hw/arm/virt: Wire VIRQ, VFIQ, maintenance irq lines from GIC to CPU
[qemu/kevin.git] / hw / arm / virt.c
blobd931d17fc3540df28a8752abf95151817e411a7c
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/compat.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic.h"
54 #include "hw/intc/arm_gicv3_common.h"
55 #include "kvm_arm.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
60 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
61 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
62 void *data) \
63 { \
64 MachineClass *mc = MACHINE_CLASS(oc); \
65 virt_machine_##major##_##minor##_options(mc); \
66 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
67 if (latest) { \
68 mc->alias = "virt"; \
69 } \
70 } \
71 static const TypeInfo machvirt_##major##_##minor##_info = { \
72 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73 .parent = TYPE_VIRT_MACHINE, \
74 .instance_init = virt_##major##_##minor##_instance_init, \
75 .class_init = virt_##major##_##minor##_class_init, \
76 }; \
77 static void machvirt_machine_##major##_##minor##_init(void) \
78 { \
79 type_register_static(&machvirt_##major##_##minor##_info); \
80 } \
81 type_init(machvirt_machine_##major##_##minor##_init);
83 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85 #define DEFINE_VIRT_MACHINE(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
89 /* Number of external interrupt lines to configure the GIC with */
90 #define NUM_IRQS 256
92 #define PLATFORM_BUS_NUM_IRQS 64
94 static ARMPlatformBusSystemParams platform_bus_params;
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97 * RAM can go up to the 256GB mark, leaving 256GB of the physical
98 * address space unallocated and free for future use between 256G and 512G.
99 * If we need to provide more RAM to VMs in the future then we need to:
100 * * allocate a second bank of RAM starting at 2TB and working up
101 * * fix the DT and ACPI table generation code in QEMU to correctly
102 * report two split lumps of RAM to the guest
103 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
104 * (We don't want to fill all the way up to 512GB with RAM because
105 * we might want it for non-RAM purposes later. Conversely it seems
106 * reasonable to assume that anybody configuring a VM with a quarter
107 * of a terabyte of RAM will be doing it on a host with more than a
108 * terabyte of physical address space.)
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
113 /* Addresses and sizes of our components.
114 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115 * 128MB..256MB is used for miscellaneous device I/O.
116 * 256MB..1GB is reserved for possible future PCI support (ie where the
117 * PCI memory window will go if we add a PCI host controller).
118 * 1GB and up is RAM (which may happily spill over into the
119 * high memory region beyond 4GB).
120 * This represents a compromise between how much RAM can be given to
121 * a 32 bit VM and leaving space for expansion and in particular for PCI.
122 * Note that devices should generally be placed at multiples of 0x10000,
123 * to accommodate guests using 64K pages.
125 static const MemMapEntry a15memmap[] = {
126 /* Space up to 0x8000000 is reserved for a boot ROM */
127 [VIRT_FLASH] = { 0, 0x08000000 },
128 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
129 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
131 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
132 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
133 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
135 /* This redistributor space allows up to 2*64kB*123 CPUs */
136 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
137 [VIRT_UART] = { 0x09000000, 0x00001000 },
138 [VIRT_RTC] = { 0x09010000, 0x00001000 },
139 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
140 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
141 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
142 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
143 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
144 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
145 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
146 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
147 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
148 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
149 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
150 /* Second PCIe window, 512GB wide at the 512GB boundary */
151 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
154 static const int a15irqmap[] = {
155 [VIRT_UART] = 1,
156 [VIRT_RTC] = 2,
157 [VIRT_PCIE] = 3, /* ... to 6 */
158 [VIRT_GPIO] = 7,
159 [VIRT_SECURE_UART] = 8,
160 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
161 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
162 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
165 static const char *valid_cpus[] = {
166 "cortex-a15",
167 "cortex-a53",
168 "cortex-a57",
169 "host",
172 static bool cpuname_valid(const char *cpu)
174 int i;
176 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
177 if (strcmp(cpu, valid_cpus[i]) == 0) {
178 return true;
181 return false;
184 static void create_fdt(VirtMachineState *vms)
186 void *fdt = create_device_tree(&vms->fdt_size);
188 if (!fdt) {
189 error_report("create_device_tree() failed");
190 exit(1);
193 vms->fdt = fdt;
195 /* Header */
196 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
197 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
198 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
201 * /chosen and /memory nodes must exist for load_dtb
202 * to fill in necessary properties later
204 qemu_fdt_add_subnode(fdt, "/chosen");
205 qemu_fdt_add_subnode(fdt, "/memory");
206 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
208 /* Clock node, for the benefit of the UART. The kernel device tree
209 * binding documentation claims the PL011 node clock properties are
210 * optional but in practice if you omit them the kernel refuses to
211 * probe for the device.
