memory: Add IOMMUTLBEvent
[qemu/kevin.git] / hw / i386 / intel_iommu.c
blob56180b1c43597023396eeb074d4c4a7638a89baf
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "exec/address-spaces.h"
28 #include "intel_iommu_internal.h"
29 #include "hw/pci/pci.h"
30 #include "hw/pci/pci_bus.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/i386/pc.h"
33 #include "hw/i386/apic-msidef.h"
34 #include "hw/boards.h"
35 #include "hw/i386/x86-iommu.h"
36 #include "hw/pci-host/q35.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/sysemu.h"
39 #include "hw/i386/apic_internal.h"
40 #include "kvm_i386.h"
41 #include "migration/vmstate.h"
42 #include "trace.h"
44 /* context entry operations */
45 #define VTD_CE_GET_RID2PASID(ce) \
46 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
47 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
48 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
50 /* pe operations */
51 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
52 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
53 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
54 if (ret_fr) { \
55 ret_fr = -ret_fr; \
56 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
57 trace_vtd_fault_disabled(); \
58 } else { \
59 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
60 } \
61 goto error; \
62 } \
65 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
66 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
68 static void vtd_panic_require_caching_mode(void)
70 error_report("We need to set caching-mode=on for intel-iommu to enable "
71 "device assignment with IOMMU protection.");
72 exit(1);
75 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
76 uint64_t wmask, uint64_t w1cmask)
78 stq_le_p(&s->csr[addr], val);
79 stq_le_p(&s->wmask[addr], wmask);
80 stq_le_p(&s->w1cmask[addr], w1cmask);
83 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
85 stq_le_p(&s->womask[addr], mask);
88 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
89 uint32_t wmask, uint32_t w1cmask)
91 stl_le_p(&s->csr[addr], val);
92 stl_le_p(&s->wmask[addr], wmask);
93 stl_le_p(&s->w1cmask[addr], w1cmask);
96 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
98 stl_le_p(&s->womask[addr], mask);
101 /* "External" get/set operations */
102 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
104 uint64_t oldval = ldq_le_p(&s->csr[addr]);
105 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
106 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
107 stq_le_p(&s->csr[addr],
108 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
111 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
113 uint32_t oldval = ldl_le_p(&s->csr[addr]);
114 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
115 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
116 stl_le_p(&s->csr[addr],
117 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
120 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
122 uint64_t val = ldq_le_p(&s->csr[addr]);
123 uint64_t womask = ldq_le_p(&s->womask[addr]);
124 return val & ~womask;
127 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
129 uint32_t val = ldl_le_p(&s->csr[addr]);
130 uint32_t womask = ldl_le_p(&s->womask[addr]);
131 return val & ~womask;
134 /* "Internal" get/set operations */
135 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
137 return ldq_le_p(&s->csr[addr]);
140 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
142 return ldl_le_p(&s->csr[addr]);
145 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
147 stq_le_p(&s->csr[addr], val);
150 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
151 uint32_t clear, uint32_t mask)
153 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
154 stl_le_p(&s->csr[addr], new_val);
155 return new_val;
158 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
159 uint64_t clear, uint64_t mask)
161 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
162 stq_le_p(&s->csr[addr], new_val);
163 return new_val;
166 static inline void vtd_iommu_lock(IntelIOMMUState *s)
168 qemu_mutex_lock(&s->iommu_lock);
171 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
173 qemu_mutex_unlock(&s->iommu_lock);
176 static void vtd_update_scalable_state(IntelIOMMUState *s)
178 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
180 if (s->scalable_mode) {
181 s->root_scalable = val & VTD_RTADDR_SMT;
185 /* Whether the address space needs to notify new mappings */
186 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
188 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
191 /* GHashTable functions */
192 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
194 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
197 static guint vtd_uint64_hash(gconstpointer v)
199 return (guint)*(const uint64_t *)v;
202 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
203 gpointer user_data)
205 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
206 uint16_t domain_id = *(uint16_t *)user_data;
207 return entry->domain_id == domain_id;
210 /* The shift of an addr for a certain level of paging structure */
211 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
213 assert(level != 0);
214 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
217 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
219 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
222 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
223 gpointer user_data)
225 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
226 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
227 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
228 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
229 return (entry->domain_id == info->domain_id) &&
230 (((entry->gfn & info->mask) == gfn) ||
231 (entry->gfn == gfn_tlb));
234 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
235 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
237 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
239 VTDAddressSpace *vtd_as;
240 VTDBus *vtd_bus;
241 GHashTableIter bus_it;
242 uint32_t devfn_it;
244 trace_vtd_context_cache_reset();
246 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
248 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
249 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
250 vtd_as = vtd_bus->dev_as[devfn_it];
251 if (!vtd_as) {
252 continue;
254 vtd_as->context_cache_entry.context_cache_gen = 0;
257 s->context_cache_gen = 1;
260 /* Must be called with IOMMU lock held. */
261 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
263 assert(s->iotlb);
264 g_hash_table_remove_all(s->iotlb);
267 static void vtd_reset_iotlb(IntelIOMMUState *s)
269 vtd_iommu_lock(s);
270 vtd_reset_iotlb_locked(s);
271 vtd_iommu_unlock(s);
274 static void vtd_reset_caches(IntelIOMMUState *s)
276 vtd_iommu_lock(s);
277 vtd_reset_iotlb_locked(s);
278 vtd_reset_context_cache_locked(s);
279 vtd_iommu_unlock(s);
282 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
283 uint32_t level)
285 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
286 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
289 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
291 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
294 /* Must be called with IOMMU lock held */
295 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
296 hwaddr addr)
298 VTDIOTLBEntry *entry;
299 uint64_t key;
300 int level;
302 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
303 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
304 source_id, level);
305 entry = g_hash_table_lookup(s->iotlb, &key);
306 if (entry) {
307 goto out;
311 out:
312 return entry;
315 /* Must be with IOMMU lock held */
316 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
317 uint16_t domain_id, hwaddr addr, uint64_t slpte,
318 uint8_t access_flags, uint32_t level)
320 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
321 uint64_t *key = g_malloc(sizeof(*key));
322 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
324 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
325 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
326 trace_vtd_iotlb_reset("iotlb exceeds size limit");
327 vtd_reset_iotlb_locked(s);
330 entry->gfn = gfn;
331 entry->domain_id = domain_id;
332 entry->slpte = slpte;
333 entry->access_flags = access_flags;
334 entry->mask = vtd_slpt_level_page_mask(level);
335 *key = vtd_get_iotlb_key(gfn, source_id, level);
336 g_hash_table_replace(s->iotlb, key, entry);
339 /* Given the reg addr of both the message data and address, generate an
340 * interrupt via MSI.
342 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
343 hwaddr mesg_data_reg)
345 MSIMessage msi;
347 assert(mesg_data_reg < DMAR_REG_SIZE);
348 assert(mesg_addr_reg < DMAR_REG_SIZE);
350 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
351 msi.data = vtd_get_long_raw(s, mesg_data_reg);
353 trace_vtd_irq_generate(msi.address, msi.data);
355 apic_get_class()->send_msi(&msi);
358 /* Generate a fault event to software via MSI if conditions are met.
359 * Notice that the value of FSTS_REG being passed to it should be the one
360 * before any update.
362 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
364 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
365 pre_fsts & VTD_FSTS_IQE) {
366 error_report_once("There are previous interrupt conditions "
367 "to be serviced by software, fault event "
368 "is not generated");
369 return;
371 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
372 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
373 error_report_once("Interrupt Mask set, irq is not generated");
374 } else {
375 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
376 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
380 /* Check if the Fault (F) field of the Fault Recording Register referenced by
381 * @index is Set.
383 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
385 /* Each reg is 128-bit */
386 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
387 addr += 8; /* Access the high 64-bit half */
389 assert(index < DMAR_FRCD_REG_NR);
391 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
394 /* Update the PPF field of Fault Status Register.
395 * Should be called whenever change the F field of any fault recording
396 * registers.
398 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
400 uint32_t i;
401 uint32_t ppf_mask = 0;
403 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
404 if (vtd_is_frcd_set(s, i)) {
405 ppf_mask = VTD_FSTS_PPF;
406 break;
409 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
410 trace_vtd_fsts_ppf(!!ppf_mask);
413 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
415 /* Each reg is 128-bit */
416 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
417 addr += 8; /* Access the high 64-bit half */
419 assert(index < DMAR_FRCD_REG_NR);
421 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
422 vtd_update_fsts_ppf(s);
425 /* Must not update F field now, should be done later */
426 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
427 uint16_t source_id, hwaddr addr,
428 VTDFaultReason fault, bool is_write)
430 uint64_t hi = 0, lo;
431 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
433 assert(index < DMAR_FRCD_REG_NR);
435 lo = VTD_FRCD_FI(addr);
436 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
437 if (!is_write) {
438 hi |= VTD_FRCD_T;
440 vtd_set_quad_raw(s, frcd_reg_addr, lo);
441 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
443 trace_vtd_frr_new(index, hi, lo);
446 /* Try to collapse multiple pending faults from the same requester */
447 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
449 uint32_t i;
450 uint64_t frcd_reg;
451 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
453 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
454 frcd_reg = vtd_get_quad_raw(s, addr);
455 if ((frcd_reg & VTD_FRCD_F) &&
456 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
457 return true;
459 addr += 16; /* 128-bit for each */
461 return false;
464 /* Log and report an DMAR (address translation) fault to software */
465 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
466 hwaddr addr, VTDFaultReason fault,
467 bool is_write)
469 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
471 assert(fault < VTD_FR_MAX);
473 if (fault == VTD_FR_RESERVED_ERR) {
474 /* This is not a normal fault reason case. Drop it. */
475 return;
478 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
480 if (fsts_reg & VTD_FSTS_PFO) {
481 error_report_once("New fault is not recorded due to "
482 "Primary Fault Overflow");
483 return;
486 if (vtd_try_collapse_fault(s, source_id)) {
487 error_report_once("New fault is not recorded due to "
488 "compression of faults");
489 return;
492 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
493 error_report_once("Next Fault Recording Reg is used, "
494 "new fault is not recorded, set PFO field");
495 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
496 return;
499 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
501 if (fsts_reg & VTD_FSTS_PPF) {
502 error_report_once("There are pending faults already, "
503 "fault event is not generated");
504 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
505 s->next_frcd_reg++;
506 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
507 s->next_frcd_reg = 0;
509 } else {
510 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
511 VTD_FSTS_FRI(s->next_frcd_reg));
512 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
513 s->next_frcd_reg++;
514 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
515 s->next_frcd_reg = 0;
517 /* This case actually cause the PPF to be Set.
518 * So generate fault event (interrupt).
520 vtd_generate_fault_event(s, fsts_reg);
524 /* Handle Invalidation Queue Errors of queued invalidation interface error
525 * conditions.
