ivshmem: Implement shm=... with a memory backend
[qemu/kevin.git] / hw / intc / arm_gic.c
blob0834c2f1a76da0235824ded8972cc6b56eb5646a
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qom/cpu.h"
26 //#define DEBUG_GIC
28 #ifdef DEBUG_GIC
29 #define DPRINTF(fmt, ...) \
30 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
31 #else
32 #define DPRINTF(fmt, ...) do {} while(0)
33 #endif
35 static const uint8_t gic_id_11mpcore[] = {
36 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
39 static const uint8_t gic_id_gicv1[] = {
40 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
43 static const uint8_t gic_id_gicv2[] = {
44 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
47 static inline int gic_get_current_cpu(GICState *s)
49 if (s->num_cpu > 1) {
50 return current_cpu->cpu_index;
52 return 0;
55 /* Return true if this GIC config has interrupt groups, which is
56 * true if we're a GICv2, or a GICv1 with the security extensions.
58 static inline bool gic_has_groups(GICState *s)
60 return s->revision == 2 || s->security_extn;
63 /* TODO: Many places that call this routine could be optimized. */
64 /* Update interrupt status after enabled or pending bits have been changed. */
65 void gic_update(GICState *s)
67 int best_irq;
68 int best_prio;
69 int irq;
70 int irq_level, fiq_level;
71 int cpu;
72 int cm;
74 for (cpu = 0; cpu < s->num_cpu; cpu++) {
75 cm = 1 << cpu;
76 s->current_pending[cpu] = 1023;
77 if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
78 || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
79 qemu_irq_lower(s->parent_irq[cpu]);
80 qemu_irq_lower(s->parent_fiq[cpu]);
81 continue;
83 best_prio = 0x100;
84 best_irq = 1023;
85 for (irq = 0; irq < s->num_irq; irq++) {
86 if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
87 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
88 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
89 best_prio = GIC_GET_PRIORITY(irq, cpu);
90 best_irq = irq;
95 irq_level = fiq_level = 0;
97 if (best_prio < s->priority_mask[cpu]) {
98 s->current_pending[cpu] = best_irq;
99 if (best_prio < s->running_priority[cpu]) {
100 int group = GIC_TEST_GROUP(best_irq, cm);
102 if (extract32(s->ctlr, group, 1) &&
103 extract32(s->cpu_ctlr[cpu], group, 1)) {
104 if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
105 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
106 best_irq, cpu);
107 fiq_level = 1;
108 } else {
109 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
110 best_irq, cpu);
111 irq_level = 1;
117 qemu_set_irq(s->parent_irq[cpu], irq_level);
118 qemu_set_irq(s->parent_fiq[cpu], fiq_level);
122 void gic_set_pending_private(GICState *s, int cpu, int irq)
124 int cm = 1 << cpu;
126 if (gic_test_pending(s, irq, cm)) {
127 return;
130 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
131 GIC_SET_PENDING(irq, cm);
132 gic_update(s);
135 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
136 int cm, int target)
138 if (level) {
139 GIC_SET_LEVEL(irq, cm);
140 if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
141 DPRINTF("Set %d pending mask %x\n", irq, target);
142 GIC_SET_PENDING(irq, target);
144 } else {
145 GIC_CLEAR_LEVEL(irq, cm);
149 static void gic_set_irq_generic(GICState *s, int irq, int level,
150 int cm, int target)
152 if (level) {
153 GIC_SET_LEVEL(irq, cm);
154 DPRINTF("Set %d pending mask %x\n", irq, target);
155 if (GIC_TEST_EDGE_TRIGGER(irq)) {
156 GIC_SET_PENDING(irq, target);
158 } else {
159 GIC_CLEAR_LEVEL(irq, cm);
163 /* Process a change in an external IRQ input. */
164 static void gic_set_irq(void *opaque, int irq, int level)
166 /* Meaning of the 'irq' parameter:
167 * [0..N-1] : external interrupts
168 * [N..N+31] : PPI (internal) interrupts for CPU 0
169 * [N+32..N+63] : PPI (internal interrupts for CPU 1
170 * ...
172 GICState *s = (GICState *)opaque;
173 int cm, target;
174 if (irq < (s->num_irq - GIC_INTERNAL)) {
175 /* The first external input line is internal interrupt 32. */
176 cm = ALL_CPU_MASK;
177 irq += GIC_INTERNAL;
178 target = GIC_TARGET(irq);
179 } else {
180 int cpu;
181 irq -= (s->num_irq - GIC_INTERNAL);
182 cpu = irq / GIC_INTERNAL;
183 irq %= GIC_INTERNAL;
184 cm = 1 << cpu;
185 target = cm;
188 assert(irq >= GIC_NR_SGIS);
190 if (level == GIC_TEST_LEVEL(irq, cm)) {
191 return;
194 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
195 gic_set_irq_11mpcore(s, irq, level, cm, target);
196 } else {
197 gic_set_irq_generic(s, irq, level, cm, target);
200 gic_update(s);
203 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
204 MemTxAttrs attrs)
206 uint16_t pending_irq = s->current_pending[cpu];
208 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
209 int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
210 /* On a GIC without the security extensions, reading this register
211 * behaves in the same way as a secure access to a GIC with them.
