2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
33 #include "hw/fw-path-provider.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
45 #include "hw/boards.h"
46 #include "hw/ppc/ppc.h"
47 #include "hw/loader.h"
49 #include "hw/ppc/fdt.h"
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
60 #include "exec/address-spaces.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
67 #include "hw/compat.h"
68 #include "qemu/cutils.h"
69 #include "hw/ppc/spapr_cpu_core.h"
70 #include "qmp-commands.h"
74 /* SLOF memory layout:
76 * SLOF raw image loaded at 0, copies its romfs right below the flat
77 * device-tree, then position SLOF itself 31M below that
79 * So we set FW_OVERHEAD to 40MB which should account for all of that
82 * We load our kernel at 4M, leaving space for SLOF initial image
84 #define FDT_MAX_SIZE 0x100000
85 #define RTAS_MAX_SIZE 0x10000
86 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
87 #define FW_MAX_SIZE 0x400000
88 #define FW_FILE_NAME "slof.bin"
89 #define FW_OVERHEAD 0x2800000
90 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
92 #define MIN_RMA_SLOF 128UL
94 #define PHANDLE_XICP 0x00001111
96 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
98 static XICSState
*try_create_xics(const char *type
, int nr_servers
,
99 int nr_irqs
, Error
**errp
)
104 dev
= qdev_create(NULL
, type
);
105 qdev_prop_set_uint32(dev
, "nr_servers", nr_servers
);
106 qdev_prop_set_uint32(dev
, "nr_irqs", nr_irqs
);
107 object_property_set_bool(OBJECT(dev
), true, "realized", &err
);
109 error_propagate(errp
, err
);
110 object_unparent(OBJECT(dev
));
113 return XICS_COMMON(dev
);
116 static XICSState
*xics_system_init(MachineState
*machine
,
117 int nr_servers
, int nr_irqs
, Error
**errp
)
119 XICSState
*xics
= NULL
;
124 if (machine_kernel_irqchip_allowed(machine
)) {
125 xics
= try_create_xics(TYPE_XICS_SPAPR_KVM
, nr_servers
, nr_irqs
,
128 if (machine_kernel_irqchip_required(machine
) && !xics
) {
129 error_reportf_err(err
,
130 "kernel_irqchip requested but unavailable: ");
137 xics
= try_create_xics(TYPE_XICS_SPAPR
, nr_servers
, nr_irqs
, errp
);
143 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
147 uint32_t servers_prop
[smt_threads
];
148 uint32_t gservers_prop
[smt_threads
* 2];
149 int index
= ppc_get_vcpu_dt_id(cpu
);
151 if (cpu
->compat_pvr
) {
152 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
158 /* Build interrupt servers and gservers properties */
159 for (i
= 0; i
< smt_threads
; i
++) {
160 servers_prop
[i
] = cpu_to_be32(index
+ i
);
161 /* Hack, direct the group queues back to cpu 0 */
162 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
163 gservers_prop
[i
*2 + 1] = 0;
165 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
166 servers_prop
, sizeof(servers_prop
));
170 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
171 gservers_prop
, sizeof(gservers_prop
));
176 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, CPUState
*cs
)
179 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
180 int index
= ppc_get_vcpu_dt_id(cpu
);
181 uint32_t associativity
[] = {cpu_to_be32(0x5),
185 cpu_to_be32(cs
->numa_node
),
188 /* Advertise NUMA via ibm,associativity */
189 if (nb_numa_nodes
> 1) {
190 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
191 sizeof(associativity
));
197 static int spapr_fixup_cpu_dt(void *fdt
, sPAPRMachineState
*spapr
)
199 int ret
= 0, offset
, cpus_offset
;
202 int smt
= kvmppc_smt_threads();
203 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
206 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
207 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
208 int index
= ppc_get_vcpu_dt_id(cpu
);
209 int compat_smt
= MIN(smp_threads
, ppc_compat_max_threads(cpu
));
211 if ((index
% smt
) != 0) {
215 snprintf(cpu_model
, 32, "%s@%x", dc
->fw_name
, index
);
217 cpus_offset
= fdt_path_offset(fdt
, "/cpus");
218 if (cpus_offset
< 0) {
219 cpus_offset
= fdt_add_subnode(fdt
, fdt_path_offset(fdt
, "/"),
221 if (cpus_offset
< 0) {
225 offset
= fdt_subnode_offset(fdt
, cpus_offset
, cpu_model
);
227 offset
= fdt_add_subnode(fdt
, cpus_offset
, cpu_model
);
233 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
234 pft_size_prop
, sizeof(pft_size_prop
));
239 ret
= spapr_fixup_cpu_numa_dt(fdt
, offset
, cs
);
244 ret
= spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
);
252 static hwaddr
spapr_node0_size(void)
254 MachineState
*machine
= MACHINE(qdev_get_machine());
258 for (i
= 0; i
< nb_numa_nodes
; ++i
) {
259 if (numa_info
[i
].node_mem
) {
260 return MIN(pow2floor(numa_info
[i
].node_mem
),
265 return machine
->ram_size
;
268 static void add_str(GString
*s
, const gchar
*s1
)
270 g_string_append_len(s
, s1
, strlen(s1
) + 1);
273 static int spapr_populate_memory_node(void *fdt
, int nodeid
, hwaddr start
,
276 uint32_t associativity
[] = {
277 cpu_to_be32(0x4), /* length */
278 cpu_to_be32(0x0), cpu_to_be32(0x0),
279 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
282 uint64_t mem_reg_property
[2];
285 mem_reg_property
[0] = cpu_to_be64(start
);
286 mem_reg_property
[1] = cpu_to_be64(size
);
288 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, start
);
289 off
= fdt_add_subnode(fdt
, 0, mem_name
);
291 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
292 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
293 sizeof(mem_reg_property
))));
294 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
295 sizeof(associativity
))));
299 static int spapr_populate_memory(sPAPRMachineState
*spapr
, void *fdt
)
301 MachineState
*machine
= MACHINE(spapr
);
302 hwaddr mem_start
, node_size
;
303 int i
, nb_nodes
= nb_numa_nodes
;
304 NodeInfo
*nodes
= numa_info
;
307 /* No NUMA nodes, assume there is just one node with whole RAM */
308 if (!nb_numa_nodes
) {
310 ramnode
.node_mem
= machine
->ram_size
;
314 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
315 if (!nodes
[i
].node_mem
) {
318 if (mem_start
>= machine
->ram_size
) {
321 node_size
= nodes
[i
].node_mem
;
322 if (node_size
> machine
->ram_size
- mem_start
) {
323 node_size
= machine
->ram_size
- mem_start
;
327 /* ppc_spapr_init() checks for rma_size <= node0_size already */
328 spapr_populate_memory_node(fdt
, i
, 0, spapr
->rma_size
);
329 mem_start
+= spapr
->rma_size
;
330 node_size
-= spapr
->rma_size
;
332 for ( ; node_size
; ) {
333 hwaddr sizetmp
= pow2floor(node_size
);
335 /* mem_start != 0 here */
336 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
337 sizetmp
= 1ULL << ctzl(mem_start
);
340 spapr_populate_memory_node(fdt
, i
, mem_start
, sizetmp
);
341 node_size
-= sizetmp
;
342 mem_start
+= sizetmp
;
349 /* Populate the "ibm,pa-features" property */
350 static void spapr_populate_pa_features(CPUPPCState
*env
, void *fdt
, int offset
)
352 uint8_t pa_features_206
[] = { 6, 0,
353 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
354 uint8_t pa_features_207
[] = { 24, 0,
355 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
356 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
357 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
358 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
359 uint8_t *pa_features
;
362 switch (env
->mmu_model
) {
363 case POWERPC_MMU_2_06
:
364 case POWERPC_MMU_2_06a
:
365 pa_features
= pa_features_206
;
366 pa_size
= sizeof(pa_features_206
);
368 case POWERPC_MMU_2_07
:
369 case POWERPC_MMU_2_07a
:
370 pa_features
= pa_features_207
;
371 pa_size
= sizeof(pa_features_207
);
377 if (env
->ci_large_pages
) {
379 * Note: we keep CI large pages off by default because a 64K capable
380 * guest provisioned with large pages might otherwise try to map a qemu
381 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
382 * even if that qemu runs on a 4k host.