527 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
529 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
531 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
532 vtd_generate_fault_event(s, fsts_reg);
535 /* Set the IWC field and try to generate an invalidation completion interrupt */
536 static void vtd_generate_completion_event(IntelIOMMUState *s)
538 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
539 trace_vtd_inv_desc_wait_irq("One pending, skip current");
540 return;
542 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
543 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
544 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
545 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
546 "new event not generated");
547 return;
548 } else {
549 /* Generate the interrupt event */
550 trace_vtd_inv_desc_wait_irq("Generating complete event");
551 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
552 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
556 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
557 VTDRootEntry *re,
558 uint8_t devfn)
560 if (s->root_scalable && devfn > UINT8_MAX / 2) {
561 return re->hi & VTD_ROOT_ENTRY_P;
564 return re->lo & VTD_ROOT_ENTRY_P;
567 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
568 VTDRootEntry *re)
570 dma_addr_t addr;
572 addr = s->root + index * sizeof(*re);
573 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
574 re->lo = 0;
575 return -VTD_FR_ROOT_TABLE_INV;
577 re->lo = le64_to_cpu(re->lo);
578 re->hi = le64_to_cpu(re->hi);
579 return 0;
582 static inline bool vtd_ce_present(VTDContextEntry *context)
584 return context->lo & VTD_CONTEXT_ENTRY_P;
587 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
588 VTDRootEntry *re,
589 uint8_t index,
590 VTDContextEntry *ce)
592 dma_addr_t addr, ce_size;
594 /* we have checked that root entry is present */
595 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
596 VTD_CTX_ENTRY_LEGACY_SIZE;
598 if (s->root_scalable && index > UINT8_MAX / 2) {
599 index = index & (~VTD_DEVFN_CHECK_MASK);
600 addr = re->hi & VTD_ROOT_ENTRY_CTP;
601 } else {
602 addr = re->lo & VTD_ROOT_ENTRY_CTP;
605 addr = addr + index * ce_size;
606 if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
607 return -VTD_FR_CONTEXT_TABLE_INV;
610 ce->lo = le64_to_cpu(ce->lo);
611 ce->hi = le64_to_cpu(ce->hi);
612 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
613 ce->val[2] = le64_to_cpu(ce->val[2]);
614 ce->val[3] = le64_to_cpu(ce->val[3]);
616 return 0;
619 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
621 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
624 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
626 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
629 /* Whether the pte indicates the address of the page frame */
630 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
632 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
635 /* Get the content of a spte located in @base_addr[@index] */
636 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
638 uint64_t slpte;
640 assert(index < VTD_SL_PT_ENTRY_NR);
642 if (dma_memory_read(&address_space_memory,
643 base_addr + index * sizeof(slpte), &slpte,
644 sizeof(slpte))) {
645 slpte = (uint64_t)-1;
646 return slpte;
648 slpte = le64_to_cpu(slpte);
649 return slpte;
652 /* Given an iova and the level of paging structure, return the offset
653 * of current level.
655 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
657 return (iova >> vtd_slpt_level_shift(level)) &
658 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
661 /* Check Capability Register to see if the @level of page-table is supported */
662 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
664 return VTD_CAP_SAGAW_MASK & s->cap &
665 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
668 /* Return true if check passed, otherwise false */
669 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
670 VTDPASIDEntry *pe)
672 switch (VTD_PE_GET_TYPE(pe)) {
673 case VTD_SM_PASID_ENTRY_FLT:
674 case VTD_SM_PASID_ENTRY_SLT:
675 case VTD_SM_PASID_ENTRY_NESTED:
676 break;
677 case VTD_SM_PASID_ENTRY_PT:
678 if (!x86_iommu->pt_supported) {
679 return false;
681 break;
682 default:
683 /* Unknwon type */
684 return false;
686 return true;
689 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
691 return pdire->val & 1;
695 * Caller of this function should check present bit if wants
696 * to use pdir entry for futher usage except for fpd bit check.
698 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
699 uint32_t pasid,
700 VTDPASIDDirEntry *pdire)
702 uint32_t index;
703 dma_addr_t addr, entry_size;
705 index = VTD_PASID_DIR_INDEX(pasid);
706 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
707 addr = pasid_dir_base + index * entry_size;
708 if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
709 return -VTD_FR_PASID_TABLE_INV;
712 return 0;
715 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
717 return pe->val[0] & VTD_PASID_ENTRY_P;
720 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
721 uint32_t pasid,
722 dma_addr_t addr,
723 VTDPASIDEntry *pe)
725 uint32_t index;
726 dma_addr_t entry_size;
727 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
729 index = VTD_PASID_TABLE_INDEX(pasid);
730 entry_size = VTD_PASID_ENTRY_SIZE;
731 addr = addr + index * entry_size;
732 if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
733 return -VTD_FR_PASID_TABLE_INV;
736 /* Do translation type check */
737 if (!vtd_pe_type_check(x86_iommu, pe)) {
738 return -VTD_FR_PASID_TABLE_INV;
741 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
742 return -VTD_FR_PASID_TABLE_INV;
745 return 0;
749 * Caller of this function should check present bit if wants
750 * to use pasid entry for futher usage except for fpd bit check.
752 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
753 uint32_t pasid,
754 VTDPASIDDirEntry *pdire,
755 VTDPASIDEntry *pe)
757 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
759 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
763 * This function gets a pasid entry from a specified pasid
764 * table (includes dir and leaf table) with a specified pasid.
765 * Sanity check should be done to ensure return a present
766 * pasid entry to caller.
768 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
769 dma_addr_t pasid_dir_base,
770 uint32_t pasid,
771 VTDPASIDEntry *pe)
773 int ret;
774 VTDPASIDDirEntry pdire;
776 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
777 pasid, &pdire);
778 if (ret) {
779 return ret;
782 if (!vtd_pdire_present(&pdire)) {
783 return -VTD_FR_PASID_TABLE_INV;
786 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
787 if (ret) {
788 return ret;
791 if (!vtd_pe_present(pe)) {
792 return -VTD_FR_PASID_TABLE_INV;
795 return 0;
798 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
799 VTDContextEntry *ce,
800 VTDPASIDEntry *pe)
802 uint32_t pasid;
803 dma_addr_t pasid_dir_base;
804 int ret = 0;
806 pasid = VTD_CE_GET_RID2PASID(ce);
807 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
808 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
810 return ret;
813 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
814 VTDContextEntry *ce,
815 bool *pe_fpd_set)
817 int ret;
818 uint32_t pasid;
819 dma_addr_t pasid_dir_base;
820 VTDPASIDDirEntry pdire;
821 VTDPASIDEntry pe;
823 pasid = VTD_CE_GET_RID2PASID(ce);
824 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
827 * No present bit check since fpd is meaningful even
828 * if the present bit is clear.
830 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
831 if (ret) {
832 return ret;
835 if (pdire.val & VTD_PASID_DIR_FPD) {
836 *pe_fpd_set = true;
837 return 0;
840 if (!vtd_pdire_present(&pdire)) {
841 return -VTD_FR_PASID_TABLE_INV;
845 * No present bit check since fpd is meaningful even
846 * if the present bit is clear.
848 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
849 if (ret) {
850 return ret;
853 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
854 *pe_fpd_set = true;
857 return 0;
860 /* Get the page-table level that hardware should use for the second-level
861 * page-table walk from the Address Width field of context-entry.
863 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
865 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
868 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
869 VTDContextEntry *ce)
871 VTDPASIDEntry pe;
873 if (s->root_scalable) {
874 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
875 return VTD_PE_GET_LEVEL(&pe);
878 return vtd_ce_get_level(ce);
881 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
883 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
886 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
887 VTDContextEntry *ce)
889 VTDPASIDEntry pe;
891 if (s->root_scalable) {
892 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
893 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
896 return vtd_ce_get_agaw(ce);
899 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
901 return ce->lo & VTD_CONTEXT_ENTRY_TT;
904 /* Only for Legacy Mode. Return true if check passed, otherwise false */
905 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
906 VTDContextEntry *ce)
908 switch (vtd_ce_get_type(ce)) {
909 case VTD_CONTEXT_TT_MULTI_LEVEL:
910 /* Always supported */
911 break;
912 case VTD_CONTEXT_TT_DEV_IOTLB:
913 if (!x86_iommu->dt_supported) {
914 error_report_once("%s: DT specified but not supported", __func__);
915 return false;
917 break;
918 case VTD_CONTEXT_TT_PASS_THROUGH:
919 if (!x86_iommu->pt_supported) {
920 error_report_once("%s: PT specified but not supported", __func__);
921 return false;
923 break;
924 default:
925 /* Unknown type */
926 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
927 vtd_ce_get_type(ce));
928 return false;
930 return true;
933 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
934 VTDContextEntry *ce, uint8_t aw)
936 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
937 return 1ULL << MIN(ce_agaw, aw);
940 /* Return true if IOVA passes range check, otherwise false. */
941 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
942 uint64_t iova, VTDContextEntry *ce,
943 uint8_t aw)
946 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
947 * in CAP_REG and AW in context-entry.
949 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
952 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
953 VTDContextEntry *ce)
955 VTDPASIDEntry pe;
957 if (s->root_scalable) {
958 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
959 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
962 return vtd_ce_get_slpt_base(ce);
966 * Rsvd field masks for spte:
967 * vtd_spte_rsvd 4k pages
968 * vtd_spte_rsvd_large large pages
970 static uint64_t vtd_spte_rsvd[5];
971 static uint64_t vtd_spte_rsvd_large[5];
973 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
975 uint64_t rsvd_mask = vtd_spte_rsvd[level];
977 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
978 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
979 /* large page */
980 rsvd_mask = vtd_spte_rsvd_large[level];
983 return slpte & rsvd_mask;
986 /* Find the VTD address space associated with a given bus number */
987 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
989 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
990 GHashTableIter iter;
992 if (vtd_bus) {
993 return vtd_bus;
997 * Iterate over the registered buses to find the one which
998 * currently holds this bus number and update the bus_num
999 * lookup table.
1001 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1002 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1003 if (pci_bus_num(vtd_bus->bus) == bus_num) {
1004 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
1005 return vtd_bus;
1009 return NULL;
1012 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1013 * of the translation, can be used for deciding the size of large page.
1015 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1016 uint64_t iova, bool is_write,
1017 uint64_t *slptep, uint32_t *slpte_level,
1018 bool *reads, bool *writes, uint8_t aw_bits)
1020 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1021 uint32_t level = vtd_get_iova_level(s, ce);
1022 uint32_t offset;
1023 uint64_t slpte;
1024 uint64_t access_right_check;
1026 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
1027 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
1028 __func__, iova);
1029 return -VTD_FR_ADDR_BEYOND_MGAW;
1032 /* FIXME: what is the Atomics request here? */
1033 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1035 while (true) {
1036 offset = vtd_iova_level_offset(iova, level);
1037 slpte = vtd_get_slpte(addr, offset);
1039 if (slpte == (uint64_t)-1) {
1040 error_report_once("%s: detected read error on DMAR slpte "
1041 "(iova=0x%" PRIx64 ")", __func__, iova);
1042 if (level == vtd_get_iova_level(s, ce)) {
1043 /* Invalid programming of context-entry */
1044 return -VTD_FR_CONTEXT_ENTRY_INV;
1045 } else {
1046 return -VTD_FR_PAGING_ENTRY_INV;
1049 *reads = (*reads) && (slpte & VTD_SL_R);
1050 *writes = (*writes) && (slpte & VTD_SL_W);
1051 if (!(slpte & access_right_check)) {
1052 error_report_once("%s: detected slpte permission error "
1053 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1054 "slpte=0x%" PRIx64 ", write=%d)", __func__,
1055 iova, level, slpte, is_write);
1056 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1058 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1059 error_report_once("%s: detected splte reserve non-zero "
1060 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1061 "slpte=0x%" PRIx64 ")", __func__, iova,
1062 level, slpte);
1063 return -VTD_FR_PAGING_ENTRY_RSVD;
1066 if (vtd_is_last_slpte(slpte, level)) {
1067 *slptep = slpte;
1068 *slpte_level = level;
1069 return 0;
1071 addr = vtd_get_slpte_addr(slpte, aw_bits);
1072 level--;
1076 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1079 * Constant information used during page walking
1081 * @hook_fn: hook func to be called when detected page
1082 * @private: private data to be passed into hook func
1083 * @notify_unmap: whether we should notify invalid entries
1084 * @as: VT-d address space of the device
1085 * @aw: maximum address width
1086 * @domain: domain ID of the page walk
1088 typedef struct {
1089 VTDAddressSpace *as;
1090 vtd_page_walk_hook hook_fn;
1091 void *private;
1092 bool notify_unmap;
1093 uint8_t aw;
1094 uint16_t domain_id;
1095 } vtd_page_walk_info;
1097 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1099 VTDAddressSpace *as = info->as;
1100 vtd_page_walk_hook hook_fn = info->hook_fn;
1101 void *private = info->private;
1102 IOMMUTLBEntry *entry = &event->entry;
1103 DMAMap target = {
1104 .iova = entry->iova,
1105 .size = entry->addr_mask,
1106 .translated_addr = entry->translated_addr,
1107 .perm = entry->perm,
1109 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1111 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1112 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1113 return 0;
1116 assert(hook_fn);
1118 /* Update local IOVA mapped ranges */
1119 if (event->type == IOMMU_NOTIFIER_MAP) {
1120 if (mapped) {
1121 /* If it's exactly the same translation, skip */
1122 if (!memcmp(mapped, &target, sizeof(target))) {
1123 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1124 entry->translated_addr);
1125 return 0;
1126 } else {
1128 * Translation changed. Normally this should not
1129 * happen, but it can happen when with buggy guest
1130 * OSes. Note that there will be a small window that
1131 * we don't have map at all. But that's the best
1132 * effort we can do. The ideal way to emulate this is
1133 * atomically modify the PTE to follow what has
1134 * changed, but we can't. One example is that vfio
1135 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1136 * interface to modify a mapping (meanwhile it seems
1137 * meaningless to even provide one). Anyway, let's
1138 * mark this as a TODO in case one day we'll have
1139 * a better solution.
