2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "exec/address-spaces.h"
28 #include "intel_iommu_internal.h"
29 #include "hw/pci/pci.h"
30 #include "hw/pci/pci_bus.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/i386/pc.h"
33 #include "hw/i386/apic-msidef.h"
34 #include "hw/boards.h"
35 #include "hw/i386/x86-iommu.h"
36 #include "hw/pci-host/q35.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/sysemu.h"
39 #include "hw/i386/apic_internal.h"
41 #include "migration/vmstate.h"
44 /* context entry operations */
45 #define VTD_CE_GET_RID2PASID(ce) \
46 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
47 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
48 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
51 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
52 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
53 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
56 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
57 trace_vtd_fault_disabled(); \
59 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
65 static void vtd_address_space_refresh_all(IntelIOMMUState
*s
);
66 static void vtd_address_space_unmap(VTDAddressSpace
*as
, IOMMUNotifier
*n
);
68 static void vtd_panic_require_caching_mode(void)
70 error_report("We need to set caching-mode=on for intel-iommu to enable "
71 "device assignment with IOMMU protection.");
75 static void vtd_define_quad(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
,
76 uint64_t wmask
, uint64_t w1cmask
)
78 stq_le_p(&s
->csr
[addr
], val
);
79 stq_le_p(&s
->wmask
[addr
], wmask
);
80 stq_le_p(&s
->w1cmask
[addr
], w1cmask
);
83 static void vtd_define_quad_wo(IntelIOMMUState
*s
, hwaddr addr
, uint64_t mask
)
85 stq_le_p(&s
->womask
[addr
], mask
);
88 static void vtd_define_long(IntelIOMMUState
*s
, hwaddr addr
, uint32_t val
,
89 uint32_t wmask
, uint32_t w1cmask
)
91 stl_le_p(&s
->csr
[addr
], val
);
92 stl_le_p(&s
->wmask
[addr
], wmask
);
93 stl_le_p(&s
->w1cmask
[addr
], w1cmask
);
96 static void vtd_define_long_wo(IntelIOMMUState
*s
, hwaddr addr
, uint32_t mask
)
98 stl_le_p(&s
->womask
[addr
], mask
);
101 /* "External" get/set operations */
102 static void vtd_set_quad(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
)
104 uint64_t oldval
= ldq_le_p(&s
->csr
[addr
]);
105 uint64_t wmask
= ldq_le_p(&s
->wmask
[addr
]);
106 uint64_t w1cmask
= ldq_le_p(&s
->w1cmask
[addr
]);
107 stq_le_p(&s
->csr
[addr
],
108 ((oldval
& ~wmask
) | (val
& wmask
)) & ~(w1cmask
& val
));
111 static void vtd_set_long(IntelIOMMUState
*s
, hwaddr addr
, uint32_t val
)
113 uint32_t oldval
= ldl_le_p(&s
->csr
[addr
]);
114 uint32_t wmask
= ldl_le_p(&s
->wmask
[addr
]);
115 uint32_t w1cmask
= ldl_le_p(&s
->w1cmask
[addr
]);
116 stl_le_p(&s
->csr
[addr
],
117 ((oldval
& ~wmask
) | (val
& wmask
)) & ~(w1cmask
& val
));
120 static uint64_t vtd_get_quad(IntelIOMMUState
*s
, hwaddr addr
)
122 uint64_t val
= ldq_le_p(&s
->csr
[addr
]);
123 uint64_t womask
= ldq_le_p(&s
->womask
[addr
]);
124 return val
& ~womask
;
127 static uint32_t vtd_get_long(IntelIOMMUState
*s
, hwaddr addr
)
129 uint32_t val
= ldl_le_p(&s
->csr
[addr
]);
130 uint32_t womask
= ldl_le_p(&s
->womask
[addr
]);
131 return val
& ~womask
;
134 /* "Internal" get/set operations */
135 static uint64_t vtd_get_quad_raw(IntelIOMMUState
*s
, hwaddr addr
)
137 return ldq_le_p(&s
->csr
[addr
]);
140 static uint32_t vtd_get_long_raw(IntelIOMMUState
*s
, hwaddr addr
)
142 return ldl_le_p(&s
->csr
[addr
]);
145 static void vtd_set_quad_raw(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
)
147 stq_le_p(&s
->csr
[addr
], val
);
150 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState
*s
, hwaddr addr
,
151 uint32_t clear
, uint32_t mask
)
153 uint32_t new_val
= (ldl_le_p(&s
->csr
[addr
]) & ~clear
) | mask
;
154 stl_le_p(&s
->csr
[addr
], new_val
);
158 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState
*s
, hwaddr addr
,
159 uint64_t clear
, uint64_t mask
)
161 uint64_t new_val
= (ldq_le_p(&s
->csr
[addr
]) & ~clear
) | mask
;
162 stq_le_p(&s
->csr
[addr
], new_val
);
166 static inline void vtd_iommu_lock(IntelIOMMUState
*s
)
168 qemu_mutex_lock(&s
->iommu_lock
);
171 static inline void vtd_iommu_unlock(IntelIOMMUState
*s
)
173 qemu_mutex_unlock(&s
->iommu_lock
);
176 static void vtd_update_scalable_state(IntelIOMMUState
*s
)
178 uint64_t val
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
);
180 if (s
->scalable_mode
) {
181 s
->root_scalable
= val
& VTD_RTADDR_SMT
;
185 /* Whether the address space needs to notify new mappings */
186 static inline gboolean
vtd_as_has_map_notifier(VTDAddressSpace
*as
)
188 return as
->notifier_flags
& IOMMU_NOTIFIER_MAP
;
191 /* GHashTable functions */
192 static gboolean
vtd_uint64_equal(gconstpointer v1
, gconstpointer v2
)
194 return *((const uint64_t *)v1
) == *((const uint64_t *)v2
);
197 static guint
vtd_uint64_hash(gconstpointer v
)
199 return (guint
)*(const uint64_t *)v
;
202 static gboolean
vtd_hash_remove_by_domain(gpointer key
, gpointer value
,
205 VTDIOTLBEntry
*entry
= (VTDIOTLBEntry
*)value
;
206 uint16_t domain_id
= *(uint16_t *)user_data
;
207 return entry
->domain_id
== domain_id
;
210 /* The shift of an addr for a certain level of paging structure */
211 static inline uint32_t vtd_slpt_level_shift(uint32_t level
)
214 return VTD_PAGE_SHIFT_4K
+ (level
- 1) * VTD_SL_LEVEL_BITS
;
217 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level
)
219 return ~((1ULL << vtd_slpt_level_shift(level
)) - 1);
222 static gboolean
vtd_hash_remove_by_page(gpointer key
, gpointer value
,
225 VTDIOTLBEntry
*entry
= (VTDIOTLBEntry
*)value
;
226 VTDIOTLBPageInvInfo
*info
= (VTDIOTLBPageInvInfo
*)user_data
;
227 uint64_t gfn
= (info
->addr
>> VTD_PAGE_SHIFT_4K
) & info
->mask
;
228 uint64_t gfn_tlb
= (info
->addr
& entry
->mask
) >> VTD_PAGE_SHIFT_4K
;
229 return (entry
->domain_id
== info
->domain_id
) &&
230 (((entry
->gfn
& info
->mask
) == gfn
) ||
231 (entry
->gfn
== gfn_tlb
));
234 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
235 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
237 static void vtd_reset_context_cache_locked(IntelIOMMUState
*s
)
239 VTDAddressSpace
*vtd_as
;
241 GHashTableIter bus_it
;
244 trace_vtd_context_cache_reset();
246 g_hash_table_iter_init(&bus_it
, s
->vtd_as_by_busptr
);
248 while (g_hash_table_iter_next (&bus_it
, NULL
, (void**)&vtd_bus
)) {
249 for (devfn_it
= 0; devfn_it
< PCI_DEVFN_MAX
; ++devfn_it
) {
250 vtd_as
= vtd_bus
->dev_as
[devfn_it
];
254 vtd_as
->context_cache_entry
.context_cache_gen
= 0;
257 s
->context_cache_gen
= 1;
260 /* Must be called with IOMMU lock held. */
261 static void vtd_reset_iotlb_locked(IntelIOMMUState
*s
)
264 g_hash_table_remove_all(s
->iotlb
);
267 static void vtd_reset_iotlb(IntelIOMMUState
*s
)
270 vtd_reset_iotlb_locked(s
);
274 static void vtd_reset_caches(IntelIOMMUState
*s
)
277 vtd_reset_iotlb_locked(s
);
278 vtd_reset_context_cache_locked(s
);
282 static uint64_t vtd_get_iotlb_key(uint64_t gfn
, uint16_t source_id
,
285 return gfn
| ((uint64_t)(source_id
) << VTD_IOTLB_SID_SHIFT
) |
286 ((uint64_t)(level
) << VTD_IOTLB_LVL_SHIFT
);
289 static uint64_t vtd_get_iotlb_gfn(hwaddr addr
, uint32_t level
)
291 return (addr
& vtd_slpt_level_page_mask(level
)) >> VTD_PAGE_SHIFT_4K
;
294 /* Must be called with IOMMU lock held */
295 static VTDIOTLBEntry
*vtd_lookup_iotlb(IntelIOMMUState
*s
, uint16_t source_id
,
298 VTDIOTLBEntry
*entry
;
302 for (level
= VTD_SL_PT_LEVEL
; level
< VTD_SL_PML4_LEVEL
; level
++) {
303 key
= vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr
, level
),
305 entry
= g_hash_table_lookup(s
->iotlb
, &key
);
315 /* Must be with IOMMU lock held */
316 static void vtd_update_iotlb(IntelIOMMUState
*s
, uint16_t source_id
,
317 uint16_t domain_id
, hwaddr addr
, uint64_t slpte
,
318 uint8_t access_flags
, uint32_t level
)
320 VTDIOTLBEntry
*entry
= g_malloc(sizeof(*entry
));
321 uint64_t *key
= g_malloc(sizeof(*key
));
322 uint64_t gfn
= vtd_get_iotlb_gfn(addr
, level
);
324 trace_vtd_iotlb_page_update(source_id
, addr
, slpte
, domain_id
);
325 if (g_hash_table_size(s
->iotlb
) >= VTD_IOTLB_MAX_SIZE
) {
326 trace_vtd_iotlb_reset("iotlb exceeds size limit");
327 vtd_reset_iotlb_locked(s
);
331 entry
->domain_id
= domain_id
;
332 entry
->slpte
= slpte
;
333 entry
->access_flags
= access_flags
;
334 entry
->mask
= vtd_slpt_level_page_mask(level
);
335 *key
= vtd_get_iotlb_key(gfn
, source_id
, level
);
336 g_hash_table_replace(s
->iotlb
, key
, entry
);
339 /* Given the reg addr of both the message data and address, generate an
342 static void vtd_generate_interrupt(IntelIOMMUState
*s
, hwaddr mesg_addr_reg
,
343 hwaddr mesg_data_reg
)
347 assert(mesg_data_reg
< DMAR_REG_SIZE
);
348 assert(mesg_addr_reg
< DMAR_REG_SIZE
);
350 msi
.address
= vtd_get_long_raw(s
, mesg_addr_reg
);
351 msi
.data
= vtd_get_long_raw(s
, mesg_data_reg
);
353 trace_vtd_irq_generate(msi
.address
, msi
.data
);
355 apic_get_class()->send_msi(&msi
);
358 /* Generate a fault event to software via MSI if conditions are met.
359 * Notice that the value of FSTS_REG being passed to it should be the one
362 static void vtd_generate_fault_event(IntelIOMMUState
*s
, uint32_t pre_fsts
)
364 if (pre_fsts
& VTD_FSTS_PPF
|| pre_fsts
& VTD_FSTS_PFO
||
365 pre_fsts
& VTD_FSTS_IQE
) {
366 error_report_once("There are previous interrupt conditions "
367 "to be serviced by software, fault event "
371 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, 0, VTD_FECTL_IP
);
372 if (vtd_get_long_raw(s
, DMAR_FECTL_REG
) & VTD_FECTL_IM
) {
373 error_report_once("Interrupt Mask set, irq is not generated");
375 vtd_generate_interrupt(s
, DMAR_FEADDR_REG
, DMAR_FEDATA_REG
);
376 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
380 /* Check if the Fault (F) field of the Fault Recording Register referenced by
383 static bool vtd_is_frcd_set(IntelIOMMUState
*s
, uint16_t index
)
385 /* Each reg is 128-bit */
386 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
387 addr
+= 8; /* Access the high 64-bit half */
389 assert(index
< DMAR_FRCD_REG_NR
);
391 return vtd_get_quad_raw(s
, addr
) & VTD_FRCD_F
;
394 /* Update the PPF field of Fault Status Register.
395 * Should be called whenever change the F field of any fault recording
398 static void vtd_update_fsts_ppf(IntelIOMMUState
*s
)
401 uint32_t ppf_mask
= 0;
403 for (i
= 0; i
< DMAR_FRCD_REG_NR
; i
++) {
404 if (vtd_is_frcd_set(s
, i
)) {
405 ppf_mask
= VTD_FSTS_PPF
;
409 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, VTD_FSTS_PPF
, ppf_mask
);
410 trace_vtd_fsts_ppf(!!ppf_mask
);
413 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState
*s
, uint16_t index
)
415 /* Each reg is 128-bit */
416 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
417 addr
+= 8; /* Access the high 64-bit half */
419 assert(index
< DMAR_FRCD_REG_NR
);
421 vtd_set_clear_mask_quad(s
, addr
, 0, VTD_FRCD_F
);
422 vtd_update_fsts_ppf(s
);
425 /* Must not update F field now, should be done later */
426 static void vtd_record_frcd(IntelIOMMUState
*s
, uint16_t index
,
427 uint16_t source_id
, hwaddr addr
,
428 VTDFaultReason fault
, bool is_write
)
431 hwaddr frcd_reg_addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
433 assert(index
< DMAR_FRCD_REG_NR
);
435 lo
= VTD_FRCD_FI(addr
);
436 hi
= VTD_FRCD_SID(source_id
) | VTD_FRCD_FR(fault
);
440 vtd_set_quad_raw(s
, frcd_reg_addr
, lo
);
441 vtd_set_quad_raw(s
, frcd_reg_addr
+ 8, hi
);
443 trace_vtd_frr_new(index
, hi
, lo
);
446 /* Try to collapse multiple pending faults from the same requester */
447 static bool vtd_try_collapse_fault(IntelIOMMUState
*s
, uint16_t source_id
)
451 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ 8; /* The high 64-bit half */
453 for (i
= 0; i
< DMAR_FRCD_REG_NR
; i
++) {
454 frcd_reg
= vtd_get_quad_raw(s
, addr
);
455 if ((frcd_reg
& VTD_FRCD_F
) &&
456 ((frcd_reg
& VTD_FRCD_SID_MASK
) == source_id
)) {
459 addr
+= 16; /* 128-bit for each */
464 /* Log and report an DMAR (address translation) fault to software */
465 static void vtd_report_dmar_fault(IntelIOMMUState
*s
, uint16_t source_id
,
466 hwaddr addr
, VTDFaultReason fault
,
469 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
471 assert(fault
< VTD_FR_MAX
);
473 if (fault
== VTD_FR_RESERVED_ERR
) {
474 /* This is not a normal fault reason case. Drop it. */
478 trace_vtd_dmar_fault(source_id
, fault
, addr
, is_write
);
480 if (fsts_reg
& VTD_FSTS_PFO
) {
481 error_report_once("New fault is not recorded due to "
482 "Primary Fault Overflow");
486 if (vtd_try_collapse_fault(s
, source_id
)) {
487 error_report_once("New fault is not recorded due to "
488 "compression of faults");
492 if (vtd_is_frcd_set(s
, s
->next_frcd_reg
)) {
493 error_report_once("Next Fault Recording Reg is used, "
494 "new fault is not recorded, set PFO field");
495 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, 0, VTD_FSTS_PFO
);
499 vtd_record_frcd(s
, s
->next_frcd_reg
, source_id
, addr
, fault
, is_write
);
501 if (fsts_reg
& VTD_FSTS_PPF
) {
502 error_report_once("There are pending faults already, "
503 "fault event is not generated");
504 vtd_set_frcd_and_update_ppf(s
, s
->next_frcd_reg
);
506 if (s
->next_frcd_reg
== DMAR_FRCD_REG_NR
) {
507 s
->next_frcd_reg
= 0;
510 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, VTD_FSTS_FRI_MASK
,
511 VTD_FSTS_FRI(s
->next_frcd_reg
));
512 vtd_set_frcd_and_update_ppf(s
, s
->next_frcd_reg
); /* Will set PPF */
514 if (s
->next_frcd_reg
== DMAR_FRCD_REG_NR
) {
515 s
->next_frcd_reg
= 0;
517 /* This case actually cause the PPF to be Set.
518 * So generate fault event (interrupt).