383 * We dd this bit back here if we are confident this is not an issue
385 pa_features
[3] |= 0x20;
387 if (kvmppc_has_cap_htm() && pa_size
> 24) {
388 pa_features
[24] |= 0x80; /* Transactional memory support */
391 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
394 static void spapr_populate_cpu_dt(CPUState
*cs
, void *fdt
, int offset
,
395 sPAPRMachineState
*spapr
)
397 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
398 CPUPPCState
*env
= &cpu
->env
;
399 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
400 int index
= ppc_get_vcpu_dt_id(cpu
);
401 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
402 0xffffffff, 0xffffffff};
403 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
404 : SPAPR_TIMEBASE_FREQ
;
405 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
406 uint32_t page_sizes_prop
[64];
407 size_t page_sizes_prop_size
;
408 uint32_t vcpus_per_socket
= smp_threads
* smp_cores
;
409 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
410 int compat_smt
= MIN(smp_threads
, ppc_compat_max_threads(cpu
));
411 sPAPRDRConnector
*drc
;
412 sPAPRDRConnectorClass
*drck
;
415 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU
, index
);
417 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
418 drc_index
= drck
->get_index(drc
);
419 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
422 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
423 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
425 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
426 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
427 env
->dcache_line_size
)));
428 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
429 env
->dcache_line_size
)));
430 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
431 env
->icache_line_size
)));
432 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
433 env
->icache_line_size
)));
435 if (pcc
->l1_dcache_size
) {
436 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
437 pcc
->l1_dcache_size
)));
439 error_report("Warning: Unknown L1 dcache size for cpu");
441 if (pcc
->l1_icache_size
) {
442 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
443 pcc
->l1_icache_size
)));
445 error_report("Warning: Unknown L1 icache size for cpu");
448 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
449 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
450 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", env
->slb_nr
)));
451 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", env
->slb_nr
)));
452 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
453 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
455 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
456 _FDT((fdt_setprop(fdt
, offset
, "ibm,purr", NULL
, 0)));
459 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
460 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
461 segs
, sizeof(segs
))));
464 /* Advertise VMX/VSX (vector extensions) if available
465 * 0 / no property == no vector extensions
466 * 1 == VMX / Altivec available
467 * 2 == VSX available */
468 if (env
->insns_flags
& PPC_ALTIVEC
) {
469 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
471 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", vmx
)));
474 /* Advertise DFP (Decimal Floating Point) if available
475 * 0 / no property == no DFP
476 * 1 == DFP available */
477 if (env
->insns_flags2
& PPC2_DFP
) {
478 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
481 page_sizes_prop_size
= ppc_create_page_sizes_prop(env
, page_sizes_prop
,
482 sizeof(page_sizes_prop
));
483 if (page_sizes_prop_size
) {
484 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
485 page_sizes_prop
, page_sizes_prop_size
)));
488 spapr_populate_pa_features(env
, fdt
, offset
);
490 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
491 cs
->cpu_index
/ vcpus_per_socket
)));
493 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
494 pft_size_prop
, sizeof(pft_size_prop
))));
496 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cs
));
498 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
501 static void spapr_populate_cpus_dt_node(void *fdt
, sPAPRMachineState
*spapr
)
506 int smt
= kvmppc_smt_threads();
508 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
510 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
511 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
514 * We walk the CPUs in reverse order to ensure that CPU DT nodes
515 * created by fdt_add_subnode() end up in the right order in FDT
516 * for the guest kernel the enumerate the CPUs correctly.
518 CPU_FOREACH_REVERSE(cs
) {
519 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
520 int index
= ppc_get_vcpu_dt_id(cpu
);
521 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
524 if ((index
% smt
) != 0) {
528 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
529 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
532 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
538 * Adds ibm,dynamic-reconfiguration-memory node.
539 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
540 * of this device tree node.
542 static int spapr_populate_drconf_memory(sPAPRMachineState
*spapr
, void *fdt
)
544 MachineState
*machine
= MACHINE(spapr
);
546 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
547 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
548 uint32_t hotplug_lmb_start
= spapr
->hotplug_memory
.base
/ lmb_size
;
549 uint32_t nr_lmbs
= (spapr
->hotplug_memory
.base
+
550 memory_region_size(&spapr
->hotplug_memory
.mr
)) /
552 uint32_t *int_buf
, *cur_index
, buf_len
;
553 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
556 * Don't create the node if there is no hotpluggable memory
558 if (machine
->ram_size
== machine
->maxram_size
) {
563 * Allocate enough buffer size to fit in ibm,dynamic-memory
564 * or ibm,associativity-lookup-arrays
566 buf_len
= MAX(nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1, nr_nodes
* 4 + 2)
568 cur_index
= int_buf
= g_malloc0(buf_len
);
570 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
572 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
573 sizeof(prop_lmb_size
));
578 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
583 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
588 /* ibm,dynamic-memory */
589 int_buf
[0] = cpu_to_be32(nr_lmbs
);
591 for (i
= 0; i
< nr_lmbs
; i
++) {
592 uint64_t addr
= i
* lmb_size
;
593 uint32_t *dynamic_memory
= cur_index
;
595 if (i
>= hotplug_lmb_start
) {
596 sPAPRDRConnector
*drc
;
597 sPAPRDRConnectorClass
*drck
;
599 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
, i
);
601 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
603 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
604 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
605 dynamic_memory
[2] = cpu_to_be32(drck
->get_index(drc
));
606 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
607 dynamic_memory
[4] = cpu_to_be32(numa_get_node(addr
, NULL
));
608 if (memory_region_present(get_system_memory(), addr
)) {
609 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
611 dynamic_memory
[5] = cpu_to_be32(0);
615 * LMB information for RMA, boot time RAM and gap b/n RAM and
616 * hotplug memory region -- all these are marked as reserved
617 * and as having no valid DRC.
619 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
620 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
621 dynamic_memory
[2] = cpu_to_be32(0);
622 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
623 dynamic_memory
[4] = cpu_to_be32(-1);
624 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
625 SPAPR_LMB_FLAGS_DRC_INVALID
);
628 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
630 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
635 /* ibm,associativity-lookup-arrays */
637 int_buf
[0] = cpu_to_be32(nr_nodes
);
638 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
640 for (i
= 0; i
< nr_nodes
; i
++) {
641 uint32_t associativity
[] = {
647 memcpy(cur_index
, associativity
, sizeof(associativity
));
650 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
651 (cur_index
- int_buf
) * sizeof(uint32_t));
657 static int spapr_dt_cas_updates(sPAPRMachineState
*spapr
, void *fdt
,
658 sPAPROptionVector
*ov5_updates
)
660 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
663 /* Generate ibm,dynamic-reconfiguration-memory node if required */
664 if (spapr_ovec_test(ov5_updates
, OV5_DRCONF_MEMORY
)) {
665 g_assert(smc
->dr_lmb_enabled
);
666 ret
= spapr_populate_drconf_memory(spapr
, fdt
);
672 offset
= fdt_path_offset(fdt
, "/chosen");
674 offset
= fdt_add_subnode(fdt
, 0, "chosen");
679 ret
= spapr_ovec_populate_dt(fdt
, offset
, spapr
->ov5_cas
,
680 "ibm,architecture-vec-5");
686 int spapr_h_cas_compose_response(sPAPRMachineState
*spapr
,
687 target_ulong addr
, target_ulong size
,
688 sPAPROptionVector
*ov5_updates
)
690 void *fdt
, *fdt_skel
;
691 sPAPRDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
695 /* Create sceleton */
696 fdt_skel
= g_malloc0(size
);
697 _FDT((fdt_create(fdt_skel
, size
)));
698 _FDT((fdt_begin_node(fdt_skel
, "")));
699 _FDT((fdt_end_node(fdt_skel
)));
700 _FDT((fdt_finish(fdt_skel
)));
701 fdt
= g_malloc0(size
);
702 _FDT((fdt_open_into(fdt_skel
, fdt
, size
)));
705 /* Fixup cpu nodes */
706 _FDT((spapr_fixup_cpu_dt(fdt
, spapr
)));
708 if (spapr_dt_cas_updates(spapr
, fdt
, ov5_updates
)) {
712 /* Pack resulting tree */
713 _FDT((fdt_pack(fdt
)));
715 if (fdt_totalsize(fdt
) + sizeof(hdr
) > size
) {
716 trace_spapr_cas_failed(size
);
720 cpu_physical_memory_write(addr
, &hdr
, sizeof(hdr
));
721 cpu_physical_memory_write(addr
+ sizeof(hdr
), fdt
, fdt_totalsize(fdt
));
722 trace_spapr_cas_continue(fdt_totalsize(fdt
) + sizeof(hdr
));
728 static void spapr_dt_rtas(sPAPRMachineState
*spapr
, void *fdt
)
731 GString
*hypertas
= g_string_sized_new(256);
732 GString
*qemu_hypertas
= g_string_sized_new(256);
733 uint32_t refpoints
[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
734 uint64_t max_hotplug_addr
= spapr
->hotplug_memory
.base
+
735 memory_region_size(&spapr
->hotplug_memory
.mr
);
736 uint32_t lrdr_capacity
[] = {
737 cpu_to_be32(max_hotplug_addr
>> 32),
738 cpu_to_be32(max_hotplug_addr
& 0xffffffff),
739 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
),
740 cpu_to_be32(max_cpus
/ smp_threads
),
743 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
746 add_str(hypertas
, "hcall-pft");
747 add_str(hypertas
, "hcall-term");
748 add_str(hypertas
, "hcall-dabr");
749 add_str(hypertas
, "hcall-interrupt");
750 add_str(hypertas
, "hcall-tce");
751 add_str(hypertas
, "hcall-vio");
752 add_str(hypertas
, "hcall-splpar");
753 add_str(hypertas
, "hcall-bulk");
754 add_str(hypertas
, "hcall-set-mode");
755 add_str(hypertas
, "hcall-sprg0");
756 add_str(hypertas
, "hcall-copy");
757 add_str(hypertas
, "hcall-debug");
758 add_str(qemu_hypertas
, "hcall-memop1");
760 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
761 add_str(hypertas
, "hcall-multi-tce");
763 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
764 hypertas
->str
, hypertas
->len
));
765 g_string_free(hypertas
, TRUE
);
766 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
767 qemu_hypertas
->str
, qemu_hypertas
->len
));
768 g_string_free(qemu_hypertas
, TRUE
);
770 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
771 refpoints
, sizeof(refpoints
)));
773 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
774 RTAS_ERROR_LOG_MAX
));
775 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
776 RTAS_EVENT_SCAN_RATE
));
779 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
783 * According to PAPR, rtas ibm,os-term does not guarantee a return
784 * back to the guest cpu.
786 * While an additional ibm,extended-os-term property indicates
787 * that rtas call return will always occur. Set this property.