1141 IOMMUAccessFlags cache_perm = entry->perm;
1142 int ret;
1144 /* Emulate an UNMAP */
1145 event->type = IOMMU_NOTIFIER_UNMAP;
1146 entry->perm = IOMMU_NONE;
1147 trace_vtd_page_walk_one(info->domain_id,
1148 entry->iova,
1149 entry->translated_addr,
1150 entry->addr_mask,
1151 entry->perm);
1152 ret = hook_fn(event, private);
1153 if (ret) {
1154 return ret;
1156 /* Drop any existing mapping */
1157 iova_tree_remove(as->iova_tree, &target);
1158 /* Recover the correct type */
1159 event->type = IOMMU_NOTIFIER_MAP;
1160 entry->perm = cache_perm;
1163 iova_tree_insert(as->iova_tree, &target);
1164 } else {
1165 if (!mapped) {
1166 /* Skip since we didn't map this range at all */
1167 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1168 return 0;
1170 iova_tree_remove(as->iova_tree, &target);
1173 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1174 entry->translated_addr, entry->addr_mask,
1175 entry->perm);
1176 return hook_fn(event, private);
1180 * vtd_page_walk_level - walk over specific level for IOVA range
1182 * @addr: base GPA addr to start the walk
1183 * @start: IOVA range start address
1184 * @end: IOVA range end address (start <= addr < end)
1185 * @read: whether parent level has read permission
1186 * @write: whether parent level has write permission
1187 * @info: constant information for the page walk
1189 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1190 uint64_t end, uint32_t level, bool read,
1191 bool write, vtd_page_walk_info *info)
1193 bool read_cur, write_cur, entry_valid;
1194 uint32_t offset;
1195 uint64_t slpte;
1196 uint64_t subpage_size, subpage_mask;
1197 IOMMUTLBEvent event;
1198 uint64_t iova = start;
1199 uint64_t iova_next;
1200 int ret = 0;
1202 trace_vtd_page_walk_level(addr, level, start, end);
1204 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1205 subpage_mask = vtd_slpt_level_page_mask(level);
1207 while (iova < end) {
1208 iova_next = (iova & subpage_mask) + subpage_size;
1210 offset = vtd_iova_level_offset(iova, level);
1211 slpte = vtd_get_slpte(addr, offset);
1213 if (slpte == (uint64_t)-1) {
1214 trace_vtd_page_walk_skip_read(iova, iova_next);
1215 goto next;
1218 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1219 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1220 goto next;
1223 /* Permissions are stacked with parents' */
1224 read_cur = read && (slpte & VTD_SL_R);
1225 write_cur = write && (slpte & VTD_SL_W);
1228 * As long as we have either read/write permission, this is a
1229 * valid entry. The rule works for both page entries and page
1230 * table entries.
1232 entry_valid = read_cur | write_cur;
1234 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1236 * This is a valid PDE (or even bigger than PDE). We need
1237 * to walk one further level.
1239 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1240 iova, MIN(iova_next, end), level - 1,
1241 read_cur, write_cur, info);
1242 } else {
1244 * This means we are either:
1246 * (1) the real page entry (either 4K page, or huge page)
1247 * (2) the whole range is invalid
1249 * In either case, we send an IOTLB notification down.
1251 event.entry.target_as = &address_space_memory;
1252 event.entry.iova = iova & subpage_mask;
1253 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1254 event.entry.addr_mask = ~subpage_mask;
1255 /* NOTE: this is only meaningful if entry_valid == true */
1256 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1257 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1258 IOMMU_NOTIFIER_UNMAP;
1259 ret = vtd_page_walk_one(&event, info);
1262 if (ret < 0) {
1263 return ret;
1266 next:
1267 iova = iova_next;
1270 return 0;
1274 * vtd_page_walk - walk specific IOVA range, and call the hook
1276 * @s: intel iommu state
1277 * @ce: context entry to walk upon
1278 * @start: IOVA address to start the walk
1279 * @end: IOVA range end address (start <= addr < end)
1280 * @info: page walking information struct
1282 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1283 uint64_t start, uint64_t end,
1284 vtd_page_walk_info *info)
1286 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1287 uint32_t level = vtd_get_iova_level(s, ce);
1289 if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1290 return -VTD_FR_ADDR_BEYOND_MGAW;
1293 if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1294 /* Fix end so that it reaches the maximum */
1295 end = vtd_iova_limit(s, ce, info->aw);
1298 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1301 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1302 VTDRootEntry *re)
1304 /* Legacy Mode reserved bits check */
1305 if (!s->root_scalable &&
1306 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1307 goto rsvd_err;
1309 /* Scalable Mode reserved bits check */
1310 if (s->root_scalable &&
1311 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1312 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1313 goto rsvd_err;
1315 return 0;
1317 rsvd_err:
1318 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1319 ", lo=0x%"PRIx64,
1320 __func__, re->hi, re->lo);
1321 return -VTD_FR_ROOT_ENTRY_RSVD;
1324 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1325 VTDContextEntry *ce)
1327 if (!s->root_scalable &&
1328 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1329 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1330 error_report_once("%s: invalid context entry: hi=%"PRIx64
1331 ", lo=%"PRIx64" (reserved nonzero)",
1332 __func__, ce->hi, ce->lo);
1333 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1336 if (s->root_scalable &&
1337 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1338 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1339 ce->val[2] ||
1340 ce->val[3])) {
1341 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1342 ", val[2]=%"PRIx64
1343 ", val[1]=%"PRIx64
1344 ", val[0]=%"PRIx64" (reserved nonzero)",
1345 __func__, ce->val[3], ce->val[2],
1346 ce->val[1], ce->val[0]);
1347 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1350 return 0;
1353 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1354 VTDContextEntry *ce)
1356 VTDPASIDEntry pe;
1359 * Make sure in Scalable Mode, a present context entry
1360 * has valid rid2pasid setting, which includes valid
1361 * rid2pasid field and corresponding pasid entry setting
1363 return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1366 /* Map a device to its corresponding domain (context-entry) */
1367 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1368 uint8_t devfn, VTDContextEntry *ce)
1370 VTDRootEntry re;
1371 int ret_fr;
1372 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1374 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1375 if (ret_fr) {
1376 return ret_fr;
1379 if (!vtd_root_entry_present(s, &re, devfn)) {
1380 /* Not error - it's okay we don't have root entry. */
1381 trace_vtd_re_not_present(bus_num);
1382 return -VTD_FR_ROOT_ENTRY_P;
1385 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1386 if (ret_fr) {
1387 return ret_fr;
1390 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1391 if (ret_fr) {
1392 return ret_fr;
1395 if (!vtd_ce_present(ce)) {
1396 /* Not error - it's okay we don't have context entry. */
1397 trace_vtd_ce_not_present(bus_num, devfn);
1398 return -VTD_FR_CONTEXT_ENTRY_P;
1401 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1402 if (ret_fr) {
1403 return ret_fr;
1406 /* Check if the programming of context-entry is valid */
1407 if (!s->root_scalable &&
1408 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1409 error_report_once("%s: invalid context entry: hi=%"PRIx64
1410 ", lo=%"PRIx64" (level %d not supported)",
1411 __func__, ce->hi, ce->lo,
1412 vtd_ce_get_level(ce));
1413 return -VTD_FR_CONTEXT_ENTRY_INV;
1416 if (!s->root_scalable) {
1417 /* Do translation type check */
1418 if (!vtd_ce_type_check(x86_iommu, ce)) {
1419 /* Errors dumped in vtd_ce_type_check() */
1420 return -VTD_FR_CONTEXT_ENTRY_INV;
1422 } else {
1424 * Check if the programming of context-entry.rid2pasid
1425 * and corresponding pasid setting is valid, and thus
1426 * avoids to check pasid entry fetching result in future
1427 * helper function calling.
1429 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1430 if (ret_fr) {
1431 return ret_fr;
1435 return 0;
1438 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1439 void *private)
1441 memory_region_notify_iommu(private, 0, *event);
1442 return 0;
1445 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1446 VTDContextEntry *ce)
1448 VTDPASIDEntry pe;
1450 if (s->root_scalable) {
1451 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1452 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1455 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1458 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1459 VTDContextEntry *ce,
1460 hwaddr addr, hwaddr size)
1462 IntelIOMMUState *s = vtd_as->iommu_state;
1463 vtd_page_walk_info info = {
1464 .hook_fn = vtd_sync_shadow_page_hook,
1465 .private = (void *)&vtd_as->iommu,
1466 .notify_unmap = true,
1467 .aw = s->aw_bits,
1468 .as = vtd_as,
1469 .domain_id = vtd_get_domain_id(s, ce),
1472 return vtd_page_walk(s, ce, addr, addr + size, &info);
1475 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1477 int ret;
1478 VTDContextEntry ce;
1479 IOMMUNotifier *n;
1481 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1482 pci_bus_num(vtd_as->bus),
1483 vtd_as->devfn, &ce);
1484 if (ret) {
1485 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1487 * It's a valid scenario to have a context entry that is
1488 * not present. For example, when a device is removed
1489 * from an existing domain then the context entry will be
1490 * zeroed by the guest before it was put into another
1491 * domain. When this happens, instead of synchronizing
1492 * the shadow pages we should invalidate all existing
1493 * mappings and notify the backends.
1495 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1496 vtd_address_space_unmap(vtd_as, n);
1498 ret = 0;
1500 return ret;
1503 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1507 * Check if specific device is configed to bypass address
1508 * translation for DMA requests. In Scalable Mode, bypass
1509 * 1st-level translation or 2nd-level translation, it depends
1510 * on PGTT setting.
1512 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1514 IntelIOMMUState *s;
1515 VTDContextEntry ce;
1516 VTDPASIDEntry pe;
1517 int ret;
1519 assert(as);
1521 s = as->iommu_state;
1522 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1523 as->devfn, &ce);
1524 if (ret) {
1526 * Possibly failed to parse the context entry for some reason
1527 * (e.g., during init, or any guest configuration errors on
1528 * context entries). We should assume PT not enabled for
1529 * safety.
1531 return false;
1534 if (s->root_scalable) {
1535 ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1536 if (ret) {
1537 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1538 __func__, ret);
1539 return false;
1541 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1544 return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1547 /* Return whether the device is using IOMMU translation. */
1548 static bool vtd_switch_address_space(VTDAddressSpace *as)
1550 bool use_iommu;
1551 /* Whether we need to take the BQL on our own */
1552 bool take_bql = !qemu_mutex_iothread_locked();
1554 assert(as);
1556 use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1558 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1559 VTD_PCI_SLOT(as->devfn),
1560 VTD_PCI_FUNC(as->devfn),
1561 use_iommu);
1564 * It's possible that we reach here without BQL, e.g., when called
1565 * from vtd_pt_enable_fast_path(). However the memory APIs need
1566 * it. We'd better make sure we have had it already, or, take it.