520 vtd_generate_fault_event(s
, fsts_reg
);
524 /* Handle Invalidation Queue Errors of queued invalidation interface error
527 static void vtd_handle_inv_queue_error(IntelIOMMUState
*s
)
529 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
531 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, 0, VTD_FSTS_IQE
);
532 vtd_generate_fault_event(s
, fsts_reg
);
535 /* Set the IWC field and try to generate an invalidation completion interrupt */
536 static void vtd_generate_completion_event(IntelIOMMUState
*s
)
538 if (vtd_get_long_raw(s
, DMAR_ICS_REG
) & VTD_ICS_IWC
) {
539 trace_vtd_inv_desc_wait_irq("One pending, skip current");
542 vtd_set_clear_mask_long(s
, DMAR_ICS_REG
, 0, VTD_ICS_IWC
);
543 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, 0, VTD_IECTL_IP
);
544 if (vtd_get_long_raw(s
, DMAR_IECTL_REG
) & VTD_IECTL_IM
) {
545 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
546 "new event not generated");
549 /* Generate the interrupt event */
550 trace_vtd_inv_desc_wait_irq("Generating complete event");
551 vtd_generate_interrupt(s
, DMAR_IEADDR_REG
, DMAR_IEDATA_REG
);
552 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
556 static inline bool vtd_root_entry_present(IntelIOMMUState
*s
,
560 if (s
->root_scalable
&& devfn
> UINT8_MAX
/ 2) {
561 return re
->hi
& VTD_ROOT_ENTRY_P
;
564 return re
->lo
& VTD_ROOT_ENTRY_P
;
567 static int vtd_get_root_entry(IntelIOMMUState
*s
, uint8_t index
,
572 addr
= s
->root
+ index
* sizeof(*re
);
573 if (dma_memory_read(&address_space_memory
, addr
, re
, sizeof(*re
))) {
575 return -VTD_FR_ROOT_TABLE_INV
;
577 re
->lo
= le64_to_cpu(re
->lo
);
578 re
->hi
= le64_to_cpu(re
->hi
);
582 static inline bool vtd_ce_present(VTDContextEntry
*context
)
584 return context
->lo
& VTD_CONTEXT_ENTRY_P
;
587 static int vtd_get_context_entry_from_root(IntelIOMMUState
*s
,
592 dma_addr_t addr
, ce_size
;
594 /* we have checked that root entry is present */
595 ce_size
= s
->root_scalable
? VTD_CTX_ENTRY_SCALABLE_SIZE
:
596 VTD_CTX_ENTRY_LEGACY_SIZE
;
598 if (s
->root_scalable
&& index
> UINT8_MAX
/ 2) {
599 index
= index
& (~VTD_DEVFN_CHECK_MASK
);
600 addr
= re
->hi
& VTD_ROOT_ENTRY_CTP
;
602 addr
= re
->lo
& VTD_ROOT_ENTRY_CTP
;
605 addr
= addr
+ index
* ce_size
;
606 if (dma_memory_read(&address_space_memory
, addr
, ce
, ce_size
)) {
607 return -VTD_FR_CONTEXT_TABLE_INV
;
610 ce
->lo
= le64_to_cpu(ce
->lo
);
611 ce
->hi
= le64_to_cpu(ce
->hi
);
612 if (ce_size
== VTD_CTX_ENTRY_SCALABLE_SIZE
) {
613 ce
->val
[2] = le64_to_cpu(ce
->val
[2]);
614 ce
->val
[3] = le64_to_cpu(ce
->val
[3]);
619 static inline dma_addr_t
vtd_ce_get_slpt_base(VTDContextEntry
*ce
)
621 return ce
->lo
& VTD_CONTEXT_ENTRY_SLPTPTR
;
624 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte
, uint8_t aw
)
626 return slpte
& VTD_SL_PT_BASE_ADDR_MASK(aw
);
629 /* Whether the pte indicates the address of the page frame */
630 static inline bool vtd_is_last_slpte(uint64_t slpte
, uint32_t level
)
632 return level
== VTD_SL_PT_LEVEL
|| (slpte
& VTD_SL_PT_PAGE_SIZE_MASK
);
635 /* Get the content of a spte located in @base_addr[@index] */
636 static uint64_t vtd_get_slpte(dma_addr_t base_addr
, uint32_t index
)
640 assert(index
< VTD_SL_PT_ENTRY_NR
);
642 if (dma_memory_read(&address_space_memory
,
643 base_addr
+ index
* sizeof(slpte
), &slpte
,
645 slpte
= (uint64_t)-1;
648 slpte
= le64_to_cpu(slpte
);
652 /* Given an iova and the level of paging structure, return the offset
655 static inline uint32_t vtd_iova_level_offset(uint64_t iova
, uint32_t level
)
657 return (iova
>> vtd_slpt_level_shift(level
)) &
658 ((1ULL << VTD_SL_LEVEL_BITS
) - 1);
661 /* Check Capability Register to see if the @level of page-table is supported */
662 static inline bool vtd_is_level_supported(IntelIOMMUState
*s
, uint32_t level
)
664 return VTD_CAP_SAGAW_MASK
& s
->cap
&
665 (1ULL << (level
- 2 + VTD_CAP_SAGAW_SHIFT
));
668 /* Return true if check passed, otherwise false */
669 static inline bool vtd_pe_type_check(X86IOMMUState
*x86_iommu
,
672 switch (VTD_PE_GET_TYPE(pe
)) {
673 case VTD_SM_PASID_ENTRY_FLT
:
674 case VTD_SM_PASID_ENTRY_SLT
:
675 case VTD_SM_PASID_ENTRY_NESTED
:
677 case VTD_SM_PASID_ENTRY_PT
:
678 if (!x86_iommu
->pt_supported
) {
689 static inline bool vtd_pdire_present(VTDPASIDDirEntry
*pdire
)
691 return pdire
->val
& 1;
695 * Caller of this function should check present bit if wants
696 * to use pdir entry for futher usage except for fpd bit check.
698 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base
,
700 VTDPASIDDirEntry
*pdire
)
703 dma_addr_t addr
, entry_size
;
705 index
= VTD_PASID_DIR_INDEX(pasid
);
706 entry_size
= VTD_PASID_DIR_ENTRY_SIZE
;
707 addr
= pasid_dir_base
+ index
* entry_size
;
708 if (dma_memory_read(&address_space_memory
, addr
, pdire
, entry_size
)) {
709 return -VTD_FR_PASID_TABLE_INV
;
715 static inline bool vtd_pe_present(VTDPASIDEntry
*pe
)
717 return pe
->val
[0] & VTD_PASID_ENTRY_P
;
720 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState
*s
,
726 dma_addr_t entry_size
;
727 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
729 index
= VTD_PASID_TABLE_INDEX(pasid
);
730 entry_size
= VTD_PASID_ENTRY_SIZE
;
731 addr
= addr
+ index
* entry_size
;
732 if (dma_memory_read(&address_space_memory
, addr
, pe
, entry_size
)) {
733 return -VTD_FR_PASID_TABLE_INV
;
736 /* Do translation type check */
737 if (!vtd_pe_type_check(x86_iommu
, pe
)) {
738 return -VTD_FR_PASID_TABLE_INV
;
741 if (!vtd_is_level_supported(s
, VTD_PE_GET_LEVEL(pe
))) {
742 return -VTD_FR_PASID_TABLE_INV
;
749 * Caller of this function should check present bit if wants
750 * to use pasid entry for futher usage except for fpd bit check.
752 static int vtd_get_pe_from_pdire(IntelIOMMUState
*s
,
754 VTDPASIDDirEntry
*pdire
,
757 dma_addr_t addr
= pdire
->val
& VTD_PASID_TABLE_BASE_ADDR_MASK
;
759 return vtd_get_pe_in_pasid_leaf_table(s
, pasid
, addr
, pe
);
763 * This function gets a pasid entry from a specified pasid
764 * table (includes dir and leaf table) with a specified pasid.
765 * Sanity check should be done to ensure return a present
766 * pasid entry to caller.
768 static int vtd_get_pe_from_pasid_table(IntelIOMMUState
*s
,
769 dma_addr_t pasid_dir_base
,
774 VTDPASIDDirEntry pdire
;
776 ret
= vtd_get_pdire_from_pdir_table(pasid_dir_base
,
782 if (!vtd_pdire_present(&pdire
)) {
783 return -VTD_FR_PASID_TABLE_INV
;
786 ret
= vtd_get_pe_from_pdire(s
, pasid
, &pdire
, pe
);
791 if (!vtd_pe_present(pe
)) {
792 return -VTD_FR_PASID_TABLE_INV
;
798 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState
*s
,
803 dma_addr_t pasid_dir_base
;
806 pasid
= VTD_CE_GET_RID2PASID(ce
);
807 pasid_dir_base
= VTD_CE_GET_PASID_DIR_TABLE(ce
);
808 ret
= vtd_get_pe_from_pasid_table(s
, pasid_dir_base
, pasid
, pe
);
813 static int vtd_ce_get_pasid_fpd(IntelIOMMUState
*s
,
819 dma_addr_t pasid_dir_base
;
820 VTDPASIDDirEntry pdire
;
823 pasid
= VTD_CE_GET_RID2PASID(ce
);
824 pasid_dir_base
= VTD_CE_GET_PASID_DIR_TABLE(ce
);
827 * No present bit check since fpd is meaningful even
828 * if the present bit is clear.
830 ret
= vtd_get_pdire_from_pdir_table(pasid_dir_base
, pasid
, &pdire
);
835 if (pdire
.val
& VTD_PASID_DIR_FPD
) {
840 if (!vtd_pdire_present(&pdire
)) {
841 return -VTD_FR_PASID_TABLE_INV
;
845 * No present bit check since fpd is meaningful even
846 * if the present bit is clear.
848 ret
= vtd_get_pe_from_pdire(s
, pasid
, &pdire
, &pe
);
853 if (pe
.val
[0] & VTD_PASID_ENTRY_FPD
) {
860 /* Get the page-table level that hardware should use for the second-level
861 * page-table walk from the Address Width field of context-entry.
863 static inline uint32_t vtd_ce_get_level(VTDContextEntry
*ce
)
865 return 2 + (ce
->hi
& VTD_CONTEXT_ENTRY_AW
);
868 static uint32_t vtd_get_iova_level(IntelIOMMUState
*s
,
873 if (s
->root_scalable
) {
874 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
875 return VTD_PE_GET_LEVEL(&pe
);
878 return vtd_ce_get_level(ce
);
881 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry
*ce
)
883 return 30 + (ce
->hi
& VTD_CONTEXT_ENTRY_AW
) * 9;
886 static uint32_t vtd_get_iova_agaw(IntelIOMMUState
*s
,
891 if (s
->root_scalable
) {
892 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
893 return 30 + ((pe
.val
[0] >> 2) & VTD_SM_PASID_ENTRY_AW
) * 9;
896 return vtd_ce_get_agaw(ce
);
899 static inline uint32_t vtd_ce_get_type(VTDContextEntry
*ce
)
901 return ce
->lo
& VTD_CONTEXT_ENTRY_TT
;
904 /* Only for Legacy Mode. Return true if check passed, otherwise false */
905 static inline bool vtd_ce_type_check(X86IOMMUState
*x86_iommu
,
908 switch (vtd_ce_get_type(ce
)) {
909 case VTD_CONTEXT_TT_MULTI_LEVEL
:
910 /* Always supported */
912 case VTD_CONTEXT_TT_DEV_IOTLB
:
913 if (!x86_iommu
->dt_supported
) {
914 error_report_once("%s: DT specified but not supported", __func__
);
918 case VTD_CONTEXT_TT_PASS_THROUGH
:
919 if (!x86_iommu
->pt_supported
) {
920 error_report_once("%s: PT specified but not supported", __func__
);
926 error_report_once("%s: unknown ce type: %"PRIu32
, __func__
,
927 vtd_ce_get_type(ce
));
933 static inline uint64_t vtd_iova_limit(IntelIOMMUState
*s
,
934 VTDContextEntry
*ce
, uint8_t aw
)
936 uint32_t ce_agaw
= vtd_get_iova_agaw(s
, ce
);
937 return 1ULL << MIN(ce_agaw
, aw
);
940 /* Return true if IOVA passes range check, otherwise false. */
941 static inline bool vtd_iova_range_check(IntelIOMMUState
*s
,
942 uint64_t iova
, VTDContextEntry
*ce
,
946 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
947 * in CAP_REG and AW in context-entry.
949 return !(iova
& ~(vtd_iova_limit(s
, ce
, aw
) - 1));
952 static dma_addr_t
vtd_get_iova_pgtbl_base(IntelIOMMUState
*s
,
957 if (s
->root_scalable
) {
958 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
959 return pe
.val
[0] & VTD_SM_PASID_ENTRY_SLPTPTR
;
962 return vtd_ce_get_slpt_base(ce
);
966 * Rsvd field masks for spte:
967 * vtd_spte_rsvd 4k pages
968 * vtd_spte_rsvd_large large pages
970 static uint64_t vtd_spte_rsvd
[5];
971 static uint64_t vtd_spte_rsvd_large
[5];
973 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte
, uint32_t level
)
975 uint64_t rsvd_mask
= vtd_spte_rsvd
[level
];
977 if ((level
== VTD_SL_PD_LEVEL
|| level
== VTD_SL_PDP_LEVEL
) &&
978 (slpte
& VTD_SL_PT_PAGE_SIZE_MASK
)) {
980 rsvd_mask
= vtd_spte_rsvd_large
[level
];
983 return slpte
& rsvd_mask
;
986 /* Find the VTD address space associated with a given bus number */
987 static VTDBus
*vtd_find_as_from_bus_num(IntelIOMMUState
*s
, uint8_t bus_num
)
989 VTDBus
*vtd_bus
= s
->vtd_as_by_bus_num
[bus_num
];
997 * Iterate over the registered buses to find the one which
998 * currently holds this bus number and update the bus_num
1001 g_hash_table_iter_init(&iter
, s
->vtd_as_by_busptr
);
1002 while (g_hash_table_iter_next(&iter
, NULL
, (void **)&vtd_bus
)) {
1003 if (pci_bus_num(vtd_bus
->bus
) == bus_num
) {
1004 s
->vtd_as_by_bus_num
[bus_num
] = vtd_bus
;
1012 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1013 * of the translation, can be used for deciding the size of large page.
1015 static int vtd_iova_to_slpte(IntelIOMMUState
*s
, VTDContextEntry
*ce
,
1016 uint64_t iova
, bool is_write
,
1017 uint64_t *slptep
, uint32_t *slpte_level
,
1018 bool *reads
, bool *writes
, uint8_t aw_bits
)
1020 dma_addr_t addr
= vtd_get_iova_pgtbl_base(s
, ce
);
1021 uint32_t level
= vtd_get_iova_level(s
, ce
);
1024 uint64_t access_right_check
;
1026 if (!vtd_iova_range_check(s
, iova
, ce
, aw_bits
)) {
1027 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64
")",
1029 return -VTD_FR_ADDR_BEYOND_MGAW
;
1032 /* FIXME: what is the Atomics request here? */
1033 access_right_check
= is_write
? VTD_SL_W
: VTD_SL_R
;
1036 offset
= vtd_iova_level_offset(iova
, level
);
1037 slpte
= vtd_get_slpte(addr
, offset
);
1039 if (slpte
== (uint64_t)-1) {
1040 error_report_once("%s: detected read error on DMAR slpte "
1041 "(iova=0x%" PRIx64
")", __func__
, iova
);
1042 if (level
== vtd_get_iova_level(s
, ce
)) {
1043 /* Invalid programming of context-entry */
1044 return -VTD_FR_CONTEXT_ENTRY_INV
;
1046 return -VTD_FR_PAGING_ENTRY_INV
;
1049 *reads
= (*reads
) && (slpte
& VTD_SL_R
);
1050 *writes
= (*writes
) && (slpte
& VTD_SL_W
);
1051 if (!(slpte
& access_right_check
)) {
1052 error_report_once("%s: detected slpte permission error "
1053 "(iova=0x%" PRIx64
", level=0x%" PRIx32
", "
1054 "slpte=0x%" PRIx64
", write=%d)", __func__
,
1055 iova
, level
, slpte
, is_write
);
1056 return is_write
? -VTD_FR_WRITE
: -VTD_FR_READ
;
1058 if (vtd_slpte_nonzero_rsvd(slpte
, level
)) {
1059 error_report_once("%s: detected splte reserve non-zero "
1060 "iova=0x%" PRIx64
", level=0x%" PRIx32
1061 "slpte=0x%" PRIx64
")", __func__
, iova
,
1063 return -VTD_FR_PAGING_ENTRY_RSVD
;
1066 if (vtd_is_last_slpte(slpte
, level
)) {
1068 *slpte_level
= level
;
1071 addr
= vtd_get_slpte_addr(slpte
, aw_bits
);
1076 typedef int (*vtd_page_walk_hook
)(IOMMUTLBEvent
*event
, void *private);
1079 * Constant information used during page walking
1081 * @hook_fn: hook func to be called when detected page
1082 * @private: private data to be passed into hook func
1083 * @notify_unmap: whether we should notify invalid entries
1084 * @as: VT-d address space of the device
1085 * @aw: maximum address width
1086 * @domain: domain ID of the page walk
1089 VTDAddressSpace
*as
;
1090 vtd_page_walk_hook hook_fn
;
1095 } vtd_page_walk_info
;
1097 static int vtd_page_walk_one(IOMMUTLBEvent
*event
, vtd_page_walk_info
*info
)
1099 VTDAddressSpace
*as
= info
->as
;
1100 vtd_page_walk_hook hook_fn
= info
->hook_fn
;
1101 void *private = info
->private;
1102 IOMMUTLBEntry
*entry
= &event
->entry
;
1104 .iova
= entry
->iova
,
1105 .size
= entry
->addr_mask
,
1106 .translated_addr
= entry
->translated_addr
,
1107 .perm
= entry
->perm
,
1109 DMAMap
*mapped
= iova_tree_find(as
->iova_tree
, &target
);
1111 if (event
->type
== IOMMU_NOTIFIER_UNMAP
&& !info
->notify_unmap
) {
1112 trace_vtd_page_walk_one_skip_unmap(entry
->iova
, entry
->addr_mask
);
1118 /* Update local IOVA mapped ranges */
1119 if (event
->type
== IOMMU_NOTIFIER_MAP
) {
1121 /* If it's exactly the same translation, skip */
1122 if (!memcmp(mapped
, &target
, sizeof(target
))) {
1123 trace_vtd_page_walk_one_skip_map(entry
->iova
, entry
->addr_mask
,
1124 entry
->translated_addr
);
1128 * Translation changed. Normally this should not
1129 * happen, but it can happen when with buggy guest
1130 * OSes. Note that there will be a small window that
1131 * we don't have map at all. But that's the best
1132 * effort we can do. The ideal way to emulate this is
1133 * atomically modify the PTE to follow what has
1134 * changed, but we can't. One example is that vfio
1135 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1136 * interface to modify a mapping (meanwhile it seems
1137 * meaningless to even provide one). Anyway, let's
1138 * mark this as a TODO in case one day we'll have
1139 * a better solution.