789 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
791 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
792 lrdr_capacity
, sizeof(lrdr_capacity
)));
794 spapr_dt_rtas_tokens(fdt
, rtas
);
797 static void spapr_dt_chosen(sPAPRMachineState
*spapr
, void *fdt
)
799 MachineState
*machine
= MACHINE(spapr
);
801 const char *boot_device
= machine
->boot_order
;
802 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
804 char *bootlist
= get_boot_devices_list(&cb
, true);
806 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
808 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs", machine
->kernel_cmdline
));
809 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
810 spapr
->initrd_base
));
811 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
812 spapr
->initrd_base
+ spapr
->initrd_size
));
814 if (spapr
->kernel_size
) {
815 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
816 cpu_to_be64(spapr
->kernel_size
) };
818 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
819 &kprop
, sizeof(kprop
)));
820 if (spapr
->kernel_le
) {
821 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
825 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
827 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
828 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
829 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
831 if (cb
&& bootlist
) {
834 for (i
= 0; i
< cb
; i
++) {
835 if (bootlist
[i
] == '\n') {
839 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
842 if (boot_device
&& strlen(boot_device
)) {
843 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
846 if (!spapr
->has_graphics
&& stdout_path
) {
847 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
854 static void spapr_dt_hypervisor(sPAPRMachineState
*spapr
, void *fdt
)
856 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
857 * KVM to work under pHyp with some guest co-operation */
859 uint8_t hypercall
[16];
861 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
862 /* indicate KVM hypercall interface */
863 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
864 if (kvmppc_has_cap_fixup_hcalls()) {
866 * Older KVM versions with older guest kernels were broken
867 * with the magic page, don't allow the guest to map it.
869 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
870 sizeof(hypercall
))) {
871 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
872 hypercall
, sizeof(hypercall
)));
877 static void *spapr_build_fdt(sPAPRMachineState
*spapr
,
881 MachineState
*machine
= MACHINE(qdev_get_machine());
882 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
883 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
889 fdt
= g_malloc0(FDT_MAX_SIZE
);
890 _FDT((fdt_create_empty_tree(fdt
, FDT_MAX_SIZE
)));
893 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
894 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
895 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
898 * Add info to guest to indentify which host is it being run on
899 * and what is the uuid of the guest
901 if (kvmppc_get_host_model(&buf
)) {
902 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
905 if (kvmppc_get_host_serial(&buf
)) {
906 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
910 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
912 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
914 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
918 if (qemu_get_vm_name()) {
919 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
920 qemu_get_vm_name()));
923 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
924 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
926 /* /interrupt controller */
927 spapr_dt_xics(spapr
->xics
, fdt
, PHANDLE_XICP
);
929 ret
= spapr_populate_memory(spapr
, fdt
);
931 error_report("couldn't setup memory nodes in fdt");
936 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
938 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
939 ret
= spapr_rng_populate_dt(fdt
);
941 error_report("could not set up rng device in the fdt");
946 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
947 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
);
949 error_report("couldn't setup PCI devices in fdt");
955 spapr_populate_cpus_dt_node(fdt
, spapr
);
957 if (smc
->dr_lmb_enabled
) {
958 _FDT(spapr_drc_populate_dt(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
961 if (mc
->query_hotpluggable_cpus
) {
962 int offset
= fdt_path_offset(fdt
, "/cpus");
963 ret
= spapr_drc_populate_dt(fdt
, offset
, NULL
,
964 SPAPR_DR_CONNECTOR_TYPE_CPU
);
966 error_report("Couldn't set up CPU DR device tree properties");
972 spapr_dt_events(spapr
, fdt
);
975 spapr_dt_rtas(spapr
, fdt
);
978 spapr_dt_chosen(spapr
, fdt
);
982 spapr_dt_hypervisor(spapr
, fdt
);
985 /* Build memory reserve map */
986 if (spapr
->kernel_size
) {
987 _FDT((fdt_add_mem_rsv(fdt
, KERNEL_LOAD_ADDR
, spapr
->kernel_size
)));
989 if (spapr
->initrd_size
) {
990 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
, spapr
->initrd_size
)));
993 /* ibm,client-architecture-support updates */
994 ret
= spapr_dt_cas_updates(spapr
, fdt
, spapr
->ov5_cas
);
996 error_report("couldn't setup CAS properties fdt");
1003 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1005 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
1008 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1011 CPUPPCState
*env
= &cpu
->env
;
1014 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1015 env
->gpr
[3] = H_PRIVILEGE
;
1017 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1021 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1022 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1023 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1024 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1025 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1028 * Get the fd to access the kernel htab, re-opening it if necessary
1030 static int get_htab_fd(sPAPRMachineState
*spapr
)
1032 if (spapr
->htab_fd
>= 0) {
1033 return spapr
->htab_fd
;
1036 spapr
->htab_fd
= kvmppc_get_htab_fd(false);
1037 if (spapr
->htab_fd
< 0) {
1038 error_report("Unable to open fd for reading hash table from KVM: %s",
1042 return spapr
->htab_fd
;
1045 static void close_htab_fd(sPAPRMachineState
*spapr
)
1047 if (spapr
->htab_fd
>= 0) {
1048 close(spapr
->htab_fd
);
1050 spapr
->htab_fd
= -1;
1053 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1057 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1058 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1059 * that's much more than is needed for Linux guests */
1060 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1061 shift
= MAX(shift
, 18); /* Minimum architected size */
1062 shift
= MIN(shift
, 46); /* Maximum architected size */
1066 static void spapr_reallocate_hpt(sPAPRMachineState
*spapr
, int shift
,
1071 /* Clean up any HPT info from a previous boot */
1072 g_free(spapr
->htab
);
1074 spapr
->htab_shift
= 0;
1075 close_htab_fd(spapr
);
1077 rc
= kvmppc_reset_htab(shift
);
1079 /* kernel-side HPT needed, but couldn't allocate one */
1080 error_setg_errno(errp
, errno
,
1081 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1083 /* This is almost certainly fatal, but if the caller really
1084 * wants to carry on with shift == 0, it's welcome to try */
1085 } else if (rc
> 0) {
1086 /* kernel-side HPT allocated */
1089 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1093 spapr
->htab_shift
= shift
;
1096 /* kernel-side HPT not needed, allocate in userspace instead */
1097 size_t size
= 1ULL << shift
;
1100 spapr
->htab
= qemu_memalign(size
, size
);
1102 error_setg_errno(errp
, errno
,
1103 "Could not allocate HPT of order %d", shift
);
1107 memset(spapr
->htab
, 0, size
);
1108 spapr
->htab_shift
= shift
;
1110 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1111 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1116 static void find_unknown_sysbus_device(SysBusDevice
*sbdev
, void *opaque
)
1118 bool matched
= false;
1120 if (object_dynamic_cast(OBJECT(sbdev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
1125 error_report("Device %s is not supported by this machine yet.",
1126 qdev_fw_name(DEVICE(sbdev
)));
1131 static void ppc_spapr_reset(void)
1133 MachineState
*machine
= MACHINE(qdev_get_machine());
1134 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1135 PowerPCCPU
*first_ppc_cpu
;
1136 uint32_t rtas_limit
;
1137 hwaddr rtas_addr
, fdt_addr
;
1141 /* Check for unknown sysbus devices */
1142 foreach_dynamic_sysbus_device(find_unknown_sysbus_device
, NULL
);
1144 /* Allocate and/or reset the hash page table */
1145 spapr_reallocate_hpt(spapr
,
1146 spapr_hpt_shift_for_ramsize(machine
->maxram_size
),
1149 /* Update the RMA size if necessary */
1150 if (spapr
->vrma_adjust
) {
1151 spapr
->rma_size
= kvmppc_rma_size(spapr_node0_size(),
1155 qemu_devices_reset();
1158 * We place the device tree and RTAS just below either the top of the RMA,
1159 * or just below 2GB, whichever is lowere, so that it can be
1160 * processed with 32-bit real mode code if necessary
1162 rtas_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
);
1163 rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
1164 fdt_addr
= rtas_addr
- FDT_MAX_SIZE
;
1166 /* if this reset wasn't generated by CAS, we should reset our
1167 * negotiated options and start from scratch */
1168 if (!spapr
->cas_reboot
) {
1169 spapr_ovec_cleanup(spapr
->ov5_cas
);
1170 spapr
->ov5_cas
= spapr_ovec_new();
1173 fdt
= spapr_build_fdt(spapr
, rtas_addr
, spapr
->rtas_size
);
1175 spapr_load_rtas(spapr
, fdt
, rtas_addr
);
1179 /* Should only fail if we've built a corrupted tree */
1182 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
1183 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1184 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
1189 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1190 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1193 /* Set up the entry state */
1194 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1195 first_ppc_cpu
->env
.gpr
[3] = fdt_addr
;
1196 first_ppc_cpu
->env
.gpr
[5] = 0;
1197 first_cpu
->halted
= 0;
1198 first_ppc_cpu
->env
.nip
= SPAPR_ENTRY_POINT
;
1200 spapr
->cas_reboot
= false;
1203 static void spapr_create_nvram(sPAPRMachineState
*spapr
)
1205 DeviceState
*dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
1206 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1209 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1213 qdev_init_nofail(dev
);
1215 spapr
->nvram
= (struct sPAPRNVRAM
*)dev
;
1218 static void spapr_rtc_create(sPAPRMachineState
*spapr
)
1220 DeviceState
*dev
= qdev_create(NULL
, TYPE_SPAPR_RTC
);
1222 qdev_init_nofail(dev
);
1225 object_property_add_alias(qdev_get_machine(), "rtc-time",
1226 OBJECT(spapr
->rtc
), "date", NULL
);
1229 /* Returns whether we want to use VGA or not */
1230 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1232 switch (vga_interface_type
) {
1239 return pci_vga_init(pci_bus
) != NULL
;
1242 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1247 static int spapr_post_load(void *opaque
, int version_id
)
1249 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1252 /* In earlier versions, there was no separate qdev for the PAPR
1253 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1254 * So when migrating from those versions, poke the incoming offset
1255 * value into the RTC device */
1256 if (version_id
< 3) {
1257 err
= spapr_rtc_import_offset(spapr
->rtc
, spapr
->rtc_offset
);
1263 static bool version_before_3(void *opaque
, int version_id
)
1265 return version_id
< 3;
1268 static bool spapr_ov5_cas_needed(void *opaque
)
1270 sPAPRMachineState
*spapr
= opaque
;
1271 sPAPROptionVector
*ov5_mask
= spapr_ovec_new();
1272 sPAPROptionVector
*ov5_legacy
= spapr_ovec_new();
1273 sPAPROptionVector
*ov5_removed
= spapr_ovec_new();
1276 /* Prior to the introduction of sPAPROptionVector, we had two option
1277 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1278 * Both of these options encode machine topology into the device-tree
1279 * in such a way that the now-booted OS should still be able to interact
1280 * appropriately with QEMU regardless of what options were actually
1281 * negotiatied on the source side.