1568 if (take_bql) {
1569 qemu_mutex_lock_iothread();
1572 /* Turn off first then on the other */
1573 if (use_iommu) {
1574 memory_region_set_enabled(&as->nodmar, false);
1575 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1576 } else {
1577 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1578 memory_region_set_enabled(&as->nodmar, true);
1581 if (take_bql) {
1582 qemu_mutex_unlock_iothread();
1585 return use_iommu;
1588 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1590 GHashTableIter iter;
1591 VTDBus *vtd_bus;
1592 int i;
1594 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1595 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1596 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1597 if (!vtd_bus->dev_as[i]) {
1598 continue;
1600 vtd_switch_address_space(vtd_bus->dev_as[i]);
1605 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1607 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1610 static const bool vtd_qualified_faults[] = {
1611 [VTD_FR_RESERVED] = false,
1612 [VTD_FR_ROOT_ENTRY_P] = false,
1613 [VTD_FR_CONTEXT_ENTRY_P] = true,
1614 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1615 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1616 [VTD_FR_WRITE] = true,
1617 [VTD_FR_READ] = true,
1618 [VTD_FR_PAGING_ENTRY_INV] = true,
1619 [VTD_FR_ROOT_TABLE_INV] = false,
1620 [VTD_FR_CONTEXT_TABLE_INV] = false,
1621 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1622 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1623 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1624 [VTD_FR_PASID_TABLE_INV] = false,
1625 [VTD_FR_RESERVED_ERR] = false,
1626 [VTD_FR_MAX] = false,
1629 /* To see if a fault condition is "qualified", which is reported to software
1630 * only if the FPD field in the context-entry used to process the faulting
1631 * request is 0.
1633 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1635 return vtd_qualified_faults[fault];
1638 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1640 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1643 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1645 VTDBus *vtd_bus;
1646 VTDAddressSpace *vtd_as;
1647 bool success = false;
1649 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1650 if (!vtd_bus) {
1651 goto out;
1654 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1655 if (!vtd_as) {
1656 goto out;
1659 if (vtd_switch_address_space(vtd_as) == false) {
1660 /* We switched off IOMMU region successfully. */
1661 success = true;
1664 out:
1665 trace_vtd_pt_enable_fast_path(source_id, success);
1668 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1669 * translation.
1671 * Called from RCU critical section.
1673 * @bus_num: The bus number
1674 * @devfn: The devfn, which is the combined of device and function number
1675 * @is_write: The access is a write operation
1676 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1678 * Returns true if translation is successful, otherwise false.
1680 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1681 uint8_t devfn, hwaddr addr, bool is_write,
1682 IOMMUTLBEntry *entry)
1684 IntelIOMMUState *s = vtd_as->iommu_state;
1685 VTDContextEntry ce;
1686 uint8_t bus_num = pci_bus_num(bus);
1687 VTDContextCacheEntry *cc_entry;
1688 uint64_t slpte, page_mask;
1689 uint32_t level;
1690 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1691 int ret_fr;
1692 bool is_fpd_set = false;
1693 bool reads = true;
1694 bool writes = true;
1695 uint8_t access_flags;
1696 VTDIOTLBEntry *iotlb_entry;
1699 * We have standalone memory region for interrupt addresses, we
1700 * should never receive translation requests in this region.
1702 assert(!vtd_is_interrupt_addr(addr));
1704 vtd_iommu_lock(s);
1706 cc_entry = &vtd_as->context_cache_entry;
1708 /* Try to fetch slpte form IOTLB */
1709 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1710 if (iotlb_entry) {
1711 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1712 iotlb_entry->domain_id);
1713 slpte = iotlb_entry->slpte;
1714 access_flags = iotlb_entry->access_flags;
1715 page_mask = iotlb_entry->mask;
1716 goto out;
1719 /* Try to fetch context-entry from cache first */
1720 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1721 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1722 cc_entry->context_entry.lo,
1723 cc_entry->context_cache_gen);
1724 ce = cc_entry->context_entry;
1725 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1726 if (!is_fpd_set && s->root_scalable) {
1727 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1728 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1730 } else {
1731 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1732 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1733 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1734 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1736 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1737 /* Update context-cache */
1738 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1739 cc_entry->context_cache_gen,
1740 s->context_cache_gen);
1741 cc_entry->context_entry = ce;
1742 cc_entry->context_cache_gen = s->context_cache_gen;
1746 * We don't need to translate for pass-through context entries.
1747 * Also, let's ignore IOTLB caching as well for PT devices.
1749 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1750 entry->iova = addr & VTD_PAGE_MASK_4K;
1751 entry->translated_addr = entry->iova;
1752 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1753 entry->perm = IOMMU_RW;
1754 trace_vtd_translate_pt(source_id, entry->iova);
1757 * When this happens, it means firstly caching-mode is not
1758 * enabled, and this is the first passthrough translation for
1759 * the device. Let's enable the fast path for passthrough.
1761 * When passthrough is disabled again for the device, we can
1762 * capture it via the context entry invalidation, then the
1763 * IOMMU region can be swapped back.
1765 vtd_pt_enable_fast_path(s, source_id);
1766 vtd_iommu_unlock(s);
1767 return true;
1770 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1771 &reads, &writes, s->aw_bits);
1772 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1774 page_mask = vtd_slpt_level_page_mask(level);
1775 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1776 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1777 access_flags, level);
1778 out:
1779 vtd_iommu_unlock(s);
1780 entry->iova = addr & page_mask;
1781 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1782 entry->addr_mask = ~page_mask;
1783 entry->perm = access_flags;
1784 return true;
1786 error:
1787 vtd_iommu_unlock(s);
1788 entry->iova = 0;
1789 entry->translated_addr = 0;
1790 entry->addr_mask = 0;
1791 entry->perm = IOMMU_NONE;
1792 return false;
1795 static void vtd_root_table_setup(IntelIOMMUState *s)
1797 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1798 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1800 vtd_update_scalable_state(s);
1802 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1805 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1806 uint32_t index, uint32_t mask)
1808 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1811 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1813 uint64_t value = 0;
1814 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1815 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1816 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1817 s->intr_eime = value & VTD_IRTA_EIME;
1819 /* Notify global invalidation */
1820 vtd_iec_notify_all(s, true, 0, 0);
1822 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1825 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1827 VTDAddressSpace *vtd_as;
1829 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1830 vtd_sync_shadow_page_table(vtd_as);
1834 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1836 trace_vtd_inv_desc_cc_global();
1837 /* Protects context cache */
1838 vtd_iommu_lock(s);
1839 s->context_cache_gen++;
1840 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1841 vtd_reset_context_cache_locked(s);
1843 vtd_iommu_unlock(s);
1844 vtd_address_space_refresh_all(s);
1846 * From VT-d spec 6.5.2.1, a global context entry invalidation
1847 * should be followed by a IOTLB global invalidation, so we should
1848 * be safe even without this. Hoewever, let's replay the region as
1849 * well to be safer, and go back here when we need finer tunes for
1850 * VT-d emulation codes.
1852 vtd_iommu_replay_all(s);
1855 /* Do a context-cache device-selective invalidation.
1856 * @func_mask: FM field after shifting
1858 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1859 uint16_t source_id,
1860 uint16_t func_mask)
1862 uint16_t mask;
1863 VTDBus *vtd_bus;
1864 VTDAddressSpace *vtd_as;
1865 uint8_t bus_n, devfn;
1866 uint16_t devfn_it;
1868 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1870 switch (func_mask & 3) {
1871 case 0:
1872 mask = 0; /* No bits in the SID field masked */
1873 break;
1874 case 1:
1875 mask = 4; /* Mask bit 2 in the SID field */
1876 break;
1877 case 2:
1878 mask = 6; /* Mask bit 2:1 in the SID field */
1879 break;
1880 case 3:
1881 mask = 7; /* Mask bit 2:0 in the SID field */
1882 break;
1884 mask = ~mask;
1886 bus_n = VTD_SID_TO_BUS(source_id);
1887 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1888 if (vtd_bus) {
1889 devfn = VTD_SID_TO_DEVFN(source_id);
1890 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1891 vtd_as = vtd_bus->dev_as[devfn_it];
1892 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1893 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1894 VTD_PCI_FUNC(devfn_it));
1895 vtd_iommu_lock(s);
1896 vtd_as->context_cache_entry.context_cache_gen = 0;
1897 vtd_iommu_unlock(s);
1899 * Do switch address space when needed, in case if the
1900 * device passthrough bit is switched.
1902 vtd_switch_address_space(vtd_as);
1904 * So a device is moving out of (or moving into) a
1905 * domain, resync the shadow page table.
1906 * This won't bring bad even if we have no such
1907 * notifier registered - the IOMMU notification
1908 * framework will skip MAP notifications if that
1909 * happened.
1911 vtd_sync_shadow_page_table(vtd_as);
1917 /* Context-cache invalidation
1918 * Returns the Context Actual Invalidation Granularity.
1919 * @val: the content of the CCMD_REG
1921 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1923 uint64_t caig;
1924 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1926 switch (type) {
1927 case VTD_CCMD_DOMAIN_INVL:
1928 /* Fall through */
1929 case VTD_CCMD_GLOBAL_INVL:
1930 caig = VTD_CCMD_GLOBAL_INVL_A;
1931 vtd_context_global_invalidate(s);
1932 break;
1934 case VTD_CCMD_DEVICE_INVL:
1935 caig = VTD_CCMD_DEVICE_INVL_A;
1936 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1937 break;
1939 default:
1940 error_report_once("%s: invalid context: 0x%" PRIx64,
1941 __func__, val);
1942 caig = 0;
1944 return caig;
1947 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1949 trace_vtd_inv_desc_iotlb_global();
1950 vtd_reset_iotlb(s);
1951 vtd_iommu_replay_all(s);
1954 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1956 VTDContextEntry ce;
1957 VTDAddressSpace *vtd_as;
1959 trace_vtd_inv_desc_iotlb_domain(domain_id);
1961 vtd_iommu_lock(s);
1962 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1963 &domain_id);
1964 vtd_iommu_unlock(s);
1966 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1967 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1968 vtd_as->devfn, &ce) &&
1969 domain_id == vtd_get_domain_id(s, &ce)) {
1970 vtd_sync_shadow_page_table(vtd_as);
1975 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1976 uint16_t domain_id, hwaddr addr,
1977 uint8_t am)
1979 VTDAddressSpace *vtd_as;
1980 VTDContextEntry ce;
1981 int ret;
1982 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1984 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1985 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1986 vtd_as->devfn, &ce);
1987 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1988 if (vtd_as_has_map_notifier(vtd_as)) {
1990 * As long as we have MAP notifications registered in
1991 * any of our IOMMU notifiers, we need to sync the
1992 * shadow page table.
1994 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1995 } else {
1997 * For UNMAP-only notifiers, we don't need to walk the
1998 * page tables. We just deliver the PSI down to
1999 * invalidate caches.
2001 IOMMUTLBEvent event = {
2002 .type = IOMMU_NOTIFIER_UNMAP,
2003 .entry = {
2004 .target_as = &address_space_memory,
2005 .iova = addr,
2006 .translated_addr = 0,
2007 .addr_mask = size - 1,
2008 .perm = IOMMU_NONE,
2011 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2017 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2018 hwaddr addr, uint8_t am)
2020 VTDIOTLBPageInvInfo info;
2022 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2024 assert(am <= VTD_MAMV);
2025 info.domain_id = domain_id;
2026 info.addr = addr;
2027 info.mask = ~((1 << am) - 1);
2028 vtd_iommu_lock(s);
2029 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2030 vtd_iommu_unlock(s);
2031 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
2034 /* Flush IOTLB
2035 * Returns the IOTLB Actual Invalidation Granularity.