1141 IOMMUAccessFlags cache_perm
= entry
->perm
;
1144 /* Emulate an UNMAP */
1145 event
->type
= IOMMU_NOTIFIER_UNMAP
;
1146 entry
->perm
= IOMMU_NONE
;
1147 trace_vtd_page_walk_one(info
->domain_id
,
1149 entry
->translated_addr
,
1152 ret
= hook_fn(event
, private);
1156 /* Drop any existing mapping */
1157 iova_tree_remove(as
->iova_tree
, &target
);
1158 /* Recover the correct type */
1159 event
->type
= IOMMU_NOTIFIER_MAP
;
1160 entry
->perm
= cache_perm
;
1163 iova_tree_insert(as
->iova_tree
, &target
);
1166 /* Skip since we didn't map this range at all */
1167 trace_vtd_page_walk_one_skip_unmap(entry
->iova
, entry
->addr_mask
);
1170 iova_tree_remove(as
->iova_tree
, &target
);
1173 trace_vtd_page_walk_one(info
->domain_id
, entry
->iova
,
1174 entry
->translated_addr
, entry
->addr_mask
,
1176 return hook_fn(event
, private);
1180 * vtd_page_walk_level - walk over specific level for IOVA range
1182 * @addr: base GPA addr to start the walk
1183 * @start: IOVA range start address
1184 * @end: IOVA range end address (start <= addr < end)
1185 * @read: whether parent level has read permission
1186 * @write: whether parent level has write permission
1187 * @info: constant information for the page walk
1189 static int vtd_page_walk_level(dma_addr_t addr
, uint64_t start
,
1190 uint64_t end
, uint32_t level
, bool read
,
1191 bool write
, vtd_page_walk_info
*info
)
1193 bool read_cur
, write_cur
, entry_valid
;
1196 uint64_t subpage_size
, subpage_mask
;
1197 IOMMUTLBEvent event
;
1198 uint64_t iova
= start
;
1202 trace_vtd_page_walk_level(addr
, level
, start
, end
);
1204 subpage_size
= 1ULL << vtd_slpt_level_shift(level
);
1205 subpage_mask
= vtd_slpt_level_page_mask(level
);
1207 while (iova
< end
) {
1208 iova_next
= (iova
& subpage_mask
) + subpage_size
;
1210 offset
= vtd_iova_level_offset(iova
, level
);
1211 slpte
= vtd_get_slpte(addr
, offset
);
1213 if (slpte
== (uint64_t)-1) {
1214 trace_vtd_page_walk_skip_read(iova
, iova_next
);
1218 if (vtd_slpte_nonzero_rsvd(slpte
, level
)) {
1219 trace_vtd_page_walk_skip_reserve(iova
, iova_next
);
1223 /* Permissions are stacked with parents' */
1224 read_cur
= read
&& (slpte
& VTD_SL_R
);
1225 write_cur
= write
&& (slpte
& VTD_SL_W
);
1228 * As long as we have either read/write permission, this is a
1229 * valid entry. The rule works for both page entries and page
1232 entry_valid
= read_cur
| write_cur
;
1234 if (!vtd_is_last_slpte(slpte
, level
) && entry_valid
) {
1236 * This is a valid PDE (or even bigger than PDE). We need
1237 * to walk one further level.
1239 ret
= vtd_page_walk_level(vtd_get_slpte_addr(slpte
, info
->aw
),
1240 iova
, MIN(iova_next
, end
), level
- 1,
1241 read_cur
, write_cur
, info
);
1244 * This means we are either:
1246 * (1) the real page entry (either 4K page, or huge page)
1247 * (2) the whole range is invalid
1249 * In either case, we send an IOTLB notification down.
1251 event
.entry
.target_as
= &address_space_memory
;
1252 event
.entry
.iova
= iova
& subpage_mask
;
1253 event
.entry
.perm
= IOMMU_ACCESS_FLAG(read_cur
, write_cur
);
1254 event
.entry
.addr_mask
= ~subpage_mask
;
1255 /* NOTE: this is only meaningful if entry_valid == true */
1256 event
.entry
.translated_addr
= vtd_get_slpte_addr(slpte
, info
->aw
);
1257 event
.type
= event
.entry
.perm
? IOMMU_NOTIFIER_MAP
:
1258 IOMMU_NOTIFIER_UNMAP
;
1259 ret
= vtd_page_walk_one(&event
, info
);
1274 * vtd_page_walk - walk specific IOVA range, and call the hook
1276 * @s: intel iommu state
1277 * @ce: context entry to walk upon
1278 * @start: IOVA address to start the walk
1279 * @end: IOVA range end address (start <= addr < end)
1280 * @info: page walking information struct
1282 static int vtd_page_walk(IntelIOMMUState
*s
, VTDContextEntry
*ce
,
1283 uint64_t start
, uint64_t end
,
1284 vtd_page_walk_info
*info
)
1286 dma_addr_t addr
= vtd_get_iova_pgtbl_base(s
, ce
);
1287 uint32_t level
= vtd_get_iova_level(s
, ce
);
1289 if (!vtd_iova_range_check(s
, start
, ce
, info
->aw
)) {
1290 return -VTD_FR_ADDR_BEYOND_MGAW
;
1293 if (!vtd_iova_range_check(s
, end
, ce
, info
->aw
)) {
1294 /* Fix end so that it reaches the maximum */
1295 end
= vtd_iova_limit(s
, ce
, info
->aw
);
1298 return vtd_page_walk_level(addr
, start
, end
, level
, true, true, info
);
1301 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState
*s
,
1304 /* Legacy Mode reserved bits check */
1305 if (!s
->root_scalable
&&
1306 (re
->hi
|| (re
->lo
& VTD_ROOT_ENTRY_RSVD(s
->aw_bits
))))
1309 /* Scalable Mode reserved bits check */
1310 if (s
->root_scalable
&&
1311 ((re
->lo
& VTD_ROOT_ENTRY_RSVD(s
->aw_bits
)) ||
1312 (re
->hi
& VTD_ROOT_ENTRY_RSVD(s
->aw_bits
))))
1318 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1320 __func__
, re
->hi
, re
->lo
);
1321 return -VTD_FR_ROOT_ENTRY_RSVD
;
1324 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState
*s
,
1325 VTDContextEntry
*ce
)
1327 if (!s
->root_scalable
&&
1328 (ce
->hi
& VTD_CONTEXT_ENTRY_RSVD_HI
||
1329 ce
->lo
& VTD_CONTEXT_ENTRY_RSVD_LO(s
->aw_bits
))) {
1330 error_report_once("%s: invalid context entry: hi=%"PRIx64
1331 ", lo=%"PRIx64
" (reserved nonzero)",
1332 __func__
, ce
->hi
, ce
->lo
);
1333 return -VTD_FR_CONTEXT_ENTRY_RSVD
;
1336 if (s
->root_scalable
&&
1337 (ce
->val
[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s
->aw_bits
) ||
1338 ce
->val
[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1
||
1341 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1344 ", val[0]=%"PRIx64
" (reserved nonzero)",
1345 __func__
, ce
->val
[3], ce
->val
[2],
1346 ce
->val
[1], ce
->val
[0]);
1347 return -VTD_FR_CONTEXT_ENTRY_RSVD
;
1353 static int vtd_ce_rid2pasid_check(IntelIOMMUState
*s
,
1354 VTDContextEntry
*ce
)
1359 * Make sure in Scalable Mode, a present context entry
1360 * has valid rid2pasid setting, which includes valid
1361 * rid2pasid field and corresponding pasid entry setting
1363 return vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
1366 /* Map a device to its corresponding domain (context-entry) */
1367 static int vtd_dev_to_context_entry(IntelIOMMUState
*s
, uint8_t bus_num
,
1368 uint8_t devfn
, VTDContextEntry
*ce
)
1372 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
1374 ret_fr
= vtd_get_root_entry(s
, bus_num
, &re
);
1379 if (!vtd_root_entry_present(s
, &re
, devfn
)) {
1380 /* Not error - it's okay we don't have root entry. */
1381 trace_vtd_re_not_present(bus_num
);
1382 return -VTD_FR_ROOT_ENTRY_P
;
1385 ret_fr
= vtd_root_entry_rsvd_bits_check(s
, &re
);
1390 ret_fr
= vtd_get_context_entry_from_root(s
, &re
, devfn
, ce
);
1395 if (!vtd_ce_present(ce
)) {
1396 /* Not error - it's okay we don't have context entry. */
1397 trace_vtd_ce_not_present(bus_num
, devfn
);
1398 return -VTD_FR_CONTEXT_ENTRY_P
;
1401 ret_fr
= vtd_context_entry_rsvd_bits_check(s
, ce
);
1406 /* Check if the programming of context-entry is valid */
1407 if (!s
->root_scalable
&&
1408 !vtd_is_level_supported(s
, vtd_ce_get_level(ce
))) {
1409 error_report_once("%s: invalid context entry: hi=%"PRIx64
1410 ", lo=%"PRIx64
" (level %d not supported)",
1411 __func__
, ce
->hi
, ce
->lo
,
1412 vtd_ce_get_level(ce
));
1413 return -VTD_FR_CONTEXT_ENTRY_INV
;
1416 if (!s
->root_scalable
) {
1417 /* Do translation type check */
1418 if (!vtd_ce_type_check(x86_iommu
, ce
)) {
1419 /* Errors dumped in vtd_ce_type_check() */
1420 return -VTD_FR_CONTEXT_ENTRY_INV
;
1424 * Check if the programming of context-entry.rid2pasid
1425 * and corresponding pasid setting is valid, and thus
1426 * avoids to check pasid entry fetching result in future
1427 * helper function calling.
1429 ret_fr
= vtd_ce_rid2pasid_check(s
, ce
);
1438 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent
*event
,
1441 memory_region_notify_iommu(private, 0, *event
);
1445 static uint16_t vtd_get_domain_id(IntelIOMMUState
*s
,
1446 VTDContextEntry
*ce
)
1450 if (s
->root_scalable
) {
1451 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
1452 return VTD_SM_PASID_ENTRY_DID(pe
.val
[1]);
1455 return VTD_CONTEXT_ENTRY_DID(ce
->hi
);
1458 static int vtd_sync_shadow_page_table_range(VTDAddressSpace
*vtd_as
,
1459 VTDContextEntry
*ce
,
1460 hwaddr addr
, hwaddr size
)
1462 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
1463 vtd_page_walk_info info
= {
1464 .hook_fn
= vtd_sync_shadow_page_hook
,
1465 .private = (void *)&vtd_as
->iommu
,
1466 .notify_unmap
= true,
1469 .domain_id
= vtd_get_domain_id(s
, ce
),
1472 return vtd_page_walk(s
, ce
, addr
, addr
+ size
, &info
);
1475 static int vtd_sync_shadow_page_table(VTDAddressSpace
*vtd_as
)
1481 ret
= vtd_dev_to_context_entry(vtd_as
->iommu_state
,
1482 pci_bus_num(vtd_as
->bus
),
1483 vtd_as
->devfn
, &ce
);
1485 if (ret
== -VTD_FR_CONTEXT_ENTRY_P
) {
1487 * It's a valid scenario to have a context entry that is
1488 * not present. For example, when a device is removed
1489 * from an existing domain then the context entry will be
1490 * zeroed by the guest before it was put into another
1491 * domain. When this happens, instead of synchronizing
1492 * the shadow pages we should invalidate all existing
1493 * mappings and notify the backends.
1495 IOMMU_NOTIFIER_FOREACH(n
, &vtd_as
->iommu
) {
1496 vtd_address_space_unmap(vtd_as
, n
);
1503 return vtd_sync_shadow_page_table_range(vtd_as
, &ce
, 0, UINT64_MAX
);
1507 * Check if specific device is configed to bypass address
1508 * translation for DMA requests. In Scalable Mode, bypass
1509 * 1st-level translation or 2nd-level translation, it depends
1512 static bool vtd_dev_pt_enabled(VTDAddressSpace
*as
)
1521 s
= as
->iommu_state
;
1522 ret
= vtd_dev_to_context_entry(s
, pci_bus_num(as
->bus
),
1526 * Possibly failed to parse the context entry for some reason
1527 * (e.g., during init, or any guest configuration errors on
1528 * context entries). We should assume PT not enabled for
1534 if (s
->root_scalable
) {
1535 ret
= vtd_ce_get_rid2pasid_entry(s
, &ce
, &pe
);
1537 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32
,
1541 return (VTD_PE_GET_TYPE(&pe
) == VTD_SM_PASID_ENTRY_PT
);
1544 return (vtd_ce_get_type(&ce
) == VTD_CONTEXT_TT_PASS_THROUGH
);
1547 /* Return whether the device is using IOMMU translation. */
1548 static bool vtd_switch_address_space(VTDAddressSpace
*as
)
1551 /* Whether we need to take the BQL on our own */
1552 bool take_bql
= !qemu_mutex_iothread_locked();
1556 use_iommu
= as
->iommu_state
->dmar_enabled
&& !vtd_dev_pt_enabled(as
);
1558 trace_vtd_switch_address_space(pci_bus_num(as
->bus
),
1559 VTD_PCI_SLOT(as
->devfn
),
1560 VTD_PCI_FUNC(as
->devfn
),
1564 * It's possible that we reach here without BQL, e.g., when called
1565 * from vtd_pt_enable_fast_path(). However the memory APIs need
1566 * it. We'd better make sure we have had it already, or, take it.