213 bool secure = !s->security_extn || attrs.secure;
215 if (group == 0 && !secure) {
216 /* Group0 interrupts hidden from Non-secure access */
217 return 1023;
219 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
220 /* Group1 interrupts only seen by Secure access if
221 * AckCtl bit set.
223 return 1022;
226 return pending_irq;
229 static int gic_get_group_priority(GICState *s, int cpu, int irq)
231 /* Return the group priority of the specified interrupt
232 * (which is the top bits of its priority, with the number
233 * of bits masked determined by the applicable binary point register).
235 int bpr;
236 uint32_t mask;
238 if (gic_has_groups(s) &&
239 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
240 GIC_TEST_GROUP(irq, (1 << cpu))) {
241 bpr = s->abpr[cpu];
242 } else {
243 bpr = s->bpr[cpu];
246 /* a BPR of 0 means the group priority bits are [7:1];
247 * a BPR of 1 means they are [7:2], and so on down to
248 * a BPR of 7 meaning no group priority bits at all.
250 mask = ~0U << ((bpr & 7) + 1);
252 return GIC_GET_PRIORITY(irq, cpu) & mask;
255 static void gic_activate_irq(GICState *s, int cpu, int irq)
257 /* Set the appropriate Active Priority Register bit for this IRQ,
258 * and update the running priority.
260 int prio = gic_get_group_priority(s, cpu, irq);
261 int preemption_level = prio >> (GIC_MIN_BPR + 1);
262 int regno = preemption_level / 32;
263 int bitno = preemption_level % 32;
265 if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
266 s->nsapr[regno][cpu] |= (1 << bitno);
267 } else {
268 s->apr[regno][cpu] |= (1 << bitno);
271 s->running_priority[cpu] = prio;
272 GIC_SET_ACTIVE(irq, 1 << cpu);
275 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
277 /* Recalculate the current running priority for this CPU based
278 * on the set bits in the Active Priority Registers.
280 int i;
281 for (i = 0; i < GIC_NR_APRS; i++) {
282 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
283 if (!apr) {
284 continue;
286 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
288 return 0x100;
291 static void gic_drop_prio(GICState *s, int cpu, int group)
293 /* Drop the priority of the currently active interrupt in the
294 * specified group.
296 * Note that we can guarantee (because of the requirement to nest
297 * GICC_IAR reads [which activate an interrupt and raise priority]
298 * with GICC_EOIR writes [which drop the priority for the interrupt])
299 * that the interrupt we're being called for is the highest priority
300 * active interrupt, meaning that it has the lowest set bit in the
301 * APR registers.
303 * If the guest does not honour the ordering constraints then the
304 * behaviour of the GIC is UNPREDICTABLE, which for us means that
305 * the values of the APR registers might become incorrect and the
306 * running priority will be wrong, so interrupts that should preempt
307 * might not do so, and interrupts that should not preempt might do so.
309 int i;
311 for (i = 0; i < GIC_NR_APRS; i++) {
312 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
313 if (!*papr) {
314 continue;
316 /* Clear lowest set bit */
317 *papr &= *papr - 1;
318 break;
321 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
324 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
326 int ret, irq, src;
327 int cm = 1 << cpu;
329 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
330 * for the case where this GIC supports grouping and the pending interrupt
331 * is in the wrong group.
333 irq = gic_get_current_pending_irq(s, cpu, attrs);
335 if (irq >= GIC_MAXIRQ) {
336 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
337 return irq;
340 if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
341 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
342 return 1023;
345 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
346 /* Clear pending flags for both level and edge triggered interrupts.
347 * Level triggered IRQs will be reasserted once they become inactive.
349 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
350 ret = irq;
351 } else {
352 if (irq < GIC_NR_SGIS) {
353 /* Lookup the source CPU for the SGI and clear this in the
354 * sgi_pending map. Return the src and clear the overall pending
355 * state on this CPU if the SGI is not pending from any CPUs.