1283 * As such, we can avoid migrating the CAS-negotiated options if these
1284 * are the only options available on the current machine/platform.
1285 * Since these are the only options available for pseries-2.7 and
1286 * earlier, this allows us to maintain old->new/new->old migration
1289 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1290 * via default pseries-2.8 machines and explicit command-line parameters.
1291 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1292 * of the actual CAS-negotiated values to continue working properly. For
1293 * example, availability of memory unplug depends on knowing whether
1294 * OV5_HP_EVT was negotiated via CAS.
1296 * Thus, for any cases where the set of available CAS-negotiatable
1297 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1298 * include the CAS-negotiated options in the migration stream.
1300 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1301 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1303 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1304 * the mask itself since in the future it's possible "legacy" bits may be
1305 * removed via machine options, which could generate a false positive
1306 * that breaks migration.
1308 spapr_ovec_intersect(ov5_legacy
, spapr
->ov5
, ov5_mask
);
1309 cas_needed
= spapr_ovec_diff(ov5_removed
, spapr
->ov5
, ov5_legacy
);
1311 spapr_ovec_cleanup(ov5_mask
);
1312 spapr_ovec_cleanup(ov5_legacy
);
1313 spapr_ovec_cleanup(ov5_removed
);
1318 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1319 .name
= "spapr_option_vector_ov5_cas",
1321 .minimum_version_id
= 1,
1322 .needed
= spapr_ov5_cas_needed
,
1323 .fields
= (VMStateField
[]) {
1324 VMSTATE_STRUCT_POINTER_V(ov5_cas
, sPAPRMachineState
, 1,
1325 vmstate_spapr_ovec
, sPAPROptionVector
),
1326 VMSTATE_END_OF_LIST()
1330 static const VMStateDescription vmstate_spapr
= {
1333 .minimum_version_id
= 1,
1334 .post_load
= spapr_post_load
,
1335 .fields
= (VMStateField
[]) {
1336 /* used to be @next_irq */
1337 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1340 VMSTATE_UINT64_TEST(rtc_offset
, sPAPRMachineState
, version_before_3
),
1342 VMSTATE_PPC_TIMEBASE_V(tb
, sPAPRMachineState
, 2),
1343 VMSTATE_END_OF_LIST()
1345 .subsections
= (const VMStateDescription
*[]) {
1346 &vmstate_spapr_ov5_cas
,
1351 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
1353 sPAPRMachineState
*spapr
= opaque
;
1355 /* "Iteration" header */
1356 qemu_put_be32(f
, spapr
->htab_shift
);
1359 spapr
->htab_save_index
= 0;
1360 spapr
->htab_first_pass
= true;
1362 assert(kvm_enabled());
1369 static void htab_save_first_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1372 bool has_timeout
= max_ns
!= -1;
1373 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1374 int index
= spapr
->htab_save_index
;
1375 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1377 assert(spapr
->htab_first_pass
);
1382 /* Consume invalid HPTEs */
1383 while ((index
< htabslots
)
1384 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1386 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1389 /* Consume valid HPTEs */
1391 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1392 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1394 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1397 if (index
> chunkstart
) {
1398 int n_valid
= index
- chunkstart
;
1400 qemu_put_be32(f
, chunkstart
);
1401 qemu_put_be16(f
, n_valid
);
1402 qemu_put_be16(f
, 0);
1403 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1404 HASH_PTE_SIZE_64
* n_valid
);
1407 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1411 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
1413 if (index
>= htabslots
) {
1414 assert(index
== htabslots
);
1416 spapr
->htab_first_pass
= false;
1418 spapr
->htab_save_index
= index
;
1421 static int htab_save_later_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1424 bool final
= max_ns
< 0;
1425 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1426 int examined
= 0, sent
= 0;
1427 int index
= spapr
->htab_save_index
;
1428 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1430 assert(!spapr
->htab_first_pass
);
1433 int chunkstart
, invalidstart
;
1435 /* Consume non-dirty HPTEs */
1436 while ((index
< htabslots
)
1437 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
1443 /* Consume valid dirty HPTEs */
1444 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1445 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1446 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1447 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1452 invalidstart
= index
;
1453 /* Consume invalid dirty HPTEs */
1454 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
1455 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1456 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1457 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1462 if (index
> chunkstart
) {
1463 int n_valid
= invalidstart
- chunkstart
;
1464 int n_invalid
= index
- invalidstart
;
1466 qemu_put_be32(f
, chunkstart
);
1467 qemu_put_be16(f
, n_valid
);
1468 qemu_put_be16(f
, n_invalid
);
1469 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1470 HASH_PTE_SIZE_64
* n_valid
);
1471 sent
+= index
- chunkstart
;
1473 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1478 if (examined
>= htabslots
) {
1482 if (index
>= htabslots
) {
1483 assert(index
== htabslots
);
1486 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
1488 if (index
>= htabslots
) {
1489 assert(index
== htabslots
);
1493 spapr
->htab_save_index
= index
;
1495 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
1498 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1499 #define MAX_KVM_BUF_SIZE 2048
1501 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
1503 sPAPRMachineState
*spapr
= opaque
;
1507 /* Iteration header */
1508 qemu_put_be32(f
, 0);
1511 assert(kvm_enabled());
1513 fd
= get_htab_fd(spapr
);
1518 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
1522 } else if (spapr
->htab_first_pass
) {
1523 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
1525 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
1529 qemu_put_be32(f
, 0);
1530 qemu_put_be16(f
, 0);
1531 qemu_put_be16(f
, 0);
1536 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
1538 sPAPRMachineState
*spapr
= opaque
;
1541 /* Iteration header */
1542 qemu_put_be32(f
, 0);
1547 assert(kvm_enabled());
1549 fd
= get_htab_fd(spapr
);
1554 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
1559 if (spapr
->htab_first_pass
) {
1560 htab_save_first_pass(f
, spapr
, -1);
1562 htab_save_later_pass(f
, spapr
, -1);
1566 qemu_put_be32(f
, 0);
1567 qemu_put_be16(f
, 0);
1568 qemu_put_be16(f
, 0);
1573 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
1575 sPAPRMachineState
*spapr
= opaque
;
1576 uint32_t section_hdr
;
1579 if (version_id
< 1 || version_id
> 1) {
1580 error_report("htab_load() bad version");
1584 section_hdr
= qemu_get_be32(f
);
1587 Error
*local_err
= NULL
;
1589 /* First section gives the htab size */
1590 spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
1592 error_report_err(local_err
);
1599 assert(kvm_enabled());
1601 fd
= kvmppc_get_htab_fd(true);
1603 error_report("Unable to open fd to restore KVM hash table: %s",
1610 uint16_t n_valid
, n_invalid
;
1612 index
= qemu_get_be32(f
);
1613 n_valid
= qemu_get_be16(f
);
1614 n_invalid
= qemu_get_be16(f
);
1616 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
1621 if ((index
+ n_valid
+ n_invalid
) >
1622 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
1623 /* Bad index in stream */
1625 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1626 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
1632 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
1633 HASH_PTE_SIZE_64
* n_valid
);
1636 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
1637 HASH_PTE_SIZE_64
* n_invalid
);
1644 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
1659 static void htab_cleanup(void *opaque
)
1661 sPAPRMachineState
*spapr
= opaque
;
1663 close_htab_fd(spapr
);
1666 static SaveVMHandlers savevm_htab_handlers
= {
1667 .save_live_setup
= htab_save_setup
,
1668 .save_live_iterate
= htab_save_iterate
,
1669 .save_live_complete_precopy
= htab_save_complete
,
1670 .cleanup
= htab_cleanup
,
1671 .load_state
= htab_load
,
1674 static void spapr_boot_set(void *opaque
, const char *boot_device
,
1677 MachineState
*machine
= MACHINE(qdev_get_machine());
1678 machine
->boot_order
= g_strdup(boot_device
);
1682 * Reset routine for LMB DR devices.
1684 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1685 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1686 * when it walks all its children devices. LMB devices reset occurs
1687 * as part of spapr_ppc_reset().