1569 qemu_mutex_lock_iothread();
1572 /* Turn off first then on the other */
1574 memory_region_set_enabled(&as
->nodmar
, false);
1575 memory_region_set_enabled(MEMORY_REGION(&as
->iommu
), true);
1577 memory_region_set_enabled(MEMORY_REGION(&as
->iommu
), false);
1578 memory_region_set_enabled(&as
->nodmar
, true);
1582 qemu_mutex_unlock_iothread();
1588 static void vtd_switch_address_space_all(IntelIOMMUState
*s
)
1590 GHashTableIter iter
;
1594 g_hash_table_iter_init(&iter
, s
->vtd_as_by_busptr
);
1595 while (g_hash_table_iter_next(&iter
, NULL
, (void **)&vtd_bus
)) {
1596 for (i
= 0; i
< PCI_DEVFN_MAX
; i
++) {
1597 if (!vtd_bus
->dev_as
[i
]) {
1600 vtd_switch_address_space(vtd_bus
->dev_as
[i
]);
1605 static inline uint16_t vtd_make_source_id(uint8_t bus_num
, uint8_t devfn
)
1607 return ((bus_num
& 0xffUL
) << 8) | (devfn
& 0xffUL
);
1610 static const bool vtd_qualified_faults
[] = {
1611 [VTD_FR_RESERVED
] = false,
1612 [VTD_FR_ROOT_ENTRY_P
] = false,
1613 [VTD_FR_CONTEXT_ENTRY_P
] = true,
1614 [VTD_FR_CONTEXT_ENTRY_INV
] = true,
1615 [VTD_FR_ADDR_BEYOND_MGAW
] = true,
1616 [VTD_FR_WRITE
] = true,
1617 [VTD_FR_READ
] = true,
1618 [VTD_FR_PAGING_ENTRY_INV
] = true,
1619 [VTD_FR_ROOT_TABLE_INV
] = false,
1620 [VTD_FR_CONTEXT_TABLE_INV
] = false,
1621 [VTD_FR_ROOT_ENTRY_RSVD
] = false,
1622 [VTD_FR_PAGING_ENTRY_RSVD
] = true,
1623 [VTD_FR_CONTEXT_ENTRY_TT
] = true,
1624 [VTD_FR_PASID_TABLE_INV
] = false,
1625 [VTD_FR_RESERVED_ERR
] = false,
1626 [VTD_FR_MAX
] = false,
1629 /* To see if a fault condition is "qualified", which is reported to software
1630 * only if the FPD field in the context-entry used to process the faulting
1633 static inline bool vtd_is_qualified_fault(VTDFaultReason fault
)
1635 return vtd_qualified_faults
[fault
];
1638 static inline bool vtd_is_interrupt_addr(hwaddr addr
)
1640 return VTD_INTERRUPT_ADDR_FIRST
<= addr
&& addr
<= VTD_INTERRUPT_ADDR_LAST
;
1643 static void vtd_pt_enable_fast_path(IntelIOMMUState
*s
, uint16_t source_id
)
1646 VTDAddressSpace
*vtd_as
;
1647 bool success
= false;
1649 vtd_bus
= vtd_find_as_from_bus_num(s
, VTD_SID_TO_BUS(source_id
));
1654 vtd_as
= vtd_bus
->dev_as
[VTD_SID_TO_DEVFN(source_id
)];
1659 if (vtd_switch_address_space(vtd_as
) == false) {
1660 /* We switched off IOMMU region successfully. */
1665 trace_vtd_pt_enable_fast_path(source_id
, success
);
1668 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1671 * Called from RCU critical section.
1673 * @bus_num: The bus number
1674 * @devfn: The devfn, which is the combined of device and function number
1675 * @is_write: The access is a write operation
1676 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1678 * Returns true if translation is successful, otherwise false.
1680 static bool vtd_do_iommu_translate(VTDAddressSpace
*vtd_as
, PCIBus
*bus
,
1681 uint8_t devfn
, hwaddr addr
, bool is_write
,
1682 IOMMUTLBEntry
*entry
)
1684 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
1686 uint8_t bus_num
= pci_bus_num(bus
);
1687 VTDContextCacheEntry
*cc_entry
;
1688 uint64_t slpte
, page_mask
;
1690 uint16_t source_id
= vtd_make_source_id(bus_num
, devfn
);
1692 bool is_fpd_set
= false;
1695 uint8_t access_flags
;
1696 VTDIOTLBEntry
*iotlb_entry
;
1699 * We have standalone memory region for interrupt addresses, we
1700 * should never receive translation requests in this region.
1702 assert(!vtd_is_interrupt_addr(addr
));
1706 cc_entry
= &vtd_as
->context_cache_entry
;
1708 /* Try to fetch slpte form IOTLB */
1709 iotlb_entry
= vtd_lookup_iotlb(s
, source_id
, addr
);
1711 trace_vtd_iotlb_page_hit(source_id
, addr
, iotlb_entry
->slpte
,
1712 iotlb_entry
->domain_id
);
1713 slpte
= iotlb_entry
->slpte
;
1714 access_flags
= iotlb_entry
->access_flags
;
1715 page_mask
= iotlb_entry
->mask
;
1719 /* Try to fetch context-entry from cache first */
1720 if (cc_entry
->context_cache_gen
== s
->context_cache_gen
) {
1721 trace_vtd_iotlb_cc_hit(bus_num
, devfn
, cc_entry
->context_entry
.hi
,
1722 cc_entry
->context_entry
.lo
,
1723 cc_entry
->context_cache_gen
);
1724 ce
= cc_entry
->context_entry
;
1725 is_fpd_set
= ce
.lo
& VTD_CONTEXT_ENTRY_FPD
;
1726 if (!is_fpd_set
&& s
->root_scalable
) {
1727 ret_fr
= vtd_ce_get_pasid_fpd(s
, &ce
, &is_fpd_set
);
1728 VTD_PE_GET_FPD_ERR(ret_fr
, is_fpd_set
, s
, source_id
, addr
, is_write
);
1731 ret_fr
= vtd_dev_to_context_entry(s
, bus_num
, devfn
, &ce
);
1732 is_fpd_set
= ce
.lo
& VTD_CONTEXT_ENTRY_FPD
;
1733 if (!ret_fr
&& !is_fpd_set
&& s
->root_scalable
) {
1734 ret_fr
= vtd_ce_get_pasid_fpd(s
, &ce
, &is_fpd_set
);
1736 VTD_PE_GET_FPD_ERR(ret_fr
, is_fpd_set
, s
, source_id
, addr
, is_write
);
1737 /* Update context-cache */
1738 trace_vtd_iotlb_cc_update(bus_num
, devfn
, ce
.hi
, ce
.lo
,
1739 cc_entry
->context_cache_gen
,
1740 s
->context_cache_gen
);
1741 cc_entry
->context_entry
= ce
;
1742 cc_entry
->context_cache_gen
= s
->context_cache_gen
;
1746 * We don't need to translate for pass-through context entries.
1747 * Also, let's ignore IOTLB caching as well for PT devices.
1749 if (vtd_ce_get_type(&ce
) == VTD_CONTEXT_TT_PASS_THROUGH
) {
1750 entry
->iova
= addr
& VTD_PAGE_MASK_4K
;
1751 entry
->translated_addr
= entry
->iova
;
1752 entry
->addr_mask
= ~VTD_PAGE_MASK_4K
;
1753 entry
->perm
= IOMMU_RW
;
1754 trace_vtd_translate_pt(source_id
, entry
->iova
);
1757 * When this happens, it means firstly caching-mode is not
1758 * enabled, and this is the first passthrough translation for
1759 * the device. Let's enable the fast path for passthrough.
1761 * When passthrough is disabled again for the device, we can
1762 * capture it via the context entry invalidation, then the
1763 * IOMMU region can be swapped back.
1765 vtd_pt_enable_fast_path(s
, source_id
);
1766 vtd_iommu_unlock(s
);
1770 ret_fr
= vtd_iova_to_slpte(s
, &ce
, addr
, is_write
, &slpte
, &level
,
1771 &reads
, &writes
, s
->aw_bits
);
1772 VTD_PE_GET_FPD_ERR(ret_fr
, is_fpd_set
, s
, source_id
, addr
, is_write
);
1774 page_mask
= vtd_slpt_level_page_mask(level
);
1775 access_flags
= IOMMU_ACCESS_FLAG(reads
, writes
);
1776 vtd_update_iotlb(s
, source_id
, vtd_get_domain_id(s
, &ce
), addr
, slpte
,
1777 access_flags
, level
);
1779 vtd_iommu_unlock(s
);
1780 entry
->iova
= addr
& page_mask
;
1781 entry
->translated_addr
= vtd_get_slpte_addr(slpte
, s
->aw_bits
) & page_mask
;
1782 entry
->addr_mask
= ~page_mask
;
1783 entry
->perm
= access_flags
;
1787 vtd_iommu_unlock(s
);
1789 entry
->translated_addr
= 0;
1790 entry
->addr_mask
= 0;
1791 entry
->perm
= IOMMU_NONE
;
1795 static void vtd_root_table_setup(IntelIOMMUState
*s
)
1797 s
->root
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
);
1798 s
->root
&= VTD_RTADDR_ADDR_MASK(s
->aw_bits
);
1800 vtd_update_scalable_state(s
);
1802 trace_vtd_reg_dmar_root(s
->root
, s
->root_scalable
);
1805 static void vtd_iec_notify_all(IntelIOMMUState
*s
, bool global
,
1806 uint32_t index
, uint32_t mask
)
1808 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s
), global
, index
, mask
);
1811 static void vtd_interrupt_remap_table_setup(IntelIOMMUState
*s
)
1814 value
= vtd_get_quad_raw(s
, DMAR_IRTA_REG
);
1815 s
->intr_size
= 1UL << ((value
& VTD_IRTA_SIZE_MASK
) + 1);
1816 s
->intr_root
= value
& VTD_IRTA_ADDR_MASK(s
->aw_bits
);
1817 s
->intr_eime
= value
& VTD_IRTA_EIME
;
1819 /* Notify global invalidation */
1820 vtd_iec_notify_all(s
, true, 0, 0);
1822 trace_vtd_reg_ir_root(s
->intr_root
, s
->intr_size
);
1825 static void vtd_iommu_replay_all(IntelIOMMUState
*s
)
1827 VTDAddressSpace
*vtd_as
;
1829 QLIST_FOREACH(vtd_as
, &s
->vtd_as_with_notifiers
, next
) {
1830 vtd_sync_shadow_page_table(vtd_as
);
1834 static void vtd_context_global_invalidate(IntelIOMMUState
*s
)
1836 trace_vtd_inv_desc_cc_global();
1837 /* Protects context cache */
1839 s
->context_cache_gen
++;
1840 if (s
->context_cache_gen
== VTD_CONTEXT_CACHE_GEN_MAX
) {
1841 vtd_reset_context_cache_locked(s
);
1843 vtd_iommu_unlock(s
);
1844 vtd_address_space_refresh_all(s
);
1846 * From VT-d spec 6.5.2.1, a global context entry invalidation
1847 * should be followed by a IOTLB global invalidation, so we should
1848 * be safe even without this. Hoewever, let's replay the region as
1849 * well to be safer, and go back here when we need finer tunes for
1850 * VT-d emulation codes.
1852 vtd_iommu_replay_all(s
);
1855 /* Do a context-cache device-selective invalidation.
1856 * @func_mask: FM field after shifting
1858 static void vtd_context_device_invalidate(IntelIOMMUState
*s
,
1864 VTDAddressSpace
*vtd_as
;
1865 uint8_t bus_n
, devfn
;
1868 trace_vtd_inv_desc_cc_devices(source_id
, func_mask
);
1870 switch (func_mask
& 3) {
1872 mask
= 0; /* No bits in the SID field masked */
1875 mask
= 4; /* Mask bit 2 in the SID field */
1878 mask
= 6; /* Mask bit 2:1 in the SID field */
1881 mask
= 7; /* Mask bit 2:0 in the SID field */
1886 bus_n
= VTD_SID_TO_BUS(source_id
);
1887 vtd_bus
= vtd_find_as_from_bus_num(s
, bus_n
);
1889 devfn
= VTD_SID_TO_DEVFN(source_id
);
1890 for (devfn_it
= 0; devfn_it
< PCI_DEVFN_MAX
; ++devfn_it
) {
1891 vtd_as
= vtd_bus
->dev_as
[devfn_it
];
1892 if (vtd_as
&& ((devfn_it
& mask
) == (devfn
& mask
))) {
1893 trace_vtd_inv_desc_cc_device(bus_n
, VTD_PCI_SLOT(devfn_it
),
1894 VTD_PCI_FUNC(devfn_it
));
1896 vtd_as
->context_cache_entry
.context_cache_gen
= 0;
1897 vtd_iommu_unlock(s
);
1899 * Do switch address space when needed, in case if the
1900 * device passthrough bit is switched.
1902 vtd_switch_address_space(vtd_as
);
1904 * So a device is moving out of (or moving into) a
1905 * domain, resync the shadow page table.
1906 * This won't bring bad even if we have no such
1907 * notifier registered - the IOMMU notification
1908 * framework will skip MAP notifications if that
1911 vtd_sync_shadow_page_table(vtd_as
);
1917 /* Context-cache invalidation
1918 * Returns the Context Actual Invalidation Granularity.
1919 * @val: the content of the CCMD_REG
1921 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState
*s
, uint64_t val
)
1924 uint64_t type
= val
& VTD_CCMD_CIRG_MASK
;
1927 case VTD_CCMD_DOMAIN_INVL
:
1929 case VTD_CCMD_GLOBAL_INVL
:
1930 caig
= VTD_CCMD_GLOBAL_INVL_A
;
1931 vtd_context_global_invalidate(s
);
1934 case VTD_CCMD_DEVICE_INVL
:
1935 caig
= VTD_CCMD_DEVICE_INVL_A
;
1936 vtd_context_device_invalidate(s
, VTD_CCMD_SID(val
), VTD_CCMD_FM(val
));
1940 error_report_once("%s: invalid context: 0x%" PRIx64
,
1947 static void vtd_iotlb_global_invalidate(IntelIOMMUState
*s
)
1949 trace_vtd_inv_desc_iotlb_global();
1951 vtd_iommu_replay_all(s
);
1954 static void vtd_iotlb_domain_invalidate(IntelIOMMUState
*s
, uint16_t domain_id
)
1957 VTDAddressSpace
*vtd_as
;
1959 trace_vtd_inv_desc_iotlb_domain(domain_id
);
1962 g_hash_table_foreach_remove(s
->iotlb
, vtd_hash_remove_by_domain
,
1964 vtd_iommu_unlock(s
);
1966 QLIST_FOREACH(vtd_as
, &s
->vtd_as_with_notifiers
, next
) {
1967 if (!vtd_dev_to_context_entry(s
, pci_bus_num(vtd_as
->bus
),
1968 vtd_as
->devfn
, &ce
) &&
1969 domain_id
== vtd_get_domain_id(s
, &ce
)) {
1970 vtd_sync_shadow_page_table(vtd_as
);
1975 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState
*s
,
1976 uint16_t domain_id
, hwaddr addr
,
1979 VTDAddressSpace
*vtd_as
;
1982 hwaddr size
= (1 << am
) * VTD_PAGE_SIZE
;
1984 QLIST_FOREACH(vtd_as
, &(s
->vtd_as_with_notifiers
), next
) {
1985 ret
= vtd_dev_to_context_entry(s
, pci_bus_num(vtd_as
->bus
),
1986 vtd_as
->devfn
, &ce
);
1987 if (!ret
&& domain_id
== vtd_get_domain_id(s
, &ce
)) {
1988 if (vtd_as_has_map_notifier(vtd_as
)) {
1990 * As long as we have MAP notifications registered in
1991 * any of our IOMMU notifiers, we need to sync the
1992 * shadow page table.
1994 vtd_sync_shadow_page_table_range(vtd_as
, &ce
, addr
, size
);
1997 * For UNMAP-only notifiers, we don't need to walk the
1998 * page tables. We just deliver the PSI down to
1999 * invalidate caches.
2001 IOMMUTLBEvent event
= {
2002 .type
= IOMMU_NOTIFIER_UNMAP
,
2004 .target_as
= &address_space_memory
,
2006 .translated_addr
= 0,
2007 .addr_mask
= size
- 1,
2011 memory_region_notify_iommu(&vtd_as
->iommu
, 0, event
);
2017 static void vtd_iotlb_page_invalidate(IntelIOMMUState
*s
, uint16_t domain_id
,
2018 hwaddr addr
, uint8_t am
)
2020 VTDIOTLBPageInvInfo info
;
2022 trace_vtd_inv_desc_iotlb_pages(domain_id
, addr
, am
);
2024 assert(am
<= VTD_MAMV
);
2025 info
.domain_id
= domain_id
;
2027 info
.mask
= ~((1 << am
) - 1);
2029 g_hash_table_foreach_remove(s
->iotlb
, vtd_hash_remove_by_page
, &info
);
2030 vtd_iommu_unlock(s
);
2031 vtd_iotlb_page_invalidate_notify(s
, domain_id
, addr
, am
);
2035 * Returns the IOTLB Actual Invalidation Granularity.
