target-i386: Reorganize TSC rate setting code
[qemu/kevin.git] / docs / qapi-code-gen.txt
blob128f074a2de49e7cf200a2ff85487d20822ded05
1 = How to use the QAPI code generator =
3 Copyright IBM Corp. 2011
4 Copyright (C) 2012-2015 Red Hat, Inc.
6 This work is licensed under the terms of the GNU GPL, version 2 or
7 later. See the COPYING file in the top-level directory.
9 == Introduction ==
11 QAPI is a native C API within QEMU which provides management-level
12 functionality to internal and external users. For external
13 users/processes, this interface is made available by a JSON-based wire
14 format for the QEMU Monitor Protocol (QMP) for controlling qemu, as
15 well as the QEMU Guest Agent (QGA) for communicating with the guest.
16 The remainder of this document uses "Client JSON Protocol" when
17 referring to the wire contents of a QMP or QGA connection.
19 To map Client JSON Protocol interfaces to the native C QAPI
20 implementations, a JSON-based schema is used to define types and
21 function signatures, and a set of scripts is used to generate types,
22 signatures, and marshaling/dispatch code. This document will describe
23 how the schemas, scripts, and resulting code are used.
26 == QMP/Guest agent schema ==
28 A QAPI schema file is designed to be loosely based on JSON
29 (http://www.ietf.org/rfc/rfc7159.txt) with changes for quoting style
30 and the use of comments; a QAPI schema file is then parsed by a python
31 code generation program.  A valid QAPI schema consists of a series of
32 top-level expressions, with no commas between them.  Where
33 dictionaries (JSON objects) are used, they are parsed as python
34 OrderedDicts so that ordering is preserved (for predictable layout of
35 generated C structs and parameter lists).  Ordering doesn't matter
36 between top-level expressions or the keys within an expression, but
37 does matter within dictionary values for 'data' and 'returns' members
38 of a single expression.  QAPI schema input is written using 'single
39 quotes' instead of JSON's "double quotes" (in contrast, Client JSON
40 Protocol uses no comments, and while input accepts 'single quotes' as
41 an extension, output is strict JSON using only "double quotes").  As
42 in JSON, trailing commas are not permitted in arrays or dictionaries.
43 Input must be ASCII (although QMP supports full Unicode strings, the
44 QAPI parser does not).  At present, there is no place where a QAPI
45 schema requires the use of JSON numbers or null.
47 Comments are allowed; anything between an unquoted # and the following
48 newline is ignored.  Although there is not yet a documentation
49 generator, a form of stylized comments has developed for consistently
50 documenting details about an expression and when it was added to the
51 schema.  The documentation is delimited between two lines of ##, then
52 the first line names the expression, an optional overview is provided,
53 then individual documentation about each member of 'data' is provided,
54 and finally, a 'Since: x.y.z' tag lists the release that introduced
55 the expression.  Optional fields are tagged with the phrase
56 '#optional', often with their default value; and extensions added
57 after the expression was first released are also given a '(since
58 x.y.z)' comment.  For example:
60     ##
61     # @BlockStats:
62     #
63     # Statistics of a virtual block device or a block backing device.
64     #
65     # @device: #optional If the stats are for a virtual block device, the name
66     #          corresponding to the virtual block device.
67     #
68     # @stats:  A @BlockDeviceStats for the device.
69     #
70     # @parent: #optional This describes the file block device if it has one.
71     #
72     # @backing: #optional This describes the backing block device if it has one.
73     #           (Since 2.0)
74     #
75     # Since: 0.14.0
76     ##
77     { 'struct': 'BlockStats',
78       'data': {'*device': 'str', 'stats': 'BlockDeviceStats',
79                '*parent': 'BlockStats',
80                '*backing': 'BlockStats'} }
82 The schema sets up a series of types, as well as commands and events
83 that will use those types.  Forward references are allowed: the parser
84 scans in two passes, where the first pass learns all type names, and
85 the second validates the schema and generates the code.  This allows
86 the definition of complex structs that can have mutually recursive
87 types, and allows for indefinite nesting of Client JSON Protocol that
88 satisfies the schema.  A type name should not be defined more than
89 once.  It is permissible for the schema to contain additional types
90 not used by any commands or events in the Client JSON Protocol, for
91 the side effect of generated C code used internally.
93 There are seven top-level expressions recognized by the parser:
94 'include', 'command', 'struct', 'enum', 'union', 'alternate', and
95 'event'.  There are several groups of types: simple types (a number of
96 built-in types, such as 'int' and 'str'; as well as enumerations),
97 complex types (structs and two flavors of unions), and alternate types
98 (a choice between other types).  The 'command' and 'event' expressions
99 can refer to existing types by name, or list an anonymous type as a
100 dictionary. Listing a type name inside an array refers to a
101 single-dimension array of that type; multi-dimension arrays are not
102 directly supported (although an array of a complex struct that
103 contains an array member is possible).
