
186 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
187 /* Access must be to a valid device, within bounds and
188 * naturally aligned */
189 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
190 return;
193 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
194 val, size);
196 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
199 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
200 uint32_t token, uint32_t nargs,
201 target_ulong args,
202 uint32_t nret, target_ulong rets)
204 uint64_t buid;
205 uint32_t val, size, addr;
207 if ((nargs != 5) || (nret != 1)) {
208 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
209 return;
212 buid = rtas_ldq(args, 1);
213 val = rtas_ld(args, 4);
214 size = rtas_ld(args, 3);
215 addr = rtas_ld(args, 0);
217 finish_write_pci_config(spapr, buid, addr, size, val, rets);
220 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
221 uint32_t token, uint32_t nargs,
222 target_ulong args,
223 uint32_t nret, target_ulong rets)
225 uint32_t val, size, addr;
227 if ((nargs != 3) || (nret != 1)) {
228 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
229 return;
233 val = rtas_ld(args, 2);
234 size = rtas_ld(args, 1);
235 addr = rtas_ld(args, 0);
237 finish_write_pci_config(spapr, 0, addr, size, val, rets);
241 * Set MSI/MSIX message data.
242 * This is required for msi_notify()/msix_notify() which
243 * will write at the addresses via spapr_msi_write().
245 * If hwaddr == 0, all entries will have .data == first_irq i.e.
246 * table will be reset.
248 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
249 unsigned first_irq, unsigned req_num)
251 unsigned i;
252 MSIMessage msg = { .address = addr, .data = first_irq };
254 if (!msix) {
255 msi_set_message(pdev, msg);
256 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
257 return;
260 for (i = 0; i < req_num; ++i) {
261 msix_set_message(pdev, i, msg);
262 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
263 if (addr) {
264 ++msg.data;
269 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
270 uint32_t token, uint32_t nargs,
271 target_ulong args, uint32_t nret,
272 target_ulong rets)
274 uint32_t config_addr = rtas_ld(args, 0);
275 uint64_t buid = rtas_ldq(args, 1);
276 unsigned int func = rtas_ld(args, 3);
277 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
278 unsigned int seq_num = rtas_ld(args, 5);
279 unsigned int ret_intr_type;
280 unsigned int irq, max_irqs = 0;
281 sPAPRPHBState *phb = NULL;
282 PCIDevice *pdev = NULL;
283 spapr_pci_msi *msi;
284 int *config_addr_key;
285 Error *err = NULL;
287 switch (func) {
288 case RTAS_CHANGE_MSI_FN:
289 case RTAS_CHANGE_FN:
290 ret_intr_type = RTAS_TYPE_MSI;
291 break;
292 case RTAS_CHANGE_MSIX_FN:
293 ret_intr_type = RTAS_TYPE_MSIX;
294 break;
295 default:
296 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
297 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
298 return;
301 /* Fins sPAPRPHBState */
302 phb = spapr_pci_find_phb(spapr, buid);
303 if (phb) {
304 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
306 if (!phb || !pdev) {
307 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
308 return;
311 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
313 /* Releasing MSIs */
314 if (!req_num) {
315 if (!msi) {
316 trace_spapr_pci_msi("Releasing wrong config", config_addr);
317 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
318 return;
321 xics_free(spapr->icp, msi->first_irq, msi->num);
322 if (msi_present(pdev)) {
323 spapr_msi_setmsg(pdev, 0, false, 0, 0);
325 if (msix_present(pdev)) {
326 spapr_msi_setmsg(pdev, 0, true, 0, 0);
328 g_hash_table_remove(phb->msi, &config_addr);
330 trace_spapr_pci_msi("Released MSIs", config_addr);
331 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
332 rtas_st(rets, 1, 0);
333 return;
336 /* Enabling MSI */
338 /* Check if the device supports as many IRQs as requested */
339 if (ret_intr_type == RTAS_TYPE_MSI) {
340 max_irqs = msi_nr_vectors_allocated(pdev);
341 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
342 max_irqs = pdev->msix_entries_nr;
344 if (!max_irqs) {
345 error_report("Requested interrupt type %d is not enabled for device %x",
346 ret_intr_type, config_addr);
347 rtas_st(rets, 0, -1); /* Hardware error */
348 return;
350 /* Correct the number if the guest asked for too many */
351 if (req_num > max_irqs) {
352 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
353 req_num = max_irqs;
354 irq = 0; /* to avoid misleading trace */
355 goto out;
358 /* Allocate MSIs */
359 irq = xics_alloc_block(spapr->icp, 0, req_num, false,
360 ret_intr_type == RTAS_TYPE_MSI, &err);
361 if (err) {
362 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
363 config_addr);
364 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
365 return;
368 /* Release previous MSIs */
369 if (msi) {
370 xics_free(spapr->icp, msi->first_irq, msi->num);
371 g_hash_table_remove(phb->msi, &config_addr);
374 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
375 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
376 irq, req_num);
378 /* Add MSI device to cache */
379 msi = g_new(spapr_pci_msi, 1);
380 msi->first_irq = irq;
381 msi->num = req_num;
382 config_addr_key = g_new(int, 1);
383 *config_addr_key = config_addr;
384 g_hash_table_insert(phb->msi, config_addr_key, msi);
386 out:
387 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
388 rtas_st(rets, 1, req_num);
389 rtas_st(rets, 2, ++seq_num);
390 if (nret > 3) {
391 rtas_st(rets, 3, ret_intr_type);
394 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
397 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
398 sPAPRMachineState *spapr,
399 uint32_t token,
400 uint32_t nargs,
401 target_ulong args,
402 uint32_t nret,
403 target_ulong rets)
405 uint32_t config_addr = rtas_ld(args, 0);
406 uint64_t buid = rtas_ldq(args, 1);
407 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
408 sPAPRPHBState *phb = NULL;
409 PCIDevice *pdev = NULL;
410 spapr_pci_msi *msi;
412 /* Find sPAPRPHBState */
413 phb = spapr_pci_find_phb(spapr, buid);
414 if (phb) {
415 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
417 if (!phb || !pdev) {