1689 static void spapr_drc_reset(void *opaque
)
1691 sPAPRDRConnector
*drc
= opaque
;
1692 DeviceState
*d
= DEVICE(drc
);
1699 static void spapr_create_lmb_dr_connectors(sPAPRMachineState
*spapr
)
1701 MachineState
*machine
= MACHINE(spapr
);
1702 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
1703 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
1706 for (i
= 0; i
< nr_lmbs
; i
++) {
1707 sPAPRDRConnector
*drc
;
1710 addr
= i
* lmb_size
+ spapr
->hotplug_memory
.base
;
1711 drc
= spapr_dr_connector_new(OBJECT(spapr
), SPAPR_DR_CONNECTOR_TYPE_LMB
,
1713 qemu_register_reset(spapr_drc_reset
, drc
);
1718 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1719 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1720 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1722 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
1726 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
1727 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
1728 " is not aligned to %llu MiB",
1730 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
1734 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
1735 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
1736 " is not aligned to %llu MiB",
1738 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
1742 for (i
= 0; i
< nb_numa_nodes
; i
++) {
1743 if (numa_info
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
1745 "Node %d memory size 0x%" PRIx64
1746 " is not aligned to %llu MiB",
1747 i
, numa_info
[i
].node_mem
,
1748 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
1754 /* find cpu slot in machine->possible_cpus by core_id */
1755 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
1757 int index
= id
/ smp_threads
;
1759 if (index
>= ms
->possible_cpus
->len
) {
1765 return &ms
->possible_cpus
->cpus
[index
];
1768 static void spapr_init_cpus(sPAPRMachineState
*spapr
)
1770 MachineState
*machine
= MACHINE(spapr
);
1771 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1772 char *type
= spapr_get_cpu_core_type(machine
->cpu_model
);
1773 int smt
= kvmppc_smt_threads();
1774 const CPUArchIdList
*possible_cpus
;
1775 int boot_cores_nr
= smp_cpus
/ smp_threads
;
1779 error_report("Unable to find sPAPR CPU Core definition");
1783 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1784 if (mc
->query_hotpluggable_cpus
) {
1785 if (smp_cpus
% smp_threads
) {
1786 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1787 smp_cpus
, smp_threads
);
1790 if (max_cpus
% smp_threads
) {
1791 error_report("max_cpus (%u) must be multiple of threads (%u)",
1792 max_cpus
, smp_threads
);
1796 if (max_cpus
!= smp_cpus
) {
1797 error_report("This machine version does not support CPU hotplug");
1800 boot_cores_nr
= possible_cpus
->len
;
1803 for (i
= 0; i
< possible_cpus
->len
; i
++) {
1804 int core_id
= i
* smp_threads
;
1806 if (mc
->query_hotpluggable_cpus
) {
1807 sPAPRDRConnector
*drc
=
1808 spapr_dr_connector_new(OBJECT(spapr
),
1809 SPAPR_DR_CONNECTOR_TYPE_CPU
,
1810 (core_id
/ smp_threads
) * smt
);
1812 qemu_register_reset(spapr_drc_reset
, drc
);
1815 if (i
< boot_cores_nr
) {
1816 Object
*core
= object_new(type
);
1817 int nr_threads
= smp_threads
;
1819 /* Handle the partially filled core for older machine types */
1820 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
1821 nr_threads
= smp_cpus
- i
* smp_threads
;
1824 object_property_set_int(core
, nr_threads
, "nr-threads",
1826 object_property_set_int(core
, core_id
, CPU_CORE_PROP_CORE_ID
,
1828 object_property_set_bool(core
, true, "realized", &error_fatal
);
1834 /* pSeries LPAR / sPAPR hardware init */
1835 static void ppc_spapr_init(MachineState
*machine
)
1837 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1838 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1839 const char *kernel_filename
= machine
->kernel_filename
;
1840 const char *initrd_filename
= machine
->initrd_filename
;
1843 MemoryRegion
*sysmem
= get_system_memory();
1844 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1845 MemoryRegion
*rma_region
;
1847 hwaddr rma_alloc_size
;
1848 hwaddr node0_size
= spapr_node0_size();
1849 long load_limit
, fw_size
;
1851 int smt
= kvmppc_smt_threads();
1853 msi_nonbroken
= true;
1855 QLIST_INIT(&spapr
->phbs
);
1857 /* Allocate RMA if necessary */
1858 rma_alloc_size
= kvmppc_alloc_rma(&rma
);
1860 if (rma_alloc_size
== -1) {
1861 error_report("Unable to create RMA");
1865 if (rma_alloc_size
&& (rma_alloc_size
< node0_size
)) {
1866 spapr
->rma_size
= rma_alloc_size
;
1868 spapr
->rma_size
= node0_size
;
1870 /* With KVM, we don't actually know whether KVM supports an
1871 * unbounded RMA (PR KVM) or is limited by the hash table size
1872 * (HV KVM using VRMA), so we always assume the latter
1874 * In that case, we also limit the initial allocations for RTAS
1875 * etc... to 256M since we have no way to know what the VRMA size
1876 * is going to be as it depends on the size of the hash table
1877 * isn't determined yet.
1879 if (kvm_enabled()) {
1880 spapr
->vrma_adjust
= 1;
1881 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
1884 /* Actually we don't support unbounded RMA anymore since we
1885 * added proper emulation of HV mode. The max we can get is
1886 * 16G which also happens to be what we configure for PAPR
1887 * mode so make sure we don't do anything bigger than that
1889 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x400000000ull
);
1892 if (spapr
->rma_size
> node0_size
) {
1893 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx
")",
1898 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1899 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
1901 /* Set up Interrupt Controller before we create the VCPUs */
1902 spapr
->xics
= xics_system_init(machine
,
1903 DIV_ROUND_UP(max_cpus
* smt
, smp_threads
),
1904 XICS_IRQS_SPAPR
, &error_fatal
);
1906 /* Set up containers for ibm,client-set-architecture negotiated options */
1907 spapr
->ov5
= spapr_ovec_new();
1908 spapr
->ov5_cas
= spapr_ovec_new();
1910 if (smc
->dr_lmb_enabled
) {
1911 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
1912 spapr_validate_node_memory(machine
, &error_fatal
);
1915 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
1917 /* advertise support for dedicated HP event source to guests */
1918 if (spapr
->use_hotplug_event_source
) {
1919 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
1923 if (machine
->cpu_model
== NULL
) {
1924 machine
->cpu_model
= kvm_enabled() ? "host" : smc
->tcg_default_cpu
;
1927 ppc_cpu_parse_features(machine
->cpu_model
);
1929 spapr_init_cpus(spapr
);
1931 if (kvm_enabled()) {
1932 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1933 kvmppc_enable_logical_ci_hcalls();
1934 kvmppc_enable_set_mode_hcall();
1936 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
1937 kvmppc_enable_clear_ref_mod_hcalls();
1941 memory_region_allocate_system_memory(ram
, NULL
, "ppc_spapr.ram",
1943 memory_region_add_subregion(sysmem
, 0, ram
);
1945 if (rma_alloc_size
&& rma
) {
1946 rma_region
= g_new(MemoryRegion
, 1);
1947 memory_region_init_ram_ptr(rma_region
, NULL
, "ppc_spapr.rma",
1948 rma_alloc_size
, rma
);
1949 vmstate_register_ram_global(rma_region
);
1950 memory_region_add_subregion(sysmem
, 0, rma_region
);
1953 /* initialize hotplug memory address space */
1954 if (machine
->ram_size
< machine
->maxram_size
) {
1955 ram_addr_t hotplug_mem_size
= machine
->maxram_size
- machine
->ram_size
;
1957 * Limit the number of hotpluggable memory slots to half the number
1958 * slots that KVM supports, leaving the other half for PCI and other
1959 * devices. However ensure that number of slots doesn't drop below 32.