2036 * @val: the content of the IOTLB_REG
2038 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2040 uint64_t iaig;
2041 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2042 uint16_t domain_id;
2043 hwaddr addr;
2044 uint8_t am;
2046 switch (type) {
2047 case VTD_TLB_GLOBAL_FLUSH:
2048 iaig = VTD_TLB_GLOBAL_FLUSH_A;
2049 vtd_iotlb_global_invalidate(s);
2050 break;
2052 case VTD_TLB_DSI_FLUSH:
2053 domain_id = VTD_TLB_DID(val);
2054 iaig = VTD_TLB_DSI_FLUSH_A;
2055 vtd_iotlb_domain_invalidate(s, domain_id);
2056 break;
2058 case VTD_TLB_PSI_FLUSH:
2059 domain_id = VTD_TLB_DID(val);
2060 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2061 am = VTD_IVA_AM(addr);
2062 addr = VTD_IVA_ADDR(addr);
2063 if (am > VTD_MAMV) {
2064 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2065 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2066 iaig = 0;
2067 break;
2069 iaig = VTD_TLB_PSI_FLUSH_A;
2070 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2071 break;
2073 default:
2074 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2075 __func__, val);
2076 iaig = 0;
2078 return iaig;
2081 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2083 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2085 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2086 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2089 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2091 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2093 trace_vtd_inv_qi_enable(en);
2095 if (en) {
2096 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2097 /* 2^(x+8) entries */
2098 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2099 s->qi_enabled = true;
2100 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2101 /* Ok - report back to driver */
2102 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2104 if (s->iq_tail != 0) {
2106 * This is a spec violation but Windows guests are known to set up
2107 * Queued Invalidation this way so we allow the write and process
2108 * Invalidation Descriptors right away.
2110 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2111 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2112 vtd_fetch_inv_desc(s);
2115 } else {
2116 if (vtd_queued_inv_disable_check(s)) {
2117 /* disable Queued Invalidation */
2118 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2119 s->iq_head = 0;
2120 s->qi_enabled = false;
2121 /* Ok - report back to driver */
2122 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2123 } else {
2124 error_report_once("%s: detected improper state when disable QI "
2125 "(head=0x%x, tail=0x%x, last_type=%d)",
2126 __func__,
2127 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2132 /* Set Root Table Pointer */
2133 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2135 vtd_root_table_setup(s);
2136 /* Ok - report back to driver */
2137 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2138 vtd_reset_caches(s);
2139 vtd_address_space_refresh_all(s);
2142 /* Set Interrupt Remap Table Pointer */
2143 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2145 vtd_interrupt_remap_table_setup(s);
2146 /* Ok - report back to driver */
2147 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2150 /* Handle Translation Enable/Disable */
2151 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2153 if (s->dmar_enabled == en) {
2154 return;
2157 trace_vtd_dmar_enable(en);
2159 if (en) {
2160 s->dmar_enabled = true;
2161 /* Ok - report back to driver */
2162 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2163 } else {
2164 s->dmar_enabled = false;
2166 /* Clear the index of Fault Recording Register */
2167 s->next_frcd_reg = 0;
2168 /* Ok - report back to driver */
2169 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2172 vtd_reset_caches(s);
2173 vtd_address_space_refresh_all(s);
2176 /* Handle Interrupt Remap Enable/Disable */
2177 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2179 trace_vtd_ir_enable(en);
2181 if (en) {
2182 s->intr_enabled = true;
2183 /* Ok - report back to driver */
2184 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2185 } else {
2186 s->intr_enabled = false;
2187 /* Ok - report back to driver */
2188 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2192 /* Handle write to Global Command Register */
2193 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2195 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2196 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2197 uint32_t changed = status ^ val;
2199 trace_vtd_reg_write_gcmd(status, val);
2200 if (changed & VTD_GCMD_TE) {
2201 /* Translation enable/disable */
2202 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2204 if (val & VTD_GCMD_SRTP) {
2205 /* Set/update the root-table pointer */
2206 vtd_handle_gcmd_srtp(s);
2208 if (changed & VTD_GCMD_QIE) {
2209 /* Queued Invalidation Enable */
2210 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2212 if (val & VTD_GCMD_SIRTP) {
2213 /* Set/update the interrupt remapping root-table pointer */
2214 vtd_handle_gcmd_sirtp(s);
2216 if (changed & VTD_GCMD_IRE) {
2217 /* Interrupt remap enable/disable */
2218 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2222 /* Handle write to Context Command Register */
2223 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2225 uint64_t ret;
2226 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2228 /* Context-cache invalidation request */
2229 if (val & VTD_CCMD_ICC) {
2230 if (s->qi_enabled) {
2231 error_report_once("Queued Invalidation enabled, "
2232 "should not use register-based invalidation");
2233 return;
2235 ret = vtd_context_cache_invalidate(s, val);
2236 /* Invalidation completed. Change something to show */
2237 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2238 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2239 ret);
2243 /* Handle write to IOTLB Invalidation Register */
2244 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2246 uint64_t ret;
2247 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2249 /* IOTLB invalidation request */
2250 if (val & VTD_TLB_IVT) {
2251 if (s->qi_enabled) {
2252 error_report_once("Queued Invalidation enabled, "
2253 "should not use register-based invalidation");
2254 return;
2256 ret = vtd_iotlb_flush(s, val);
2257 /* Invalidation completed. Change something to show */
2258 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2259 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2260 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2264 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2265 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2266 VTDInvDesc *inv_desc)
2268 dma_addr_t base_addr = s->iq;
2269 uint32_t offset = s->iq_head;
2270 uint32_t dw = s->iq_dw ? 32 : 16;
2271 dma_addr_t addr = base_addr + offset * dw;
2273 if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2274 error_report_once("Read INV DESC failed.");
2275 return false;
2277 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2278 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2279 if (dw == 32) {
2280 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2281 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2283 return true;
2286 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2288 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2289 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2290 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2291 " (reserved nonzero)", __func__, inv_desc->hi,
2292 inv_desc->lo);
2293 return false;
2295 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2296 /* Status Write */
2297 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2298 VTD_INV_DESC_WAIT_DATA_SHIFT);
2300 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2302 /* FIXME: need to be masked with HAW? */
2303 dma_addr_t status_addr = inv_desc->hi;
2304 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2305 status_data = cpu_to_le32(status_data);
2306 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2307 sizeof(status_data))) {
2308 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2309 return false;
2311 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2312 /* Interrupt flag */
2313 vtd_generate_completion_event(s);
2314 } else {
2315 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2316 " (unknown type)", __func__, inv_desc->hi,
2317 inv_desc->lo);
2318 return false;
2320 return true;
2323 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2324 VTDInvDesc *inv_desc)
2326 uint16_t sid, fmask;
2328 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2329 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2330 " (reserved nonzero)", __func__, inv_desc->hi,
2331 inv_desc->lo);
2332 return false;
2334 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2335 case VTD_INV_DESC_CC_DOMAIN:
2336 trace_vtd_inv_desc_cc_domain(
2337 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2338 /* Fall through */
2339 case VTD_INV_DESC_CC_GLOBAL:
2340 vtd_context_global_invalidate(s);
2341 break;
2343 case VTD_INV_DESC_CC_DEVICE:
2344 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2345 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2346 vtd_context_device_invalidate(s, sid, fmask);
2347 break;
2349 default:
2350 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2351 " (invalid type)", __func__, inv_desc->hi,
2352 inv_desc->lo);
2353 return false;
2355 return true;
2358 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2360 uint16_t domain_id;
2361 uint8_t am;
2362 hwaddr addr;
2364 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2365 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2366 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2367 ", lo=0x%"PRIx64" (reserved bits unzero)",
2368 __func__, inv_desc->hi, inv_desc->lo);
2369 return false;
2372 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2373 case VTD_INV_DESC_IOTLB_GLOBAL:
2374 vtd_iotlb_global_invalidate(s);
2375 break;
2377 case VTD_INV_DESC_IOTLB_DOMAIN:
2378 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2379 vtd_iotlb_domain_invalidate(s, domain_id);
2380 break;
2382 case VTD_INV_DESC_IOTLB_PAGE:
2383 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2384 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2385 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2386 if (am > VTD_MAMV) {
2387 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2388 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2389 __func__, inv_desc->hi, inv_desc->lo,
2390 am, (unsigned)VTD_MAMV);
2391 return false;
2393 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2394 break;
2396 default:
2397 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2398 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2399 __func__, inv_desc->hi, inv_desc->lo,
2400 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2401 return false;
2403 return true;
2406 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2407 VTDInvDesc *inv_desc)
2409 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2410 inv_desc->iec.index,
2411 inv_desc->iec.index_mask);
2413 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2414 inv_desc->iec.index,
2415 inv_desc->iec.index_mask);
2416 return true;
2419 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2420 VTDInvDesc *inv_desc)
2422 VTDAddressSpace *vtd_dev_as;
2423 IOMMUTLBEvent event;
2424 struct VTDBus *vtd_bus;
2425 hwaddr addr;
2426 uint64_t sz;
2427 uint16_t sid;
2428 uint8_t devfn;
2429 bool size;
2430 uint8_t bus_num;
2432 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2433 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2434 devfn = sid & 0xff;
2435 bus_num = sid >> 8;
2436 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2438 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2439 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2440 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2441 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2442 inv_desc->hi, inv_desc->lo);
2443 return false;
2446 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2447 if (!vtd_bus) {
2448 goto done;
2451 vtd_dev_as = vtd_bus->dev_as[devfn];
2452 if (!vtd_dev_as) {
2453 goto done;
2456 /* According to ATS spec table 2.4:
2457 * S = 0, bits 15:12 = xxxx range size: 4K
2458 * S = 1, bits 15:12 = xxx0 range size: 8K
2459 * S = 1, bits 15:12 = xx01 range size: 16K
2460 * S = 1, bits 15:12 = x011 range size: 32K
2461 * S = 1, bits 15:12 = 0111 range size: 64K
2462 * ...
2464 if (size) {
2465 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2466 addr &= ~(sz - 1);
2467 } else {
2468 sz = VTD_PAGE_SIZE;
2471 event.type = IOMMU_NOTIFIER_UNMAP;
2472 event.entry.target_as = &vtd_dev_as->as;
2473 event.entry.addr_mask = sz - 1;
2474 event.entry.iova = addr;
2475 event.entry.perm = IOMMU_NONE;
2476 event.entry.translated_addr = 0;
2477 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2479 done:
2480 return true;
2483 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2485 VTDInvDesc inv_desc;
2486 uint8_t desc_type;
2488 trace_vtd_inv_qi_head(s->iq_head);
2489 if (!vtd_get_inv_desc(s, &inv_desc)) {
2490 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2491 return false;
2494 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2495 /* FIXME: should update at first or at last? */
2496 s->iq_last_desc_type = desc_type;
2498 switch (desc_type) {
2499 case VTD_INV_DESC_CC:
2500 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2501 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2502 return false;
2504 break;
2506 case VTD_INV_DESC_IOTLB:
2507 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2508 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2509 return false;
2511 break;
2514 * TODO: the entity of below two cases will be implemented in future series.
2515 * To make guest (which integrates scalable mode support patch set in
2516 * iommu driver) work, just return true is enough so far.