418 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
419 return;
422 /* Find device descriptor and start IRQ */
423 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
424 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
425 trace_spapr_pci_msi("Failed to return vector", config_addr);
426 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
427 return;
429 intr_src_num = msi->first_irq + ioa_intr_num;
430 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
431 intr_src_num);
433 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
434 rtas_st(rets, 1, intr_src_num);
435 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
438 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
439 sPAPRMachineState *spapr,
440 uint32_t token, uint32_t nargs,
441 target_ulong args, uint32_t nret,
442 target_ulong rets)
444 sPAPRPHBState *sphb;
445 uint32_t addr, option;
446 uint64_t buid;
447 int ret;
449 if ((nargs != 4) || (nret != 1)) {
450 goto param_error_exit;
453 buid = rtas_ldq(args, 1);
454 addr = rtas_ld(args, 0);
455 option = rtas_ld(args, 3);
457 sphb = spapr_pci_find_phb(spapr, buid);
458 if (!sphb) {
459 goto param_error_exit;
462 if (!spapr_phb_eeh_available(sphb)) {
463 goto param_error_exit;
466 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
467 rtas_st(rets, 0, ret);
468 return;
470 param_error_exit:
471 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
474 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
475 sPAPRMachineState *spapr,
476 uint32_t token, uint32_t nargs,
477 target_ulong args, uint32_t nret,
478 target_ulong rets)
480 sPAPRPHBState *sphb;
481 PCIDevice *pdev;
482 uint32_t addr, option;
483 uint64_t buid;
485 if ((nargs != 4) || (nret != 2)) {
486 goto param_error_exit;
489 buid = rtas_ldq(args, 1);
490 sphb = spapr_pci_find_phb(spapr, buid);
491 if (!sphb) {
492 goto param_error_exit;
495 if (!spapr_phb_eeh_available(sphb)) {
496 goto param_error_exit;
500 * We always have PE address of form "00BB0001". "BB"
501 * represents the bus number of PE's primary bus.
503 option = rtas_ld(args, 3);
504 switch (option) {
505 case RTAS_GET_PE_ADDR:
506 addr = rtas_ld(args, 0);
507 pdev = spapr_pci_find_dev(spapr, buid, addr);
508 if (!pdev) {
509 goto param_error_exit;
512 rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
513 break;
514 case RTAS_GET_PE_MODE:
515 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
516 break;
517 default:
518 goto param_error_exit;
521 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
522 return;
524 param_error_exit:
525 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
528 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
529 sPAPRMachineState *spapr,
530 uint32_t token, uint32_t nargs,
531 target_ulong args, uint32_t nret,
532 target_ulong rets)
534 sPAPRPHBState *sphb;
535 uint64_t buid;
536 int state, ret;
538 if ((nargs != 3) || (nret != 4 && nret != 5)) {
539 goto param_error_exit;
542 buid = rtas_ldq(args, 1);
543 sphb = spapr_pci_find_phb(spapr, buid);
544 if (!sphb) {
545 goto param_error_exit;
548 if (!spapr_phb_eeh_available(sphb)) {
549 goto param_error_exit;
552 ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
553 rtas_st(rets, 0, ret);
554 if (ret != RTAS_OUT_SUCCESS) {
555 return;
558 rtas_st(rets, 1, state);
559 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
560 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
561 if (nret >= 5) {
562 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
564 return;
566 param_error_exit:
567 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
570 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
571 sPAPRMachineState *spapr,
572 uint32_t token, uint32_t nargs,
573 target_ulong args, uint32_t nret,
574 target_ulong rets)
576 sPAPRPHBState *sphb;
577 uint32_t option;
578 uint64_t buid;
579 int ret;
581 if ((nargs != 4) || (nret != 1)) {
582 goto param_error_exit;
585 buid = rtas_ldq(args, 1);
586 option = rtas_ld(args, 3);
587 sphb = spapr_pci_find_phb(spapr, buid);
588 if (!sphb) {
589 goto param_error_exit;
592 if (!spapr_phb_eeh_available(sphb)) {
593 goto param_error_exit;
596 ret = spapr_phb_vfio_eeh_reset(sphb, option);
597 rtas_st(rets, 0, ret);
598 return;
600 param_error_exit:
601 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
604 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
605 sPAPRMachineState *spapr,
606 uint32_t token, uint32_t nargs,
607 target_ulong args, uint32_t nret,
608 target_ulong rets)
610 sPAPRPHBState *sphb;
611 uint64_t buid;
612 int ret;
614 if ((nargs != 3) || (nret != 1)) {
615 goto param_error_exit;
618 buid = rtas_ldq(args, 1);
619 sphb = spapr_pci_find_phb(spapr, buid);
620 if (!sphb) {
621 goto param_error_exit;
624 if (!spapr_phb_eeh_available(sphb)) {
625 goto param_error_exit;
628 ret = spapr_phb_vfio_eeh_configure(sphb);
629 rtas_st(rets, 0, ret);
630 return;
632 param_error_exit:
633 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
636 /* To support it later */
637 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
638 sPAPRMachineState *spapr,
639 uint32_t token, uint32_t nargs,
640 target_ulong args, uint32_t nret,
641 target_ulong rets)
643 sPAPRPHBState *sphb;
644 int option;
645 uint64_t buid;
647 if ((nargs != 8) || (nret != 1)) {
648 goto param_error_exit;
651 buid = rtas_ldq(args, 1);
652 sphb = spapr_pci_find_phb(spapr, buid);
653 if (!sphb) {
654 goto param_error_exit;
657 if (!spapr_phb_eeh_available(sphb)) {
658 goto param_error_exit;
661 option = rtas_ld(args, 7);
662 switch (option) {
663 case RTAS_SLOT_TEMP_ERR_LOG:
664 case RTAS_SLOT_PERM_ERR_LOG:
665 break;
666 default:
667 goto param_error_exit;
670 /* We don't have error log yet */
671 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
672 return;
674 param_error_exit:
675 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
678 static int pci_spapr_swizzle(int slot, int pin)
680 return (slot + pin) % PCI_NUM_PINS;
683 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
686 * Here we need to convert pci_dev + irq_num to some unique value
687 * which is less than number of IRQs on the specific bus (4). We
688 * use standard PCI swizzling, that is (slot number + pin number)
689 * % 4.