213 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
214 qemu_fdt_add_subnode(fdt, "/apb-pclk");
215 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
216 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
217 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
218 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
219 "clk24mhz");
220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
224 static void fdt_add_psci_node(const VirtMachineState *vms)
226 uint32_t cpu_suspend_fn;
227 uint32_t cpu_off_fn;
228 uint32_t cpu_on_fn;
229 uint32_t migrate_fn;
230 void *fdt = vms->fdt;
231 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
233 if (!vms->using_psci) {
234 return;
237 qemu_fdt_add_subnode(fdt, "/psci");
238 if (armcpu->psci_version == 2) {
239 const char comp[] = "arm,psci-0.2\0arm,psci";
240 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
242 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
243 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
244 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
245 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
246 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
247 } else {
248 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
249 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
250 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
252 } else {
253 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
255 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
256 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
257 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
258 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
261 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
262 * to the instruction that should be used to invoke PSCI functions.
263 * However, the device tree binding uses 'method' instead, so that is
264 * what we should use here.
266 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
268 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
269 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
270 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
271 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
274 static void fdt_add_timer_nodes(const VirtMachineState *vms)
276 /* On real hardware these interrupts are level-triggered.
277 * On KVM they were edge-triggered before host kernel version 4.4,
278 * and level-triggered afterwards.
279 * On emulated QEMU they are level-triggered.
281 * Getting the DTB info about them wrong is awkward for some
282 * guest kernels:
283 * pre-4.8 ignore the DT and leave the interrupt configured
284 * with whatever the GIC reset value (or the bootloader) left it at
285 * 4.8 before rc6 honour the incorrect data by programming it back
286 * into the GIC, causing problems
287 * 4.8rc6 and later ignore the DT and always write "level triggered"
288 * into the GIC
290 * For backwards-compatibility, virt-2.8 and earlier will continue
291 * to say these are edge-triggered, but later machines will report
292 * the correct information.
294 ARMCPU *armcpu;
295 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
296 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
298 if (vmc->claim_edge_triggered_timers) {
299 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
302 if (vms->gic_version == 2) {
303 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
304 GIC_FDT_IRQ_PPI_CPU_WIDTH,
305 (1 << vms->smp_cpus) - 1);
308 qemu_fdt_add_subnode(vms->fdt, "/timer");
310 armcpu = ARM_CPU(qemu_get_cpu(0));
311 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
312 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
313 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
314 compat, sizeof(compat));
315 } else {
316 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
317 "arm,armv7-timer");
319 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
320 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
321 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
322 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
323 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
324 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
327 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
329 int cpu;
330 int addr_cells = 1;
331 unsigned int i;
334 * From Documentation/devicetree/bindings/arm/cpus.txt
335 * On ARM v8 64-bit systems value should be set to 2,
336 * that corresponds to the MPIDR_EL1 register size.
337 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
338 * in the system, #address-cells can be set to 1, since
339 * MPIDR_EL1[63:32] bits are not used for CPUs
340 * identification.
342 * Here we actually don't know whether our system is 32- or 64-bit one.
343 * The simplest way to go is to examine affinity IDs of all our CPUs. If
344 * at least one of them has Aff3 populated, we set #address-cells to 2.
346 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
347 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
349 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
350 addr_cells = 2;
351 break;
355 qemu_fdt_add_subnode(vms->fdt, "/cpus");
356 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
357 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
359 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
360 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
361 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
363 qemu_fdt_add_subnode(vms->fdt, nodename);
364 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
365 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
366 armcpu->dtb_compatible);
368 if (vms->using_psci && vms->smp_cpus > 1) {
369 qemu_fdt_setprop_string(vms->fdt, nodename,
370 "enable-method", "psci");
373 if (addr_cells == 2) {
374 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
375 armcpu->mp_affinity);
376 } else {
377 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
378 armcpu->mp_affinity);
381 i = numa_get_node_for_cpu(cpu);
382 if (i < nb_numa_nodes) {
383 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", i);
386 g_free(nodename);
390 static void fdt_add_its_gic_node(VirtMachineState *vms)
392 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
393 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
394 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
395 "arm,gic-v3-its");
396 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
397 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
398 2, vms->memmap[VIRT_GIC_ITS].base,
399 2, vms->memmap[VIRT_GIC_ITS].size);
400 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
403 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
405 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
406 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
407 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
408 "arm,gic-v2m-frame");
409 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
410 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
411 2, vms->memmap[VIRT_GIC_V2M].base,
412 2, vms->memmap[VIRT_GIC_V2M].size);
413 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
416 static void fdt_add_gic_node(VirtMachineState *vms)
418 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
419 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
421 qemu_fdt_add_subnode(vms->fdt, "/intc");
422 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