105 Types, commands, and events share a common namespace.  Therefore,
106 generally speaking, type definitions should always use CamelCase for
107 user-defined type names, while built-in types are lowercase. Type
108 definitions should not end in 'Kind', as this namespace is used for
109 creating implicit C enums for visiting union types, or in 'List', as
110 this namespace is used for creating array types.  Command names,
111 and field names within a type, should be all lower case with words
112 separated by a hyphen.  However, some existing older commands and
113 complex types use underscore; when extending such expressions,
114 consistency is preferred over blindly avoiding underscore.  Event
115 names should be ALL_CAPS with words separated by underscore.  Field
116 names cannot start with 'has-' or 'has_', as this is reserved for
117 tracking optional fields.
119 Any name (command, event, type, field, or enum value) beginning with
120 "x-" is marked experimental, and may be withdrawn or changed
121 incompatibly in a future release.  All names must begin with a letter,
122 and contain only ASCII letters, digits, dash, and underscore.  There
123 are two exceptions: enum values may start with a digit, and any
124 extensions added by downstream vendors should start with a prefix
125 matching "__RFQDN_" (for the reverse-fully-qualified-domain-name of
126 the vendor), even if the rest of the name uses dash (example:
127 __com.redhat_drive-mirror).  Names beginning with 'q_' are reserved
128 for the generator: QMP names that resemble C keywords or other
129 problematic strings will be munged in C to use this prefix.  For
130 example, a field named "default" in qapi becomes "q_default" in the
131 generated C code.
133 In the rest of this document, usage lines are given for each
134 expression type, with literal strings written in lower case and
135 placeholders written in capitals.  If a literal string includes a
136 prefix of '*', that key/value pair can be omitted from the expression.
137 For example, a usage statement that includes '*base':STRUCT-NAME
138 means that an expression has an optional key 'base', which if present
139 must have a value that forms a struct name.
142 === Built-in Types ===
144 The following types are predefined, and map to C as follows:
146   Schema    C          JSON
147   str       char *     any JSON string, UTF-8
148   number    double     any JSON number
149   int       int64_t    a JSON number without fractional part
150                        that fits into the C integer type
151   int8      int8_t     likewise
152   int16     int16_t    likewise
153   int32     int32_t    likewise
154   int64     int64_t    likewise
155   uint8     uint8_t    likewise
156   uint16    uint16_t   likewise
157   uint32    uint32_t   likewise
158   uint64    uint64_t   likewise
159   size      uint64_t   like uint64_t, except StringInputVisitor
160                        accepts size suffixes
161   bool      bool       JSON true or false
162   any       QObject *  any JSON value
163   QType     QType      JSON string matching enum QType values
166 === Includes ===
168 Usage: { 'include': STRING }
170 The QAPI schema definitions can be modularized using the 'include' directive:
172  { 'include': 'path/to/file.json' }
174 The directive is evaluated recursively, and include paths are relative to the
175 file using the directive. Multiple includes of the same file are
176 idempotent.  No other keys should appear in the expression, and the include
177 value should be a string.
179 As a matter of style, it is a good idea to have all files be
180 self-contained, but at the moment, nothing prevents an included file
181 from making a forward reference to a type that is only introduced by
182 an outer file.  The parser may be made stricter in the future to
183 prevent incomplete include files.
186 === Struct types ===
188 Usage: { 'struct': STRING, 'data': DICT, '*base': STRUCT-NAME }
190 A struct is a dictionary containing a single 'data' key whose
191 value is a dictionary.  This corresponds to a struct in C or an Object
192 in JSON. Each value of the 'data' dictionary must be the name of a
193 type, or a one-element array containing a type name.  An example of a
194 struct is:
196  { 'struct': 'MyType',
197    'data': { 'member1': 'str', 'member2': 'int', '*member3': 'str' } }
199 The use of '*' as a prefix to the name means the member is optional in
200 the corresponding JSON protocol usage.
202 The default initialization value of an optional argument should not be changed
203 between versions of QEMU unless the new default maintains backward
204 compatibility to the user-visible behavior of the old default.
206 With proper documentation, this policy still allows some flexibility; for
207 example, documenting that a default of 0 picks an optimal buffer size allows
208 one release to declare the optimal size at 512 while another release declares
209 the optimal size at 4096 - the user-visible behavior is not the bytes used by
210 the buffer, but the fact that the buffer was optimal size.
212 On input structures (only mentioned in the 'data' side of a command), changing
213 from mandatory to optional is safe (older clients will supply the option, and
214 newer clients can benefit from the default); changing from optional to
215 mandatory is backwards incompatible (older clients may be omitting the option,
216 and must continue to work).