357 assert(s->sgi_pending[irq][cpu] != 0);
358 src = ctz32(s->sgi_pending[irq][cpu]);
359 s->sgi_pending[irq][cpu] &= ~(1 << src);
360 if (s->sgi_pending[irq][cpu] == 0) {
361 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
363 ret = irq | ((src & 0x7) << 10);
364 } else {
365 /* Clear pending state for both level and edge triggered
366 * interrupts. (level triggered interrupts with an active line
367 * remain pending, see gic_test_pending)
369 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
370 ret = irq;
374 gic_activate_irq(s, cpu, irq);
375 gic_update(s);
376 DPRINTF("ACK %d\n", irq);
377 return ret;
380 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
381 MemTxAttrs attrs)
383 if (s->security_extn && !attrs.secure) {
384 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
385 return; /* Ignore Non-secure access of Group0 IRQ */
387 val = 0x80 | (val >> 1); /* Non-secure view */
390 if (irq < GIC_INTERNAL) {
391 s->priority1[irq][cpu] = val;
392 } else {
393 s->priority2[(irq) - GIC_INTERNAL] = val;
397 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
398 MemTxAttrs attrs)
400 uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
402 if (s->security_extn && !attrs.secure) {
403 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
404 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
406 prio = (prio << 1) & 0xff; /* Non-secure view */
408 return prio;
411 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
412 MemTxAttrs attrs)
414 if (s->security_extn && !attrs.secure) {
415 if (s->priority_mask[cpu] & 0x80) {
416 /* Priority Mask in upper half */
417 pmask = 0x80 | (pmask >> 1);
418 } else {
419 /* Non-secure write ignored if priority mask is in lower half */
420 return;
423 s->priority_mask[cpu] = pmask;
426 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
428 uint32_t pmask = s->priority_mask[cpu];
430 if (s->security_extn && !attrs.secure) {
431 if (pmask & 0x80) {
432 /* Priority Mask in upper half, return Non-secure view */
433 pmask = (pmask << 1) & 0xff;
434 } else {
435 /* Priority Mask in lower half, RAZ */
436 pmask = 0;
439 return pmask;
442 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
444 uint32_t ret = s->cpu_ctlr[cpu];
446 if (s->security_extn && !attrs.secure) {
447 /* Construct the NS banked view of GICC_CTLR from the correct
448 * bits of the S banked view. We don't need to move the bypass
449 * control bits because we don't implement that (IMPDEF) part
450 * of the GIC architecture.
452 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
454 return ret;
457 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
458 MemTxAttrs attrs)
460 uint32_t mask;
462 if (s->security_extn && !attrs.secure) {
463 /* The NS view can only write certain bits in the register;
464 * the rest are unchanged
466 mask = GICC_CTLR_EN_GRP1;
467 if (s->revision == 2) {
468 mask |= GICC_CTLR_EOIMODE_NS;
470 s->cpu_ctlr[cpu] &= ~mask;
471 s->cpu_ctlr[cpu] |= (value << 1) & mask;
472 } else {
473 if (s->revision == 2) {
474 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
475 } else {
476 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
478 s->cpu_ctlr[cpu] = value & mask;
480 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
481 "Group1 Interrupts %sabled\n", cpu,
482 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
483 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
486 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
488 if (s->security_extn && !attrs.secure) {
489 if (s->running_priority[cpu] & 0x80) {
490 /* Running priority in upper half of range: return the Non-secure
491 * view of the priority.
493 return s->running_priority[cpu] << 1;
494 } else {
495 /* Running priority in lower half of range: RAZ */
496 return 0;
498 } else {
499 return s->running_priority[cpu];
503 /* Return true if we should split priority drop and interrupt deactivation,
504 * ie whether the relevant EOIMode bit is set.
506 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
508 if (s->revision != 2) {
509 /* Before GICv2 prio-drop and deactivate are not separable */
510 return false;
512 if (s->security_extn && !attrs.secure) {
513 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
515 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
518 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
520 int cm = 1 << cpu;
521 int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
523 if (!gic_eoi_split(s, cpu, attrs)) {
524 /* This is UNPREDICTABLE; we choose to ignore it */
525 qemu_log_mask(LOG_GUEST_ERROR,
526 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
527 return;
530 if (s->security_extn && !attrs.secure && !group) {
531 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
532 return;
535 GIC_CLEAR_ACTIVE(irq, cm);
538 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
540 int cm = 1 << cpu;
541 int group;
543 DPRINTF("EOI %d\n", irq);
544 if (irq >= s->num_irq) {
545 /* This handles two cases:
546 * 1. If software writes the ID of a spurious interrupt [ie 1023]
547 * to the GICC_EOIR, the GIC ignores that write.
548 * 2. If software writes the number of a non-existent interrupt
549 * this must be a subcase of "value written does not match the last
550 * valid interrupt value read from the Interrupt Acknowledge
551 * register" and so this is UNPREDICTABLE. We choose to ignore it.