691 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
694 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
697 * Here we use the number returned by pci_spapr_map_irq to find a
698 * corresponding qemu_irq.
700 sPAPRPHBState *phb = opaque;
702 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
703 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
706 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
708 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
709 PCIINTxRoute route;
711 route.mode = PCI_INTX_ENABLED;
712 route.irq = sphb->lsi_table[pin].irq;
714 return route;
718 * MSI/MSIX memory region implementation.
719 * The handler handles both MSI and MSIX.
720 * For MSI-X, the vector number is encoded as a part of the address,
721 * data is set to 0.
722 * For MSI, the vector number is encoded in least bits in data.
724 static void spapr_msi_write(void *opaque, hwaddr addr,
725 uint64_t data, unsigned size)
727 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
728 uint32_t irq = data;
730 trace_spapr_pci_msi_write(addr, data, irq);
732 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
735 static const MemoryRegionOps spapr_msi_ops = {
736 /* There is no .read as the read result is undefined by PCI spec */
737 .read = NULL,
738 .write = spapr_msi_write,
739 .endianness = DEVICE_LITTLE_ENDIAN
743 * PHB PCI device
745 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
747 sPAPRPHBState *phb = opaque;
749 return &phb->iommu_as;
752 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
754 char *path = NULL, *buf = NULL, *host = NULL;
756 /* Get the PCI VFIO host id */
757 host = object_property_get_str(OBJECT(pdev), "host", NULL);
758 if (!host) {
759 goto err_out;
762 /* Construct the path of the file that will give us the DT location */
763 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
764 g_free(host);
765 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
766 goto err_out;
768 g_free(path);
770 /* Construct and read from host device tree the loc-code */
771 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
772 g_free(buf);
773 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
774 goto err_out;
776 return buf;
778 err_out:
779 g_free(path);
780 return NULL;
783 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
785 char *buf;
786 const char *devtype = "qemu";
787 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
789 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
790 buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
791 if (buf) {
792 return buf;
794 devtype = "vfio";
797 * For emulated devices and VFIO-failure case, make up
798 * the loc-code.
800 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
801 devtype, pdev->name, sphb->index, busnr,
802 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
803 return buf;
806 /* Macros to operate with address in OF binding to PCI */
807 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
808 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
809 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
810 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
811 #define b_ss(x) b_x((x), 24, 2) /* the space code */
812 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
813 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
814 #define b_fff(x) b_x((x), 8, 3) /* function number */
815 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
817 /* for 'reg'/'assigned-addresses' OF properties */
818 #define RESOURCE_CELLS_SIZE 2
819 #define RESOURCE_CELLS_ADDRESS 3
821 typedef struct ResourceFields {
822 uint32_t phys_hi;
823 uint32_t phys_mid;
824 uint32_t phys_lo;
825 uint32_t size_hi;
826 uint32_t size_lo;
827 } QEMU_PACKED ResourceFields;
829 typedef struct ResourceProps {
830 ResourceFields reg[8];
831 ResourceFields assigned[7];
832 uint32_t reg_len;
833 uint32_t assigned_len;
834 } ResourceProps;
836 /* fill in the 'reg'/'assigned-resources' OF properties for
837 * a PCI device. 'reg' describes resource requirements for a
838 * device's IO/MEM regions, 'assigned-addresses' describes the
839 * actual resource assignments.
841 * the properties are arrays of ('phys-addr', 'size') pairs describing
842 * the addressable regions of the PCI device, where 'phys-addr' is a
843 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
844 * (phys.hi, phys.mid, phys.lo), and 'size' is a
845 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
847 * phys.hi = 0xYYXXXXZZ, where:
848 * 0xYY = npt000ss
849 * ||| |
850 * ||| +-- space code
851 * ||| |
852 * ||| + 00 if configuration space
853 * ||| + 01 if IO region,
854 * ||| + 10 if 32-bit MEM region
855 * ||| + 11 if 64-bit MEM region
856 * |||
857 * ||+------ for non-relocatable IO: 1 if aliased
858 * || for relocatable IO: 1 if below 64KB
859 * || for MEM: 1 if below 1MB
860 * |+------- 1 if region is prefetchable
861 * +-------- 1 if region is non-relocatable
862 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
863 * bits respectively
864 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
865 * to the region
867 * phys.mid and phys.lo correspond respectively to the hi/lo portions
868 * of the actual address of the region.