2036 * @val: the content of the IOTLB_REG
2038 static uint64_t vtd_iotlb_flush(IntelIOMMUState
*s
, uint64_t val
)
2041 uint64_t type
= val
& VTD_TLB_FLUSH_GRANU_MASK
;
2047 case VTD_TLB_GLOBAL_FLUSH
:
2048 iaig
= VTD_TLB_GLOBAL_FLUSH_A
;
2049 vtd_iotlb_global_invalidate(s
);
2052 case VTD_TLB_DSI_FLUSH
:
2053 domain_id
= VTD_TLB_DID(val
);
2054 iaig
= VTD_TLB_DSI_FLUSH_A
;
2055 vtd_iotlb_domain_invalidate(s
, domain_id
);
2058 case VTD_TLB_PSI_FLUSH
:
2059 domain_id
= VTD_TLB_DID(val
);
2060 addr
= vtd_get_quad_raw(s
, DMAR_IVA_REG
);
2061 am
= VTD_IVA_AM(addr
);
2062 addr
= VTD_IVA_ADDR(addr
);
2063 if (am
> VTD_MAMV
) {
2064 error_report_once("%s: address mask overflow: 0x%" PRIx64
,
2065 __func__
, vtd_get_quad_raw(s
, DMAR_IVA_REG
));
2069 iaig
= VTD_TLB_PSI_FLUSH_A
;
2070 vtd_iotlb_page_invalidate(s
, domain_id
, addr
, am
);
2074 error_report_once("%s: invalid granularity: 0x%" PRIx64
,
2081 static void vtd_fetch_inv_desc(IntelIOMMUState
*s
);
2083 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState
*s
)
2085 return s
->qi_enabled
&& (s
->iq_tail
== s
->iq_head
) &&
2086 (s
->iq_last_desc_type
== VTD_INV_DESC_WAIT
);
2089 static void vtd_handle_gcmd_qie(IntelIOMMUState
*s
, bool en
)
2091 uint64_t iqa_val
= vtd_get_quad_raw(s
, DMAR_IQA_REG
);
2093 trace_vtd_inv_qi_enable(en
);
2096 s
->iq
= iqa_val
& VTD_IQA_IQA_MASK(s
->aw_bits
);
2097 /* 2^(x+8) entries */
2098 s
->iq_size
= 1UL << ((iqa_val
& VTD_IQA_QS
) + 8 - (s
->iq_dw
? 1 : 0));
2099 s
->qi_enabled
= true;
2100 trace_vtd_inv_qi_setup(s
->iq
, s
->iq_size
);
2101 /* Ok - report back to driver */
2102 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_QIES
);
2104 if (s
->iq_tail
!= 0) {
2106 * This is a spec violation but Windows guests are known to set up
2107 * Queued Invalidation this way so we allow the write and process
2108 * Invalidation Descriptors right away.
2110 trace_vtd_warn_invalid_qi_tail(s
->iq_tail
);
2111 if (!(vtd_get_long_raw(s
, DMAR_FSTS_REG
) & VTD_FSTS_IQE
)) {
2112 vtd_fetch_inv_desc(s
);
2116 if (vtd_queued_inv_disable_check(s
)) {
2117 /* disable Queued Invalidation */
2118 vtd_set_quad_raw(s
, DMAR_IQH_REG
, 0);
2120 s
->qi_enabled
= false;
2121 /* Ok - report back to driver */
2122 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_QIES
, 0);
2124 error_report_once("%s: detected improper state when disable QI "
2125 "(head=0x%x, tail=0x%x, last_type=%d)",
2127 s
->iq_head
, s
->iq_tail
, s
->iq_last_desc_type
);
2132 /* Set Root Table Pointer */
2133 static void vtd_handle_gcmd_srtp(IntelIOMMUState
*s
)
2135 vtd_root_table_setup(s
);
2136 /* Ok - report back to driver */
2137 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_RTPS
);
2138 vtd_reset_caches(s
);
2139 vtd_address_space_refresh_all(s
);
2142 /* Set Interrupt Remap Table Pointer */
2143 static void vtd_handle_gcmd_sirtp(IntelIOMMUState
*s
)
2145 vtd_interrupt_remap_table_setup(s
);
2146 /* Ok - report back to driver */
2147 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_IRTPS
);
2150 /* Handle Translation Enable/Disable */
2151 static void vtd_handle_gcmd_te(IntelIOMMUState
*s
, bool en
)
2153 if (s
->dmar_enabled
== en
) {
2157 trace_vtd_dmar_enable(en
);
2160 s
->dmar_enabled
= true;
2161 /* Ok - report back to driver */
2162 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_TES
);
2164 s
->dmar_enabled
= false;
2166 /* Clear the index of Fault Recording Register */
2167 s
->next_frcd_reg
= 0;
2168 /* Ok - report back to driver */
2169 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_TES
, 0);
2172 vtd_reset_caches(s
);
2173 vtd_address_space_refresh_all(s
);
2176 /* Handle Interrupt Remap Enable/Disable */
2177 static void vtd_handle_gcmd_ire(IntelIOMMUState
*s
, bool en
)
2179 trace_vtd_ir_enable(en
);
2182 s
->intr_enabled
= true;
2183 /* Ok - report back to driver */
2184 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_IRES
);
2186 s
->intr_enabled
= false;
2187 /* Ok - report back to driver */
2188 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_IRES
, 0);
2192 /* Handle write to Global Command Register */
2193 static void vtd_handle_gcmd_write(IntelIOMMUState
*s
)
2195 uint32_t status
= vtd_get_long_raw(s
, DMAR_GSTS_REG
);
2196 uint32_t val
= vtd_get_long_raw(s
, DMAR_GCMD_REG
);
2197 uint32_t changed
= status
^ val
;
2199 trace_vtd_reg_write_gcmd(status
, val
);
2200 if (changed
& VTD_GCMD_TE
) {
2201 /* Translation enable/disable */
2202 vtd_handle_gcmd_te(s
, val
& VTD_GCMD_TE
);
2204 if (val
& VTD_GCMD_SRTP
) {
2205 /* Set/update the root-table pointer */
2206 vtd_handle_gcmd_srtp(s
);
2208 if (changed
& VTD_GCMD_QIE
) {
2209 /* Queued Invalidation Enable */
2210 vtd_handle_gcmd_qie(s
, val
& VTD_GCMD_QIE
);
2212 if (val
& VTD_GCMD_SIRTP
) {
2213 /* Set/update the interrupt remapping root-table pointer */
2214 vtd_handle_gcmd_sirtp(s
);
2216 if (changed
& VTD_GCMD_IRE
) {
2217 /* Interrupt remap enable/disable */
2218 vtd_handle_gcmd_ire(s
, val
& VTD_GCMD_IRE
);
2222 /* Handle write to Context Command Register */
2223 static void vtd_handle_ccmd_write(IntelIOMMUState
*s
)
2226 uint64_t val
= vtd_get_quad_raw(s
, DMAR_CCMD_REG
);
2228 /* Context-cache invalidation request */
2229 if (val
& VTD_CCMD_ICC
) {
2230 if (s
->qi_enabled
) {
2231 error_report_once("Queued Invalidation enabled, "
2232 "should not use register-based invalidation");
2235 ret
= vtd_context_cache_invalidate(s
, val
);
2236 /* Invalidation completed. Change something to show */
2237 vtd_set_clear_mask_quad(s
, DMAR_CCMD_REG
, VTD_CCMD_ICC
, 0ULL);
2238 ret
= vtd_set_clear_mask_quad(s
, DMAR_CCMD_REG
, VTD_CCMD_CAIG_MASK
,
2243 /* Handle write to IOTLB Invalidation Register */
2244 static void vtd_handle_iotlb_write(IntelIOMMUState
*s
)
2247 uint64_t val
= vtd_get_quad_raw(s
, DMAR_IOTLB_REG
);
2249 /* IOTLB invalidation request */
2250 if (val
& VTD_TLB_IVT
) {
2251 if (s
->qi_enabled
) {
2252 error_report_once("Queued Invalidation enabled, "
2253 "should not use register-based invalidation");
2256 ret
= vtd_iotlb_flush(s
, val
);
2257 /* Invalidation completed. Change something to show */
2258 vtd_set_clear_mask_quad(s
, DMAR_IOTLB_REG
, VTD_TLB_IVT
, 0ULL);
2259 ret
= vtd_set_clear_mask_quad(s
, DMAR_IOTLB_REG
,
2260 VTD_TLB_FLUSH_GRANU_MASK_A
, ret
);
2264 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2265 static bool vtd_get_inv_desc(IntelIOMMUState
*s
,
2266 VTDInvDesc
*inv_desc
)
2268 dma_addr_t base_addr
= s
->iq
;
2269 uint32_t offset
= s
->iq_head
;
2270 uint32_t dw
= s
->iq_dw
? 32 : 16;
2271 dma_addr_t addr
= base_addr
+ offset
* dw
;
2273 if (dma_memory_read(&address_space_memory
, addr
, inv_desc
, dw
)) {
2274 error_report_once("Read INV DESC failed.");
2277 inv_desc
->lo
= le64_to_cpu(inv_desc
->lo
);
2278 inv_desc
->hi
= le64_to_cpu(inv_desc
->hi
);
2280 inv_desc
->val
[2] = le64_to_cpu(inv_desc
->val
[2]);
2281 inv_desc
->val
[3] = le64_to_cpu(inv_desc
->val
[3]);
2286 static bool vtd_process_wait_desc(IntelIOMMUState
*s
, VTDInvDesc
*inv_desc
)
2288 if ((inv_desc
->hi
& VTD_INV_DESC_WAIT_RSVD_HI
) ||
2289 (inv_desc
->lo
& VTD_INV_DESC_WAIT_RSVD_LO
)) {
2290 error_report_once("%s: invalid wait desc: hi=%"PRIx64
", lo=%"PRIx64
2291 " (reserved nonzero)", __func__
, inv_desc
->hi
,
2295 if (inv_desc
->lo
& VTD_INV_DESC_WAIT_SW
) {
2297 uint32_t status_data
= (uint32_t)(inv_desc
->lo
>>
2298 VTD_INV_DESC_WAIT_DATA_SHIFT
);
2300 assert(!(inv_desc
->lo
& VTD_INV_DESC_WAIT_IF
));
2302 /* FIXME: need to be masked with HAW? */
2303 dma_addr_t status_addr
= inv_desc
->hi
;
2304 trace_vtd_inv_desc_wait_sw(status_addr
, status_data
);
2305 status_data
= cpu_to_le32(status_data
);
2306 if (dma_memory_write(&address_space_memory
, status_addr
, &status_data
,
2307 sizeof(status_data
))) {
2308 trace_vtd_inv_desc_wait_write_fail(inv_desc
->hi
, inv_desc
->lo
);
2311 } else if (inv_desc
->lo
& VTD_INV_DESC_WAIT_IF
) {
2312 /* Interrupt flag */
2313 vtd_generate_completion_event(s
);
2315 error_report_once("%s: invalid wait desc: hi=%"PRIx64
", lo=%"PRIx64
2316 " (unknown type)", __func__
, inv_desc
->hi
,
2323 static bool vtd_process_context_cache_desc(IntelIOMMUState
*s
,
2324 VTDInvDesc
*inv_desc
)
2326 uint16_t sid
, fmask
;
2328 if ((inv_desc
->lo
& VTD_INV_DESC_CC_RSVD
) || inv_desc
->hi
) {
2329 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64
", lo=%"PRIx64
2330 " (reserved nonzero)", __func__
, inv_desc
->hi
,
2334 switch (inv_desc
->lo
& VTD_INV_DESC_CC_G
) {
2335 case VTD_INV_DESC_CC_DOMAIN
:
2336 trace_vtd_inv_desc_cc_domain(
2337 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc
->lo
));
2339 case VTD_INV_DESC_CC_GLOBAL
:
2340 vtd_context_global_invalidate(s
);
2343 case VTD_INV_DESC_CC_DEVICE
:
2344 sid
= VTD_INV_DESC_CC_SID(inv_desc
->lo
);
2345 fmask
= VTD_INV_DESC_CC_FM(inv_desc
->lo
);
2346 vtd_context_device_invalidate(s
, sid
, fmask
);
2350 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64
", lo=%"PRIx64
2351 " (invalid type)", __func__
, inv_desc
->hi
,
2358 static bool vtd_process_iotlb_desc(IntelIOMMUState
*s
, VTDInvDesc
*inv_desc
)
2364 if ((inv_desc
->lo
& VTD_INV_DESC_IOTLB_RSVD_LO
) ||
2365 (inv_desc
->hi
& VTD_INV_DESC_IOTLB_RSVD_HI
)) {
2366 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2367 ", lo=0x%"PRIx64
" (reserved bits unzero)",
2368 __func__
, inv_desc
->hi
, inv_desc
->lo
);
2372 switch (inv_desc
->lo
& VTD_INV_DESC_IOTLB_G
) {
2373 case VTD_INV_DESC_IOTLB_GLOBAL
:
2374 vtd_iotlb_global_invalidate(s
);
2377 case VTD_INV_DESC_IOTLB_DOMAIN
:
2378 domain_id
= VTD_INV_DESC_IOTLB_DID(inv_desc
->lo
);
2379 vtd_iotlb_domain_invalidate(s
, domain_id
);
2382 case VTD_INV_DESC_IOTLB_PAGE
:
2383 domain_id
= VTD_INV_DESC_IOTLB_DID(inv_desc
->lo
);
2384 addr
= VTD_INV_DESC_IOTLB_ADDR(inv_desc
->hi
);
2385 am
= VTD_INV_DESC_IOTLB_AM(inv_desc
->hi
);
2386 if (am
> VTD_MAMV
) {
2387 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2388 ", lo=0x%"PRIx64
" (am=%u > VTD_MAMV=%u)",
2389 __func__
, inv_desc
->hi
, inv_desc
->lo
,
2390 am
, (unsigned)VTD_MAMV
);
2393 vtd_iotlb_page_invalidate(s
, domain_id
, addr
, am
);
2397 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2398 ", lo=0x%"PRIx64
" (type mismatch: 0x%llx)",
2399 __func__
, inv_desc
->hi
, inv_desc
->lo
,
2400 inv_desc
->lo
& VTD_INV_DESC_IOTLB_G
);
2406 static bool vtd_process_inv_iec_desc(IntelIOMMUState
*s
,
2407 VTDInvDesc
*inv_desc
)
2409 trace_vtd_inv_desc_iec(inv_desc
->iec
.granularity
,
2410 inv_desc
->iec
.index
,
2411 inv_desc
->iec
.index_mask
);
2413 vtd_iec_notify_all(s
, !inv_desc
->iec
.granularity
,
2414 inv_desc
->iec
.index
,
2415 inv_desc
->iec
.index_mask
);
2419 static bool vtd_process_device_iotlb_desc(IntelIOMMUState
*s
,
2420 VTDInvDesc
*inv_desc
)
2422 VTDAddressSpace
*vtd_dev_as
;
2423 IOMMUTLBEvent event
;
2424 struct VTDBus
*vtd_bus
;
2432 addr
= VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc
->hi
);
2433 sid
= VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc
->lo
);
2436 size
= VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc
->hi
);
2438 if ((inv_desc
->lo
& VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO
) ||
2439 (inv_desc
->hi
& VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI
)) {
2440 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2441 ", lo=%"PRIx64
" (reserved nonzero)", __func__
,
2442 inv_desc
->hi
, inv_desc
->lo
);
2446 vtd_bus
= vtd_find_as_from_bus_num(s
, bus_num
);
2451 vtd_dev_as
= vtd_bus
->dev_as
[devfn
];
2456 /* According to ATS spec table 2.4:
2457 * S = 0, bits 15:12 = xxxx range size: 4K
2458 * S = 1, bits 15:12 = xxx0 range size: 8K
2459 * S = 1, bits 15:12 = xx01 range size: 16K
2460 * S = 1, bits 15:12 = x011 range size: 32K
2461 * S = 1, bits 15:12 = 0111 range size: 64K
2465 sz
= (VTD_PAGE_SIZE
* 2) << cto64(addr
>> VTD_PAGE_SHIFT
);
2471 event
.type
= IOMMU_NOTIFIER_UNMAP
;
2472 event
.entry
.target_as
= &vtd_dev_as
->as
;
2473 event
.entry
.addr_mask
= sz
- 1;
2474 event
.entry
.iova
= addr
;
2475 event
.entry
.perm
= IOMMU_NONE
;
2476 event
.entry
.translated_addr
= 0;
2477 memory_region_notify_iommu(&vtd_dev_as
->iommu
, 0, event
);
2483 static bool vtd_process_inv_desc(IntelIOMMUState
*s
)
2485 VTDInvDesc inv_desc
;
2488 trace_vtd_inv_qi_head(s
->iq_head
);
2489 if (!vtd_get_inv_desc(s
, &inv_desc
)) {
2490 s
->iq_last_desc_type
= VTD_INV_DESC_NONE
;
2494 desc_type
= inv_desc
.lo
& VTD_INV_DESC_TYPE
;
2495 /* FIXME: should update at first or at last? */
2496 s
->iq_last_desc_type
= desc_type
;
2498 switch (desc_type
) {
2499 case VTD_INV_DESC_CC
:
2500 trace_vtd_inv_desc("context-cache", inv_desc
.hi
, inv_desc
.lo
);
2501 if (!vtd_process_context_cache_desc(s
, &inv_desc
)) {
2506 case VTD_INV_DESC_IOTLB
:
2507 trace_vtd_inv_desc("iotlb", inv_desc
.hi
, inv_desc
.lo
);
2508 if (!vtd_process_iotlb_desc(s
, &inv_desc
)) {
2514 * TODO: the entity of below two cases will be implemented in future series.