553 return;
555 if (s->running_priority[cpu] == 0x100) {
556 return; /* No active IRQ. */
559 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
560 /* Mark level triggered interrupts as pending if they are still
561 raised. */
562 if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
563 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
564 DPRINTF("Set %d pending mask %x\n", irq, cm);
565 GIC_SET_PENDING(irq, cm);
569 group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
571 if (s->security_extn && !attrs.secure && !group) {
572 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
573 return;
576 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
577 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
578 * i.e. go ahead and complete the irq anyway.
581 gic_drop_prio(s, cpu, group);
583 /* In GICv2 the guest can choose to split priority-drop and deactivate */
584 if (!gic_eoi_split(s, cpu, attrs)) {
585 GIC_CLEAR_ACTIVE(irq, cm);
587 gic_update(s);
590 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
592 GICState *s = (GICState *)opaque;
593 uint32_t res;
594 int irq;
595 int i;
596 int cpu;
597 int cm;
598 int mask;
600 cpu = gic_get_current_cpu(s);
601 cm = 1 << cpu;
602 if (offset < 0x100) {
603 if (offset == 0) { /* GICD_CTLR */
604 if (s->security_extn && !attrs.secure) {
605 /* The NS bank of this register is just an alias of the
606 * EnableGrp1 bit in the S bank version.
608 return extract32(s->ctlr, 1, 1);
609 } else {
610 return s->ctlr;
613 if (offset == 4)
614 /* Interrupt Controller Type Register */
615 return ((s->num_irq / 32) - 1)
616 | ((s->num_cpu - 1) << 5)
617 | (s->security_extn << 10);
618 if (offset < 0x08)
619 return 0;
620 if (offset >= 0x80) {
621 /* Interrupt Group Registers: these RAZ/WI if this is an NS
622 * access to a GIC with the security extensions, or if the GIC
623 * doesn't have groups at all.
625 res = 0;
626 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
627 /* Every byte offset holds 8 group status bits */
628 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
629 if (irq >= s->num_irq) {
630 goto bad_reg;
632 for (i = 0; i < 8; i++) {
633 if (GIC_TEST_GROUP(irq + i, cm)) {
634 res |= (1 << i);
638 return res;
640 goto bad_reg;
641 } else if (offset < 0x200) {
642 /* Interrupt Set/Clear Enable. */
643 if (offset < 0x180)
644 irq = (offset - 0x100) * 8;
645 else
646 irq = (offset - 0x180) * 8;
647 irq += GIC_BASE_IRQ;
648 if (irq >= s->num_irq)
649 goto bad_reg;
650 res = 0;
651 for (i = 0; i < 8; i++) {
652 if (GIC_TEST_ENABLED(irq + i, cm)) {
653 res |= (1 << i);
656 } else if (offset < 0x300) {
657 /* Interrupt Set/Clear Pending. */
658 if (offset < 0x280)
659 irq = (offset - 0x200) * 8;
660 else
661 irq = (offset - 0x280) * 8;
662 irq += GIC_BASE_IRQ;
663 if (irq >= s->num_irq)
664 goto bad_reg;
665 res = 0;
666 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
667 for (i = 0; i < 8; i++) {
668 if (gic_test_pending(s, irq + i, mask)) {
669 res |= (1 << i);
672 } else if (offset < 0x400) {
673 /* Interrupt Active. */
674 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
675 if (irq >= s->num_irq)
676 goto bad_reg;
677 res = 0;
678 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
679 for (i = 0; i < 8; i++) {
680 if (GIC_TEST_ACTIVE(irq + i, mask)) {
681 res |= (1 << i);
684 } else if (offset < 0x800) {
685 /* Interrupt Priority. */
686 irq = (offset - 0x400) + GIC_BASE_IRQ;
687 if (irq >= s->num_irq)
688 goto bad_reg;
689 res = gic_get_priority(s, cpu, irq, attrs);
690 } else if (offset < 0xc00) {
691 /* Interrupt CPU Target. */
692 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
693 /* For uniprocessor GICs these RAZ/WI */
694 res = 0;
695 } else {
696 irq = (offset - 0x800) + GIC_BASE_IRQ;
697 if (irq >= s->num_irq) {
698 goto bad_reg;
700 if (irq >= 29 && irq <= 31) {
701 res = cm;
702 } else {
703 res = GIC_TARGET(irq);
706 } else if (offset < 0xf00) {
707 /* Interrupt Configuration. */
708 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
709 if (irq >= s->num_irq)
710 goto bad_reg;
711 res = 0;
712 for (i = 0; i < 4; i++) {
713 if (GIC_TEST_MODEL(irq + i))
714 res |= (1 << (i * 2));
715 if (GIC_TEST_EDGE_TRIGGER(irq + i))
716 res |= (2 << (i * 2));
718 } else if (offset < 0xf10) {
719 goto bad_reg;
720 } else if (offset < 0xf30) {
721 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
722 goto bad_reg;
725 if (offset < 0xf20) {
726 /* GICD_CPENDSGIRn */
727 irq = (offset - 0xf10);
728 } else {
729 irq = (offset - 0xf20);
730 /* GICD_SPENDSGIRn */
733 res = s->sgi_pending[irq][cpu];
734 } else if (offset < 0xfd0) {
735 goto bad_reg;
736 } else if (offset < 0x1000) {
737 if (offset & 3) {
738 res = 0;
739 } else {
740 switch (s->revision) {
741 case REV_11MPCORE:
742 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
743 break;
744 case 1:
745 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
746 break;
747 case 2:
748 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
749 break;
750 case REV_NVIC:
751 /* Shouldn't be able to get here */
752 abort();
753 default:
754 res = 0;
757 } else {
758 g_assert_not_reached();
760 return res;
761 bad_reg:
762 qemu_log_mask(LOG_GUEST_ERROR,
763 "gic_dist_readb: Bad offset %x\n", (int)offset);
764 return 0;
767 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
768 unsigned size, MemTxAttrs attrs)
770 switch (size) {
771 case 1:
772 *data = gic_dist_readb(opaque, offset, attrs);
773 return MEMTX_OK;
774 case 2:
775 *data = gic_dist_readb(opaque, offset, attrs);
776 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
777 return MEMTX_OK;
778 case 4:
779 *data = gic_dist_readb(opaque, offset, attrs);
780 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
781 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
782 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
783 return MEMTX_OK;
784 default:
785 return MEMTX_ERROR;
789 static void gic_dist_writeb(void *opaque, hwaddr offset,
790 uint32_t value, MemTxAttrs attrs)
792 GICState *s = (GICState *)opaque;
793 int irq;
794 int i;
795 int cpu;
797 cpu = gic_get_current_cpu(s);
798 if (offset < 0x100) {
799 if (offset == 0) {
800 if (s->security_extn && !attrs.secure) {
801 /* NS version is just an alias of the S version's bit 1 */
802 s->ctlr = deposit32(s->ctlr, 1, 1, value);
803 } else if (gic_has_groups(s)) {
804 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
805 } else {
806 s->ctlr = value & GICD_CTLR_EN_GRP0;
808 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
809 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
810 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
811 } else if (offset < 4) {
812 /* ignored. */
813 } else if (offset >= 0x80) {
814 /* Interrupt Group Registers: RAZ/WI for NS access to secure
815 * GIC, or for GICs without groups.
817 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
818 /* Every byte offset holds 8 group status bits */
819 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
820 if (irq >= s->num_irq) {
821 goto bad_reg;
823 for (i = 0; i < 8; i++) {
824 /* Group bits are banked for private interrupts */
825 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
826 if (value & (1 << i)) {
827 /* Group1 (Non-secure) */
828 GIC_SET_GROUP(irq + i, cm);
829 } else {
830 /* Group0 (Secure) */
831 GIC_CLEAR_GROUP(irq + i, cm);
835 } else {
836 goto bad_reg;
838 } else if (offset < 0x180) {
839 /* Interrupt Set Enable. */
840 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
841 if (irq >= s->num_irq)
842 goto bad_reg;
843 if (irq < GIC_NR_SGIS) {
844 value = 0xff;
847 for (i = 0; i < 8; i++) {
848 if (value & (1 << i)) {
849 int mask =
850 (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
851 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
853 if (!GIC_TEST_ENABLED(irq + i, cm)) {
854 DPRINTF("Enabled IRQ %d\n", irq + i);
856 GIC_SET_ENABLED(irq + i, cm);
857 /* If a raised level triggered IRQ enabled then mark
858 is as pending. */
859 if (GIC_TEST_LEVEL(irq + i, mask)
860 && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
861 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
862 GIC_SET_PENDING(irq + i, mask);
866 } else if (offset < 0x200) {
867 /* Interrupt Clear Enable. */
868 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
869 if (irq >= s->num_irq)
870 goto bad_reg;
871 if (irq < GIC_NR_SGIS) {
872 value = 0;
875 for (i = 0; i < 8; i++) {
876 if (value & (1 << i)) {
877 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
879 if (GIC_TEST_ENABLED(irq + i, cm)) {
880 DPRINTF("Disabled IRQ %d\n", irq + i);
882 GIC_CLEAR_ENABLED(irq + i, cm);
885 } else if (offset < 0x280) {
886 /* Interrupt Set Pending. */
887 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
888 if (irq >= s->num_irq)
889 goto bad_reg;
890 if (irq < GIC_NR_SGIS) {
891 value = 0;
894 for (i = 0; i < 8; i++) {
895 if (value & (1 << i)) {
896 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
899 } else if (offset < 0x300) {
900 /* Interrupt Clear Pending. */
901 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
902 if (irq >= s->num_irq)
903 goto bad_reg;
904 if (irq < GIC_NR_SGIS) {
905 value = 0;
908 for (i = 0; i < 8; i++) {
909 /* ??? This currently clears the pending bit for all CPUs, even
910 for per-CPU interrupts. It's unclear whether this is the
911 corect behavior. */
912 if (value & (1 << i)) {
913 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
916 } else if (offset < 0x400) {
917 /* Interrupt Active. */
918 goto bad_reg;
919 } else if (offset < 0x800) {
920 /* Interrupt Priority. */
921 irq = (offset - 0x400) + GIC_BASE_IRQ;
922 if (irq >= s->num_irq)
923 goto bad_reg;
924 gic_set_priority(s, cpu, irq, value, attrs);
925 } else if (offset < 0xc00) {
926 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
927 * annoying exception of the 11MPCore's GIC.