870 * how the phys-addr/size values are used differ slightly between
871 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
872 * an additional description for the config space region of the
873 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
874 * to describe the region as relocatable, with an address-mapping
875 * that corresponds directly to the PHB's address space for the
876 * resource. 'assigned-addresses' always has n=1 set with an absolute
877 * address assigned for the resource. in general, 'assigned-addresses'
878 * won't be populated, since addresses for PCI devices are generally
879 * unmapped initially and left to the guest to assign.
881 * note also that addresses defined in these properties are, at least
882 * for PAPR guests, relative to the PHBs IO/MEM windows, and
883 * correspond directly to the addresses in the BARs.
885 * in accordance with PCI Bus Binding to Open Firmware,
886 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
887 * Appendix C.
889 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
891 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
892 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
893 b_ddddd(PCI_SLOT(d->devfn)) |
894 b_fff(PCI_FUNC(d->devfn)));
895 ResourceFields *reg, *assigned;
896 int i, reg_idx = 0, assigned_idx = 0;
898 /* config space region */
899 reg = &rp->reg[reg_idx++];
900 reg->phys_hi = cpu_to_be32(dev_id);
901 reg->phys_mid = 0;
902 reg->phys_lo = 0;
903 reg->size_hi = 0;
904 reg->size_lo = 0;
906 for (i = 0; i < PCI_NUM_REGIONS; i++) {
907 if (!d->io_regions[i].size) {
908 continue;
911 reg = &rp->reg[reg_idx++];
913 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
914 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
915 reg->phys_hi |= cpu_to_be32(b_ss(1));
916 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
917 reg->phys_hi |= cpu_to_be32(b_ss(3));
918 } else {
919 reg->phys_hi |= cpu_to_be32(b_ss(2));
921 reg->phys_mid = 0;
922 reg->phys_lo = 0;
923 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
924 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
926 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
927 continue;
930 assigned = &rp->assigned[assigned_idx++];
931 assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
932 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
933 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
934 assigned->size_hi = reg->size_hi;
935 assigned->size_lo = reg->size_lo;
938 rp->reg_len = reg_idx * sizeof(ResourceFields);
939 rp->assigned_len = assigned_idx * sizeof(ResourceFields);
942 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
943 PCIDevice *pdev);
945 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
946 sPAPRPHBState *sphb)
948 ResourceProps rp;
949 bool is_bridge = false;
950 int pci_status, err;
951 char *buf = NULL;
952 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
953 uint32_t max_msi, max_msix;
955 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
956 PCI_HEADER_TYPE_BRIDGE) {
957 is_bridge = true;
960 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
961 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
962 pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
963 _FDT(fdt_setprop_cell(fdt, offset, "device-id",
964 pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
965 _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
966 pci_default_read_config(dev, PCI_REVISION_ID, 1)));
967 _FDT(fdt_setprop_cell(fdt, offset, "class-code",
968 pci_default_read_config(dev, PCI_CLASS_PROG, 3)));
969 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
970 _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
971 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
974 if (!is_bridge) {
975 _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
976 pci_default_read_config(dev, PCI_MIN_GNT, 1)));
977 _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
978 pci_default_read_config(dev, PCI_MAX_LAT, 1)));
981 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
982 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
983 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
986 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
987 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
988 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
991 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
992 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
994 /* the following fdt cells are masked off the pci status register */
995 pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
996 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
997 PCI_STATUS_DEVSEL_MASK & pci_status));
999 if (pci_status & PCI_STATUS_FAST_BACK) {
1000 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1002 if (pci_status & PCI_STATUS_66MHZ) {
1003 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1005 if (pci_status & PCI_STATUS_UDF) {
1006 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1009 /* NOTE: this is normally generated by firmware via path/unit name,
1010 * but in our case we must set it manually since it does not get
1011 * processed by OF beforehand
1013 _FDT(fdt_setprop_string(fdt, offset, "name", "pci"));
1014 buf = spapr_phb_get_loc_code(sphb, dev);
1015 if (!buf) {
1016 error_report("Failed setting the ibm,loc-code");
1017 return -1;
1020 err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf);
1021 g_free(buf);
1022 if (err < 0) {
1023 return err;
1026 if (drc_index) {
1027 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1030 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1031 RESOURCE_CELLS_ADDRESS));
1032 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1033 RESOURCE_CELLS_SIZE));
1035 max_msi = msi_nr_vectors_allocated(dev);
1036 if (max_msi) {
1037 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1039 max_msix = dev->msix_entries_nr;
1040 if (max_msix) {
1041 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1044 populate_resource_props(dev, &rp);
1045 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1046 _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1047 (uint8_t *)rp.assigned, rp.assigned_len));
1049 return 0;
1052 /* create OF node for pci device and required OF DT properties */
1053 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1054 void *fdt, int node_offset)
1056 int offset, ret;
1057 int slot = PCI_SLOT(dev->devfn);
1058 int func = PCI_FUNC(dev->devfn);