1961 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
1962 SPAPR_MAX_RAM_SLOTS
;
1964 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
1965 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
1967 if (machine
->ram_slots
> max_memslots
) {
1968 error_report("Specified number of memory slots %"
1969 PRIu64
" exceeds max supported %d",
1970 machine
->ram_slots
, max_memslots
);
1974 spapr
->hotplug_memory
.base
= ROUND_UP(machine
->ram_size
,
1975 SPAPR_HOTPLUG_MEM_ALIGN
);
1976 memory_region_init(&spapr
->hotplug_memory
.mr
, OBJECT(spapr
),
1977 "hotplug-memory", hotplug_mem_size
);
1978 memory_region_add_subregion(sysmem
, spapr
->hotplug_memory
.base
,
1979 &spapr
->hotplug_memory
.mr
);
1982 if (smc
->dr_lmb_enabled
) {
1983 spapr_create_lmb_dr_connectors(spapr
);
1986 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
1988 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1991 spapr
->rtas_size
= get_image_size(filename
);
1992 if (spapr
->rtas_size
< 0) {
1993 error_report("Could not get size of LPAR rtas '%s'", filename
);
1996 spapr
->rtas_blob
= g_malloc(spapr
->rtas_size
);
1997 if (load_image_size(filename
, spapr
->rtas_blob
, spapr
->rtas_size
) < 0) {
1998 error_report("Could not load LPAR rtas '%s'", filename
);
2001 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
2002 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2003 (size_t)spapr
->rtas_size
, RTAS_MAX_SIZE
);
2008 /* Set up RTAS event infrastructure */
2009 spapr_events_init(spapr
);
2011 /* Set up the RTC RTAS interfaces */
2012 spapr_rtc_create(spapr
);
2014 /* Set up VIO bus */
2015 spapr
->vio_bus
= spapr_vio_bus_init();
2017 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
2018 if (serial_hds
[i
]) {
2019 spapr_vty_create(spapr
->vio_bus
, serial_hds
[i
]);
2023 /* We always have at least the nvram device on VIO */
2024 spapr_create_nvram(spapr
);
2027 spapr_pci_rtas_init();
2029 phb
= spapr_create_phb(spapr
, 0);
2031 for (i
= 0; i
< nb_nics
; i
++) {
2032 NICInfo
*nd
= &nd_table
[i
];
2035 nd
->model
= g_strdup("ibmveth");
2038 if (strcmp(nd
->model
, "ibmveth") == 0) {
2039 spapr_vlan_create(spapr
->vio_bus
, nd
);
2041 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2045 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2046 spapr_vscsi_create(spapr
->vio_bus
);
2050 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2051 spapr
->has_graphics
= true;
2052 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2056 if (smc
->use_ohci_by_default
) {
2057 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2059 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2062 if (spapr
->has_graphics
) {
2063 USBBus
*usb_bus
= usb_bus_find(-1);
2065 usb_create_simple(usb_bus
, "usb-kbd");
2066 usb_create_simple(usb_bus
, "usb-mouse");
2070 if (spapr
->rma_size
< (MIN_RMA_SLOF
<< 20)) {
2072 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2077 if (kernel_filename
) {
2078 uint64_t lowaddr
= 0;
2080 spapr
->kernel_size
= load_elf(kernel_filename
, translate_kernel_address
,
2081 NULL
, NULL
, &lowaddr
, NULL
, 1,
2082 PPC_ELF_MACHINE
, 0, 0);
2083 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2084 spapr
->kernel_size
= load_elf(kernel_filename
,
2085 translate_kernel_address
, NULL
, NULL
,
2086 &lowaddr
, NULL
, 0, PPC_ELF_MACHINE
,
2088 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2090 if (spapr
->kernel_size
< 0) {
2091 error_report("error loading %s: %s", kernel_filename
,
2092 load_elf_strerror(spapr
->kernel_size
));
2097 if (initrd_filename
) {
2098 /* Try to locate the initrd in the gap between the kernel
2099 * and the firmware. Add a bit of space just in case
2101 spapr
->initrd_base
= (KERNEL_LOAD_ADDR
+ spapr
->kernel_size
2102 + 0x1ffff) & ~0xffff;
2103 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
2106 - spapr
->initrd_base
);
2107 if (spapr
->initrd_size
< 0) {
2108 error_report("could not load initial ram disk '%s'",
2115 if (bios_name
== NULL
) {
2116 bios_name
= FW_FILE_NAME
;
2118 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2120 error_report("Could not find LPAR firmware '%s'", bios_name
);
2123 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2125 error_report("Could not load LPAR firmware '%s'", filename
);
2130 /* FIXME: Should register things through the MachineState's qdev
2131 * interface, this is a legacy from the sPAPREnvironment structure
2132 * which predated MachineState but had a similar function */
2133 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
2134 register_savevm_live(NULL
, "spapr/htab", -1, 1,
2135 &savevm_htab_handlers
, spapr
);
2138 QTAILQ_INIT(&spapr
->ccs_list
);
2139 qemu_register_reset(spapr_ccs_reset_hook
, spapr
);
2141 qemu_register_boot_set(spapr_boot_set
, spapr
);
2143 /* to stop and start vmclock */
2144 if (kvm_enabled()) {
2145 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
2150 static int spapr_kvm_type(const char *vm_type
)
2156 if (!strcmp(vm_type
, "HV")) {
2160 if (!strcmp(vm_type
, "PR")) {
2164 error_report("Unknown kvm-type specified '%s'", vm_type
);
2169 * Implementation of an interface to adjust firmware path
2170 * for the bootindex property handling.
2172 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
2175 #define CAST(type, obj, name) \
2176 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2177 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
2178 sPAPRPHBState
*phb
= CAST(sPAPRPHBState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
2181 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
2182 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
2183 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
2187 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2188 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2189 * in the top 16 bits of the 64-bit LUN
2191 unsigned id
= 0x8000 | (d
->id
<< 8) | d
->lun
;
2192 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2193 (uint64_t)id
<< 48);
2194 } else if (virtio
) {
2196 * We use SRP luns of the form 01000000 | (target << 8) | lun
2197 * in the top 32 bits of the 64-bit LUN
2198 * Note: the quote above is from SLOF and it is wrong,
2199 * the actual binding is:
2200 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2202 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
2203 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2204 (uint64_t)id
<< 32);
2207 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2208 * in the top 32 bits of the 64-bit LUN
2210 unsigned usb_port
= atoi(usb
->port
->path
);
2211 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
2212 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2213 (uint64_t)id
<< 32);
2218 * SLOF probes the USB devices, and if it recognizes that the device is a
2219 * storage device, it changes its name to "storage" instead of "usb-host",
2220 * and additionally adds a child node for the SCSI LUN, so the correct
2221 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2223 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
2224 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
2225 if (usb_host_dev_is_scsi_storage(usbdev
)) {
2226 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
2231 /* Replace "pci" with "pci@800000020000000" */
2232 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
2238 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
2240 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2242 return g_strdup(spapr
->kvm_type
);
2245 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
2247 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2249 g_free(spapr
->kvm_type
);
2250 spapr
->kvm_type
= g_strdup(value
);
2253 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
2255 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2257 return spapr
->use_hotplug_event_source
;
2260 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
2263 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2265 spapr
->use_hotplug_event_source
= value
;
2268 static void spapr_machine_initfn(Object
*obj
)
2270 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2272 spapr
->htab_fd
= -1;
2273 spapr
->use_hotplug_event_source
= true;
2274 object_property_add_str(obj
, "kvm-type",
2275 spapr_get_kvm_type
, spapr_set_kvm_type
, NULL
);
2276 object_property_set_description(obj
, "kvm-type",
2277 "Specifies the KVM virtualization mode (HV, PR)",
2279 object_property_add_bool(obj
, "modern-hotplug-events",
2280 spapr_get_modern_hotplug_events
,
2281 spapr_set_modern_hotplug_events
,
2283 object_property_set_description(obj
, "modern-hotplug-events",
2284 "Use dedicated hotplug event mechanism in"
2285 " place of standard EPOW events when possible"
2286 " (required for memory hot-unplug support)",
2290 static void spapr_machine_finalizefn(Object
*obj
)
2292 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2294 g_free(spapr
->kvm_type
);
2297 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
2299 cpu_synchronize_state(cs
);
2300 ppc_cpu_do_system_reset(cs
);
2303 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
2308 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
2312 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
2313 uint32_t node
, bool dedicated_hp_event_source
,
2316 sPAPRDRConnector
*drc
;
2317 sPAPRDRConnectorClass
*drck
;
2318 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
2319 int i
, fdt_offset
, fdt_size
;
2321 uint64_t addr
= addr_start
;
2323 for (i
= 0; i
< nr_lmbs
; i
++) {
2324 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2325 addr
/SPAPR_MEMORY_BLOCK_SIZE
);
2328 fdt
= create_device_tree(&fdt_size
);
2329 fdt_offset
= spapr_populate_memory_node(fdt
, node
, addr
,
2330 SPAPR_MEMORY_BLOCK_SIZE
);
2332 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2333 drck
->attach(drc
, dev
, fdt
, fdt_offset
, !dev
->hotplugged
, errp
);
2334 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
2335 if (!dev
->hotplugged
) {
2336 /* guests expect coldplugged LMBs to be pre-allocated */
2337 drck
->set_allocation_state(drc
, SPAPR_DR_ALLOCATION_STATE_USABLE
);
2338 drck
->set_isolation_state(drc
, SPAPR_DR_ISOLATION_STATE_UNISOLATED
);
2341 /* send hotplug notification to the
2342 * guest only in case of hotplugged memory
2344 if (dev
->hotplugged
) {
2345 if (dedicated_hp_event_source
) {
2346 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2347 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
2348 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2349 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2351 drck
->get_index(drc
));
2353 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2359 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2360 uint32_t node
, Error
**errp
)
2362 Error
*local_err
= NULL
;
2363 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
2364 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2365 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2366 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2367 uint64_t align
= memory_region_get_alignment(mr
);
2368 uint64_t size
= memory_region_size(mr
);
2371 if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2372 error_setg(&local_err
, "Hotplugged memory size must be a multiple of "
2373 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE
/M_BYTE
);
2377 pc_dimm_memory_plug(dev
, &ms
->hotplug_memory
, mr
, align
, &local_err
);
2382 addr
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
, &local_err
);
2384 pc_dimm_memory_unplug(dev
, &ms
->hotplug_memory
, mr
);
2388 spapr_add_lmbs(dev
, addr
, size
, node
,
2389 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
),
2393 error_propagate(errp
, local_err
);
2396 typedef struct sPAPRDIMMState
{
2400 static void spapr_lmb_release(DeviceState
*dev
, void *opaque
)
2402 sPAPRDIMMState
*ds
= (sPAPRDIMMState
*)opaque
;
2403 HotplugHandler
*hotplug_ctrl
;
2405 if (--ds
->nr_lmbs
) {
2412 * Now that all the LMBs have been removed by the guest, call the
2413 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2415 hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
2416 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
2419 static void spapr_del_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
2422 sPAPRDRConnector
*drc
;
2423 sPAPRDRConnectorClass
*drck
;
2424 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
2426 sPAPRDIMMState
*ds
= g_malloc0(sizeof(sPAPRDIMMState
));
2427 uint64_t addr
= addr_start
;
2429 ds
->nr_lmbs
= nr_lmbs
;
2430 for (i
= 0; i
< nr_lmbs
; i
++) {
2431 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2432 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
2435 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2436 drck
->detach(drc
, dev
, spapr_lmb_release
, ds
, errp
);
2437 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
2440 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2441 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
2442 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2443 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2445 drck
->get_index(drc
));
2448 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2451 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
2452 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2453 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2454 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2456 pc_dimm_memory_unplug(dev
, &ms
->hotplug_memory
, mr
);
2457 object_unparent(OBJECT(dev
));
2460 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
2461 DeviceState
*dev
, Error
**errp
)
2463 Error
*local_err
= NULL
;
2464 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2465 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2466 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2467 uint64_t size
= memory_region_size(mr
);
2470 addr
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
, &local_err
);
2475 spapr_del_lmbs(dev
, addr
, size
, &error_abort
);
2477 error_propagate(errp
, local_err
);
2480 void *spapr_populate_hotplug_cpu_dt(CPUState
*cs
, int *fdt_offset
,
2481 sPAPRMachineState
*spapr
)
2483 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
2484 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
2485 int id
= ppc_get_vcpu_dt_id(cpu
);
2487 int offset
, fdt_size
;
2490 fdt
= create_device_tree(&fdt_size
);
2491 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
2492 offset
= fdt_add_subnode(fdt
, 0, nodename
);
2494 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
2497 *fdt_offset
= offset
;
2501 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2504 MachineState
*ms
= MACHINE(qdev_get_machine());
2505 CPUCore
*cc
= CPU_CORE(dev
);
2506 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
2508 core_slot
->cpu
= NULL
;
2509 object_unparent(OBJECT(dev
));
2512 static void spapr_core_release(DeviceState
*dev
, void *opaque
)
2514 HotplugHandler
*hotplug_ctrl
;
2516 hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
2517 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
2521 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2525 sPAPRDRConnector
*drc
;
2526 sPAPRDRConnectorClass
*drck
;
2527 Error
*local_err
= NULL
;
2528 CPUCore
*cc
= CPU_CORE(dev
);
2529 int smt
= kvmppc_smt_threads();
2531 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
2532 error_setg(errp
, "Unable to find CPU core with core-id: %d",
2537 error_setg(errp
, "Boot CPU core may not be unplugged");
2541 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU
, index
* smt
);
2544 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2545 drck
->detach(drc
, dev
, spapr_core_release
, NULL
, &local_err
);
2547 error_propagate(errp
, local_err
);
2551 spapr_hotplug_req_remove_by_index(drc
);
2554 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2557 sPAPRMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
2558 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
2559 sPAPRCPUCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
2560 CPUCore
*cc
= CPU_CORE(dev
);
2561 CPUState
*cs
= CPU(core
->threads
);
2562 sPAPRDRConnector
*drc
;
2563 Error
*local_err
= NULL
;
2566 int smt
= kvmppc_smt_threads();
2567 CPUArchId
*core_slot
;
2570 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
2572 error_setg(errp
, "Unable to find CPU core with core-id: %d",
2576 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU
, index
* smt
);
2578 g_assert(drc
|| !mc
->query_hotpluggable_cpus
);
2581 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2582 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2584 if (dev
->hotplugged
) {
2585 fdt
= spapr_populate_hotplug_cpu_dt(cs
, &fdt_offset
, spapr
);
2589 sPAPRDRConnectorClass
*drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2590 drck
->attach(drc
, dev
, fdt
, fdt_offset
, !dev
->hotplugged
, &local_err
);
2593 error_propagate(errp
, local_err
);
2598 if (dev
->hotplugged
) {
2600 * Send hotplug notification interrupt to the guest only in case
2601 * of hotplugged CPUs.