929 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
930 irq = (offset - 0x800) + GIC_BASE_IRQ;
931 if (irq >= s->num_irq) {
932 goto bad_reg;
934 if (irq < 29) {
935 value = 0;
936 } else if (irq < GIC_INTERNAL) {
937 value = ALL_CPU_MASK;
939 s->irq_target[irq] = value & ALL_CPU_MASK;
941 } else if (offset < 0xf00) {
942 /* Interrupt Configuration. */
943 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
944 if (irq >= s->num_irq)
945 goto bad_reg;
946 if (irq < GIC_NR_SGIS)
947 value |= 0xaa;
948 for (i = 0; i < 4; i++) {
949 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
950 if (value & (1 << (i * 2))) {
951 GIC_SET_MODEL(irq + i);
952 } else {
953 GIC_CLEAR_MODEL(irq + i);
956 if (value & (2 << (i * 2))) {
957 GIC_SET_EDGE_TRIGGER(irq + i);
958 } else {
959 GIC_CLEAR_EDGE_TRIGGER(irq + i);
962 } else if (offset < 0xf10) {
963 /* 0xf00 is only handled for 32-bit writes. */
964 goto bad_reg;
965 } else if (offset < 0xf20) {
966 /* GICD_CPENDSGIRn */
967 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
968 goto bad_reg;
970 irq = (offset - 0xf10);
972 s->sgi_pending[irq][cpu] &= ~value;
973 if (s->sgi_pending[irq][cpu] == 0) {
974 GIC_CLEAR_PENDING(irq, 1 << cpu);
976 } else if (offset < 0xf30) {
977 /* GICD_SPENDSGIRn */
978 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
979 goto bad_reg;
981 irq = (offset - 0xf20);
983 GIC_SET_PENDING(irq, 1 << cpu);
984 s->sgi_pending[irq][cpu] |= value;
985 } else {
986 goto bad_reg;
988 gic_update(s);
989 return;
990 bad_reg:
991 qemu_log_mask(LOG_GUEST_ERROR,
992 "gic_dist_writeb: Bad offset %x\n", (int)offset);
995 static void gic_dist_writew(void *opaque, hwaddr offset,
996 uint32_t value, MemTxAttrs attrs)
998 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
999 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1002 static void gic_dist_writel(void *opaque, hwaddr offset,
1003 uint32_t value, MemTxAttrs attrs)
1005 GICState *s = (GICState *)opaque;
1006 if (offset == 0xf00) {
1007 int cpu;
1008 int irq;
1009 int mask;
1010 int target_cpu;
1012 cpu = gic_get_current_cpu(s);
1013 irq = value & 0x3ff;
1014 switch ((value >> 24) & 3) {
1015 case 0:
1016 mask = (value >> 16) & ALL_CPU_MASK;
1017 break;
1018 case 1:
1019 mask = ALL_CPU_MASK ^ (1 << cpu);
1020 break;
1021 case 2:
1022 mask = 1 << cpu;
1023 break;
1024 default:
1025 DPRINTF("Bad Soft Int target filter\n");
1026 mask = ALL_CPU_MASK;
1027 break;
1029 GIC_SET_PENDING(irq, mask);
1030 target_cpu = ctz32(mask);
1031 while (target_cpu < GIC_NCPU) {
1032 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1033 mask &= ~(1 << target_cpu);
1034 target_cpu = ctz32(mask);
1036 gic_update(s);
1037 return;
1039 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1040 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1043 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1044 unsigned size, MemTxAttrs attrs)
1046 switch (size) {
1047 case 1:
1048 gic_dist_writeb(opaque, offset, data, attrs);
1049 return MEMTX_OK;
1050 case 2:
1051 gic_dist_writew(opaque, offset, data, attrs);
1052 return MEMTX_OK;
1053 case 4:
1054 gic_dist_writel(opaque, offset, data, attrs);
1055 return MEMTX_OK;
1056 default:
1057 return MEMTX_ERROR;
1061 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1063 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1064 * second half of GICC_NSAPR.