1059 char nodename[FDT_NAME_MAX];
1061 if (func != 0) {
1062 snprintf(nodename, FDT_NAME_MAX, "pci@%x,%x", slot, func);
1063 } else {
1064 snprintf(nodename, FDT_NAME_MAX, "pci@%x", slot);
1066 offset = fdt_add_subnode(fdt, node_offset, nodename);
1067 ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1069 g_assert(!ret);
1070 if (ret) {
1071 return 0;
1073 return offset;
1076 static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
1077 sPAPRPHBState *phb,
1078 PCIDevice *pdev,
1079 Error **errp)
1081 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1082 DeviceState *dev = DEVICE(pdev);
1083 void *fdt = NULL;
1084 int fdt_start_offset = 0, fdt_size;
1086 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
1087 sPAPRTCETable *tcet = spapr_tce_find_by_liobn(phb->dma_liobn);
1089 spapr_tce_set_need_vfio(tcet, true);
1092 if (dev->hotplugged) {
1093 fdt = create_device_tree(&fdt_size);
1094 fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1095 if (!fdt_start_offset) {
1096 error_setg(errp, "Failed to create pci child device tree node");
1097 goto out;
1101 drck->attach(drc, DEVICE(pdev),
1102 fdt, fdt_start_offset, !dev->hotplugged, errp);
1103 out:
1104 if (*errp) {
1105 g_free(fdt);
1109 static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
1111 /* some version guests do not wait for completion of a device
1112 * cleanup (generally done asynchronously by the kernel) before
1113 * signaling to QEMU that the device is safe, but instead sleep
1114 * for some 'safe' period of time. unfortunately on a busy host
1115 * this sleep isn't guaranteed to be long enough, resulting in
1116 * bad things like IRQ lines being left asserted during final
1117 * device removal. to deal with this we call reset just prior
1118 * to finalizing the device, which will put the device back into
1119 * an 'idle' state, as the device cleanup code expects.
1121 pci_device_reset(PCI_DEVICE(dev));
1122 object_unparent(OBJECT(dev));
1125 static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
1126 sPAPRPHBState *phb,
1127 PCIDevice *pdev,
1128 Error **errp)
1130 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1132 drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
1135 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1136 uint32_t busnr,
1137 int32_t devfn)
1139 return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
1140 (phb->index << 16) |
1141 (busnr << 8) |
1142 devfn);
1145 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1146 PCIDevice *pdev)
1148 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1149 return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1152 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1153 PCIDevice *pdev)
1155 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1156 sPAPRDRConnectorClass *drck;
1158 if (!drc) {
1159 return 0;
1162 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1163 return drck->get_index(drc);
1166 static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
1167 DeviceState *plugged_dev, Error **errp)
1169 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1170 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1171 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1172 Error *local_err = NULL;
1173 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1174 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1176 /* if DR is disabled we don't need to do anything in the case of
1177 * hotplug or coldplug callbacks
1179 if (!phb->dr_enabled) {
1180 /* if this is a hotplug operation initiated by the user
1181 * we need to let them know it's not enabled
1183 if (plugged_dev->hotplugged) {
1184 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1185 object_get_typename(OBJECT(phb)));
1187 return;
1190 g_assert(drc);
1192 /* Following the QEMU convention used for PCIe multifunction
1193 * hotplug, we do not allow functions to be hotplugged to a
1194 * slot that already has function 0 present
1196 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1197 PCI_FUNC(pdev->devfn) != 0) {
1198 error_setg(errp, "PCI: slot %d function 0 already ocuppied by %s,"
1199 " additional functions can no longer be exposed to guest.",
1200 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1201 return;
1204 spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
1205 if (local_err) {
1206 error_propagate(errp, local_err);
1207 return;
1210 /* If this is function 0, signal hotplug for all the device functions.
1211 * Otherwise defer sending the hotplug event.
1213 if (plugged_dev->hotplugged && PCI_FUNC(pdev->devfn) == 0) {
1214 int i;
1216 for (i = 0; i < 8; i++) {
1217 sPAPRDRConnector *func_drc;
1218 sPAPRDRConnectorClass *func_drck;
1219 sPAPRDREntitySense state;
1221 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1222 PCI_DEVFN(slotnr, i));
1223 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1224 func_drck->entity_sense(func_drc, &state);
1226 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1227 spapr_hotplug_req_add_by_index(func_drc);
1233 static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
1234 DeviceState *plugged_dev, Error **errp)
1236 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1237 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1238 sPAPRDRConnectorClass *drck;
1239 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1240 Error *local_err = NULL;
1242 if (!phb->dr_enabled) {
1243 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1244 object_get_typename(OBJECT(phb)));
1245 return;
1248 g_assert(drc);
1250 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1251 if (!drck->release_pending(drc)) {
1252 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1253 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1254 sPAPRDRConnector *func_drc;
1255 sPAPRDRConnectorClass *func_drck;
1256 sPAPRDREntitySense state;
1257 int i;
1259 /* ensure any other present functions are pending unplug */
1260 if (PCI_FUNC(pdev->devfn) == 0) {
1261 for (i = 1; i < 8; i++) {
1262 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1263 PCI_DEVFN(slotnr, i));
1264 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1265 func_drck->entity_sense(func_drc, &state);
1266 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1267 && !func_drck->release_pending(func_drc)) {
1268 error_setg(errp,
1269 "PCI: slot %d, function %d still present. "
1270 "Must unplug all non-0 functions first.",
1271 slotnr, i);
1272 return;