423 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
424 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
425 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
426 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
427 if (vms->gic_version == 3) {
428 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
429 "arm,gic-v3");
430 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
431 2, vms->memmap[VIRT_GIC_DIST].base,
432 2, vms->memmap[VIRT_GIC_DIST].size,
433 2, vms->memmap[VIRT_GIC_REDIST].base,
434 2, vms->memmap[VIRT_GIC_REDIST].size);
435 } else {
436 /* 'cortex-a15-gic' means 'GIC v2' */
437 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
438 "arm,cortex-a15-gic");
439 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
440 2, vms->memmap[VIRT_GIC_DIST].base,
441 2, vms->memmap[VIRT_GIC_DIST].size,
442 2, vms->memmap[VIRT_GIC_CPU].base,
443 2, vms->memmap[VIRT_GIC_CPU].size);
446 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
449 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
451 CPUState *cpu;
452 ARMCPU *armcpu;
453 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
455 CPU_FOREACH(cpu) {
456 armcpu = ARM_CPU(cpu);
457 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
458 !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
459 return;
463 if (vms->gic_version == 2) {
464 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
465 GIC_FDT_IRQ_PPI_CPU_WIDTH,
466 (1 << vms->smp_cpus) - 1);
469 armcpu = ARM_CPU(qemu_get_cpu(0));
470 qemu_fdt_add_subnode(vms->fdt, "/pmu");
471 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
472 const char compat[] = "arm,armv8-pmuv3";
473 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
474 compat, sizeof(compat));
475 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
476 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
480 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
482 const char *itsclass = its_class_name();
483 DeviceState *dev;
485 if (!itsclass) {
486 /* Do nothing if not supported */
487 return;
490 dev = qdev_create(NULL, itsclass);
492 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
493 &error_abort);
494 qdev_init_nofail(dev);
495 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
497 fdt_add_its_gic_node(vms);
500 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
502 int i;
503 int irq = vms->irqmap[VIRT_GIC_V2M];
504 DeviceState *dev;
506 dev = qdev_create(NULL, "arm-gicv2m");
507 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
508 qdev_prop_set_uint32(dev, "base-spi", irq);
509 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
510 qdev_init_nofail(dev);
512 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
513 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
516 fdt_add_v2m_gic_node(vms);
519 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
521 /* We create a standalone GIC */
522 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
523 DeviceState *gicdev;
524 SysBusDevice *gicbusdev;
525 const char *gictype;
526 int type = vms->gic_version, i;
528 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
530 gicdev = qdev_create(NULL, gictype);
531 qdev_prop_set_uint32(gicdev, "revision", type);
532 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
533 /* Note that the num-irq property counts both internal and external
534 * interrupts; there are always 32 of the former (mandated by GIC spec).
536 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
537 if (!kvm_irqchip_in_kernel()) {
538 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
540 qdev_init_nofail(gicdev);
541 gicbusdev = SYS_BUS_DEVICE(gicdev);
542 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
543 if (type == 3) {
544 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
545 } else {
546 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
549 /* Wire the outputs from each CPU's generic timer and the GICv3
550 * maintenance interrupt signal to the appropriate GIC PPI inputs,
551 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
553 for (i = 0; i < smp_cpus; i++) {
554 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
555 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
556 int irq;
557 /* Mapping from the output timer irq lines from the CPU to the
558 * GIC PPI inputs we use for the virt board.
560 const int timer_irq[] = {
561 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
562 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
563 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
564 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
567 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
568 qdev_connect_gpio_out(cpudev, irq,
569 qdev_get_gpio_in(gicdev,
570 ppibase + timer_irq[irq]));
573 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
574 qdev_get_gpio_in(gicdev, ppibase
575 + ARCH_GICV3_MAINT_IRQ));
577 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
578 sysbus_connect_irq(gicbusdev, i + smp_cpus,
579 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
580 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
581 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
582 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
583 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
586 for (i = 0; i < NUM_IRQS; i++) {
587 pic[i] = qdev_get_gpio_in(gicdev, i);
590 fdt_add_gic_node(vms);
592 if (type == 3 && !vmc->no_its) {
593 create_its(vms, gicdev);
594 } else if (type == 2) {
595 create_v2m(vms, pic);
599 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
600 MemoryRegion *mem, CharDriverState *chr)
602 char *nodename;
603 hwaddr base = vms->memmap[uart].base;
604 hwaddr size = vms->memmap[uart].size;
605 int irq = vms->irqmap[uart];
606 const char compat[] = "arm,pl011\0arm,primecell";
607 const char clocknames[] = "uartclk\0apb_pclk";
608 DeviceState *dev = qdev_create(NULL, "pl011");
609 SysBusDevice *s = SYS_BUS_DEVICE(dev);
611 qdev_prop_set_chr(dev, "chardev", chr);
612 qdev_init_nofail(dev);
613 memory_region_add_subregion(mem, base,
614 sysbus_mmio_get_region(s, 0));
615 sysbus_connect_irq(s, 0, pic[irq]);
617 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
618 qemu_fdt_add_subnode(vms->fdt, nodename);
619 /* Note that we can't use setprop_string because of the embedded NUL */
620 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
621 compat, sizeof(compat));
622 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
623 2, base, 2, size);
624 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
625 GIC_FDT_IRQ_TYPE_SPI, irq,
626 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
627 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
628 vms->clock_phandle, vms->clock_phandle);
629 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
630 clocknames, sizeof(clocknames));
632 if (uart == VIRT_UART) {
633 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
634 } else {
635 /* Mark as not usable by the normal world */
636 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
637 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
640 g_free(nodename);
643 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
645 char *nodename;
646 hwaddr base = vms->memmap[VIRT_RTC].base;
647 hwaddr size = vms->memmap[VIRT_RTC].size;
648 int irq = vms->irqmap[VIRT_RTC];
649 const char compat[] = "arm,pl031\0arm,primecell";
651 sysbus_create_simple("pl031", base, pic[irq]);