1066 switch (GIC_MIN_BPR) {
1067 case 0:
1068 if (regno < 2) {
1069 return s->nsapr[regno + 2][cpu];
1071 break;
1072 case 1:
1073 if (regno == 0) {
1074 return s->nsapr[regno + 1][cpu];
1076 break;
1077 case 2:
1078 if (regno == 0) {
1079 return extract32(s->nsapr[0][cpu], 16, 16);
1081 break;
1082 case 3:
1083 if (regno == 0) {
1084 return extract32(s->nsapr[0][cpu], 8, 8);
1086 break;
1087 default:
1088 g_assert_not_reached();
1090 return 0;
1093 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1094 uint32_t value)
1096 /* Write the Nonsecure view of GICC_APR<regno>. */
1097 switch (GIC_MIN_BPR) {
1098 case 0:
1099 if (regno < 2) {
1100 s->nsapr[regno + 2][cpu] = value;
1102 break;
1103 case 1:
1104 if (regno == 0) {
1105 s->nsapr[regno + 1][cpu] = value;
1107 break;
1108 case 2:
1109 if (regno == 0) {
1110 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1112 break;
1113 case 3:
1114 if (regno == 0) {
1115 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1117 break;
1118 default:
1119 g_assert_not_reached();
1123 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1124 uint64_t *data, MemTxAttrs attrs)
1126 switch (offset) {
1127 case 0x00: /* Control */
1128 *data = gic_get_cpu_control(s, cpu, attrs);
1129 break;
1130 case 0x04: /* Priority mask */
1131 *data = gic_get_priority_mask(s, cpu, attrs);
1132 break;
1133 case 0x08: /* Binary Point */
1134 if (s->security_extn && !attrs.secure) {
1135 /* BPR is banked. Non-secure copy stored in ABPR. */
1136 *data = s->abpr[cpu];
1137 } else {
1138 *data = s->bpr[cpu];
1140 break;
1141 case 0x0c: /* Acknowledge */
1142 *data = gic_acknowledge_irq(s, cpu, attrs);
1143 break;
1144 case 0x14: /* Running Priority */
1145 *data = gic_get_running_priority(s, cpu, attrs);
1146 break;
1147 case 0x18: /* Highest Pending Interrupt */
1148 *data = gic_get_current_pending_irq(s, cpu, attrs);
1149 break;
1150 case 0x1c: /* Aliased Binary Point */
1151 /* GIC v2, no security: ABPR
1152 * GIC v1, no security: not implemented (RAZ/WI)
1153 * With security extensions, secure access: ABPR (alias of NS BPR)
1154 * With security extensions, nonsecure access: RAZ/WI
1156 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1157 *data = 0;
1158 } else {
1159 *data = s->abpr[cpu];
1161 break;
1162 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1164 int regno = (offset - 0xd0) / 4;
1166 if (regno >= GIC_NR_APRS || s->revision != 2) {
1167 *data = 0;
1168 } else if (s->security_extn && !attrs.secure) {
1169 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1170 *data = gic_apr_ns_view(s, regno, cpu);
1171 } else {
1172 *data = s->apr[regno][cpu];
1174 break;
1176 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1178 int regno = (offset - 0xe0) / 4;
1180 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1181 (s->security_extn && !attrs.secure)) {
1182 *data = 0;
1183 } else {
1184 *data = s->nsapr[regno][cpu];
1186 break;
1188 default:
1189 qemu_log_mask(LOG_GUEST_ERROR,
1190 "gic_cpu_read: Bad offset %x\n", (int)offset);
1191 return MEMTX_ERROR;
1193 return MEMTX_OK;
1196 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1197 uint32_t value, MemTxAttrs attrs)
1199 switch (offset) {
1200 case 0x00: /* Control */
1201 gic_set_cpu_control(s, cpu, value, attrs);
1202 break;
1203 case 0x04: /* Priority mask */
1204 gic_set_priority_mask(s, cpu, value, attrs);
1205 break;
1206 case 0x08: /* Binary Point */
1207 if (s->security_extn && !attrs.secure) {
1208 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1209 } else {
1210 s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1212 break;
1213 case 0x10: /* End Of Interrupt */
1214 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1215 return MEMTX_OK;
1216 case 0x1c: /* Aliased Binary Point */
1217 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1218 /* unimplemented, or NS access: RAZ/WI */
1219 return MEMTX_OK;
1220 } else {
1221 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1223 break;
1224 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1226 int regno = (offset - 0xd0) / 4;
1228 if (regno >= GIC_NR_APRS || s->revision != 2) {
1229 return MEMTX_OK;
1231 if (s->security_extn && !attrs.secure) {