1277 spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
1278 if (local_err) {
1279 error_propagate(errp, local_err);
1280 return;
1283 /* if this isn't func 0, defer unplug event. otherwise signal removal
1284 * for all present functions
1286 if (PCI_FUNC(pdev->devfn) == 0) {
1287 for (i = 7; i >= 0; i--) {
1288 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1289 PCI_DEVFN(slotnr, i));
1290 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1291 func_drck->entity_sense(func_drc, &state);
1292 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1293 spapr_hotplug_req_remove_by_index(func_drc);
1300 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1302 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1303 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1304 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1305 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1306 char *namebuf;
1307 int i;
1308 PCIBus *bus;
1309 uint64_t msi_window_size = 4096;
1310 sPAPRTCETable *tcet;
1311 uint32_t nb_table;
1313 if (sphb->index != (uint32_t)-1) {
1314 hwaddr windows_base;
1316 if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn != (uint32_t)-1)
1317 || (sphb->mem_win_addr != (hwaddr)-1)
1318 || (sphb->io_win_addr != (hwaddr)-1)) {
1319 error_setg(errp, "Either \"index\" or other parameters must"
1320 " be specified for PAPR PHB, not both");
1321 return;
1324 if (sphb->index > SPAPR_PCI_MAX_INDEX) {
1325 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
1326 SPAPR_PCI_MAX_INDEX);
1327 return;
1330 sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
1331 sphb->dma_liobn = SPAPR_PCI_LIOBN(sphb->index, 0);
1333 windows_base = SPAPR_PCI_WINDOW_BASE
1334 + sphb->index * SPAPR_PCI_WINDOW_SPACING;
1335 sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
1336 sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
1339 if (sphb->buid == (uint64_t)-1) {
1340 error_setg(errp, "BUID not specified for PHB");
1341 return;
1344 if (sphb->dma_liobn == (uint32_t)-1) {
1345 error_setg(errp, "LIOBN not specified for PHB");
1346 return;
1349 if (sphb->mem_win_addr == (hwaddr)-1) {
1350 error_setg(errp, "Memory window address not specified for PHB");
1351 return;
1354 if (sphb->io_win_addr == (hwaddr)-1) {
1355 error_setg(errp, "IO window address not specified for PHB");
1356 return;
1359 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1360 error_setg(errp, "PCI host bridges must have unique BUIDs");
1361 return;
1364 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1366 namebuf = alloca(strlen(sphb->dtbusname) + 32);
1368 /* Initialize memory regions */
1369 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
1370 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1372 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
1373 memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
1374 namebuf, &sphb->memspace,
1375 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1376 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1377 &sphb->memwindow);
1379 /* Initialize IO regions */
1380 sprintf(namebuf, "%s.io", sphb->dtbusname);
1381 memory_region_init(&sphb->iospace, OBJECT(sphb),
1382 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1384 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
1385 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1386 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1387 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1388 &sphb->iowindow);
1390 bus = pci_register_bus(dev, NULL,
1391 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1392 &sphb->memspace, &sphb->iospace,
1393 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1394 phb->bus = bus;
1395 qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1398 * Initialize PHB address space.
1399 * By default there will be at least one subregion for default
1400 * 32bit DMA window.
1401 * Later the guest might want to create another DMA window
1402 * which will become another memory subregion.
1404 sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
1406 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1407 namebuf, UINT64_MAX);
1408 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1409 sphb->dtbusname);
1412 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1413 * we need to allocate some memory to catch those writes coming
1414 * from msi_notify()/msix_notify().
1415 * As MSIMessage:addr is going to be the same and MSIMessage:data
1416 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1417 * be used.
1419 * For KVM we want to ensure that this memory is a full page so that
1420 * our memory slot is of page size granularity.
1422 #ifdef CONFIG_KVM
1423 if (kvm_enabled()) {
1424 msi_window_size = getpagesize();
1426 #endif
1428 memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
1429 "msi", msi_window_size);
1430 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1431 &sphb->msiwindow);
1433 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1435 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1437 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1439 /* Initialize the LSI table */
1440 for (i = 0; i < PCI_NUM_PINS; i++) {
1441 uint32_t irq;
1442 Error *local_err = NULL;
1444 irq = xics_alloc_block(spapr->icp, 0, 1, true, false, &local_err);
1445 if (local_err) {
1446 error_propagate(errp, local_err);
1447 error_prepend(errp, "can't allocate LSIs: ");
1448 return;
1451 sphb->lsi_table[i].irq = irq;
1454 /* allocate connectors for child PCI devices */
1455 if (sphb->dr_enabled) {
1456 for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1457 spapr_dr_connector_new(OBJECT(phb),
1458 SPAPR_DR_CONNECTOR_TYPE_PCI,
1459 (sphb->index << 16) | i);
1463 nb_table = sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT;
1464 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
1465 0, SPAPR_TCE_PAGE_SHIFT, nb_table, false);
1466 if (!tcet) {
1467 error_setg(errp, "Unable to create TCE table for %s",
1468 sphb->dtbusname);
1469 return;
1472 /* Register default 32bit DMA window */
1473 memory_region_add_subregion(&sphb->iommu_root, sphb->dma_win_addr,
1474 spapr_tce_get_iommu(tcet));
1476 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1479 static int spapr_phb_children_reset(Object *child, void *opaque)
1481 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1483 if (dev) {
1484 device_reset(dev);
1487 return 0;
1490 static void spapr_phb_reset(DeviceState *qdev)