2603 spapr_hotplug_req_add_by_index(drc
);
2606 * Set the right DRC states for cold plugged CPU.
2609 sPAPRDRConnectorClass
*drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2610 drck
->set_allocation_state(drc
, SPAPR_DR_ALLOCATION_STATE_USABLE
);
2611 drck
->set_isolation_state(drc
, SPAPR_DR_ISOLATION_STATE_UNISOLATED
);
2614 core_slot
->cpu
= OBJECT(dev
);
2617 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2620 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
2621 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
2622 Error
*local_err
= NULL
;
2623 CPUCore
*cc
= CPU_CORE(dev
);
2624 char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_model
);
2625 const char *type
= object_get_typename(OBJECT(dev
));
2626 CPUArchId
*core_slot
;
2629 if (dev
->hotplugged
&& !mc
->query_hotpluggable_cpus
) {
2630 error_setg(&local_err
, "CPU hotplug not supported for this machine");
2634 if (strcmp(base_core_type
, type
)) {
2635 error_setg(&local_err
, "CPU core type should be %s", base_core_type
);
2639 if (cc
->core_id
% smp_threads
) {
2640 error_setg(&local_err
, "invalid core id %d", cc
->core_id
);
2644 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
2646 error_setg(&local_err
, "core id %d out of range", cc
->core_id
);
2650 if (core_slot
->cpu
) {
2651 error_setg(&local_err
, "core %d already populated", cc
->core_id
);
2656 g_free(base_core_type
);
2657 error_propagate(errp
, local_err
);
2660 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
2661 DeviceState
*dev
, Error
**errp
)
2663 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2665 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2668 if (!smc
->dr_lmb_enabled
) {
2669 error_setg(errp
, "Memory hotplug not supported for this machine");
2672 node
= object_property_get_int(OBJECT(dev
), PC_DIMM_NODE_PROP
, errp
);
2676 if (node
< 0 || node
>= MAX_NODES
) {
2677 error_setg(errp
, "Invaild node %d", node
);
2682 * Currently PowerPC kernel doesn't allow hot-adding memory to
2683 * memory-less node, but instead will silently add the memory
2684 * to the first node that has some memory. This causes two
2685 * unexpected behaviours for the user.
2687 * - Memory gets hotplugged to a different node than what the user
2689 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2690 * to memory-less node, a reboot will set things accordingly
2691 * and the previously hotplugged memory now ends in the right node.
2692 * This appears as if some memory moved from one node to another.
2694 * So until kernel starts supporting memory hotplug to memory-less
2695 * nodes, just prevent such attempts upfront in QEMU.
2697 if (nb_numa_nodes
&& !numa_info
[node
].node_mem
) {
2698 error_setg(errp
, "Can't hotplug memory to memory-less node %d",
2703 spapr_memory_plug(hotplug_dev
, dev
, node
, errp
);
2704 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2705 spapr_core_plug(hotplug_dev
, dev
, errp
);
2709 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
2710 DeviceState
*dev
, Error
**errp
)
2712 sPAPRMachineState
*sms
= SPAPR_MACHINE(qdev_get_machine());
2713 MachineClass
*mc
= MACHINE_GET_CLASS(qdev_get_machine());
2715 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2716 if (spapr_ovec_test(sms
->ov5_cas
, OV5_HP_EVT
)) {
2717 spapr_memory_unplug(hotplug_dev
, dev
, errp
);
2719 error_setg(errp
, "Memory hot unplug not supported for this guest");
2721 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2722 if (!mc
->query_hotpluggable_cpus
) {
2723 error_setg(errp
, "CPU hot unplug not supported on this machine");
2726 spapr_core_unplug(hotplug_dev
, dev
, errp
);
2730 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
2731 DeviceState
*dev
, Error
**errp
)
2733 sPAPRMachineState
*sms
= SPAPR_MACHINE(qdev_get_machine());
2734 MachineClass
*mc
= MACHINE_GET_CLASS(qdev_get_machine());
2736 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2737 if (spapr_ovec_test(sms
->ov5_cas
, OV5_HP_EVT
)) {
2738 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
2740 /* NOTE: this means there is a window after guest reset, prior to
2741 * CAS negotiation, where unplug requests will fail due to the
2742 * capability not being detected yet. This is a bit different than
2743 * the case with PCI unplug, where the events will be queued and
2744 * eventually handled by the guest after boot
2746 error_setg(errp
, "Memory hot unplug not supported for this guest");
2748 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2749 if (!mc
->query_hotpluggable_cpus
) {
2750 error_setg(errp
, "CPU hot unplug not supported on this machine");
2753 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
2757 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
2758 DeviceState
*dev
, Error
**errp
)
2760 if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2761 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
2765 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
2768 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
2769 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2770 return HOTPLUG_HANDLER(machine
);
2775 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index
)
2777 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2778 * socket means much for the paravirtualized PAPR platform) */
2779 return cpu_index
/ smp_threads
/ smp_cores
;
2782 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
2785 int spapr_max_cores
= max_cpus
/ smp_threads
;
2786 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2788 if (!mc
->query_hotpluggable_cpus
) {
2789 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
2791 if (machine
->possible_cpus
) {
2792 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
2793 return machine
->possible_cpus
;
2796 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
2797 sizeof(CPUArchId
) * spapr_max_cores
);
2798 machine
->possible_cpus
->len
= spapr_max_cores
;
2799 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
2800 int core_id
= i
* smp_threads
;
2802 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
2803 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
2804 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
2805 /* TODO: add 'has_node/node' here to describe
2806 to which node core belongs */
2808 return machine
->possible_cpus
;
2811 static HotpluggableCPUList
*spapr_query_hotpluggable_cpus(MachineState
*machine
)
2815 HotpluggableCPUList
*head
= NULL
;
2816 const char *cpu_type
;
2818 cpu
= machine
->possible_cpus
->cpus
[0].cpu
;
2819 assert(cpu
); /* Boot cpu is always present */
2820 cpu_type
= object_get_typename(cpu
);
2821 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
2822 HotpluggableCPUList
*list_item
= g_new0(typeof(*list_item
), 1);
2823 HotpluggableCPU
*cpu_item
= g_new0(typeof(*cpu_item
), 1);
2825 cpu_item
->type
= g_strdup(cpu_type
);
2826 cpu_item
->vcpus_count
= smp_threads
; // TODO: ??? generalize
2827 cpu_item
->props
= g_memdup(&machine
->possible_cpus
->cpus
[i
].props
,
2828 sizeof(*cpu_item
->props
));
2830 cpu
= machine
->possible_cpus
->cpus
[i
].cpu
;
2832 cpu_item
->has_qom_path
= true;
2833 cpu_item
->qom_path
= object_get_canonical_path(cpu
);
2835 list_item
->value
= cpu_item
;
2836 list_item
->next
= head
;
2842 static void spapr_phb_placement(sPAPRMachineState
*spapr
, uint32_t index
,
2843 uint64_t *buid
, hwaddr
*pio
,
2844 hwaddr
*mmio32
, hwaddr
*mmio64
,
2845 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
2848 * New-style PHB window placement.