218 On output structures (only mentioned in the 'returns' side of a command),
219 changing from mandatory to optional is in general unsafe (older clients may be
220 expecting the field, and could crash if it is missing), although it can be done
221 if the only way that the optional argument will be omitted is when it is
222 triggered by the presence of a new input flag to the command that older clients
223 don't know to send.  Changing from optional to mandatory is safe.
225 A structure that is used in both input and output of various commands
226 must consider the backwards compatibility constraints of both directions
227 of use.
229 A struct definition can specify another struct as its base.
230 In this case, the fields of the base type are included as top-level fields
231 of the new struct's dictionary in the Client JSON Protocol wire
232 format. An example definition is:
234  { 'struct': 'BlockdevOptionsGenericFormat', 'data': { 'file': 'str' } }
235  { 'struct': 'BlockdevOptionsGenericCOWFormat',
236    'base': 'BlockdevOptionsGenericFormat',
237    'data': { '*backing': 'str' } }
239 An example BlockdevOptionsGenericCOWFormat object on the wire could use
240 both fields like this:
242  { "file": "/some/place/my-image",
243    "backing": "/some/place/my-backing-file" }
246 === Enumeration types ===
248 Usage: { 'enum': STRING, 'data': ARRAY-OF-STRING }
249        { 'enum': STRING, '*prefix': STRING, 'data': ARRAY-OF-STRING }
251 An enumeration type is a dictionary containing a single 'data' key
252 whose value is a list of strings.  An example enumeration is:
254  { 'enum': 'MyEnum', 'data': [ 'value1', 'value2', 'value3' ] }
256 Nothing prevents an empty enumeration, although it is probably not
257 useful.  The list of strings should be lower case; if an enum name
258 represents multiple words, use '-' between words.  The string 'max' is
259 not allowed as an enum value, and values should not be repeated.
261 The enum constants will be named by using a heuristic to turn the
262 type name into a set of underscore separated words. For the example
263 above, 'MyEnum' will turn into 'MY_ENUM' giving a constant name
264 of 'MY_ENUM_VALUE1' for the first value. If the default heuristic
265 does not result in a desirable name, the optional 'prefix' field
266 can be used when defining the enum.
268 The enumeration values are passed as strings over the Client JSON
269 Protocol, but are encoded as C enum integral values in generated code.
270 While the C code starts numbering at 0, it is better to use explicit
271 comparisons to enum values than implicit comparisons to 0; the C code
272 will also include a generated enum member ending in _MAX for tracking
273 the size of the enum, useful when using common functions for
274 converting between strings and enum values.  Since the wire format
275 always passes by name, it is acceptable to reorder or add new
276 enumeration members in any location without breaking clients of Client
277 JSON Protocol; however, removing enum values would break
278 compatibility.  For any struct that has a field that will only contain
279 a finite set of string values, using an enum type for that field is
280 better than open-coding the field to be type 'str'.
283 === Union types ===
285 Usage: { 'union': STRING, 'data': DICT }
286 or:    { 'union': STRING, 'data': DICT, 'base': STRUCT-NAME,
287          'discriminator': ENUM-MEMBER-OF-BASE }
289 Union types are used to let the user choose between several different
290 variants for an object.  There are two flavors: simple (no
291 discriminator or base), flat (both discriminator and base).  A union
292 type is defined using a data dictionary as explained in the following
293 paragraphs.
295 A simple union type defines a mapping from automatic discriminator
296 values to data types like in this example:
298  { 'struct': 'FileOptions', 'data': { 'filename': 'str' } }
299  { 'struct': 'Qcow2Options',
300    'data': { 'backing-file': 'str', 'lazy-refcounts': 'bool' } }
302  { 'union': 'BlockdevOptions',
303    'data': { 'file': 'FileOptions',
304              'qcow2': 'Qcow2Options' } }
306 In the Client JSON Protocol, a simple union is represented by a
307 dictionary that contains the 'type' field as a discriminator, and a
308 'data' field that is of the specified data type corresponding to the
309 discriminator value, as in these examples:
311  { "type": "file", "data" : { "filename": "/some/place/my-image" } }
312  { "type": "qcow2", "data" : { "backing-file": "/some/place/my-image",
313                                "lazy-refcounts": true } }
315 The generated C code uses a struct containing a union. Additionally,
316 an implicit C enum 'NameKind' is created, corresponding to the union
317 'Name', for accessing the various branches of the union.  No branch of
318 the union can be named 'max', as this would collide with the implicit
319 enum.  The value for each branch can be of any type.
321 A flat union definition specifies a struct as its base, and
322 avoids nesting on the wire.  All branches of the union must be
323 complex types, and the top-level fields of the union dictionary on
324 the wire will be combination of fields from both the base type and the
325 appropriate branch type (when merging two dictionaries, there must be
326 no keys in common).  The 'discriminator' field must be the name of an
327 enum-typed member of the base struct.