2515 * To make guest (which integrates scalable mode support patch set in
2516 * iommu driver) work, just return true is enough so far.
2518 case VTD_INV_DESC_PC
:
2521 case VTD_INV_DESC_PIOTLB
:
2524 case VTD_INV_DESC_WAIT
:
2525 trace_vtd_inv_desc("wait", inv_desc
.hi
, inv_desc
.lo
);
2526 if (!vtd_process_wait_desc(s
, &inv_desc
)) {
2531 case VTD_INV_DESC_IEC
:
2532 trace_vtd_inv_desc("iec", inv_desc
.hi
, inv_desc
.lo
);
2533 if (!vtd_process_inv_iec_desc(s
, &inv_desc
)) {
2538 case VTD_INV_DESC_DEVICE
:
2539 trace_vtd_inv_desc("device", inv_desc
.hi
, inv_desc
.lo
);
2540 if (!vtd_process_device_iotlb_desc(s
, &inv_desc
)) {
2546 error_report_once("%s: invalid inv desc: hi=%"PRIx64
", lo=%"PRIx64
2547 " (unknown type)", __func__
, inv_desc
.hi
,
2552 if (s
->iq_head
== s
->iq_size
) {
2558 /* Try to fetch and process more Invalidation Descriptors */
2559 static void vtd_fetch_inv_desc(IntelIOMMUState
*s
)
2563 /* Refer to 10.4.23 of VT-d spec 3.0 */
2564 qi_shift
= s
->iq_dw
? VTD_IQH_QH_SHIFT_5
: VTD_IQH_QH_SHIFT_4
;
2566 trace_vtd_inv_qi_fetch();
2568 if (s
->iq_tail
>= s
->iq_size
) {
2569 /* Detects an invalid Tail pointer */
2570 error_report_once("%s: detected invalid QI tail "
2571 "(tail=0x%x, size=0x%x)",
2572 __func__
, s
->iq_tail
, s
->iq_size
);
2573 vtd_handle_inv_queue_error(s
);
2576 while (s
->iq_head
!= s
->iq_tail
) {
2577 if (!vtd_process_inv_desc(s
)) {
2578 /* Invalidation Queue Errors */
2579 vtd_handle_inv_queue_error(s
);
2582 /* Must update the IQH_REG in time */
2583 vtd_set_quad_raw(s
, DMAR_IQH_REG
,
2584 (((uint64_t)(s
->iq_head
)) << qi_shift
) &
2589 /* Handle write to Invalidation Queue Tail Register */
2590 static void vtd_handle_iqt_write(IntelIOMMUState
*s
)
2592 uint64_t val
= vtd_get_quad_raw(s
, DMAR_IQT_REG
);
2594 if (s
->iq_dw
&& (val
& VTD_IQT_QT_256_RSV_BIT
)) {
2595 error_report_once("%s: RSV bit is set: val=0x%"PRIx64
,
2599 s
->iq_tail
= VTD_IQT_QT(s
->iq_dw
, val
);
2600 trace_vtd_inv_qi_tail(s
->iq_tail
);
2602 if (s
->qi_enabled
&& !(vtd_get_long_raw(s
, DMAR_FSTS_REG
) & VTD_FSTS_IQE
)) {
2603 /* Process Invalidation Queue here */
2604 vtd_fetch_inv_desc(s
);
2608 static void vtd_handle_fsts_write(IntelIOMMUState
*s
)
2610 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
2611 uint32_t fectl_reg
= vtd_get_long_raw(s
, DMAR_FECTL_REG
);
2612 uint32_t status_fields
= VTD_FSTS_PFO
| VTD_FSTS_PPF
| VTD_FSTS_IQE
;
2614 if ((fectl_reg
& VTD_FECTL_IP
) && !(fsts_reg
& status_fields
)) {
2615 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
2616 trace_vtd_fsts_clear_ip();
2618 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2619 * Descriptors if there are any when Queued Invalidation is enabled?
2623 static void vtd_handle_fectl_write(IntelIOMMUState
*s
)
2626 /* FIXME: when software clears the IM field, check the IP field. But do we
2627 * need to compare the old value and the new value to conclude that
2628 * software clears the IM field? Or just check if the IM field is zero?
2630 fectl_reg
= vtd_get_long_raw(s
, DMAR_FECTL_REG
);
2632 trace_vtd_reg_write_fectl(fectl_reg
);
2634 if ((fectl_reg
& VTD_FECTL_IP
) && !(fectl_reg
& VTD_FECTL_IM
)) {
2635 vtd_generate_interrupt(s
, DMAR_FEADDR_REG
, DMAR_FEDATA_REG
);
2636 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
2640 static void vtd_handle_ics_write(IntelIOMMUState
*s
)
2642 uint32_t ics_reg
= vtd_get_long_raw(s
, DMAR_ICS_REG
);
2643 uint32_t iectl_reg
= vtd_get_long_raw(s
, DMAR_IECTL_REG
);
2645 if ((iectl_reg
& VTD_IECTL_IP
) && !(ics_reg
& VTD_ICS_IWC
)) {
2646 trace_vtd_reg_ics_clear_ip();
2647 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
2651 static void vtd_handle_iectl_write(IntelIOMMUState
*s
)
2654 /* FIXME: when software clears the IM field, check the IP field. But do we
2655 * need to compare the old value and the new value to conclude that
2656 * software clears the IM field? Or just check if the IM field is zero?
2658 iectl_reg
= vtd_get_long_raw(s
, DMAR_IECTL_REG
);
2660 trace_vtd_reg_write_iectl(iectl_reg
);
2662 if ((iectl_reg
& VTD_IECTL_IP
) && !(iectl_reg
& VTD_IECTL_IM
)) {
2663 vtd_generate_interrupt(s
, DMAR_IEADDR_REG
, DMAR_IEDATA_REG
);
2664 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
2668 static uint64_t vtd_mem_read(void *opaque
, hwaddr addr
, unsigned size
)
2670 IntelIOMMUState
*s
= opaque
;
2673 trace_vtd_reg_read(addr
, size
);
2675 if (addr
+ size
> DMAR_REG_SIZE
) {
2676 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2677 " size=0x%x", __func__
, addr
, size
);
2678 return (uint64_t)-1;
2682 /* Root Table Address Register, 64-bit */
2683 case DMAR_RTADDR_REG
:
2684 val
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
);
2686 val
= val
& ((1ULL << 32) - 1);
2690 case DMAR_RTADDR_REG_HI
:
2692 val
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
) >> 32;
2695 /* Invalidation Queue Address Register, 64-bit */
2697 val
= s
->iq
| (vtd_get_quad(s
, DMAR_IQA_REG
) & VTD_IQA_QS
);
2699 val
= val
& ((1ULL << 32) - 1);
2703 case DMAR_IQA_REG_HI
:
2710 val
= vtd_get_long(s
, addr
);
2712 val
= vtd_get_quad(s
, addr
);
2719 static void vtd_mem_write(void *opaque
, hwaddr addr
,
2720 uint64_t val
, unsigned size
)
2722 IntelIOMMUState
*s
= opaque
;
2724 trace_vtd_reg_write(addr
, size
, val
);
2726 if (addr
+ size
> DMAR_REG_SIZE
) {
2727 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2728 " size=0x%x", __func__
, addr
, size
);
2733 /* Global Command Register, 32-bit */
2735 vtd_set_long(s
, addr
, val
);
2736 vtd_handle_gcmd_write(s
);
2739 /* Context Command Register, 64-bit */
2742 vtd_set_long(s
, addr
, val
);
2744 vtd_set_quad(s
, addr
, val
);
2745 vtd_handle_ccmd_write(s
);
2749 case DMAR_CCMD_REG_HI
:
2751 vtd_set_long(s
, addr
, val
);
2752 vtd_handle_ccmd_write(s
);
2755 /* IOTLB Invalidation Register, 64-bit */
2756 case DMAR_IOTLB_REG
:
2758 vtd_set_long(s
, addr
, val
);
2760 vtd_set_quad(s
, addr
, val
);
2761 vtd_handle_iotlb_write(s
);
2765 case DMAR_IOTLB_REG_HI
:
2767 vtd_set_long(s
, addr
, val
);
2768 vtd_handle_iotlb_write(s
);
2771 /* Invalidate Address Register, 64-bit */
2774 vtd_set_long(s
, addr
, val
);
2776 vtd_set_quad(s
, addr
, val
);
2780 case DMAR_IVA_REG_HI
:
2782 vtd_set_long(s
, addr
, val
);
2785 /* Fault Status Register, 32-bit */
2788 vtd_set_long(s
, addr
, val
);
2789 vtd_handle_fsts_write(s
);
2792 /* Fault Event Control Register, 32-bit */
2793 case DMAR_FECTL_REG
:
2795 vtd_set_long(s
, addr
, val
);
2796 vtd_handle_fectl_write(s
);
2799 /* Fault Event Data Register, 32-bit */
2800 case DMAR_FEDATA_REG
:
2802 vtd_set_long(s
, addr
, val
);
2805 /* Fault Event Address Register, 32-bit */
2806 case DMAR_FEADDR_REG
:
2808 vtd_set_long(s
, addr
, val
);
2811 * While the register is 32-bit only, some guests (Xen...) write to
2814 vtd_set_quad(s
, addr
, val
);
2818 /* Fault Event Upper Address Register, 32-bit */
2819 case DMAR_FEUADDR_REG
:
2821 vtd_set_long(s
, addr
, val
);
2824 /* Protected Memory Enable Register, 32-bit */
2827 vtd_set_long(s
, addr
, val
);
2830 /* Root Table Address Register, 64-bit */
2831 case DMAR_RTADDR_REG
:
2833 vtd_set_long(s
, addr
, val
);
2835 vtd_set_quad(s
, addr
, val
);
2839 case DMAR_RTADDR_REG_HI
:
2841 vtd_set_long(s
, addr
, val
);
2844 /* Invalidation Queue Tail Register, 64-bit */
2847 vtd_set_long(s
, addr
, val
);
2849 vtd_set_quad(s
, addr
, val
);
2851 vtd_handle_iqt_write(s
);
2854 case DMAR_IQT_REG_HI
:
2856 vtd_set_long(s
, addr
, val
);
2857 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2860 /* Invalidation Queue Address Register, 64-bit */
2863 vtd_set_long(s
, addr
, val
);
2865 vtd_set_quad(s
, addr
, val
);
2867 if (s
->ecap
& VTD_ECAP_SMTS
&&
2868 val
& VTD_IQA_DW_MASK
) {
2875 case DMAR_IQA_REG_HI
:
2877 vtd_set_long(s
, addr
, val
);
2880 /* Invalidation Completion Status Register, 32-bit */
2883 vtd_set_long(s
, addr
, val
);
2884 vtd_handle_ics_write(s
);
2887 /* Invalidation Event Control Register, 32-bit */
2888 case DMAR_IECTL_REG
:
2890 vtd_set_long(s
, addr
, val
);
2891 vtd_handle_iectl_write(s
);
2894 /* Invalidation Event Data Register, 32-bit */
2895 case DMAR_IEDATA_REG
:
2897 vtd_set_long(s
, addr
, val
);
2900 /* Invalidation Event Address Register, 32-bit */
2901 case DMAR_IEADDR_REG
:
2903 vtd_set_long(s
, addr
, val
);
2906 /* Invalidation Event Upper Address Register, 32-bit */
2907 case DMAR_IEUADDR_REG
:
2909 vtd_set_long(s
, addr
, val
);
2912 /* Fault Recording Registers, 128-bit */
2913 case DMAR_FRCD_REG_0_0
:
2915 vtd_set_long(s
, addr
, val
);
2917 vtd_set_quad(s
, addr
, val
);
2921 case DMAR_FRCD_REG_0_1
:
2923 vtd_set_long(s
, addr
, val
);
2926 case DMAR_FRCD_REG_0_2
:
2928 vtd_set_long(s
, addr
, val
);
2930 vtd_set_quad(s
, addr
, val
);
2931 /* May clear bit 127 (Fault), update PPF */
2932 vtd_update_fsts_ppf(s
);
2936 case DMAR_FRCD_REG_0_3
:
2938 vtd_set_long(s
, addr
, val
);
2939 /* May clear bit 127 (Fault), update PPF */
2940 vtd_update_fsts_ppf(s
);
2945 vtd_set_long(s
, addr
, val
);
2947 vtd_set_quad(s
, addr
, val
);
2951 case DMAR_IRTA_REG_HI
:
2953 vtd_set_long(s
, addr
, val
);
2958 vtd_set_long(s
, addr
, val
);
2960 vtd_set_quad(s
, addr
, val
);
2965 static IOMMUTLBEntry
vtd_iommu_translate(IOMMUMemoryRegion
*iommu
, hwaddr addr
,
2966 IOMMUAccessFlags flag
, int iommu_idx
)
2968 VTDAddressSpace
*vtd_as
= container_of(iommu
, VTDAddressSpace
, iommu
);
2969 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
2970 IOMMUTLBEntry iotlb
= {
2971 /* We'll fill in the rest later. */
2972 .target_as
= &address_space_memory
,
2976 if (likely(s
->dmar_enabled
)) {
2977 success
= vtd_do_iommu_translate(vtd_as
, vtd_as
->bus
, vtd_as
->devfn
,
2978 addr
, flag
& IOMMU_WO
, &iotlb
);
2980 /* DMAR disabled, passthrough, use 4k-page*/
2981 iotlb
.iova
= addr
& VTD_PAGE_MASK_4K
;
2982 iotlb
.translated_addr
= addr
& VTD_PAGE_MASK_4K
;
2983 iotlb
.addr_mask
= ~VTD_PAGE_MASK_4K
;
2984 iotlb
.perm
= IOMMU_RW
;
2988 if (likely(success
)) {
2989 trace_vtd_dmar_translate(pci_bus_num(vtd_as
->bus
),
2990 VTD_PCI_SLOT(vtd_as
->devfn
),
2991 VTD_PCI_FUNC(vtd_as
->devfn
),
2992 iotlb
.iova
, iotlb
.translated_addr
,
2995 error_report_once("%s: detected translation failure "
2996 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64
")",
2997 __func__
, pci_bus_num(vtd_as
->bus
),
2998 VTD_PCI_SLOT(vtd_as
->devfn
),
2999 VTD_PCI_FUNC(vtd_as
->devfn
),
3006 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion
*iommu
,
3007 IOMMUNotifierFlag old
,
3008 IOMMUNotifierFlag
new,
3011 VTDAddressSpace
*vtd_as
= container_of(iommu
, VTDAddressSpace
, iommu
);
3012 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
3014 /* Update per-address-space notifier flags */
3015 vtd_as
->notifier_flags
= new;
3017 if (old
== IOMMU_NOTIFIER_NONE
) {
3018 QLIST_INSERT_HEAD(&s
->vtd_as_with_notifiers
, vtd_as
, next
);
3019 } else if (new == IOMMU_NOTIFIER_NONE
) {
3020 QLIST_REMOVE(vtd_as
, next
);
3025 static int vtd_post_load(void *opaque
, int version_id
)
3027 IntelIOMMUState
*iommu
= opaque
;
3030 * Memory regions are dynamically turned on/off depending on
3031 * context entry configurations from the guest. After migration,
3032 * we need to make sure the memory regions are still correct.
3034 vtd_switch_address_space_all(iommu
);
3037 * We don't need to migrate the root_scalable because we can
3038 * simply do the calculation after the loading is complete. We
3039 * can actually do similar things with root, dmar_enabled, etc.
3040 * however since we've had them already so we'd better keep them
3041 * for compatibility of migration.