653 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
654 qemu_fdt_add_subnode(vms->fdt, nodename);
655 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
656 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
657 2, base, 2, size);
658 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
659 GIC_FDT_IRQ_TYPE_SPI, irq,
660 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
661 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
662 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
663 g_free(nodename);
666 static DeviceState *gpio_key_dev;
667 static void virt_powerdown_req(Notifier *n, void *opaque)
669 /* use gpio Pin 3 for power button event */
670 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
673 static Notifier virt_system_powerdown_notifier = {
674 .notify = virt_powerdown_req
677 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
679 char *nodename;
680 DeviceState *pl061_dev;
681 hwaddr base = vms->memmap[VIRT_GPIO].base;
682 hwaddr size = vms->memmap[VIRT_GPIO].size;
683 int irq = vms->irqmap[VIRT_GPIO];
684 const char compat[] = "arm,pl061\0arm,primecell";
686 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
688 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
689 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
690 qemu_fdt_add_subnode(vms->fdt, nodename);
691 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
692 2, base, 2, size);
693 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
694 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
695 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
696 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
697 GIC_FDT_IRQ_TYPE_SPI, irq,
698 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
699 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
700 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
701 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
703 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
704 qdev_get_gpio_in(pl061_dev, 3));
705 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
706 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
707 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
708 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
710 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
711 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
712 "label", "GPIO Key Poweroff");
713 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
714 KEY_POWER);
715 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
716 "gpios", phandle, 3, 0);
718 /* connect powerdown request */
719 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
721 g_free(nodename);
724 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
726 int i;
727 hwaddr size = vms->memmap[VIRT_MMIO].size;
729 /* We create the transports in forwards order. Since qbus_realize()
730 * prepends (not appends) new child buses, the incrementing loop below will
731 * create a list of virtio-mmio buses with decreasing base addresses.
733 * When a -device option is processed from the command line,
734 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
735 * order. The upshot is that -device options in increasing command line
736 * order are mapped to virtio-mmio buses with decreasing base addresses.
738 * When this code was originally written, that arrangement ensured that the
739 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
740 * the first -device on the command line. (The end-to-end order is a
741 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
742 * guest kernel's name-to-address assignment strategy.)
744 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
745 * the message, if not necessarily the code, of commit 70161ff336.
746 * Therefore the loop now establishes the inverse of the original intent.
748 * Unfortunately, we can't counteract the kernel change by reversing the
749 * loop; it would break existing command lines.
751 * In any case, the kernel makes no guarantee about the stability of
752 * enumeration order of virtio devices (as demonstrated by it changing
753 * between kernel versions). For reliable and stable identification
754 * of disks users must use UUIDs or similar mechanisms.
756 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
757 int irq = vms->irqmap[VIRT_MMIO] + i;
758 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
760 sysbus_create_simple("virtio-mmio", base, pic[irq]);
763 /* We add dtb nodes in reverse order so that they appear in the finished
764 * device tree lowest address first.
766 * Note that this mapping is independent of the loop above. The previous
767 * loop influences virtio device to virtio transport assignment, whereas
768 * this loop controls how virtio transports are laid out in the dtb.
770 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
771 char *nodename;
772 int irq = vms->irqmap[VIRT_MMIO] + i;
773 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
775 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
776 qemu_fdt_add_subnode(vms->fdt, nodename);
777 qemu_fdt_setprop_string(vms->fdt, nodename,
778 "compatible", "virtio,mmio");
779 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
780 2, base, 2, size);
781 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
782 GIC_FDT_IRQ_TYPE_SPI, irq,
783 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
784 g_free(nodename);
788 static void create_one_flash(const char *name, hwaddr flashbase,
789 hwaddr flashsize, const char *file,
790 MemoryRegion *sysmem)
792 /* Create and map a single flash device. We use the same
793 * parameters as the flash devices on the Versatile Express board.
795 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
796 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
797 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
798 const uint64_t sectorlength = 256 * 1024;
800 if (dinfo) {
801 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
802 &error_abort);
805 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
806 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
807 qdev_prop_set_uint8(dev, "width", 4);
808 qdev_prop_set_uint8(dev, "device-width", 2);
809 qdev_prop_set_bit(dev, "big-endian", false);
810 qdev_prop_set_uint16(dev, "id0", 0x89);
811 qdev_prop_set_uint16(dev, "id1", 0x18);
812 qdev_prop_set_uint16(dev, "id2", 0x00);
813 qdev_prop_set_uint16(dev, "id3", 0x00);
814 qdev_prop_set_string(dev, "name", name);
815 qdev_init_nofail(dev);
817 memory_region_add_subregion(sysmem, flashbase,
818 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
820 if (file) {
821 char *fn;
822 int image_size;
824 if (drive_get(IF_PFLASH, 0, 0)) {
825 error_report("The contents of the first flash device may be "
826 "specified with -bios or with -drive if=pflash... "
827 "but you cannot use both options at once");
828 exit(1);
830 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
831 if (!fn) {
832 error_report("Could not find ROM image '%s'", file);
833 exit(1);
835 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
836 g_free(fn);
837 if (image_size < 0) {
838 error_report("Could not load ROM image '%s'", file);
839 exit(1);
844 static void create_flash(const VirtMachineState *vms,
845 MemoryRegion *sysmem,
846 MemoryRegion *secure_sysmem)
848 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
849 * Any file passed via -bios goes in the first of these.