1492 /* Reset the IOMMU state */
1493 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1495 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1496 spapr_phb_vfio_reset(qdev);
1500 static Property spapr_phb_properties[] = {
1501 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1502 DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
1503 DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
1504 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
1505 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1506 SPAPR_PCI_MMIO_WIN_SIZE),
1507 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
1508 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1509 SPAPR_PCI_IO_WIN_SIZE),
1510 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1511 true),
1512 /* Default DMA window is 0..1GB */
1513 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1514 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1515 DEFINE_PROP_END_OF_LIST(),
1518 static const VMStateDescription vmstate_spapr_pci_lsi = {
1519 .name = "spapr_pci/lsi",
1520 .version_id = 1,
1521 .minimum_version_id = 1,
1522 .fields = (VMStateField[]) {
1523 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
1525 VMSTATE_END_OF_LIST()
1529 static const VMStateDescription vmstate_spapr_pci_msi = {
1530 .name = "spapr_pci/msi",
1531 .version_id = 1,
1532 .minimum_version_id = 1,
1533 .fields = (VMStateField []) {
1534 VMSTATE_UINT32(key, spapr_pci_msi_mig),
1535 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1536 VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1537 VMSTATE_END_OF_LIST()
1541 static void spapr_pci_pre_save(void *opaque)
1543 sPAPRPHBState *sphb = opaque;
1544 GHashTableIter iter;
1545 gpointer key, value;
1546 int i;
1548 g_free(sphb->msi_devs);
1549 sphb->msi_devs = NULL;
1550 sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1551 if (!sphb->msi_devs_num) {
1552 return;
1554 sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1556 g_hash_table_iter_init(&iter, sphb->msi);
1557 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1558 sphb->msi_devs[i].key = *(uint32_t *) key;
1559 sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1563 static int spapr_pci_post_load(void *opaque, int version_id)
1565 sPAPRPHBState *sphb = opaque;
1566 gpointer key, value;
1567 int i;
1569 for (i = 0; i < sphb->msi_devs_num; ++i) {
1570 key = g_memdup(&sphb->msi_devs[i].key,
1571 sizeof(sphb->msi_devs[i].key));
1572 value = g_memdup(&sphb->msi_devs[i].value,
1573 sizeof(sphb->msi_devs[i].value));
1574 g_hash_table_insert(sphb->msi, key, value);
1576 g_free(sphb->msi_devs);
1577 sphb->msi_devs = NULL;
1578 sphb->msi_devs_num = 0;
1580 return 0;
1583 static const VMStateDescription vmstate_spapr_pci = {
1584 .name = "spapr_pci",
1585 .version_id = 2,
1586 .minimum_version_id = 2,
1587 .pre_save = spapr_pci_pre_save,
1588 .post_load = spapr_pci_post_load,
1589 .fields = (VMStateField[]) {
1590 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
1591 VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
1592 VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
1593 VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
1594 VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
1595 VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
1596 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1597 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1598 VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1599 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1600 vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1601 VMSTATE_END_OF_LIST()
1605 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1606 PCIBus *rootbus)
1608 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1610 return sphb->dtbusname;
1613 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1615 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1616 DeviceClass *dc = DEVICE_CLASS(klass);
1617 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1619 hc->root_bus_path = spapr_phb_root_bus_path;
1620 dc->realize = spapr_phb_realize;
1621 dc->props = spapr_phb_properties;
1622 dc->reset = spapr_phb_reset;
1623 dc->vmsd = &vmstate_spapr_pci;
1624 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1625 dc->cannot_instantiate_with_device_add_yet = false;
1626 hp->plug = spapr_phb_hot_plug_child;
1627 hp->unplug = spapr_phb_hot_unplug_child;
1630 static const TypeInfo spapr_phb_info = {
1631 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
1632 .parent = TYPE_PCI_HOST_BRIDGE,
1633 .instance_size = sizeof(sPAPRPHBState),
1634 .class_init = spapr_phb_class_init,
1635 .interfaces = (InterfaceInfo[]) {
1636 { TYPE_HOTPLUG_HANDLER },
1641 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1643 DeviceState *dev;
1645 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1646 qdev_prop_set_uint32(dev, "index", index);
1647 qdev_init_nofail(dev);
1649 return PCI_HOST_BRIDGE(dev);
1652 typedef struct sPAPRFDT {
1653 void *fdt;
1654 int node_off;
1655 sPAPRPHBState *sphb;
1656 } sPAPRFDT;
1658 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1659 void *opaque)
1661 PCIBus *sec_bus;
1662 sPAPRFDT *p = opaque;
1663 int offset;
1664 sPAPRFDT s_fdt;
1666 offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1667 if (!offset) {
1668 error_report("Failed to create pci child device tree node");
1669 return;
1672 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1673 PCI_HEADER_TYPE_BRIDGE)) {
1674 return;
1677 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1678 if (!sec_bus) {
1679 return;
1682 s_fdt.fdt = p->fdt;
1683 s_fdt.node_off = offset;
1684 s_fdt.sphb = p->sphb;
1685 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1686 spapr_populate_pci_devices_dt,
1687 &s_fdt);
1690 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
1691 void *opaque)
1693 unsigned int *bus_no = opaque;
1694 unsigned int primary = *bus_no;
1695 unsigned int subordinate = 0xff;
1696 PCIBus *sec_bus = NULL;
1698 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1699 PCI_HEADER_TYPE_BRIDGE)) {
1700 return;
1703 (*bus_no)++;
1704 pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
1705 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
1706 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1708 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1709 if (!sec_bus) {
1710 return;
1713 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