2518 case VTD_INV_DESC_PC:
2519 break;
2521 case VTD_INV_DESC_PIOTLB:
2522 break;
2524 case VTD_INV_DESC_WAIT:
2525 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2526 if (!vtd_process_wait_desc(s, &inv_desc)) {
2527 return false;
2529 break;
2531 case VTD_INV_DESC_IEC:
2532 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2533 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2534 return false;
2536 break;
2538 case VTD_INV_DESC_DEVICE:
2539 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2540 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2541 return false;
2543 break;
2545 default:
2546 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2547 " (unknown type)", __func__, inv_desc.hi,
2548 inv_desc.lo);
2549 return false;
2551 s->iq_head++;
2552 if (s->iq_head == s->iq_size) {
2553 s->iq_head = 0;
2555 return true;
2558 /* Try to fetch and process more Invalidation Descriptors */
2559 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2561 int qi_shift;
2563 /* Refer to 10.4.23 of VT-d spec 3.0 */
2564 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2566 trace_vtd_inv_qi_fetch();
2568 if (s->iq_tail >= s->iq_size) {
2569 /* Detects an invalid Tail pointer */
2570 error_report_once("%s: detected invalid QI tail "
2571 "(tail=0x%x, size=0x%x)",
2572 __func__, s->iq_tail, s->iq_size);
2573 vtd_handle_inv_queue_error(s);
2574 return;
2576 while (s->iq_head != s->iq_tail) {
2577 if (!vtd_process_inv_desc(s)) {
2578 /* Invalidation Queue Errors */
2579 vtd_handle_inv_queue_error(s);
2580 break;
2582 /* Must update the IQH_REG in time */
2583 vtd_set_quad_raw(s, DMAR_IQH_REG,
2584 (((uint64_t)(s->iq_head)) << qi_shift) &
2585 VTD_IQH_QH_MASK);
2589 /* Handle write to Invalidation Queue Tail Register */
2590 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2592 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2594 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2595 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2596 __func__, val);
2597 return;
2599 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2600 trace_vtd_inv_qi_tail(s->iq_tail);
2602 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2603 /* Process Invalidation Queue here */
2604 vtd_fetch_inv_desc(s);
2608 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2610 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2611 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2612 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2614 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2615 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2616 trace_vtd_fsts_clear_ip();
2618 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2619 * Descriptors if there are any when Queued Invalidation is enabled?
2623 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2625 uint32_t fectl_reg;
2626 /* FIXME: when software clears the IM field, check the IP field. But do we
2627 * need to compare the old value and the new value to conclude that
2628 * software clears the IM field? Or just check if the IM field is zero?
2630 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2632 trace_vtd_reg_write_fectl(fectl_reg);
2634 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2635 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2636 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2640 static void vtd_handle_ics_write(IntelIOMMUState *s)
2642 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2643 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2645 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2646 trace_vtd_reg_ics_clear_ip();
2647 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2651 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2653 uint32_t iectl_reg;
2654 /* FIXME: when software clears the IM field, check the IP field. But do we
2655 * need to compare the old value and the new value to conclude that
2656 * software clears the IM field? Or just check if the IM field is zero?
2658 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2660 trace_vtd_reg_write_iectl(iectl_reg);
2662 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2663 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2664 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2668 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2670 IntelIOMMUState *s = opaque;
2671 uint64_t val;
2673 trace_vtd_reg_read(addr, size);
2675 if (addr + size > DMAR_REG_SIZE) {
2676 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2677 " size=0x%x", __func__, addr, size);
2678 return (uint64_t)-1;
2681 switch (addr) {
2682 /* Root Table Address Register, 64-bit */
2683 case DMAR_RTADDR_REG:
2684 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2685 if (size == 4) {
2686 val = val & ((1ULL << 32) - 1);
2688 break;
2690 case DMAR_RTADDR_REG_HI:
2691 assert(size == 4);
2692 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2693 break;
2695 /* Invalidation Queue Address Register, 64-bit */
2696 case DMAR_IQA_REG:
2697 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2698 if (size == 4) {
2699 val = val & ((1ULL << 32) - 1);
2701 break;
2703 case DMAR_IQA_REG_HI:
2704 assert(size == 4);
2705 val = s->iq >> 32;
2706 break;
2708 default:
2709 if (size == 4) {
2710 val = vtd_get_long(s, addr);
2711 } else {
2712 val = vtd_get_quad(s, addr);
2716 return val;
2719 static void vtd_mem_write(void *opaque, hwaddr addr,
2720 uint64_t val, unsigned size)
2722 IntelIOMMUState *s = opaque;
2724 trace_vtd_reg_write(addr, size, val);
2726 if (addr + size > DMAR_REG_SIZE) {
2727 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2728 " size=0x%x", __func__, addr, size);
2729 return;
2732 switch (addr) {
2733 /* Global Command Register, 32-bit */
2734 case DMAR_GCMD_REG:
2735 vtd_set_long(s, addr, val);
2736 vtd_handle_gcmd_write(s);
2737 break;
2739 /* Context Command Register, 64-bit */
2740 case DMAR_CCMD_REG:
2741 if (size == 4) {
2742 vtd_set_long(s, addr, val);
2743 } else {
2744 vtd_set_quad(s, addr, val);
2745 vtd_handle_ccmd_write(s);
2747 break;
2749 case DMAR_CCMD_REG_HI:
2750 assert(size == 4);
2751 vtd_set_long(s, addr, val);
2752 vtd_handle_ccmd_write(s);
2753 break;
2755 /* IOTLB Invalidation Register, 64-bit */
2756 case DMAR_IOTLB_REG:
2757 if (size == 4) {
2758 vtd_set_long(s, addr, val);
2759 } else {
2760 vtd_set_quad(s, addr, val);
2761 vtd_handle_iotlb_write(s);
2763 break;
2765 case DMAR_IOTLB_REG_HI:
2766 assert(size == 4);
2767 vtd_set_long(s, addr, val);
2768 vtd_handle_iotlb_write(s);
2769 break;
2771 /* Invalidate Address Register, 64-bit */
2772 case DMAR_IVA_REG:
2773 if (size == 4) {
2774 vtd_set_long(s, addr, val);
2775 } else {
2776 vtd_set_quad(s, addr, val);
2778 break;
2780 case DMAR_IVA_REG_HI:
2781 assert(size == 4);
2782 vtd_set_long(s, addr, val);
2783 break;
2785 /* Fault Status Register, 32-bit */
2786 case DMAR_FSTS_REG:
2787 assert(size == 4);
2788 vtd_set_long(s, addr, val);
2789 vtd_handle_fsts_write(s);
2790 break;
2792 /* Fault Event Control Register, 32-bit */
2793 case DMAR_FECTL_REG:
2794 assert(size == 4);
2795 vtd_set_long(s, addr, val);
2796 vtd_handle_fectl_write(s);
2797 break;
2799 /* Fault Event Data Register, 32-bit */
2800 case DMAR_FEDATA_REG:
2801 assert(size == 4);
2802 vtd_set_long(s, addr, val);
2803 break;
2805 /* Fault Event Address Register, 32-bit */
2806 case DMAR_FEADDR_REG:
2807 if (size == 4) {
2808 vtd_set_long(s, addr, val);
2809 } else {
2811 * While the register is 32-bit only, some guests (Xen...) write to
2812 * it with 64-bit.
2814 vtd_set_quad(s, addr, val);
2816 break;
2818 /* Fault Event Upper Address Register, 32-bit */
2819 case DMAR_FEUADDR_REG:
2820 assert(size == 4);
2821 vtd_set_long(s, addr, val);
2822 break;
2824 /* Protected Memory Enable Register, 32-bit */
2825 case DMAR_PMEN_REG:
2826 assert(size == 4);
2827 vtd_set_long(s, addr, val);
2828 break;
2830 /* Root Table Address Register, 64-bit */
2831 case DMAR_RTADDR_REG:
2832 if (size == 4) {
2833 vtd_set_long(s, addr, val);
2834 } else {
2835 vtd_set_quad(s, addr, val);
2837 break;
2839 case DMAR_RTADDR_REG_HI:
2840 assert(size == 4);
2841 vtd_set_long(s, addr, val);
2842 break;
2844 /* Invalidation Queue Tail Register, 64-bit */
2845 case DMAR_IQT_REG:
2846 if (size == 4) {
2847 vtd_set_long(s, addr, val);
2848 } else {
2849 vtd_set_quad(s, addr, val);
2851 vtd_handle_iqt_write(s);
2852 break;
2854 case DMAR_IQT_REG_HI:
2855 assert(size == 4);
2856 vtd_set_long(s, addr, val);
2857 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2858 break;
2860 /* Invalidation Queue Address Register, 64-bit */
2861 case DMAR_IQA_REG:
2862 if (size == 4) {
2863 vtd_set_long(s, addr, val);
2864 } else {
2865 vtd_set_quad(s, addr, val);
2867 if (s->ecap & VTD_ECAP_SMTS &&
2868 val & VTD_IQA_DW_MASK) {
2869 s->iq_dw = true;
2870 } else {
2871 s->iq_dw = false;
2873 break;
2875 case DMAR_IQA_REG_HI:
2876 assert(size == 4);
2877 vtd_set_long(s, addr, val);
2878 break;
2880 /* Invalidation Completion Status Register, 32-bit */
2881 case DMAR_ICS_REG:
2882 assert(size == 4);
2883 vtd_set_long(s, addr, val);
2884 vtd_handle_ics_write(s);
2885 break;
2887 /* Invalidation Event Control Register, 32-bit */
2888 case DMAR_IECTL_REG:
2889 assert(size == 4);
2890 vtd_set_long(s, addr, val);
2891 vtd_handle_iectl_write(s);
2892 break;
2894 /* Invalidation Event Data Register, 32-bit */
2895 case DMAR_IEDATA_REG:
2896 assert(size == 4);
2897 vtd_set_long(s, addr, val);
2898 break;
2900 /* Invalidation Event Address Register, 32-bit */
2901 case DMAR_IEADDR_REG:
2902 assert(size == 4);
2903 vtd_set_long(s, addr, val);
2904 break;
2906 /* Invalidation Event Upper Address Register, 32-bit */
2907 case DMAR_IEUADDR_REG:
2908 assert(size == 4);
2909 vtd_set_long(s, addr, val);
2910 break;
2912 /* Fault Recording Registers, 128-bit */
2913 case DMAR_FRCD_REG_0_0:
2914 if (size == 4) {
2915 vtd_set_long(s, addr, val);
2916 } else {
2917 vtd_set_quad(s, addr, val);
2919 break;
2921 case DMAR_FRCD_REG_0_1:
2922 assert(size == 4);
2923 vtd_set_long(s, addr, val);
2924 break;
2926 case DMAR_FRCD_REG_0_2:
2927 if (size == 4) {
2928 vtd_set_long(s, addr, val);
2929 } else {
2930 vtd_set_quad(s, addr, val);
2931 /* May clear bit 127 (Fault), update PPF */
2932 vtd_update_fsts_ppf(s);
2934 break;
2936 case DMAR_FRCD_REG_0_3:
2937 assert(size == 4);
2938 vtd_set_long(s, addr, val);
2939 /* May clear bit 127 (Fault), update PPF */
2940 vtd_update_fsts_ppf(s);
2941 break;
2943 case DMAR_IRTA_REG:
2944 if (size == 4) {
2945 vtd_set_long(s, addr, val);
2946 } else {
2947 vtd_set_quad(s, addr, val);
2949 break;
2951 case DMAR_IRTA_REG_HI:
2952 assert(size == 4);
2953 vtd_set_long(s, addr, val);
2954 break;
2956 default:
2957 if (size == 4) {
2958 vtd_set_long(s, addr, val);
2959 } else {
2960 vtd_set_quad(s, addr, val);
2965 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2966 IOMMUAccessFlags flag, int iommu_idx)
2968 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2969 IntelIOMMUState *s = vtd_as->iommu_state;
2970 IOMMUTLBEntry iotlb = {
2971 /* We'll fill in the rest later. */
2972 .target_as = &address_space_memory,
2974 bool success;
2976 if (likely(s->dmar_enabled)) {
2977 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2978 addr, flag & IOMMU_WO, &iotlb);
2979 } else {
2980 /* DMAR disabled, passthrough, use 4k-page*/
2981 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2982 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2983 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2984 iotlb.perm = IOMMU_RW;
2985 success = true;
2988 if (likely(success)) {
2989 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2990 VTD_PCI_SLOT(vtd_as->devfn),
2991 VTD_PCI_FUNC(vtd_as->devfn),
2992 iotlb.iova, iotlb.translated_addr,
2993 iotlb.addr_mask);
2994 } else {
2995 error_report_once("%s: detected translation failure "
2996 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2997 __func__, pci_bus_num(vtd_as->bus),
2998 VTD_PCI_SLOT(vtd_as->devfn),
2999 VTD_PCI_FUNC(vtd_as->devfn),
3000 addr);
3003 return iotlb;
3006 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3007 IOMMUNotifierFlag old,
3008 IOMMUNotifierFlag new,
3009 Error **errp)
3011 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3012 IntelIOMMUState *s = vtd_as->iommu_state;
3014 /* Update per-address-space notifier flags */
3015 vtd_as->notifier_flags = new;
3017 if (old == IOMMU_NOTIFIER_NONE) {
3018 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3019 } else if (new == IOMMU_NOTIFIER_NONE) {
3020 QLIST_REMOVE(vtd_as, next);
3022 return 0;
3025 static int vtd_post_load(void *opaque, int version_id)
3027 IntelIOMMUState *iommu = opaque;
3030 * Memory regions are dynamically turned on/off depending on
3031 * context entry configurations from the guest. After migration,
3032 * we need to make sure the memory regions are still correct.