850 * sysmem is the system memory space. secure_sysmem is the secure view
851 * of the system, and the first flash device should be made visible only
852 * there. The second flash device is visible to both secure and nonsecure.
853 * If sysmem == secure_sysmem this means there is no separate Secure
854 * address space and both flash devices are generally visible.
856 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
857 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
858 char *nodename;
860 create_one_flash("virt.flash0", flashbase, flashsize,
861 bios_name, secure_sysmem);
862 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
863 NULL, sysmem);
865 if (sysmem == secure_sysmem) {
866 /* Report both flash devices as a single node in the DT */
867 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
868 qemu_fdt_add_subnode(vms->fdt, nodename);
869 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
870 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
871 2, flashbase, 2, flashsize,
872 2, flashbase + flashsize, 2, flashsize);
873 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
874 g_free(nodename);
875 } else {
876 /* Report the devices as separate nodes so we can mark one as
877 * only visible to the secure world.
879 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
880 qemu_fdt_add_subnode(vms->fdt, nodename);
881 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
882 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
883 2, flashbase, 2, flashsize);
884 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
885 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
886 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
887 g_free(nodename);
889 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
890 qemu_fdt_add_subnode(vms->fdt, nodename);
891 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
892 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
893 2, flashbase + flashsize, 2, flashsize);
894 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
895 g_free(nodename);
899 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
901 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
902 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
903 FWCfgState *fw_cfg;
904 char *nodename;
906 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
907 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
909 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
910 qemu_fdt_add_subnode(vms->fdt, nodename);
911 qemu_fdt_setprop_string(vms->fdt, nodename,
912 "compatible", "qemu,fw-cfg-mmio");
913 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
914 2, base, 2, size);
915 g_free(nodename);
916 return fw_cfg;
919 static void create_pcie_irq_map(const VirtMachineState *vms,
920 uint32_t gic_phandle,
921 int first_irq, const char *nodename)
923 int devfn, pin;
924 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
925 uint32_t *irq_map = full_irq_map;
927 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
928 for (pin = 0; pin < 4; pin++) {
929 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
930 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
931 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
932 int i;
934 uint32_t map[] = {
935 devfn << 8, 0, 0, /* devfn */
936 pin + 1, /* PCI pin */
937 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
939 /* Convert map to big endian */
940 for (i = 0; i < 10; i++) {
941 irq_map[i] = cpu_to_be32(map[i]);
943 irq_map += 10;
947 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
948 full_irq_map, sizeof(full_irq_map));
950 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
951 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
952 0x7 /* PCI irq */);
955 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
957 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
958 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
959 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
960 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
961 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
962 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
963 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
964 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
965 hwaddr base = base_mmio;
966 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
967 int irq = vms->irqmap[VIRT_PCIE];
968 MemoryRegion *mmio_alias;
969 MemoryRegion *mmio_reg;
970 MemoryRegion *ecam_alias;
971 MemoryRegion *ecam_reg;
972 DeviceState *dev;
973 char *nodename;
974 int i;
975 PCIHostState *pci;
977 dev = qdev_create(NULL, TYPE_GPEX_HOST);
978 qdev_init_nofail(dev);
980 /* Map only the first size_ecam bytes of ECAM space */
981 ecam_alias = g_new0(MemoryRegion, 1);
982 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
983 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
984 ecam_reg, 0, size_ecam);
985 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
987 /* Map the MMIO window into system address space so as to expose
988 * the section of PCI MMIO space which starts at the same base address
989 * (ie 1:1 mapping for that part of PCI MMIO space visible through
990 * the window).