1232 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1233 gic_apr_write_ns_view(s, regno, cpu, value);
1234 } else {
1235 s->apr[regno][cpu] = value;
1237 break;
1239 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1241 int regno = (offset - 0xe0) / 4;
1243 if (regno >= GIC_NR_APRS || s->revision != 2) {
1244 return MEMTX_OK;
1246 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1247 return MEMTX_OK;
1249 s->nsapr[regno][cpu] = value;
1250 break;
1252 case 0x1000:
1253 /* GICC_DIR */
1254 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1255 break;
1256 default:
1257 qemu_log_mask(LOG_GUEST_ERROR,
1258 "gic_cpu_write: Bad offset %x\n", (int)offset);
1259 return MEMTX_ERROR;
1261 gic_update(s);
1262 return MEMTX_OK;
1265 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1266 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1267 unsigned size, MemTxAttrs attrs)
1269 GICState *s = (GICState *)opaque;
1270 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1273 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1274 uint64_t value, unsigned size,
1275 MemTxAttrs attrs)
1277 GICState *s = (GICState *)opaque;
1278 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1281 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1282 * These just decode the opaque pointer into GICState* + cpu id.
1284 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1285 unsigned size, MemTxAttrs attrs)
1287 GICState **backref = (GICState **)opaque;
1288 GICState *s = *backref;
1289 int id = (backref - s->backref);
1290 return gic_cpu_read(s, id, addr, data, attrs);
1293 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1294 uint64_t value, unsigned size,
1295 MemTxAttrs attrs)
1297 GICState **backref = (GICState **)opaque;
1298 GICState *s = *backref;
1299 int id = (backref - s->backref);
1300 return gic_cpu_write(s, id, addr, value, attrs);
1303 static const MemoryRegionOps gic_ops[2] = {
1305 .read_with_attrs = gic_dist_read,
1306 .write_with_attrs = gic_dist_write,
1307 .endianness = DEVICE_NATIVE_ENDIAN,
1310 .read_with_attrs = gic_thiscpu_read,
1311 .write_with_attrs = gic_thiscpu_write,
1312 .endianness = DEVICE_NATIVE_ENDIAN,
1316 static const MemoryRegionOps gic_cpu_ops = {
1317 .read_with_attrs = gic_do_cpu_read,
1318 .write_with_attrs = gic_do_cpu_write,
1319 .endianness = DEVICE_NATIVE_ENDIAN,
1322 /* This function is used by nvic model */
1323 void gic_init_irqs_and_distributor(GICState *s)
1325 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1328 static void arm_gic_realize(DeviceState *dev, Error **errp)
1330 /* Device instance realize function for the GIC sysbus device */
1331 int i;
1332 GICState *s = ARM_GIC(dev);
1333 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1334 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1335 Error *local_err = NULL;
1337 agc->parent_realize(dev, &local_err);
1338 if (local_err) {
1339 error_propagate(errp, local_err);
1340 return;
1343 /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1344 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1346 /* Extra core-specific regions for the CPU interfaces. This is
1347 * necessary for "franken-GIC" implementations, for example on
1348 * Exynos 4.
1349 * NB that the memory region size of 0x100 applies for the 11MPCore
1350 * and also cores following the GIC v1 spec (ie A9).
1351 * GIC v2 defines a larger memory region (0x1000) so this will need
1352 * to be extended when we implement A15.
1354 for (i = 0; i < s->num_cpu; i++) {
1355 s->backref[i] = s;
1356 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1357 &s->backref[i], "gic_cpu", 0x100);
1358 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1362 static void arm_gic_class_init(ObjectClass *klass, void *data)
1364 DeviceClass *dc = DEVICE_CLASS(klass);
1365 ARMGICClass *agc = ARM_GIC_CLASS(klass);
1367 agc->parent_realize = dc->realize;
1368 dc->realize = arm_gic_realize;
1371 static const TypeInfo arm_gic_info = {
1372 .name = TYPE_ARM_GIC,
1373 .parent = TYPE_ARM_GIC_COMMON,
1374 .instance_size = sizeof(GICState),
1375 .class_init = arm_gic_class_init,
1376 .class_size = sizeof(ARMGICClass),
1379 static void arm_gic_register_types(void)
1381 type_register_static(&arm_gic_info);
1384 type_init(arm_gic_register_types)