3043 vtd_update_scalable_state(iommu
);
3048 static const VMStateDescription vtd_vmstate
= {
3049 .name
= "iommu-intel",
3051 .minimum_version_id
= 1,
3052 .priority
= MIG_PRI_IOMMU
,
3053 .post_load
= vtd_post_load
,
3054 .fields
= (VMStateField
[]) {
3055 VMSTATE_UINT64(root
, IntelIOMMUState
),
3056 VMSTATE_UINT64(intr_root
, IntelIOMMUState
),
3057 VMSTATE_UINT64(iq
, IntelIOMMUState
),
3058 VMSTATE_UINT32(intr_size
, IntelIOMMUState
),
3059 VMSTATE_UINT16(iq_head
, IntelIOMMUState
),
3060 VMSTATE_UINT16(iq_tail
, IntelIOMMUState
),
3061 VMSTATE_UINT16(iq_size
, IntelIOMMUState
),
3062 VMSTATE_UINT16(next_frcd_reg
, IntelIOMMUState
),
3063 VMSTATE_UINT8_ARRAY(csr
, IntelIOMMUState
, DMAR_REG_SIZE
),
3064 VMSTATE_UINT8(iq_last_desc_type
, IntelIOMMUState
),
3065 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3066 VMSTATE_BOOL(dmar_enabled
, IntelIOMMUState
),
3067 VMSTATE_BOOL(qi_enabled
, IntelIOMMUState
),
3068 VMSTATE_BOOL(intr_enabled
, IntelIOMMUState
),
3069 VMSTATE_BOOL(intr_eime
, IntelIOMMUState
),
3070 VMSTATE_END_OF_LIST()
3074 static const MemoryRegionOps vtd_mem_ops
= {
3075 .read
= vtd_mem_read
,
3076 .write
= vtd_mem_write
,
3077 .endianness
= DEVICE_LITTLE_ENDIAN
,
3079 .min_access_size
= 4,
3080 .max_access_size
= 8,
3083 .min_access_size
= 4,
3084 .max_access_size
= 8,
3088 static Property vtd_properties
[] = {
3089 DEFINE_PROP_UINT32("version", IntelIOMMUState
, version
, 0),
3090 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState
, intr_eim
,
3092 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState
, buggy_eim
, false),
3093 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState
, aw_bits
,
3094 VTD_HOST_ADDRESS_WIDTH
),
3095 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState
, caching_mode
, FALSE
),
3096 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState
, scalable_mode
, FALSE
),
3097 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState
, dma_drain
, true),
3098 DEFINE_PROP_END_OF_LIST(),
3101 /* Read IRTE entry with specific index */
3102 static int vtd_irte_get(IntelIOMMUState
*iommu
, uint16_t index
,
3103 VTD_IR_TableEntry
*entry
, uint16_t sid
)
3105 static const uint16_t vtd_svt_mask
[VTD_SQ_MAX
] = \
3106 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3107 dma_addr_t addr
= 0x00;
3108 uint16_t mask
, source_id
;
3109 uint8_t bus
, bus_max
, bus_min
;
3111 if (index
>= iommu
->intr_size
) {
3112 error_report_once("%s: index too large: ind=0x%x",
3114 return -VTD_FR_IR_INDEX_OVER
;
3117 addr
= iommu
->intr_root
+ index
* sizeof(*entry
);
3118 if (dma_memory_read(&address_space_memory
, addr
, entry
,
3120 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64
,
3121 __func__
, index
, addr
);
3122 return -VTD_FR_IR_ROOT_INVAL
;
3125 trace_vtd_ir_irte_get(index
, le64_to_cpu(entry
->data
[1]),
3126 le64_to_cpu(entry
->data
[0]));
3128 if (!entry
->irte
.present
) {
3129 error_report_once("%s: detected non-present IRTE "
3130 "(index=%u, high=0x%" PRIx64
", low=0x%" PRIx64
")",
3131 __func__
, index
, le64_to_cpu(entry
->data
[1]),
3132 le64_to_cpu(entry
->data
[0]));
3133 return -VTD_FR_IR_ENTRY_P
;
3136 if (entry
->irte
.__reserved_0
|| entry
->irte
.__reserved_1
||
3137 entry
->irte
.__reserved_2
) {
3138 error_report_once("%s: detected non-zero reserved IRTE "
3139 "(index=%u, high=0x%" PRIx64
", low=0x%" PRIx64
")",
3140 __func__
, index
, le64_to_cpu(entry
->data
[1]),
3141 le64_to_cpu(entry
->data
[0]));
3142 return -VTD_FR_IR_IRTE_RSVD
;
3145 if (sid
!= X86_IOMMU_SID_INVALID
) {
3146 /* Validate IRTE SID */
3147 source_id
= le32_to_cpu(entry
->irte
.source_id
);
3148 switch (entry
->irte
.sid_vtype
) {
3153 mask
= vtd_svt_mask
[entry
->irte
.sid_q
];
3154 if ((source_id
& mask
) != (sid
& mask
)) {
3155 error_report_once("%s: invalid IRTE SID "
3156 "(index=%u, sid=%u, source_id=%u)",
3157 __func__
, index
, sid
, source_id
);
3158 return -VTD_FR_IR_SID_ERR
;
3163 bus_max
= source_id
>> 8;
3164 bus_min
= source_id
& 0xff;
3166 if (bus
> bus_max
|| bus
< bus_min
) {
3167 error_report_once("%s: invalid SVT_BUS "
3168 "(index=%u, bus=%u, min=%u, max=%u)",
3169 __func__
, index
, bus
, bus_min
, bus_max
);
3170 return -VTD_FR_IR_SID_ERR
;
3175 error_report_once("%s: detected invalid IRTE SVT "
3176 "(index=%u, type=%d)", __func__
,
3177 index
, entry
->irte
.sid_vtype
);
3178 /* Take this as verification failure. */
3179 return -VTD_FR_IR_SID_ERR
;
3186 /* Fetch IRQ information of specific IR index */
3187 static int vtd_remap_irq_get(IntelIOMMUState
*iommu
, uint16_t index
,
3188 X86IOMMUIrq
*irq
, uint16_t sid
)
3190 VTD_IR_TableEntry irte
= {};
3193 ret
= vtd_irte_get(iommu
, index
, &irte
, sid
);
3198 irq
->trigger_mode
= irte
.irte
.trigger_mode
;
3199 irq
->vector
= irte
.irte
.vector
;
3200 irq
->delivery_mode
= irte
.irte
.delivery_mode
;
3201 irq
->dest
= le32_to_cpu(irte
.irte
.dest_id
);
3202 if (!iommu
->intr_eime
) {
3203 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3204 #define VTD_IR_APIC_DEST_SHIFT (8)
3205 irq
->dest
= (irq
->dest
& VTD_IR_APIC_DEST_MASK
) >>
3206 VTD_IR_APIC_DEST_SHIFT
;
3208 irq
->dest_mode
= irte
.irte
.dest_mode
;
3209 irq
->redir_hint
= irte
.irte
.redir_hint
;
3211 trace_vtd_ir_remap(index
, irq
->trigger_mode
, irq
->vector
,
3212 irq
->delivery_mode
, irq
->dest
, irq
->dest_mode
);
3217 /* Interrupt remapping for MSI/MSI-X entry */
3218 static int vtd_interrupt_remap_msi(IntelIOMMUState
*iommu
,
3220 MSIMessage
*translated
,
3224 VTD_IR_MSIAddress addr
;
3226 X86IOMMUIrq irq
= {};
3228 assert(origin
&& translated
);
3230 trace_vtd_ir_remap_msi_req(origin
->address
, origin
->data
);
3232 if (!iommu
|| !iommu
->intr_enabled
) {
3233 memcpy(translated
, origin
, sizeof(*origin
));
3237 if (origin
->address
& VTD_MSI_ADDR_HI_MASK
) {
3238 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3239 "address=0x%" PRIx64
, __func__
, origin
->address
);
3240 return -VTD_FR_IR_REQ_RSVD
;
3243 addr
.data
= origin
->address
& VTD_MSI_ADDR_LO_MASK
;
3244 if (addr
.addr
.__head
!= 0xfee) {
3245 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32
,
3246 __func__
, addr
.data
);
3247 return -VTD_FR_IR_REQ_RSVD
;
3250 /* This is compatible mode. */
3251 if (addr
.addr
.int_mode
!= VTD_IR_INT_FORMAT_REMAP
) {
3252 memcpy(translated
, origin
, sizeof(*origin
));
3256 index
= addr
.addr
.index_h
<< 15 | le16_to_cpu(addr
.addr
.index_l
);
3258 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3259 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3261 if (addr
.addr
.sub_valid
) {
3262 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3263 index
+= origin
->data
& VTD_IR_MSI_DATA_SUBHANDLE
;
3266 ret
= vtd_remap_irq_get(iommu
, index
, &irq
, sid
);
3271 if (addr
.addr
.sub_valid
) {
3272 trace_vtd_ir_remap_type("MSI");
3273 if (origin
->data
& VTD_IR_MSI_DATA_RESERVED
) {
3274 error_report_once("%s: invalid IR MSI "
3275 "(sid=%u, address=0x%" PRIx64
3276 ", data=0x%" PRIx32
")",
3277 __func__
, sid
, origin
->address
, origin
->data
);
3278 return -VTD_FR_IR_REQ_RSVD
;
3281 uint8_t vector
= origin
->data
& 0xff;
3282 uint8_t trigger_mode
= (origin
->data
>> MSI_DATA_TRIGGER_SHIFT
) & 0x1;
3284 trace_vtd_ir_remap_type("IOAPIC");
3285 /* IOAPIC entry vector should be aligned with IRTE vector
3286 * (see vt-d spec 5.1.5.1). */
3287 if (vector
!= irq
.vector
) {
3288 trace_vtd_warn_ir_vector(sid
, index
, vector
, irq
.vector
);
3291 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3292 * (see vt-d spec 5.1.5.1). */
3293 if (trigger_mode
!= irq
.trigger_mode
) {
3294 trace_vtd_warn_ir_trigger(sid
, index
, trigger_mode
,
3300 * We'd better keep the last two bits, assuming that guest OS
3301 * might modify it. Keep it does not hurt after all.
3303 irq
.msi_addr_last_bits
= addr
.addr
.__not_care
;
3305 /* Translate X86IOMMUIrq to MSI message */
3306 x86_iommu_irq_to_msi_message(&irq
, translated
);
3309 trace_vtd_ir_remap_msi(origin
->address
, origin
->data
,
3310 translated
->address
, translated
->data
);
3314 static int vtd_int_remap(X86IOMMUState
*iommu
, MSIMessage
*src
,
3315 MSIMessage
*dst
, uint16_t sid
)
3317 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu
),
3321 static MemTxResult
vtd_mem_ir_read(void *opaque
, hwaddr addr
,
3322 uint64_t *data
, unsigned size
,
3328 static MemTxResult
vtd_mem_ir_write(void *opaque
, hwaddr addr
,
3329 uint64_t value
, unsigned size
,
3333 MSIMessage from
= {}, to
= {};
3334 uint16_t sid
= X86_IOMMU_SID_INVALID
;
3336 from
.address
= (uint64_t) addr
+ VTD_INTERRUPT_ADDR_FIRST
;
3337 from
.data
= (uint32_t) value
;
3339 if (!attrs
.unspecified
) {
3340 /* We have explicit Source ID */
3341 sid
= attrs
.requester_id
;
3344 ret
= vtd_interrupt_remap_msi(opaque
, &from
, &to
, sid
);
3346 /* TODO: report error */
3347 /* Drop this interrupt */
3351 apic_get_class()->send_msi(&to
);
3356 static const MemoryRegionOps vtd_mem_ir_ops
= {
3357 .read_with_attrs
= vtd_mem_ir_read
,
3358 .write_with_attrs
= vtd_mem_ir_write
,
3359 .endianness
= DEVICE_LITTLE_ENDIAN
,
3361 .min_access_size
= 4,
3362 .max_access_size
= 4,
3365 .min_access_size
= 4,
3366 .max_access_size
= 4,
3370 VTDAddressSpace
*vtd_find_add_as(IntelIOMMUState
*s
, PCIBus
*bus
, int devfn
)
3372 uintptr_t key
= (uintptr_t)bus
;
3373 VTDBus
*vtd_bus
= g_hash_table_lookup(s
->vtd_as_by_busptr
, &key
);
3374 VTDAddressSpace
*vtd_dev_as
;
3378 uintptr_t *new_key
= g_malloc(sizeof(*new_key
));
3379 *new_key
= (uintptr_t)bus
;
3380 /* No corresponding free() */
3381 vtd_bus
= g_malloc0(sizeof(VTDBus
) + sizeof(VTDAddressSpace
*) * \
3384 g_hash_table_insert(s
->vtd_as_by_busptr
, new_key
, vtd_bus
);
3387 vtd_dev_as
= vtd_bus
->dev_as
[devfn
];
3390 snprintf(name
, sizeof(name
), "vtd-%02x.%x", PCI_SLOT(devfn
),
3392 vtd_bus
->dev_as
[devfn
] = vtd_dev_as
= g_malloc0(sizeof(VTDAddressSpace
));
3394 vtd_dev_as
->bus
= bus
;
3395 vtd_dev_as
->devfn
= (uint8_t)devfn
;
3396 vtd_dev_as
->iommu_state
= s
;
3397 vtd_dev_as
->context_cache_entry
.context_cache_gen
= 0;
3398 vtd_dev_as
->iova_tree
= iova_tree_new();
3400 memory_region_init(&vtd_dev_as
->root
, OBJECT(s
), name
, UINT64_MAX
);
3401 address_space_init(&vtd_dev_as
->as
, &vtd_dev_as
->root
, "vtd-root");
3404 * Build the DMAR-disabled container with aliases to the
3405 * shared MRs. Note that aliasing to a shared memory region
3406 * could help the memory API to detect same FlatViews so we
3407 * can have devices to share the same FlatView when DMAR is
3408 * disabled (either by not providing "intel_iommu=on" or with
3409 * "iommu=pt"). It will greatly reduce the total number of
3410 * FlatViews of the system hence VM runs faster.
3412 memory_region_init_alias(&vtd_dev_as
->nodmar
, OBJECT(s
),
3413 "vtd-nodmar", &s
->mr_nodmar
, 0,
3414 memory_region_size(&s
->mr_nodmar
));
3417 * Build the per-device DMAR-enabled container.
3419 * TODO: currently we have per-device IOMMU memory region only
3420 * because we have per-device IOMMU notifiers for devices. If
3421 * one day we can abstract the IOMMU notifiers out of the
3422 * memory regions then we can also share the same memory
3423 * region here just like what we've done above with the nodmar
3426 strcat(name
, "-dmar");
3427 memory_region_init_iommu(&vtd_dev_as
->iommu
, sizeof(vtd_dev_as
->iommu
),
3428 TYPE_INTEL_IOMMU_MEMORY_REGION
, OBJECT(s
),
3430 memory_region_init_alias(&vtd_dev_as
->iommu_ir
, OBJECT(s
), "vtd-ir",
3431 &s
->mr_ir
, 0, memory_region_size(&s
->mr_ir
));
3432 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as
->iommu
),
3433 VTD_INTERRUPT_ADDR_FIRST
,
3434 &vtd_dev_as
->iommu_ir
, 1);
3437 * Hook both the containers under the root container, we
3438 * switch between DMAR & noDMAR by enable/disable
3439 * corresponding sub-containers
3441 memory_region_add_subregion_overlap(&vtd_dev_as
->root
, 0,
3442 MEMORY_REGION(&vtd_dev_as
->iommu
),
3444 memory_region_add_subregion_overlap(&vtd_dev_as
->root
, 0,
3445 &vtd_dev_as
->nodmar
, 0);
3447 vtd_switch_address_space(vtd_dev_as
);
3452 static uint64_t get_naturally_aligned_size(uint64_t start
,
3453 uint64_t size
, int gaw
)
3455 uint64_t max_mask
= 1ULL << gaw
;
3456 uint64_t alignment
= start
? start
& -start
: max_mask
;
3458 alignment
= MIN(alignment
, max_mask
);
3459 size
= MIN(size
, max_mask
);
3461 if (alignment
<= size
) {
3462 /* Increase the alignment of start */
3465 /* Find the largest page mask from size */
3466 return 1ULL << (63 - clz64(size
));
3470 /* Unmap the whole range in the notifier's scope. */
3471 static void vtd_address_space_unmap(VTDAddressSpace
*as
, IOMMUNotifier
*n
)
3473 hwaddr size
, remain
;
3474 hwaddr start
= n
->start
;
3475 hwaddr end
= n
->end
;
3476 IntelIOMMUState
*s
= as
->iommu_state
;
3480 * Note: all the codes in this function has a assumption that IOVA
3481 * bits are no more than VTD_MGAW bits (which is restricted by
3482 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3485 if (end
> VTD_ADDRESS_SIZE(s
->aw_bits
) - 1) {
3487 * Don't need to unmap regions that is bigger than the whole
3488 * VT-d supported address space size
3490 end
= VTD_ADDRESS_SIZE(s
->aw_bits
) - 1;
3493 assert(start
<= end
);
3494 size
= remain
= end
- start
+ 1;
3496 while (remain
>= VTD_PAGE_SIZE
) {
3497 IOMMUTLBEvent event
;
3498 uint64_t mask
= get_naturally_aligned_size(start
, remain
, s
->aw_bits
);
3502 event
.type
= IOMMU_NOTIFIER_UNMAP
;
3503 event
.entry
.iova
= start
;
3504 event
.entry
.addr_mask
= mask
- 1;
3505 event
.entry
.target_as
= &address_space_memory
;
3506 event
.entry
.perm
= IOMMU_NONE
;
3507 /* This field is meaningless for unmap */
3508 event
.entry
.translated_addr
= 0;
3510 memory_region_notify_iommu_one(n
, &event
);
3518 trace_vtd_as_unmap_whole(pci_bus_num(as
->bus
),
3519 VTD_PCI_SLOT(as
->devfn
),
3520 VTD_PCI_FUNC(as
->devfn
),
3523 map
.iova
= n
->start
;
3525 iova_tree_remove(as
->iova_tree
, &map
);
3528 static void vtd_address_space_unmap_all(IntelIOMMUState
*s
)
3530 VTDAddressSpace
*vtd_as
;
3533 QLIST_FOREACH(vtd_as
, &s
->vtd_as_with_notifiers
, next
) {
3534 IOMMU_NOTIFIER_FOREACH(n
, &vtd_as
->iommu
) {
3535 vtd_address_space_unmap(vtd_as
, n
);
3540 static void vtd_address_space_refresh_all(IntelIOMMUState
*s
)
3542 vtd_address_space_unmap_all(s
);
3543 vtd_switch_address_space_all(s
);
3546 static int vtd_replay_hook(IOMMUTLBEvent
*event
, void *private)
3548 memory_region_notify_iommu_one(private, event
);
3552 static void vtd_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
)
3554 VTDAddressSpace
*vtd_as
= container_of(iommu_mr
, VTDAddressSpace
, iommu
);
3555 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
3556 uint8_t bus_n
= pci_bus_num(vtd_as
->bus
);
3560 * The replay can be triggered by either a invalidation or a newly
3561 * created entry. No matter what, we release existing mappings
3562 * (it means flushing caches for UNMAP-only registers).