992 mmio_alias = g_new0(MemoryRegion, 1);
993 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
994 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
995 mmio_reg, base_mmio, size_mmio);
996 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
998 if (vms->highmem) {
999 /* Map high MMIO space */
1000 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1002 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1003 mmio_reg, base_mmio_high, size_mmio_high);
1004 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1005 high_mmio_alias);
1008 /* Map IO port space */
1009 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1011 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1012 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1015 pci = PCI_HOST_BRIDGE(dev);
1016 if (pci->bus) {
1017 for (i = 0; i < nb_nics; i++) {
1018 NICInfo *nd = &nd_table[i];
1020 if (!nd->model) {
1021 nd->model = g_strdup("virtio");
1024 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1028 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1029 qemu_fdt_add_subnode(vms->fdt, nodename);
1030 qemu_fdt_setprop_string(vms->fdt, nodename,
1031 "compatible", "pci-host-ecam-generic");
1032 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1033 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1034 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1035 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1036 nr_pcie_buses - 1);
1037 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1039 if (vms->msi_phandle) {
1040 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1041 vms->msi_phandle);
1044 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1045 2, base_ecam, 2, size_ecam);
1047 if (vms->highmem) {
1048 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1049 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1050 2, base_pio, 2, size_pio,
1051 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1052 2, base_mmio, 2, size_mmio,
1053 1, FDT_PCI_RANGE_MMIO_64BIT,
1054 2, base_mmio_high,
1055 2, base_mmio_high, 2, size_mmio_high);
1056 } else {
1057 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1058 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1059 2, base_pio, 2, size_pio,
1060 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1061 2, base_mmio, 2, size_mmio);
1064 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1065 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1067 g_free(nodename);
1070 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1072 DeviceState *dev;
1073 SysBusDevice *s;
1074 int i;
1075 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1076 MemoryRegion *sysmem = get_system_memory();
1078 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1079 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1080 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1081 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1083 fdt_params->system_params = &platform_bus_params;
1084 fdt_params->binfo = &vms->bootinfo;
1085 fdt_params->intc = "/intc";
1087 * register a machine init done notifier that creates the device tree
1088 * nodes of the platform bus and its children dynamic sysbus devices
1090 arm_register_platform_bus_fdt_creator(fdt_params);
1092 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1093 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1094 qdev_prop_set_uint32(dev, "num_irqs",
1095 platform_bus_params.platform_bus_num_irqs);
1096 qdev_prop_set_uint32(dev, "mmio_size",
1097 platform_bus_params.platform_bus_size);
1098 qdev_init_nofail(dev);
1099 s = SYS_BUS_DEVICE(dev);
1101 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1102 int irqn = platform_bus_params.platform_bus_first_irq + i;
1103 sysbus_connect_irq(s, i, pic[irqn]);
1106 memory_region_add_subregion(sysmem,
1107 platform_bus_params.platform_bus_base,
1108 sysbus_mmio_get_region(s, 0));
1111 static void create_secure_ram(VirtMachineState *vms,
1112 MemoryRegion *secure_sysmem)
1114 MemoryRegion *secram = g_new(MemoryRegion, 1);
1115 char *nodename;
1116 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1117 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1119 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1120 vmstate_register_ram_global(secram);
1121 memory_region_add_subregion(secure_sysmem, base, secram);
1123 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1124 qemu_fdt_add_subnode(vms->fdt, nodename);
1125 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1126 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1127 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1128 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1130 g_free(nodename);
1133 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1135 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1136 bootinfo);
1138 *fdt_size = board->fdt_size;
1139 return board->fdt;
1142 static void virt_build_smbios(VirtMachineState *vms)
1144 uint8_t *smbios_tables, *smbios_anchor;
1145 size_t smbios_tables_len, smbios_anchor_len;
1146 const char *product = "QEMU Virtual Machine";
1148 if (!vms->fw_cfg) {
1149 return;
1152 if (kvm_enabled()) {
1153 product = "KVM Virtual Machine";
1156 smbios_set_defaults("QEMU", product,
1157 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1159 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1160 &smbios_anchor, &smbios_anchor_len);
1162 if (smbios_anchor) {
1163 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1164 smbios_tables, smbios_tables_len);
1165 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1166 smbios_anchor, smbios_anchor_len);
1170 static
1171 void virt_machine_done(Notifier *notifier, void *data)
1173 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1174 machine_done);
1176 virt_acpi_setup(vms);
1177 virt_build_smbios(vms);
1180 static void machvirt_init(MachineState *machine)
1182 VirtMachineState *vms = VIRT_MACHINE(machine);
1183 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1184 qemu_irq pic[NUM_IRQS];
1185 MemoryRegion *sysmem = get_system_memory();
1186 MemoryRegion *secure_sysmem = NULL;
1187 int n, virt_max_cpus;
1188 MemoryRegion *ram = g_new(MemoryRegion, 1);
1189 const char *cpu_model = machine->cpu_model;
1190 char **cpustr;
1191 ObjectClass *oc;
1192 const char *typename;
1193 CPUClass *cc;
1194 Error *err = NULL;
1195 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1196 uint8_t clustersz;
1198 if (!cpu_model) {
1199 cpu_model = "cortex-a15";
1202 /* We can probe only here because during property set
1203 * KVM is not available yet
1205 if (!vms->gic_version) {
1206 if (!kvm_enabled()) {
1207 error_report("gic-version=host requires KVM");
1208 exit(1);
1211 vms->gic_version = kvm_arm_vgic_probe();
1212 if (!vms->gic_version) {
1213 error_report("Unable to determine GIC version supported by host");
1214 exit(1);
1218 /* Separate the actual CPU model name from any appended features */
1219 cpustr = g_strsplit(cpu_model, ",", 2);
1221 if (!cpuname_valid(cpustr[0])) {
1222 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1223 exit(1);
1226 /* If we have an EL3 boot ROM then the assumption is that it will
1227 * implement PSCI itself, so disable QEMU's internal implementation
1228 * so it doesn't get in the way. Instead of starting secondary
1229 * CPUs in PSCI powerdown state we will start them all running and
1230 * let the boot ROM sort them out.
1231 * The usual case is that we do use QEMU's PSCI implementation.