329 The following example enhances the above simple union example by
330 adding a common field 'readonly', renaming the discriminator to
331 something more applicable, and reducing the number of {} required on
332 the wire:
334  { 'enum': 'BlockdevDriver', 'data': [ 'file', 'qcow2' ] }
335  { 'struct': 'BlockdevCommonOptions',
336    'data': { 'driver': 'BlockdevDriver', 'readonly': 'bool' } }
337  { 'union': 'BlockdevOptions',
338    'base': 'BlockdevCommonOptions',
339    'discriminator': 'driver',
340    'data': { 'file': 'FileOptions',
341              'qcow2': 'Qcow2Options' } }
343 Resulting in these JSON objects:
345  { "driver": "file", "readonly": true,
346    "filename": "/some/place/my-image" }
347  { "driver": "qcow2", "readonly": false,
348    "backing-file": "/some/place/my-image", "lazy-refcounts": true }
350 Notice that in a flat union, the discriminator name is controlled by
351 the user, but because it must map to a base member with enum type, the
352 code generator can ensure that branches exist for all values of the
353 enum (although the order of the keys need not match the declaration of
354 the enum).  In the resulting generated C data types, a flat union is
355 represented as a struct with the base member fields included directly,
356 and then a union of structures for each branch of the struct.
358 A simple union can always be re-written as a flat union where the base
359 class has a single member named 'type', and where each branch of the
360 union has a struct with a single member named 'data'.  That is,
362  { 'union': 'Simple', 'data': { 'one': 'str', 'two': 'int' } }
364 is identical on the wire to:
366  { 'enum': 'Enum', 'data': ['one', 'two'] }
367  { 'struct': 'Base', 'data': { 'type': 'Enum' } }
368  { 'struct': 'Branch1', 'data': { 'data': 'str' } }
369  { 'struct': 'Branch2', 'data': { 'data': 'int' } }
370  { 'union': 'Flat', 'base': 'Base', 'discriminator': 'type',
371    'data': { 'one': 'Branch1', 'two': 'Branch2' } }
374 === Alternate types ===
376 Usage: { 'alternate': STRING, 'data': DICT }
378 An alternate type is one that allows a choice between two or more JSON
379 data types (string, integer, number, or object, but currently not
380 array) on the wire.  The definition is similar to a simple union type,
381 where each branch of the union names a QAPI type.  For example:
383  { 'alternate': 'BlockRef',
384    'data': { 'definition': 'BlockdevOptions',
385              'reference': 'str' } }
387 Unlike a union, the discriminator string is never passed on the wire
388 for the Client JSON Protocol.  Instead, the value's JSON type serves
389 as an implicit discriminator, which in turn means that an alternate
390 can only express a choice between types represented differently in
391 JSON.  If a branch is typed as the 'bool' built-in, the alternate
392 accepts true and false; if it is typed as any of the various numeric
393 built-ins, it accepts a JSON number; if it is typed as a 'str'
394 built-in or named enum type, it accepts a JSON string; and if it is
395 typed as a complex type (struct or union), it accepts a JSON object.
396 Two different complex types, for instance, aren't permitted, because
397 both are represented as a JSON object.
399 The example alternate declaration above allows using both of the
400 following example objects:
402  { "file": "my_existing_block_device_id" }
403  { "file": { "driver": "file",
404              "readonly": false,
405              "filename": "/tmp/mydisk.qcow2" } }
408 === Commands ===
410 Usage: { 'command': STRING, '*data': COMPLEX-TYPE-NAME-OR-DICT,
411          '*returns': TYPE-NAME,
412          '*gen': false, '*success-response': false }
414 Commands are defined by using a dictionary containing several members,
415 where three members are most common.  The 'command' member is a
416 mandatory string, and determines the "execute" value passed in a
417 Client JSON Protocol command exchange.
419 The 'data' argument maps to the "arguments" dictionary passed in as
420 part of a Client JSON Protocol command.  The 'data' member is optional
421 and defaults to {} (an empty dictionary).  If present, it must be the
422 string name of a complex type, or a dictionary that declares an
423 anonymous type with the same semantics as a 'struct' expression, with
424 one exception noted below when 'gen' is used.
426 The 'returns' member describes what will appear in the "return" field
427 of a Client JSON Protocol reply on successful completion of a command.
428 The member is optional from the command declaration; if absent, the
429 "return" field will be an empty dictionary.  If 'returns' is present,
430 it must be the string name of a complex or built-in type, a
431 one-element array containing the name of a complex or built-in type,
432 with one exception noted below when 'gen' is used.  Although it is
433 permitted to have the 'returns' member name a built-in type or an
434 array of built-in types, any command that does this cannot be extended
435 to return additional information in the future; thus, new commands
436 should strongly consider returning a dictionary-based type or an array
437 of dictionaries, even if the dictionary only contains one field at the
438 present.