2850 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2851 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2854 * Some guest kernels can't work with MMIO windows above 1<<46
2855 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2857 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2858 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
2859 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
2860 * 1TiB 64-bit MMIO windows for each PHB.
2862 const uint64_t base_buid
= 0x800000020000000ULL
;
2863 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
2864 SPAPR_PCI_MEM64_WIN_SIZE - 1)
2867 /* Sanity check natural alignments */
2868 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
2869 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
2870 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
2871 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
2872 /* Sanity check bounds */
2873 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
2874 SPAPR_PCI_MEM32_WIN_SIZE
);
2875 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
2876 SPAPR_PCI_MEM64_WIN_SIZE
);
2878 if (index
>= SPAPR_MAX_PHBS
) {
2879 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
2880 SPAPR_MAX_PHBS
- 1);
2884 *buid
= base_buid
+ index
;
2885 for (i
= 0; i
< n_dma
; ++i
) {
2886 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
2889 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
2890 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
2891 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
2894 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
2896 MachineClass
*mc
= MACHINE_CLASS(oc
);
2897 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
2898 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
2899 NMIClass
*nc
= NMI_CLASS(oc
);
2900 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
2901 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
2903 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
2906 * We set up the default / latest behaviour here. The class_init
2907 * functions for the specific versioned machine types can override
2908 * these details for backwards compatibility
2910 mc
->init
= ppc_spapr_init
;
2911 mc
->reset
= ppc_spapr_reset
;
2912 mc
->block_default_type
= IF_SCSI
;
2914 mc
->no_parallel
= 1;
2915 mc
->default_boot_order
= "";
2916 mc
->default_ram_size
= 512 * M_BYTE
;
2917 mc
->kvm_type
= spapr_kvm_type
;
2918 mc
->has_dynamic_sysbus
= true;
2919 mc
->pci_allow_0_address
= true;
2920 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
2921 hc
->pre_plug
= spapr_machine_device_pre_plug
;
2922 hc
->plug
= spapr_machine_device_plug
;
2923 hc
->unplug
= spapr_machine_device_unplug
;
2924 mc
->cpu_index_to_socket_id
= spapr_cpu_index_to_socket_id
;
2925 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
2926 hc
->unplug_request
= spapr_machine_device_unplug_request
;
2928 smc
->dr_lmb_enabled
= true;
2929 smc
->tcg_default_cpu
= "POWER8";
2930 mc
->query_hotpluggable_cpus
= spapr_query_hotpluggable_cpus
;
2931 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
2932 nc
->nmi_monitor_handler
= spapr_nmi
;
2933 smc
->phb_placement
= spapr_phb_placement
;
2934 vhc
->hypercall
= emulate_spapr_hypercall
;
2937 static const TypeInfo spapr_machine_info
= {
2938 .name
= TYPE_SPAPR_MACHINE
,
2939 .parent
= TYPE_MACHINE
,
2941 .instance_size
= sizeof(sPAPRMachineState
),
2942 .instance_init
= spapr_machine_initfn
,
2943 .instance_finalize
= spapr_machine_finalizefn
,
2944 .class_size
= sizeof(sPAPRMachineClass
),
2945 .class_init
= spapr_machine_class_init
,
2946 .interfaces
= (InterfaceInfo
[]) {
2947 { TYPE_FW_PATH_PROVIDER
},
2949 { TYPE_HOTPLUG_HANDLER
},
2950 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
2955 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
2956 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2959 MachineClass *mc = MACHINE_CLASS(oc); \
2960 spapr_machine_##suffix##_class_options(mc); \
2962 mc->alias = "pseries"; \
2963 mc->is_default = 1; \
2966 static void spapr_machine_##suffix##_instance_init(Object *obj) \
2968 MachineState *machine = MACHINE(obj); \
2969 spapr_machine_##suffix##_instance_options(machine); \
2971 static const TypeInfo spapr_machine_##suffix##_info = { \
2972 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
2973 .parent = TYPE_SPAPR_MACHINE, \
2974 .class_init = spapr_machine_##suffix##_class_init, \
2975 .instance_init = spapr_machine_##suffix##_instance_init, \
2977 static void spapr_machine_register_##suffix(void) \
2979 type_register(&spapr_machine_##suffix##_info); \
2981 type_init(spapr_machine_register_##suffix)
2986 static void spapr_machine_2_9_instance_options(MachineState
*machine
)
2990 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
2992 /* Defaults for the latest behaviour inherited from the base class */
2995 DEFINE_SPAPR_MACHINE(2_9
, "2.9", true);
3000 #define SPAPR_COMPAT_2_8 \
3003 static void spapr_machine_2_8_instance_options(MachineState
*machine
)
3005 spapr_machine_2_9_instance_options(machine
);
3008 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
3010 spapr_machine_2_9_class_options(mc
);
3011 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_8
);
3014 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
3019 #define SPAPR_COMPAT_2_7 \
3022 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3023 .property = "mem_win_size", \
3024 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3027 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3028 .property = "mem64_win_size", \
3032 .driver = TYPE_POWERPC_CPU, \
3033 .property = "pre-2.8-migration", \
3037 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3038 .property = "pre-2.8-migration", \
3042 static void phb_placement_2_7(sPAPRMachineState
*spapr
, uint32_t index
,
3043 uint64_t *buid
, hwaddr
*pio
,
3044 hwaddr
*mmio32
, hwaddr
*mmio64
,
3045 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
3047 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3048 const uint64_t base_buid
= 0x800000020000000ULL
;
3049 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
3050 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
3051 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
3052 const uint32_t max_index
= 255;
3053 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
3055 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
3056 hwaddr phb0_base
, phb_base
;
3059 /* Do we have hotpluggable memory? */
3060 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
3061 /* Can't just use maxram_size, because there may be an
3062 * alignment gap between normal and hotpluggable memory
3064 ram_top
= spapr
->hotplug_memory
.base
+
3065 memory_region_size(&spapr
->hotplug_memory
.mr
);
3068 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
3070 if (index
> max_index
) {
3071 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
3076 *buid
= base_buid
+ index
;
3077 for (i
= 0; i
< n_dma
; ++i
) {
3078 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
3081 phb_base
= phb0_base
+ index
* phb_spacing
;
3082 *pio
= phb_base
+ pio_offset
;
3083 *mmio32
= phb_base
+ mmio_offset
;
3085 * We don't set the 64-bit MMIO window, relying on the PHB's
3086 * fallback behaviour of automatically splitting a large "32-bit"
3087 * window into contiguous 32-bit and 64-bit windows
3091 static void spapr_machine_2_7_instance_options(MachineState
*machine
)
3093 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
3095 spapr_machine_2_8_instance_options(machine
);
3096 spapr
->use_hotplug_event_source
= false;
3099 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
3101 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3103 spapr_machine_2_8_class_options(mc
);
3104 smc
->tcg_default_cpu
= "POWER7";
3105 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_7
);
3106 smc
->phb_placement
= phb_placement_2_7
;
3109 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
3114 #define SPAPR_COMPAT_2_6 \
3117 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3119 .value = stringify(off),\
3122 static void spapr_machine_2_6_instance_options(MachineState
*machine
)
3124 spapr_machine_2_7_instance_options(machine
);
3127 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
3129 spapr_machine_2_7_class_options(mc
);
3130 mc
->query_hotpluggable_cpus
= NULL
;
3131 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_6
);
3134 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
3139 #define SPAPR_COMPAT_2_5 \
3142 .driver = "spapr-vlan", \
3143 .property = "use-rx-buffer-pools", \
3147 static void spapr_machine_2_5_instance_options(MachineState
*machine
)
3149 spapr_machine_2_6_instance_options(machine
);
3152 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
3154 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3156 spapr_machine_2_6_class_options(mc
);
3157 smc
->use_ohci_by_default
= true;
3158 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_5
);
3161 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
3166 #define SPAPR_COMPAT_2_4 \
3169 static void spapr_machine_2_4_instance_options(MachineState
*machine
)
3171 spapr_machine_2_5_instance_options(machine
);
3174 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
3176 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3178 spapr_machine_2_5_class_options(mc
);
3179 smc
->dr_lmb_enabled
= false;
3180 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_4
);
3183 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
3188 #define SPAPR_COMPAT_2_3 \
3191 .driver = "spapr-pci-host-bridge",\
3192 .property = "dynamic-reconfiguration",\
3196 static void spapr_machine_2_3_instance_options(MachineState
*machine
)
3198 spapr_machine_2_4_instance_options(machine
);
3199 savevm_skip_section_footers();
3200 global_state_set_optional();
3201 savevm_skip_configuration();
3204 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
3206 spapr_machine_2_4_class_options(mc
);
3207 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_3
);
3209 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
3215 #define SPAPR_COMPAT_2_2 \
3218 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3219 .property = "mem_win_size",\
3220 .value = "0x20000000",\
3223 static void spapr_machine_2_2_instance_options(MachineState
*machine
)
3225 spapr_machine_2_3_instance_options(machine
);
3226 machine
->suppress_vmdesc
= true;
3229 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
3231 spapr_machine_2_3_class_options(mc
);
3232 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_2
);
3234 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
3239 #define SPAPR_COMPAT_2_1 \
3242 static void spapr_machine_2_1_instance_options(MachineState
*machine
)
3244 spapr_machine_2_2_instance_options(machine
);
3247 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
3249 spapr_machine_2_2_class_options(mc
);
3250 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_1
);
3252 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
3254 static void spapr_machine_register_types(void)
3256 type_register_static(&spapr_machine_info
);
3259 type_init(spapr_machine_register_types
)