1233 vms->using_psci = !(vms->secure && firmware_loaded);
1235 /* The maximum number of CPUs depends on the GIC version, or on how
1236 * many redistributors we can fit into the memory map.
1238 if (vms->gic_version == 3) {
1239 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1240 clustersz = GICV3_TARGETLIST_BITS;
1241 } else {
1242 virt_max_cpus = GIC_NCPU;
1243 clustersz = GIC_TARGETLIST_BITS;
1246 if (max_cpus > virt_max_cpus) {
1247 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1248 "supported by machine 'mach-virt' (%d)",
1249 max_cpus, virt_max_cpus);
1250 exit(1);
1253 vms->smp_cpus = smp_cpus;
1255 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1256 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1257 exit(1);
1260 if (vms->secure) {
1261 if (kvm_enabled()) {
1262 error_report("mach-virt: KVM does not support Security extensions");
1263 exit(1);
1266 /* The Secure view of the world is the same as the NonSecure,
1267 * but with a few extra devices. Create it as a container region
1268 * containing the system memory at low priority; any secure-only
1269 * devices go in at higher priority and take precedence.
1271 secure_sysmem = g_new(MemoryRegion, 1);
1272 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1273 UINT64_MAX);
1274 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1277 create_fdt(vms);
1279 oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1280 if (!oc) {
1281 error_report("Unable to find CPU definition");
1282 exit(1);
1284 typename = object_class_get_name(oc);
1286 /* convert -smp CPU options specified by the user into global props */
1287 cc = CPU_CLASS(oc);
1288 cc->parse_features(typename, cpustr[1], &err);
1289 g_strfreev(cpustr);
1290 if (err) {
1291 error_report_err(err);
1292 exit(1);
1295 for (n = 0; n < smp_cpus; n++) {
1296 Object *cpuobj = object_new(typename);
1297 if (!vmc->disallow_affinity_adjustment) {
1298 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1299 * GIC's target-list limitations. 32-bit KVM hosts currently
1300 * always create clusters of 4 CPUs, but that is expected to
1301 * change when they gain support for gicv3. When KVM is enabled
1302 * it will override the changes we make here, therefore our
1303 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1304 * and to improve SGI efficiency.
1306 uint8_t aff1 = n / clustersz;
1307 uint8_t aff0 = n % clustersz;
1308 object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1309 "mp-affinity", NULL);
1312 if (!vms->secure) {
1313 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1316 if (vms->using_psci) {
1317 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1318 "psci-conduit", NULL);
1320 /* Secondary CPUs start in PSCI powered-down state */
1321 if (n > 0) {
1322 object_property_set_bool(cpuobj, true,
1323 "start-powered-off", NULL);
1327 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1328 object_property_set_bool(cpuobj, false, "pmu", NULL);
1331 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1332 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1333 "reset-cbar", &error_abort);
1336 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1337 &error_abort);
1338 if (vms->secure) {
1339 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1340 "secure-memory", &error_abort);
1343 object_property_set_bool(cpuobj, true, "realized", NULL);
1345 fdt_add_timer_nodes(vms);
1346 fdt_add_cpu_nodes(vms);
1347 fdt_add_psci_node(vms);
1349 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1350 machine->ram_size);
1351 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1353 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1355 create_gic(vms, pic);
1357 fdt_add_pmu_nodes(vms);
1359 create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1361 if (vms->secure) {
1362 create_secure_ram(vms, secure_sysmem);
1363 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1366 create_rtc(vms, pic);
1368 create_pcie(vms, pic);
1370 create_gpio(vms, pic);
1372 /* Create mmio transports, so the user can create virtio backends
1373 * (which will be automatically plugged in to the transports). If
1374 * no backend is created the transport will just sit harmlessly idle.
1376 create_virtio_devices(vms, pic);
1378 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1379 rom_set_fw(vms->fw_cfg);
1381 vms->machine_done.notify = virt_machine_done;
1382 qemu_add_machine_init_done_notifier(&vms->machine_done);
1384 vms->bootinfo.ram_size = machine->ram_size;
1385 vms->bootinfo.kernel_filename = machine->kernel_filename;
1386 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1387 vms->bootinfo.initrd_filename = machine->initrd_filename;
1388 vms->bootinfo.nb_cpus = smp_cpus;
1389 vms->bootinfo.board_id = -1;
1390 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1391 vms->bootinfo.get_dtb = machvirt_dtb;
1392 vms->bootinfo.firmware_loaded = firmware_loaded;
1393 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1396 * arm_load_kernel machine init done notifier registration must
1397 * happen before the platform_bus_create call. In this latter,
1398 * another notifier is registered which adds platform bus nodes.
1399 * Notifiers are executed in registration reverse order.