440 All commands in Client JSON Protocol use a dictionary to report
441 failure, with no way to specify that in QAPI.  Where the error return
442 is different than the usual GenericError class in order to help the
443 client react differently to certain error conditions, it is worth
444 documenting this in the comments before the command declaration.
446 Some example commands:
448  { 'command': 'my-first-command',
449    'data': { 'arg1': 'str', '*arg2': 'str' } }
450  { 'struct': 'MyType', 'data': { '*value': 'str' } }
451  { 'command': 'my-second-command',
452    'returns': [ 'MyType' ] }
454 which would validate this Client JSON Protocol transaction:
456  => { "execute": "my-first-command",
457       "arguments": { "arg1": "hello" } }
458  <= { "return": { } }
459  => { "execute": "my-second-command" }
460  <= { "return": [ { "value": "one" }, { } ] }
462 In rare cases, QAPI cannot express a type-safe representation of a
463 corresponding Client JSON Protocol command.  You then have to suppress
464 generation of a marshalling function by including a key 'gen' with
465 boolean value false, and instead write your own function.  Please try
466 to avoid adding new commands that rely on this, and instead use
467 type-safe unions.  For an example of this usage:
469  { 'command': 'netdev_add',
470    'data': {'type': 'str', 'id': 'str'},
471    'gen': false }
473 Normally, the QAPI schema is used to describe synchronous exchanges,
474 where a response is expected.  But in some cases, the action of a
475 command is expected to change state in a way that a successful
476 response is not possible (although the command will still return a
477 normal dictionary error on failure).  When a successful reply is not
478 possible, the command expression should include the optional key
479 'success-response' with boolean value false.  So far, only QGA makes
480 use of this field.
483 === Events ===
485 Usage: { 'event': STRING, '*data': COMPLEX-TYPE-NAME-OR-DICT }
487 Events are defined with the keyword 'event'.  It is not allowed to
488 name an event 'MAX', since the generator also produces a C enumeration
489 of all event names with a generated _MAX value at the end.  When
490 'data' is also specified, additional info will be included in the
491 event, with similar semantics to a 'struct' expression.  Finally there
492 will be C API generated in qapi-event.h; when called by QEMU code, a
493 message with timestamp will be emitted on the wire.
495 An example event is:
497 { 'event': 'EVENT_C',
498   'data': { '*a': 'int', 'b': 'str' } }
500 Resulting in this JSON object:
502 { "event": "EVENT_C",
503   "data": { "b": "test string" },
504   "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
507 == Client JSON Protocol introspection ==
509 Clients of a Client JSON Protocol commonly need to figure out what
510 exactly the server (QEMU) supports.
512 For this purpose, QMP provides introspection via command
513 query-qmp-schema.  QGA currently doesn't support introspection.
515 While Client JSON Protocol wire compatibility should be maintained
516 between qemu versions, we cannot make the same guarantees for
517 introspection stability.  For example, one version of qemu may provide
518 a non-variant optional member of a struct, and a later version rework
519 the member to instead be non-optional and associated with a variant.
520 Likewise, one version of qemu may list a member with open-ended type
521 'str', and a later version could convert it to a finite set of strings
522 via an enum type; or a member may be converted from a specific type to
523 an alternate that represents a choice between the original type and
524 something else.
526 query-qmp-schema returns a JSON array of SchemaInfo objects.  These
527 objects together describe the wire ABI, as defined in the QAPI schema.
528 There is no specified order to the SchemaInfo objects returned; a
529 client must search for a particular name throughout the entire array
530 to learn more about that name, but is at least guaranteed that there
531 will be no collisions between type, command, and event names.
533 However, the SchemaInfo can't reflect all the rules and restrictions
534 that apply to QMP.  It's interface introspection (figuring out what's
535 there), not interface specification.  The specification is in the QAPI
536 schema.  To understand how QMP is to be used, you need to study the
537 QAPI schema.
539 Like any other command, query-qmp-schema is itself defined in the QAPI
540 schema, along with the SchemaInfo type.  This text attempts to give an
541 overview how things work.  For details you need to consult the QAPI
542 schema.
544 SchemaInfo objects have common members "name" and "meta-type", and
545 additional variant members depending on the value of meta-type.
547 Each SchemaInfo object describes a wire ABI entity of a certain
548 meta-type: a command, event or one of several kinds of type.
550 SchemaInfo for commands and events have the same name as in the QAPI
551 schema.
553 Command and event names are part of the wire ABI, but type names are
554 not.  Therefore, the SchemaInfo for types have auto-generated
555 meaningless names.  For readability, the examples in this section use
556 meaningful type names instead.