3034 vtd_switch_address_space_all(iommu);
3037 * We don't need to migrate the root_scalable because we can
3038 * simply do the calculation after the loading is complete. We
3039 * can actually do similar things with root, dmar_enabled, etc.
3040 * however since we've had them already so we'd better keep them
3041 * for compatibility of migration.
3043 vtd_update_scalable_state(iommu);
3045 return 0;
3048 static const VMStateDescription vtd_vmstate = {
3049 .name = "iommu-intel",
3050 .version_id = 1,
3051 .minimum_version_id = 1,
3052 .priority = MIG_PRI_IOMMU,
3053 .post_load = vtd_post_load,
3054 .fields = (VMStateField[]) {
3055 VMSTATE_UINT64(root, IntelIOMMUState),
3056 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3057 VMSTATE_UINT64(iq, IntelIOMMUState),
3058 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3059 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3060 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3061 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3062 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3063 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3064 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3065 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3066 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3067 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3068 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3069 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3070 VMSTATE_END_OF_LIST()
3074 static const MemoryRegionOps vtd_mem_ops = {
3075 .read = vtd_mem_read,
3076 .write = vtd_mem_write,
3077 .endianness = DEVICE_LITTLE_ENDIAN,
3078 .impl = {
3079 .min_access_size = 4,
3080 .max_access_size = 8,
3082 .valid = {
3083 .min_access_size = 4,
3084 .max_access_size = 8,
3088 static Property vtd_properties[] = {
3089 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3090 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3091 ON_OFF_AUTO_AUTO),
3092 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3093 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3094 VTD_HOST_ADDRESS_WIDTH),
3095 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3096 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3097 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3098 DEFINE_PROP_END_OF_LIST(),
3101 /* Read IRTE entry with specific index */
3102 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3103 VTD_IR_TableEntry *entry, uint16_t sid)
3105 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3106 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3107 dma_addr_t addr = 0x00;
3108 uint16_t mask, source_id;
3109 uint8_t bus, bus_max, bus_min;
3111 if (index >= iommu->intr_size) {
3112 error_report_once("%s: index too large: ind=0x%x",
3113 __func__, index);
3114 return -VTD_FR_IR_INDEX_OVER;
3117 addr = iommu->intr_root + index * sizeof(*entry);
3118 if (dma_memory_read(&address_space_memory, addr, entry,
3119 sizeof(*entry))) {
3120 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3121 __func__, index, addr);
3122 return -VTD_FR_IR_ROOT_INVAL;
3125 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3126 le64_to_cpu(entry->data[0]));
3128 if (!entry->irte.present) {
3129 error_report_once("%s: detected non-present IRTE "
3130 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3131 __func__, index, le64_to_cpu(entry->data[1]),
3132 le64_to_cpu(entry->data[0]));
3133 return -VTD_FR_IR_ENTRY_P;
3136 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3137 entry->irte.__reserved_2) {
3138 error_report_once("%s: detected non-zero reserved IRTE "
3139 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3140 __func__, index, le64_to_cpu(entry->data[1]),
3141 le64_to_cpu(entry->data[0]));
3142 return -VTD_FR_IR_IRTE_RSVD;
3145 if (sid != X86_IOMMU_SID_INVALID) {
3146 /* Validate IRTE SID */
3147 source_id = le32_to_cpu(entry->irte.source_id);
3148 switch (entry->irte.sid_vtype) {
3149 case VTD_SVT_NONE:
3150 break;
3152 case VTD_SVT_ALL:
3153 mask = vtd_svt_mask[entry->irte.sid_q];
3154 if ((source_id & mask) != (sid & mask)) {
3155 error_report_once("%s: invalid IRTE SID "
3156 "(index=%u, sid=%u, source_id=%u)",
3157 __func__, index, sid, source_id);
3158 return -VTD_FR_IR_SID_ERR;
3160 break;
3162 case VTD_SVT_BUS:
3163 bus_max = source_id >> 8;
3164 bus_min = source_id & 0xff;
3165 bus = sid >> 8;
3166 if (bus > bus_max || bus < bus_min) {
3167 error_report_once("%s: invalid SVT_BUS "
3168 "(index=%u, bus=%u, min=%u, max=%u)",
3169 __func__, index, bus, bus_min, bus_max);
3170 return -VTD_FR_IR_SID_ERR;
3172 break;
3174 default:
3175 error_report_once("%s: detected invalid IRTE SVT "
3176 "(index=%u, type=%d)", __func__,
3177 index, entry->irte.sid_vtype);
3178 /* Take this as verification failure. */
3179 return -VTD_FR_IR_SID_ERR;
3183 return 0;
3186 /* Fetch IRQ information of specific IR index */
3187 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3188 X86IOMMUIrq *irq, uint16_t sid)
3190 VTD_IR_TableEntry irte = {};
3191 int ret = 0;
3193 ret = vtd_irte_get(iommu, index, &irte, sid);
3194 if (ret) {
3195 return ret;
3198 irq->trigger_mode = irte.irte.trigger_mode;
3199 irq->vector = irte.irte.vector;
3200 irq->delivery_mode = irte.irte.delivery_mode;
3201 irq->dest = le32_to_cpu(irte.irte.dest_id);
3202 if (!iommu->intr_eime) {
3203 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3204 #define VTD_IR_APIC_DEST_SHIFT (8)
3205 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3206 VTD_IR_APIC_DEST_SHIFT;
3208 irq->dest_mode = irte.irte.dest_mode;
3209 irq->redir_hint = irte.irte.redir_hint;
3211 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3212 irq->delivery_mode, irq->dest, irq->dest_mode);
3214 return 0;
3217 /* Interrupt remapping for MSI/MSI-X entry */
3218 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3219 MSIMessage *origin,
3220 MSIMessage *translated,
3221 uint16_t sid)
3223 int ret = 0;
3224 VTD_IR_MSIAddress addr;
3225 uint16_t index;
3226 X86IOMMUIrq irq = {};
3228 assert(origin && translated);
3230 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3232 if (!iommu || !iommu->intr_enabled) {
3233 memcpy(translated, origin, sizeof(*origin));
3234 goto out;
3237 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3238 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3239 "address=0x%" PRIx64, __func__, origin->address);
3240 return -VTD_FR_IR_REQ_RSVD;
3243 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3244 if (addr.addr.__head != 0xfee) {
3245 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3246 __func__, addr.data);
3247 return -VTD_FR_IR_REQ_RSVD;
3250 /* This is compatible mode. */
3251 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3252 memcpy(translated, origin, sizeof(*origin));
3253 goto out;
3256 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3258 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3259 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3261 if (addr.addr.sub_valid) {
3262 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3263 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3266 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3267 if (ret) {
3268 return ret;
3271 if (addr.addr.sub_valid) {
3272 trace_vtd_ir_remap_type("MSI");
3273 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3274 error_report_once("%s: invalid IR MSI "
3275 "(sid=%u, address=0x%" PRIx64
3276 ", data=0x%" PRIx32 ")",
3277 __func__, sid, origin->address, origin->data);
3278 return -VTD_FR_IR_REQ_RSVD;
3280 } else {
3281 uint8_t vector = origin->data & 0xff;
3282 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3284 trace_vtd_ir_remap_type("IOAPIC");
3285 /* IOAPIC entry vector should be aligned with IRTE vector
3286 * (see vt-d spec 5.1.5.1). */
3287 if (vector != irq.vector) {
3288 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3291 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3292 * (see vt-d spec 5.1.5.1). */
3293 if (trigger_mode != irq.trigger_mode) {
3294 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3295 irq.trigger_mode);
3300 * We'd better keep the last two bits, assuming that guest OS
3301 * might modify it. Keep it does not hurt after all.
3303 irq.msi_addr_last_bits = addr.addr.__not_care;
3305 /* Translate X86IOMMUIrq to MSI message */
3306 x86_iommu_irq_to_msi_message(&irq, translated);
3308 out:
3309 trace_vtd_ir_remap_msi(origin->address, origin->data,
3310 translated->address, translated->data);
3311 return 0;
3314 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3315 MSIMessage *dst, uint16_t sid)
3317 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3318 src, dst, sid);
3321 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3322 uint64_t *data, unsigned size,
3323 MemTxAttrs attrs)
3325 return MEMTX_OK;
3328 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3329 uint64_t value, unsigned size,
3330 MemTxAttrs attrs)
3332 int ret = 0;
3333 MSIMessage from = {}, to = {};
3334 uint16_t sid = X86_IOMMU_SID_INVALID;
3336 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3337 from.data = (uint32_t) value;
3339 if (!attrs.unspecified) {
3340 /* We have explicit Source ID */
3341 sid = attrs.requester_id;
3344 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3345 if (ret) {
3346 /* TODO: report error */
3347 /* Drop this interrupt */
3348 return MEMTX_ERROR;
3351 apic_get_class()->send_msi(&to);
3353 return MEMTX_OK;
3356 static const MemoryRegionOps vtd_mem_ir_ops = {
3357 .read_with_attrs = vtd_mem_ir_read,
3358 .write_with_attrs = vtd_mem_ir_write,
3359 .endianness = DEVICE_LITTLE_ENDIAN,
3360 .impl = {
3361 .min_access_size = 4,
3362 .max_access_size = 4,
3364 .valid = {
3365 .min_access_size = 4,
3366 .max_access_size = 4,
3370 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3372 uintptr_t key = (uintptr_t)bus;
3373 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3374 VTDAddressSpace *vtd_dev_as;
3375 char name[128];
3377 if (!vtd_bus) {
3378 uintptr_t *new_key = g_malloc(sizeof(*new_key));
3379 *new_key = (uintptr_t)bus;
3380 /* No corresponding free() */
3381 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3382 PCI_DEVFN_MAX);
3383 vtd_bus->bus = bus;
3384 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3387 vtd_dev_as = vtd_bus->dev_as[devfn];
3389 if (!vtd_dev_as) {
3390 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3391 PCI_FUNC(devfn));
3392 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3394 vtd_dev_as->bus = bus;
3395 vtd_dev_as->devfn = (uint8_t)devfn;
3396 vtd_dev_as->iommu_state = s;
3397 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3398 vtd_dev_as->iova_tree = iova_tree_new();
3400 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3401 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3404 * Build the DMAR-disabled container with aliases to the
3405 * shared MRs. Note that aliasing to a shared memory region
3406 * could help the memory API to detect same FlatViews so we
3407 * can have devices to share the same FlatView when DMAR is
3408 * disabled (either by not providing "intel_iommu=on" or with
3409 * "iommu=pt"). It will greatly reduce the total number of
3410 * FlatViews of the system hence VM runs faster.
3412 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3413 "vtd-nodmar", &s->mr_nodmar, 0,
3414 memory_region_size(&s->mr_nodmar));
3417 * Build the per-device DMAR-enabled container.