1401 create_platform_bus(vms, pic);
1404 static bool virt_get_secure(Object *obj, Error **errp)
1406 VirtMachineState *vms = VIRT_MACHINE(obj);
1408 return vms->secure;
1411 static void virt_set_secure(Object *obj, bool value, Error **errp)
1413 VirtMachineState *vms = VIRT_MACHINE(obj);
1415 vms->secure = value;
1418 static bool virt_get_highmem(Object *obj, Error **errp)
1420 VirtMachineState *vms = VIRT_MACHINE(obj);
1422 return vms->highmem;
1425 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1427 VirtMachineState *vms = VIRT_MACHINE(obj);
1429 vms->highmem = value;
1432 static char *virt_get_gic_version(Object *obj, Error **errp)
1434 VirtMachineState *vms = VIRT_MACHINE(obj);
1435 const char *val = vms->gic_version == 3 ? "3" : "2";
1437 return g_strdup(val);
1440 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1442 VirtMachineState *vms = VIRT_MACHINE(obj);
1444 if (!strcmp(value, "3")) {
1445 vms->gic_version = 3;
1446 } else if (!strcmp(value, "2")) {
1447 vms->gic_version = 2;
1448 } else if (!strcmp(value, "host")) {
1449 vms->gic_version = 0; /* Will probe later */
1450 } else {
1451 error_setg(errp, "Invalid gic-version value");
1452 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1456 static void virt_machine_class_init(ObjectClass *oc, void *data)
1458 MachineClass *mc = MACHINE_CLASS(oc);
1460 mc->init = machvirt_init;
1461 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1462 * it later in machvirt_init, where we have more information about the
1463 * configuration of the particular instance.
1465 mc->max_cpus = 255;
1466 mc->has_dynamic_sysbus = true;
1467 mc->block_default_type = IF_VIRTIO;
1468 mc->no_cdrom = 1;
1469 mc->pci_allow_0_address = true;
1470 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1471 mc->minimum_page_bits = 12;
1474 static const TypeInfo virt_machine_info = {
1475 .name = TYPE_VIRT_MACHINE,
1476 .parent = TYPE_MACHINE,
1477 .abstract = true,
1478 .instance_size = sizeof(VirtMachineState),
1479 .class_size = sizeof(VirtMachineClass),
1480 .class_init = virt_machine_class_init,
1483 static void machvirt_machine_init(void)
1485 type_register_static(&virt_machine_info);
1487 type_init(machvirt_machine_init);
1489 static void virt_2_9_instance_init(Object *obj)
1491 VirtMachineState *vms = VIRT_MACHINE(obj);
1493 /* EL3 is disabled by default on virt: this makes us consistent
1494 * between KVM and TCG for this board, and it also allows us to
1495 * boot UEFI blobs which assume no TrustZone support.
1497 vms->secure = false;
1498 object_property_add_bool(obj, "secure", virt_get_secure,
1499 virt_set_secure, NULL);
1500 object_property_set_description(obj, "secure",
1501 "Set on/off to enable/disable the ARM "
1502 "Security Extensions (TrustZone)",
1503 NULL);
1505 /* High memory is enabled by default */
1506 vms->highmem = true;
1507 object_property_add_bool(obj, "highmem", virt_get_highmem,
1508 virt_set_highmem, NULL);
1509 object_property_set_description(obj, "highmem",
1510 "Set on/off to enable/disable using "
1511 "physical address space above 32 bits",
1512 NULL);
1513 /* Default GIC type is v2 */
1514 vms->gic_version = 2;
1515 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1516 virt_set_gic_version, NULL);
1517 object_property_set_description(obj, "gic-version",
1518 "Set GIC version. "
1519 "Valid values are 2, 3 and host", NULL);
1521 vms->memmap = a15memmap;
1522 vms->irqmap = a15irqmap;
1525 static void virt_machine_2_9_options(MachineClass *mc)
1528 DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1530 #define VIRT_COMPAT_2_8 \
1531 HW_COMPAT_2_8
1533 static void virt_2_8_instance_init(Object *obj)
1535 virt_2_9_instance_init(obj);
1538 static void virt_machine_2_8_options(MachineClass *mc)
1540 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1542 virt_machine_2_9_options(mc);
1543 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1544 /* For 2.8 and earlier we falsely claimed in the DT that
1545 * our timers were edge-triggered, not level-triggered.
1547 vmc->claim_edge_triggered_timers = true;
1549 DEFINE_VIRT_MACHINE(2, 8)
1551 #define VIRT_COMPAT_2_7 \
1552 HW_COMPAT_2_7
1554 static void virt_2_7_instance_init(Object *obj)
1556 virt_2_8_instance_init(obj);
1559 static void virt_machine_2_7_options(MachineClass *mc)
1561 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1563 virt_machine_2_8_options(mc);
1564 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1565 /* ITS was introduced with 2.8 */
1566 vmc->no_its = true;
1567 /* Stick with 1K pages for migration compatibility */
1568 mc->minimum_page_bits = 0;
1570 DEFINE_VIRT_MACHINE(2, 7)
1572 #define VIRT_COMPAT_2_6 \
1573 HW_COMPAT_2_6
1575 static void virt_2_6_instance_init(Object *obj)
1577 virt_2_7_instance_init(obj);
1580 static void virt_machine_2_6_options(MachineClass *mc)
1582 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1584 virt_machine_2_7_options(mc);
1585 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1586 vmc->disallow_affinity_adjustment = true;
1587 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1588 vmc->no_pmu = true;
1590 DEFINE_VIRT_MACHINE(2, 6)