558 To examine a type, start with a command or event using it, then follow
559 references by name.
561 QAPI schema definitions not reachable that way are omitted.
563 The SchemaInfo for a command has meta-type "command", and variant
564 members "arg-type" and "ret-type".  On the wire, the "arguments"
565 member of a client's "execute" command must conform to the object type
566 named by "arg-type".  The "return" member that the server passes in a
567 success response conforms to the type named by "ret-type".
569 If the command takes no arguments, "arg-type" names an object type
570 without members.  Likewise, if the command returns nothing, "ret-type"
571 names an object type without members.
573 Example: the SchemaInfo for command query-qmp-schema
575     { "name": "query-qmp-schema", "meta-type": "command",
576       "arg-type": ":empty", "ret-type": "SchemaInfoList" }
578     Type ":empty" is an object type without members, and type
579     "SchemaInfoList" is the array of SchemaInfo type.
581 The SchemaInfo for an event has meta-type "event", and variant member
582 "arg-type".  On the wire, a "data" member that the server passes in an
583 event conforms to the object type named by "arg-type".
585 If the event carries no additional information, "arg-type" names an
586 object type without members.  The event may not have a data member on
587 the wire then.
589 Each command or event defined with dictionary-valued 'data' in the
590 QAPI schema implicitly defines an object type.
592 Example: the SchemaInfo for EVENT_C from section Events
594     { "name": "EVENT_C", "meta-type": "event",
595       "arg-type": ":obj-EVENT_C-arg" }
597     Type ":obj-EVENT_C-arg" is an implicitly defined object type with
598     the two members from the event's definition.
600 The SchemaInfo for struct and union types has meta-type "object".
602 The SchemaInfo for a struct type has variant member "members".
604 The SchemaInfo for a union type additionally has variant members "tag"
605 and "variants".
607 "members" is a JSON array describing the object's common members, if
608 any.  Each element is a JSON object with members "name" (the member's
609 name), "type" (the name of its type), and optionally "default".  The
610 member is optional if "default" is present.  Currently, "default" can
611 only have value null.  Other values are reserved for future
612 extensions.  The "members" array is in no particular order; clients
613 must search the entire object when learning whether a particular
614 member is supported.
616 Example: the SchemaInfo for MyType from section Struct types
618     { "name": "MyType", "meta-type": "object",
619       "members": [
620           { "name": "member1", "type": "str" },
621           { "name": "member2", "type": "int" },
622           { "name": "member3", "type": "str", "default": null } ] }
624 "tag" is the name of the common member serving as type tag.
625 "variants" is a JSON array describing the object's variant members.
626 Each element is a JSON object with members "case" (the value of type
627 tag this element applies to) and "type" (the name of an object type
628 that provides the variant members for this type tag value).  The
629 "variants" array is in no particular order, and is not guaranteed to
630 list cases in the same order as the corresponding "tag" enum type.
632 Example: the SchemaInfo for flat union BlockdevOptions from section
633 Union types
635     { "name": "BlockdevOptions", "meta-type": "object",
636       "members": [
637           { "name": "driver", "type": "BlockdevDriver" },
638           { "name": "readonly", "type": "bool"} ],
639       "tag": "driver",
640       "variants": [
641           { "case": "file", "type": "FileOptions" },
642           { "case": "qcow2", "type": "Qcow2Options" } ] }
644 Note that base types are "flattened": its members are included in the
645 "members" array.
647 A simple union implicitly defines an enumeration type for its implicit
648 discriminator (called "type" on the wire, see section Union types).
650 A simple union implicitly defines an object type for each of its
651 variants.
653 Example: the SchemaInfo for simple union BlockdevOptions from section
654 Union types
656     { "name": "BlockdevOptions", "meta-type": "object",
657       "members": [
658           { "name": "kind", "type": "BlockdevOptionsKind" } ],
659       "tag": "type",
660       "variants": [
661           { "case": "file", "type": ":obj-FileOptions-wrapper" },
662           { "case": "qcow2", "type": ":obj-Qcow2Options-wrapper" } ] }
664     Enumeration type "BlockdevOptionsKind" and the object types
665     ":obj-FileOptions-wrapper", ":obj-Qcow2Options-wrapper" are
666     implicitly defined.
668 The SchemaInfo for an alternate type has meta-type "alternate", and
669 variant member "members".  "members" is a JSON array.  Each element is
670 a JSON object with member "type", which names a type.  Values of the
671 alternate type conform to exactly one of its member types.  There is
672 no guarantee on the order in which "members" will be listed.