3564 vtd_address_space_unmap(vtd_as
, n
);
3566 if (vtd_dev_to_context_entry(s
, bus_n
, vtd_as
->devfn
, &ce
) == 0) {
3567 trace_vtd_replay_ce_valid(s
->root_scalable
? "scalable mode" :
3569 bus_n
, PCI_SLOT(vtd_as
->devfn
),
3570 PCI_FUNC(vtd_as
->devfn
),
3571 vtd_get_domain_id(s
, &ce
),
3573 if (vtd_as_has_map_notifier(vtd_as
)) {
3574 /* This is required only for MAP typed notifiers */
3575 vtd_page_walk_info info
= {
3576 .hook_fn
= vtd_replay_hook
,
3577 .private = (void *)n
,
3578 .notify_unmap
= false,
3581 .domain_id
= vtd_get_domain_id(s
, &ce
),
3584 vtd_page_walk(s
, &ce
, 0, ~0ULL, &info
);
3587 trace_vtd_replay_ce_invalid(bus_n
, PCI_SLOT(vtd_as
->devfn
),
3588 PCI_FUNC(vtd_as
->devfn
));
3594 /* Do the initialization. It will also be called when reset, so pay
3595 * attention when adding new initialization stuff.
3597 static void vtd_init(IntelIOMMUState
*s
)
3599 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
3601 memset(s
->csr
, 0, DMAR_REG_SIZE
);
3602 memset(s
->wmask
, 0, DMAR_REG_SIZE
);
3603 memset(s
->w1cmask
, 0, DMAR_REG_SIZE
);
3604 memset(s
->womask
, 0, DMAR_REG_SIZE
);
3607 s
->root_scalable
= false;
3608 s
->dmar_enabled
= false;
3609 s
->intr_enabled
= false;
3614 s
->qi_enabled
= false;
3615 s
->iq_last_desc_type
= VTD_INV_DESC_NONE
;
3617 s
->next_frcd_reg
= 0;
3618 s
->cap
= VTD_CAP_FRO
| VTD_CAP_NFR
| VTD_CAP_ND
|
3619 VTD_CAP_MAMV
| VTD_CAP_PSI
| VTD_CAP_SLLPS
|
3620 VTD_CAP_SAGAW_39bit
| VTD_CAP_MGAW(s
->aw_bits
);
3622 s
->cap
|= VTD_CAP_DRAIN
;
3624 if (s
->aw_bits
== VTD_HOST_AW_48BIT
) {
3625 s
->cap
|= VTD_CAP_SAGAW_48bit
;
3627 s
->ecap
= VTD_ECAP_QI
| VTD_ECAP_IRO
;
3630 * Rsvd field masks for spte
3632 vtd_spte_rsvd
[0] = ~0ULL;
3633 vtd_spte_rsvd
[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s
->aw_bits
,
3634 x86_iommu
->dt_supported
);
3635 vtd_spte_rsvd
[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s
->aw_bits
);
3636 vtd_spte_rsvd
[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s
->aw_bits
);
3637 vtd_spte_rsvd
[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s
->aw_bits
);
3639 vtd_spte_rsvd_large
[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s
->aw_bits
,
3640 x86_iommu
->dt_supported
);
3641 vtd_spte_rsvd_large
[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s
->aw_bits
,
3642 x86_iommu
->dt_supported
);
3644 if (x86_iommu_ir_supported(x86_iommu
)) {
3645 s
->ecap
|= VTD_ECAP_IR
| VTD_ECAP_MHMV
;
3646 if (s
->intr_eim
== ON_OFF_AUTO_ON
) {
3647 s
->ecap
|= VTD_ECAP_EIM
;
3649 assert(s
->intr_eim
!= ON_OFF_AUTO_AUTO
);
3652 if (x86_iommu
->dt_supported
) {
3653 s
->ecap
|= VTD_ECAP_DT
;
3656 if (x86_iommu
->pt_supported
) {
3657 s
->ecap
|= VTD_ECAP_PT
;
3660 if (s
->caching_mode
) {
3661 s
->cap
|= VTD_CAP_CM
;
3664 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3665 if (s
->scalable_mode
) {
3666 s
->ecap
|= VTD_ECAP_SMTS
| VTD_ECAP_SRS
| VTD_ECAP_SLTS
;
3669 vtd_reset_caches(s
);
3671 /* Define registers with default values and bit semantics */
3672 vtd_define_long(s
, DMAR_VER_REG
, 0x10UL
, 0, 0);
3673 vtd_define_quad(s
, DMAR_CAP_REG
, s
->cap
, 0, 0);
3674 vtd_define_quad(s
, DMAR_ECAP_REG
, s
->ecap
, 0, 0);
3675 vtd_define_long(s
, DMAR_GCMD_REG
, 0, 0xff800000UL
, 0);
3676 vtd_define_long_wo(s
, DMAR_GCMD_REG
, 0xff800000UL
);
3677 vtd_define_long(s
, DMAR_GSTS_REG
, 0, 0, 0);
3678 vtd_define_quad(s
, DMAR_RTADDR_REG
, 0, 0xfffffffffffffc00ULL
, 0);
3679 vtd_define_quad(s
, DMAR_CCMD_REG
, 0, 0xe0000003ffffffffULL
, 0);
3680 vtd_define_quad_wo(s
, DMAR_CCMD_REG
, 0x3ffff0000ULL
);
3682 /* Advanced Fault Logging not supported */
3683 vtd_define_long(s
, DMAR_FSTS_REG
, 0, 0, 0x11UL
);
3684 vtd_define_long(s
, DMAR_FECTL_REG
, 0x80000000UL
, 0x80000000UL
, 0);
3685 vtd_define_long(s
, DMAR_FEDATA_REG
, 0, 0x0000ffffUL
, 0);
3686 vtd_define_long(s
, DMAR_FEADDR_REG
, 0, 0xfffffffcUL
, 0);
3688 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3689 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3691 vtd_define_long(s
, DMAR_FEUADDR_REG
, 0, 0, 0);
3693 /* Treated as RO for implementations that PLMR and PHMR fields reported
3694 * as Clear in the CAP_REG.
3695 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3697 vtd_define_long(s
, DMAR_PMEN_REG
, 0, 0, 0);
3699 vtd_define_quad(s
, DMAR_IQH_REG
, 0, 0, 0);
3700 vtd_define_quad(s
, DMAR_IQT_REG
, 0, 0x7fff0ULL
, 0);
3701 vtd_define_quad(s
, DMAR_IQA_REG
, 0, 0xfffffffffffff807ULL
, 0);
3702 vtd_define_long(s
, DMAR_ICS_REG
, 0, 0, 0x1UL
);
3703 vtd_define_long(s
, DMAR_IECTL_REG
, 0x80000000UL
, 0x80000000UL
, 0);
3704 vtd_define_long(s
, DMAR_IEDATA_REG
, 0, 0xffffffffUL
, 0);
3705 vtd_define_long(s
, DMAR_IEADDR_REG
, 0, 0xfffffffcUL
, 0);
3706 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3707 vtd_define_long(s
, DMAR_IEUADDR_REG
, 0, 0, 0);
3709 /* IOTLB registers */
3710 vtd_define_quad(s
, DMAR_IOTLB_REG
, 0, 0Xb003ffff00000000ULL
, 0);
3711 vtd_define_quad(s
, DMAR_IVA_REG
, 0, 0xfffffffffffff07fULL
, 0);
3712 vtd_define_quad_wo(s
, DMAR_IVA_REG
, 0xfffffffffffff07fULL
);
3714 /* Fault Recording Registers, 128-bit */
3715 vtd_define_quad(s
, DMAR_FRCD_REG_0_0
, 0, 0, 0);
3716 vtd_define_quad(s
, DMAR_FRCD_REG_0_2
, 0, 0, 0x8000000000000000ULL
);
3719 * Interrupt remapping registers.
3721 vtd_define_quad(s
, DMAR_IRTA_REG
, 0, 0xfffffffffffff80fULL
, 0);
3724 /* Should not reset address_spaces when reset because devices will still use
3725 * the address space they got at first (won't ask the bus again).
3727 static void vtd_reset(DeviceState
*dev
)
3729 IntelIOMMUState
*s
= INTEL_IOMMU_DEVICE(dev
);
3732 vtd_address_space_refresh_all(s
);
3735 static AddressSpace
*vtd_host_dma_iommu(PCIBus
*bus
, void *opaque
, int devfn
)
3737 IntelIOMMUState
*s
= opaque
;
3738 VTDAddressSpace
*vtd_as
;
3740 assert(0 <= devfn
&& devfn
< PCI_DEVFN_MAX
);
3742 vtd_as
= vtd_find_add_as(s
, bus
, devfn
);
3746 static bool vtd_decide_config(IntelIOMMUState
*s
, Error
**errp
)
3748 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
3750 if (s
->intr_eim
== ON_OFF_AUTO_ON
&& !x86_iommu_ir_supported(x86_iommu
)) {
3751 error_setg(errp
, "eim=on cannot be selected without intremap=on");
3755 if (s
->intr_eim
== ON_OFF_AUTO_AUTO
) {
3756 s
->intr_eim
= (kvm_irqchip_in_kernel() || s
->buggy_eim
)
3757 && x86_iommu_ir_supported(x86_iommu
) ?
3758 ON_OFF_AUTO_ON
: ON_OFF_AUTO_OFF
;
3760 if (s
->intr_eim
== ON_OFF_AUTO_ON
&& !s
->buggy_eim
) {
3761 if (!kvm_irqchip_in_kernel()) {
3762 error_setg(errp
, "eim=on requires accel=kvm,kernel-irqchip=split");
3765 if (!kvm_enable_x2apic()) {
3766 error_setg(errp
, "eim=on requires support on the KVM side"
3767 "(X2APIC_API, first shipped in v4.7)");
3772 /* Currently only address widths supported are 39 and 48 bits */
3773 if ((s
->aw_bits
!= VTD_HOST_AW_39BIT
) &&
3774 (s
->aw_bits
!= VTD_HOST_AW_48BIT
)) {
3775 error_setg(errp
, "Supported values for aw-bits are: %d, %d",
3776 VTD_HOST_AW_39BIT
, VTD_HOST_AW_48BIT
);
3780 if (s
->scalable_mode
&& !s
->dma_drain
) {
3781 error_setg(errp
, "Need to set dma_drain for scalable mode");
3788 static int vtd_machine_done_notify_one(Object
*child
, void *unused
)
3790 IntelIOMMUState
*iommu
= INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3793 * We hard-coded here because vfio-pci is the only special case
3794 * here. Let's be more elegant in the future when we can, but so
3795 * far there seems to be no better way.
3797 if (object_dynamic_cast(child
, "vfio-pci") && !iommu
->caching_mode
) {
3798 vtd_panic_require_caching_mode();
3804 static void vtd_machine_done_hook(Notifier
*notifier
, void *unused
)
3806 object_child_foreach_recursive(object_get_root(),
3807 vtd_machine_done_notify_one
, NULL
);
3810 static Notifier vtd_machine_done_notify
= {
3811 .notify
= vtd_machine_done_hook
,
3814 static void vtd_realize(DeviceState
*dev
, Error
**errp
)
3816 MachineState
*ms
= MACHINE(qdev_get_machine());
3817 PCMachineState
*pcms
= PC_MACHINE(ms
);
3818 X86MachineState
*x86ms
= X86_MACHINE(ms
);
3819 PCIBus
*bus
= pcms
->bus
;
3820 IntelIOMMUState
*s
= INTEL_IOMMU_DEVICE(dev
);
3821 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(dev
);
3823 x86_iommu
->type
= TYPE_INTEL
;
3825 if (!vtd_decide_config(s
, errp
)) {
3829 QLIST_INIT(&s
->vtd_as_with_notifiers
);
3830 qemu_mutex_init(&s
->iommu_lock
);
3831 memset(s
->vtd_as_by_bus_num
, 0, sizeof(s
->vtd_as_by_bus_num
));
3832 memory_region_init_io(&s
->csrmem
, OBJECT(s
), &vtd_mem_ops
, s
,
3833 "intel_iommu", DMAR_REG_SIZE
);
3835 /* Create the shared memory regions by all devices */
3836 memory_region_init(&s
->mr_nodmar
, OBJECT(s
), "vtd-nodmar",
3838 memory_region_init_io(&s
->mr_ir
, OBJECT(s
), &vtd_mem_ir_ops
,
3839 s
, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE
);
3840 memory_region_init_alias(&s
->mr_sys_alias
, OBJECT(s
),
3841 "vtd-sys-alias", get_system_memory(), 0,
3842 memory_region_size(get_system_memory()));
3843 memory_region_add_subregion_overlap(&s
->mr_nodmar
, 0,
3844 &s
->mr_sys_alias
, 0);
3845 memory_region_add_subregion_overlap(&s
->mr_nodmar
,
3846 VTD_INTERRUPT_ADDR_FIRST
,
3849 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->csrmem
);
3850 /* No corresponding destroy */
3851 s
->iotlb
= g_hash_table_new_full(vtd_uint64_hash
, vtd_uint64_equal
,
3853 s
->vtd_as_by_busptr
= g_hash_table_new_full(vtd_uint64_hash
, vtd_uint64_equal
,
3856 sysbus_mmio_map(SYS_BUS_DEVICE(s
), 0, Q35_HOST_BRIDGE_IOMMU_ADDR
);
3857 pci_setup_iommu(bus
, vtd_host_dma_iommu
, dev
);
3858 /* Pseudo address space under root PCI bus. */
3859 x86ms
->ioapic_as
= vtd_host_dma_iommu(bus
, s
, Q35_PSEUDO_DEVFN_IOAPIC
);
3860 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify
);
3863 static void vtd_class_init(ObjectClass
*klass
, void *data
)
3865 DeviceClass
*dc
= DEVICE_CLASS(klass
);
3866 X86IOMMUClass
*x86_class
= X86_IOMMU_DEVICE_CLASS(klass
);
3868 dc
->reset
= vtd_reset
;
3869 dc
->vmsd
= &vtd_vmstate
;
3870 device_class_set_props(dc
, vtd_properties
);
3871 dc
->hotpluggable
= false;
3872 x86_class
->realize
= vtd_realize
;
3873 x86_class
->int_remap
= vtd_int_remap
;
3874 /* Supported by the pc-q35-* machine types */
3875 dc
->user_creatable
= true;
3876 set_bit(DEVICE_CATEGORY_MISC
, dc
->categories
);
3877 dc
->desc
= "Intel IOMMU (VT-d) DMA Remapping device";
3880 static const TypeInfo vtd_info
= {
3881 .name
= TYPE_INTEL_IOMMU_DEVICE
,
3882 .parent
= TYPE_X86_IOMMU_DEVICE
,
3883 .instance_size
= sizeof(IntelIOMMUState
),
3884 .class_init
= vtd_class_init
,
3887 static void vtd_iommu_memory_region_class_init(ObjectClass
*klass
,
3890 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_CLASS(klass
);
3892 imrc
->translate
= vtd_iommu_translate
;
3893 imrc
->notify_flag_changed
= vtd_iommu_notify_flag_changed
;
3894 imrc
->replay
= vtd_iommu_replay
;
3897 static const TypeInfo vtd_iommu_memory_region_info
= {
3898 .parent
= TYPE_IOMMU_MEMORY_REGION
,
3899 .name
= TYPE_INTEL_IOMMU_MEMORY_REGION
,
3900 .class_init
= vtd_iommu_memory_region_class_init
,
3903 static void vtd_register_types(void)
3905 type_register_static(&vtd_info
);
3906 type_register_static(&vtd_iommu_memory_region_info
);
3909 type_init(vtd_register_types
)