3419 * TODO: currently we have per-device IOMMU memory region only
3420 * because we have per-device IOMMU notifiers for devices. If
3421 * one day we can abstract the IOMMU notifiers out of the
3422 * memory regions then we can also share the same memory
3423 * region here just like what we've done above with the nodmar
3424 * region.
3426 strcat(name, "-dmar");
3427 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3428 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3429 name, UINT64_MAX);
3430 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3431 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3432 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3433 VTD_INTERRUPT_ADDR_FIRST,
3434 &vtd_dev_as->iommu_ir, 1);
3437 * Hook both the containers under the root container, we
3438 * switch between DMAR & noDMAR by enable/disable
3439 * corresponding sub-containers
3441 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3442 MEMORY_REGION(&vtd_dev_as->iommu),
3444 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3445 &vtd_dev_as->nodmar, 0);
3447 vtd_switch_address_space(vtd_dev_as);
3449 return vtd_dev_as;
3452 static uint64_t get_naturally_aligned_size(uint64_t start,
3453 uint64_t size, int gaw)
3455 uint64_t max_mask = 1ULL << gaw;
3456 uint64_t alignment = start ? start & -start : max_mask;
3458 alignment = MIN(alignment, max_mask);
3459 size = MIN(size, max_mask);
3461 if (alignment <= size) {
3462 /* Increase the alignment of start */
3463 return alignment;
3464 } else {
3465 /* Find the largest page mask from size */
3466 return 1ULL << (63 - clz64(size));
3470 /* Unmap the whole range in the notifier's scope. */
3471 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3473 hwaddr size, remain;
3474 hwaddr start = n->start;
3475 hwaddr end = n->end;
3476 IntelIOMMUState *s = as->iommu_state;
3477 DMAMap map;
3480 * Note: all the codes in this function has a assumption that IOVA
3481 * bits are no more than VTD_MGAW bits (which is restricted by
3482 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3485 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3487 * Don't need to unmap regions that is bigger than the whole
3488 * VT-d supported address space size
3490 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3493 assert(start <= end);
3494 size = remain = end - start + 1;
3496 while (remain >= VTD_PAGE_SIZE) {
3497 IOMMUTLBEvent event;
3498 uint64_t mask = get_naturally_aligned_size(start, remain, s->aw_bits);
3500 assert(mask);
3502 event.type = IOMMU_NOTIFIER_UNMAP;
3503 event.entry.iova = start;
3504 event.entry.addr_mask = mask - 1;
3505 event.entry.target_as = &address_space_memory;
3506 event.entry.perm = IOMMU_NONE;
3507 /* This field is meaningless for unmap */
3508 event.entry.translated_addr = 0;
3510 memory_region_notify_iommu_one(n, &event);
3512 start += mask;
3513 remain -= mask;
3516 assert(!remain);
3518 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3519 VTD_PCI_SLOT(as->devfn),
3520 VTD_PCI_FUNC(as->devfn),
3521 n->start, size);
3523 map.iova = n->start;
3524 map.size = size;
3525 iova_tree_remove(as->iova_tree, &map);
3528 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3530 VTDAddressSpace *vtd_as;
3531 IOMMUNotifier *n;
3533 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3534 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3535 vtd_address_space_unmap(vtd_as, n);
3540 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3542 vtd_address_space_unmap_all(s);
3543 vtd_switch_address_space_all(s);
3546 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3548 memory_region_notify_iommu_one(private, event);
3549 return 0;
3552 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3554 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3555 IntelIOMMUState *s = vtd_as->iommu_state;
3556 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3557 VTDContextEntry ce;
3560 * The replay can be triggered by either a invalidation or a newly
3561 * created entry. No matter what, we release existing mappings
3562 * (it means flushing caches for UNMAP-only registers).
3564 vtd_address_space_unmap(vtd_as, n);
3566 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3567 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3568 "legacy mode",
3569 bus_n, PCI_SLOT(vtd_as->devfn),
3570 PCI_FUNC(vtd_as->devfn),
3571 vtd_get_domain_id(s, &ce),
3572 ce.hi, ce.lo);
3573 if (vtd_as_has_map_notifier(vtd_as)) {
3574 /* This is required only for MAP typed notifiers */
3575 vtd_page_walk_info info = {
3576 .hook_fn = vtd_replay_hook,
3577 .private = (void *)n,
3578 .notify_unmap = false,
3579 .aw = s->aw_bits,
3580 .as = vtd_as,
3581 .domain_id = vtd_get_domain_id(s, &ce),
3584 vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3586 } else {
3587 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3588 PCI_FUNC(vtd_as->devfn));
3591 return;
3594 /* Do the initialization. It will also be called when reset, so pay
3595 * attention when adding new initialization stuff.
3597 static void vtd_init(IntelIOMMUState *s)
3599 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3601 memset(s->csr, 0, DMAR_REG_SIZE);
3602 memset(s->wmask, 0, DMAR_REG_SIZE);
3603 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3604 memset(s->womask, 0, DMAR_REG_SIZE);
3606 s->root = 0;
3607 s->root_scalable = false;
3608 s->dmar_enabled = false;
3609 s->intr_enabled = false;
3610 s->iq_head = 0;
3611 s->iq_tail = 0;
3612 s->iq = 0;
3613 s->iq_size = 0;
3614 s->qi_enabled = false;
3615 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3616 s->iq_dw = false;
3617 s->next_frcd_reg = 0;
3618 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3619 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3620 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3621 if (s->dma_drain) {
3622 s->cap |= VTD_CAP_DRAIN;
3624 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3625 s->cap |= VTD_CAP_SAGAW_48bit;
3627 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3630 * Rsvd field masks for spte
3632 vtd_spte_rsvd[0] = ~0ULL;
3633 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3634 x86_iommu->dt_supported);
3635 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3636 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3637 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3639 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3640 x86_iommu->dt_supported);
3641 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3642 x86_iommu->dt_supported);
3644 if (x86_iommu_ir_supported(x86_iommu)) {
3645 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3646 if (s->intr_eim == ON_OFF_AUTO_ON) {
3647 s->ecap |= VTD_ECAP_EIM;
3649 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3652 if (x86_iommu->dt_supported) {
3653 s->ecap |= VTD_ECAP_DT;
3656 if (x86_iommu->pt_supported) {
3657 s->ecap |= VTD_ECAP_PT;
3660 if (s->caching_mode) {
3661 s->cap |= VTD_CAP_CM;
3664 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3665 if (s->scalable_mode) {
3666 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3669 vtd_reset_caches(s);
3671 /* Define registers with default values and bit semantics */
3672 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3673 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3674 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3675 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3676 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3677 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3678 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3679 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3680 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3682 /* Advanced Fault Logging not supported */
3683 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3684 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3685 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3686 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3688 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3689 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3691 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3693 /* Treated as RO for implementations that PLMR and PHMR fields reported
3694 * as Clear in the CAP_REG.
3695 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3697 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3699 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3700 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3701 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3702 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3703 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3704 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3705 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3706 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3707 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3709 /* IOTLB registers */
3710 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3711 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3712 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3714 /* Fault Recording Registers, 128-bit */
3715 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3716 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3719 * Interrupt remapping registers.
3721 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3724 /* Should not reset address_spaces when reset because devices will still use
3725 * the address space they got at first (won't ask the bus again).
3727 static void vtd_reset(DeviceState *dev)
3729 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3731 vtd_init(s);
3732 vtd_address_space_refresh_all(s);
3735 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3737 IntelIOMMUState *s = opaque;
3738 VTDAddressSpace *vtd_as;
3740 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3742 vtd_as = vtd_find_add_as(s, bus, devfn);
3743 return &vtd_as->as;
3746 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3748 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3750 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3751 error_setg(errp, "eim=on cannot be selected without intremap=on");
3752 return false;
3755 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3756 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3757 && x86_iommu_ir_supported(x86_iommu) ?
3758 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3760 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3761 if (!kvm_irqchip_in_kernel()) {
3762 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3763 return false;
3765 if (!kvm_enable_x2apic()) {
3766 error_setg(errp, "eim=on requires support on the KVM side"
3767 "(X2APIC_API, first shipped in v4.7)");
3768 return false;
3772 /* Currently only address widths supported are 39 and 48 bits */
3773 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3774 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3775 error_setg(errp, "Supported values for aw-bits are: %d, %d",
3776 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3777 return false;
3780 if (s->scalable_mode && !s->dma_drain) {
3781 error_setg(errp, "Need to set dma_drain for scalable mode");
3782 return false;
3785 return true;
3788 static int vtd_machine_done_notify_one(Object *child, void *unused)
3790 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3793 * We hard-coded here because vfio-pci is the only special case
3794 * here. Let's be more elegant in the future when we can, but so
3795 * far there seems to be no better way.
3797 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3798 vtd_panic_require_caching_mode();
3801 return 0;
3804 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3806 object_child_foreach_recursive(object_get_root(),
3807 vtd_machine_done_notify_one, NULL);
3810 static Notifier vtd_machine_done_notify = {
3811 .notify = vtd_machine_done_hook,
3814 static void vtd_realize(DeviceState *dev, Error **errp)
3816 MachineState *ms = MACHINE(qdev_get_machine());
3817 PCMachineState *pcms = PC_MACHINE(ms);
3818 X86MachineState *x86ms = X86_MACHINE(ms);
3819 PCIBus *bus = pcms->bus;
3820 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3821 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3823 x86_iommu->type = TYPE_INTEL;
3825 if (!vtd_decide_config(s, errp)) {
3826 return;
3829 QLIST_INIT(&s->vtd_as_with_notifiers);
3830 qemu_mutex_init(&s->iommu_lock);
3831 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3832 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3833 "intel_iommu", DMAR_REG_SIZE);
3835 /* Create the shared memory regions by all devices */
3836 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3837 UINT64_MAX);
3838 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3839 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3840 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3841 "vtd-sys-alias", get_system_memory(), 0,
3842 memory_region_size(get_system_memory()));
3843 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3844 &s->mr_sys_alias, 0);
3845 memory_region_add_subregion_overlap(&s->mr_nodmar,
3846 VTD_INTERRUPT_ADDR_FIRST,
3847 &s->mr_ir, 1);
3849 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3850 /* No corresponding destroy */
3851 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3852 g_free, g_free);
3853 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3854 g_free, g_free);
3855 vtd_init(s);
3856 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3857 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3858 /* Pseudo address space under root PCI bus. */
3859 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3860 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
3863 static void vtd_class_init(ObjectClass *klass, void *data)
3865 DeviceClass *dc = DEVICE_CLASS(klass);
3866 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
3868 dc->reset = vtd_reset;
3869 dc->vmsd = &vtd_vmstate;
3870 device_class_set_props(dc, vtd_properties);
3871 dc->hotpluggable = false;
3872 x86_class->realize = vtd_realize;
3873 x86_class->int_remap = vtd_int_remap;
3874 /* Supported by the pc-q35-* machine types */
3875 dc->user_creatable = true;
3876 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3877 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3880 static const TypeInfo vtd_info = {
3881 .name = TYPE_INTEL_IOMMU_DEVICE,
3882 .parent = TYPE_X86_IOMMU_DEVICE,
3883 .instance_size = sizeof(IntelIOMMUState),
3884 .class_init = vtd_class_init,
3887 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3888 void *data)
3890 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3892 imrc->translate = vtd_iommu_translate;
3893 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3894 imrc->replay = vtd_iommu_replay;
3897 static const TypeInfo vtd_iommu_memory_region_info = {
3898 .parent = TYPE_IOMMU_MEMORY_REGION,
3899 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3900 .class_init = vtd_iommu_memory_region_class_init,
3903 static void vtd_register_types(void)
3905 type_register_static(&vtd_info);
3906 type_register_static(&vtd_iommu_memory_region_info);
3909 type_init(vtd_register_types)