674 Example: the SchemaInfo for BlockRef from section Alternate types
676     { "name": "BlockRef", "meta-type": "alternate",
677       "members": [
678           { "type": "BlockdevOptions" },
679           { "type": "str" } ] }
681 The SchemaInfo for an array type has meta-type "array", and variant
682 member "element-type", which names the array's element type.  Array
683 types are implicitly defined.  For convenience, the array's name may
684 resemble the element type; however, clients should examine member
685 "element-type" instead of making assumptions based on parsing member
686 "name".
688 Example: the SchemaInfo for ['str']
690     { "name": "[str]", "meta-type": "array",
691       "element-type": "str" }
693 The SchemaInfo for an enumeration type has meta-type "enum" and
694 variant member "values".  The values are listed in no particular
695 order; clients must search the entire enum when learning whether a
696 particular value is supported.
698 Example: the SchemaInfo for MyEnum from section Enumeration types
700     { "name": "MyEnum", "meta-type": "enum",
701       "values": [ "value1", "value2", "value3" ] }
703 The SchemaInfo for a built-in type has the same name as the type in
704 the QAPI schema (see section Built-in Types), with one exception
705 detailed below.  It has variant member "json-type" that shows how
706 values of this type are encoded on the wire.
708 Example: the SchemaInfo for str
710     { "name": "str", "meta-type": "builtin", "json-type": "string" }
712 The QAPI schema supports a number of integer types that only differ in
713 how they map to C.  They are identical as far as SchemaInfo is
714 concerned.  Therefore, they get all mapped to a single type "int" in
715 SchemaInfo.
717 As explained above, type names are not part of the wire ABI.  Not even
718 the names of built-in types.  Clients should examine member
719 "json-type" instead of hard-coding names of built-in types.
722 == Code generation ==
724 Schemas are fed into four scripts to generate all the code/files that,
725 paired with the core QAPI libraries, comprise everything required to
726 take JSON commands read in by a Client JSON Protocol server, unmarshal
727 the arguments into the underlying C types, call into the corresponding
728 C function, and map the response back to a Client JSON Protocol
729 response to be returned to the user.
731 As an example, we'll use the following schema, which describes a single
732 complex user-defined type (which will produce a C struct, along with a list
733 node structure that can be used to chain together a list of such types in
734 case we want to accept/return a list of this type with a command), and a
735 command which takes that type as a parameter and returns the same type:
737     $ cat example-schema.json
738     { 'struct': 'UserDefOne',
739       'data': { 'integer': 'int', 'string': 'str' } }
741     { 'command': 'my-command',
742       'data':    {'arg1': 'UserDefOne'},
743       'returns': 'UserDefOne' }
745     { 'event': 'MY_EVENT' }
747 === scripts/qapi-types.py ===
749 Used to generate the C types defined by a schema. The following files are
750 created:
752 $(prefix)qapi-types.h - C types corresponding to types defined in
753                         the schema you pass in
754 $(prefix)qapi-types.c - Cleanup functions for the above C types
756 The $(prefix) is an optional parameter used as a namespace to keep the
757 generated code from one schema/code-generation separated from others so code
758 can be generated/used from multiple schemas without clobbering previously
759 created code.
761 Example:
763     $ python scripts/qapi-types.py --output-dir="qapi-generated" \
764     --prefix="example-" example-schema.json
765     $ cat qapi-generated/example-qapi-types.c
766 [Uninteresting stuff omitted...]
768     void qapi_free_UserDefOne(UserDefOne *obj)
769     {
770         QapiDeallocVisitor *qdv;
771         Visitor *v;
773         if (!obj) {
774             return;
775         }
777         qdv = qapi_dealloc_visitor_new();
778         v = qapi_dealloc_get_visitor(qdv);
779         visit_type_UserDefOne(v, &obj, NULL, NULL);
780         qapi_dealloc_visitor_cleanup(qdv);
781     }
783     void qapi_free_UserDefOneList(UserDefOneList *obj)
784     {
785         QapiDeallocVisitor *qdv;
786         Visitor *v;
788         if (!obj) {
789             return;
790         }
792         qdv = qapi_dealloc_visitor_new();
793         v = qapi_dealloc_get_visitor(qdv);
794         visit_type_UserDefOneList(v, &obj, NULL, NULL);
795         qapi_dealloc_visitor_cleanup(qdv);
796     }
797     $ cat qapi-generated/example-qapi-types.h
798 [Uninteresting stuff omitted...]
800     #ifndef EXAMPLE_QAPI_TYPES_H
801     #define EXAMPLE_QAPI_TYPES_H
803 [Built-in types omitted...]