1714 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1715 spapr_phb_pci_enumerate_bridge, bus_no);
1716 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1719 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
1721 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1722 unsigned int bus_no = 0;
1724 pci_for_each_device(bus, pci_bus_num(bus),
1725 spapr_phb_pci_enumerate_bridge,
1726 &bus_no);
1730 int spapr_populate_pci_dt(sPAPRPHBState *phb,
1731 uint32_t xics_phandle,
1732 void *fdt)
1734 int bus_off, i, j, ret;
1735 char nodename[FDT_NAME_MAX];
1736 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1737 const uint64_t mmiosize = memory_region_size(&phb->memwindow);
1738 const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
1739 const uint64_t w32size = MIN(w32max, mmiosize);
1740 const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
1741 struct {
1742 uint32_t hi;
1743 uint64_t child;
1744 uint64_t parent;
1745 uint64_t size;
1746 } QEMU_PACKED ranges[] = {
1748 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1749 cpu_to_be64(phb->io_win_addr),
1750 cpu_to_be64(memory_region_size(&phb->iospace)),
1753 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
1754 cpu_to_be64(phb->mem_win_addr),
1755 cpu_to_be64(w32size),
1758 cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1759 cpu_to_be64(phb->mem_win_addr + w32size),
1760 cpu_to_be64(w64size)
1763 const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
1764 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
1765 uint32_t interrupt_map_mask[] = {
1766 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1767 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
1768 sPAPRTCETable *tcet;
1769 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1770 sPAPRFDT s_fdt;
1772 /* Start populating the FDT */
1773 snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid);
1774 bus_off = fdt_add_subnode(fdt, 0, nodename);
1775 if (bus_off < 0) {
1776 return bus_off;
1779 /* Write PHB properties */
1780 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
1781 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
1782 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
1783 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
1784 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
1785 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
1786 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
1787 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
1788 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
1789 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
1790 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
1792 /* Build the interrupt-map, this must matches what is done
1793 * in pci_spapr_map_irq
1795 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
1796 &interrupt_map_mask, sizeof(interrupt_map_mask)));
1797 for (i = 0; i < PCI_SLOT_MAX; i++) {
1798 for (j = 0; j < PCI_NUM_PINS; j++) {
1799 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
1800 int lsi_num = pci_spapr_swizzle(i, j);
1802 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
1803 irqmap[1] = 0;
1804 irqmap[2] = 0;
1805 irqmap[3] = cpu_to_be32(j+1);
1806 irqmap[4] = cpu_to_be32(xics_phandle);
1807 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
1808 irqmap[6] = cpu_to_be32(0x8);
1811 /* Write interrupt map */
1812 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
1813 sizeof(interrupt_map)));
1815 tcet = spapr_tce_find_by_liobn(SPAPR_PCI_LIOBN(phb->index, 0));
1816 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
1817 tcet->liobn, tcet->bus_offset,
1818 tcet->nb_table << tcet->page_shift);
1820 /* Walk the bridges and program the bus numbers*/
1821 spapr_phb_pci_enumerate(phb);
1822 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
1824 /* Populate tree nodes with PCI devices attached */
1825 s_fdt.fdt = fdt;
1826 s_fdt.node_off = bus_off;
1827 s_fdt.sphb = phb;
1828 pci_for_each_device(bus, pci_bus_num(bus),
1829 spapr_populate_pci_devices_dt,
1830 &s_fdt);
1832 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
1833 SPAPR_DR_CONNECTOR_TYPE_PCI);
1834 if (ret) {
1835 return ret;
1838 return 0;
1841 void spapr_pci_rtas_init(void)
1843 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
1844 rtas_read_pci_config);
1845 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
1846 rtas_write_pci_config);
1847 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
1848 rtas_ibm_read_pci_config);
1849 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
1850 rtas_ibm_write_pci_config);
1851 if (msi_nonbroken) {
1852 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
1853 "ibm,query-interrupt-source-number",
1854 rtas_ibm_query_interrupt_source_number);
1855 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
1856 rtas_ibm_change_msi);
1859 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
1860 "ibm,set-eeh-option",
1861 rtas_ibm_set_eeh_option);
1862 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
1863 "ibm,get-config-addr-info2",
1864 rtas_ibm_get_config_addr_info2);
1865 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
1866 "ibm,read-slot-reset-state2",
1867 rtas_ibm_read_slot_reset_state2);
1868 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
1869 "ibm,set-slot-reset",
1870 rtas_ibm_set_slot_reset);
1871 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
1872 "ibm,configure-pe",
1873 rtas_ibm_configure_pe);
1874 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
1875 "ibm,slot-error-detail",
1876 rtas_ibm_slot_error_detail);
1879 static void spapr_pci_register_types(void)
1881 type_register_static(&spapr_phb_info);
1884 type_init(spapr_pci_register_types)
1886 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
1888 bool be = *(bool *)opaque;
1890 if (object_dynamic_cast(OBJECT(dev), "VGA")
1891 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
1892 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
1893 &error_abort);
1895 return 0;
1898 void spapr_pci_switch_vga(bool big_endian)
1900 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1901 sPAPRPHBState *sphb;
1904 * For backward compatibility with existing guests, we switch
1905 * the endianness of the VGA controller when changing the guest
1906 * interrupt mode
1908 QLIST_FOREACH(sphb, &spapr->phbs, list) {
1909 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
1910 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
1911 &big_endian);