805     typedef struct UserDefOne UserDefOne;
807     typedef struct UserDefOneList UserDefOneList;
809     struct UserDefOne {
810         int64_t integer;
811         char *string;
812     };
814     void qapi_free_UserDefOne(UserDefOne *obj);
816     struct UserDefOneList {
817         union {
818             UserDefOne *value;
819             uint64_t padding;
820         };
821         UserDefOneList *next;
822     };
824     void qapi_free_UserDefOneList(UserDefOneList *obj);
826     #endif
828 === scripts/qapi-visit.py ===
830 Used to generate the visitor functions used to walk through and convert
831 a QObject (as provided by QMP) to a native C data structure and
832 vice-versa, as well as the visitor function used to dealloc a complex
833 schema-defined C type.
835 The following files are generated:
837 $(prefix)qapi-visit.c: visitor function for a particular C type, used
838                        to automagically convert QObjects into the
839                        corresponding C type and vice-versa, as well
840                        as for deallocating memory for an existing C
841                        type
843 $(prefix)qapi-visit.h: declarations for previously mentioned visitor
844                        functions
846 Example:
848     $ python scripts/qapi-visit.py --output-dir="qapi-generated"
849     --prefix="example-" example-schema.json
850     $ cat qapi-generated/example-qapi-visit.c
851 [Uninteresting stuff omitted...]
853     static void visit_type_UserDefOne_fields(Visitor *v, UserDefOne **obj, Error **errp)
854     {
855         Error *err = NULL;
857         visit_type_int(v, &(*obj)->integer, "integer", &err);
858         if (err) {
859             goto out;
860         }
861         visit_type_str(v, &(*obj)->string, "string", &err);
862         if (err) {
863             goto out;
864         }
866     out:
867         error_propagate(errp, err);
868     }
870     void visit_type_UserDefOne(Visitor *v, UserDefOne **obj, const char *name, Error **errp)
871     {
872         Error *err = NULL;
874         visit_start_struct(v, (void **)obj, "UserDefOne", name, sizeof(UserDefOne), &err);
875         if (!err) {
876             if (*obj) {
877                 visit_type_UserDefOne_fields(v, obj, errp);
878             }
879             visit_end_struct(v, &err);
880         }
881         error_propagate(errp, err);
882     }
884     void visit_type_UserDefOneList(Visitor *v, UserDefOneList **obj, const char *name, Error **errp)
885     {
886         Error *err = NULL;
887         GenericList *i, **prev;
889         visit_start_list(v, name, &err);
890         if (err) {
891             goto out;
892         }
894         for (prev = (GenericList **)obj;
895              !err && (i = visit_next_list(v, prev, &err)) != NULL;
896              prev = &i) {
897             UserDefOneList *native_i = (UserDefOneList *)i;
898             visit_type_UserDefOne(v, &native_i->value, NULL, &err);
899         }
901         error_propagate(errp, err);
902         err = NULL;
903         visit_end_list(v, &err);
904     out:
905         error_propagate(errp, err);
906     }
907     $ cat qapi-generated/example-qapi-visit.h
908 [Uninteresting stuff omitted...]
910     #ifndef EXAMPLE_QAPI_VISIT_H
911     #define EXAMPLE_QAPI_VISIT_H
913 [Visitors for built-in types omitted...]
915     void visit_type_UserDefOne(Visitor *v, UserDefOne **obj, const char *name, Error **errp);
916     void visit_type_UserDefOneList(Visitor *v, UserDefOneList **obj, const char *name, Error **errp);
918     #endif
920 === scripts/qapi-commands.py ===
922 Used to generate the marshaling/dispatch functions for the commands defined
923 in the schema. The following files are generated:
925 $(prefix)qmp-marshal.c: command marshal/dispatch functions for each
926                         QMP command defined in the schema. Functions
927                         generated by qapi-visit.py are used to
928                         convert QObjects received from the wire into
929                         function parameters, and uses the same
930                         visitor functions to convert native C return
931                         values to QObjects from transmission back
932                         over the wire.
934 $(prefix)qmp-commands.h: Function prototypes for the QMP commands
935                          specified in the schema.
937 Example:
939     $ python scripts/qapi-commands.py --output-dir="qapi-generated"
940     --prefix="example-" example-schema.json
941     $ cat qapi-generated/example-qmp-marshal.c
942 [Uninteresting stuff omitted...]
944     static void qmp_marshal_output_UserDefOne(UserDefOne *ret_in, QObject **ret_out, Error **errp)
945     {
946         Error *err = NULL;
947         QmpOutputVisitor *qov = qmp_output_visitor_new();
948         QapiDeallocVisitor *qdv;
949         Visitor *v;
951         v = qmp_output_get_visitor(qov);
952         visit_type_UserDefOne(v, &ret_in, "unused", &err);
953         if (err) {
954             goto out;
955         }
956         *ret_out = qmp_output_get_qobject(qov);
958     out:
959         error_propagate(errp, err);
960         qmp_output_visitor_cleanup(qov);
961         qdv = qapi_dealloc_visitor_new();
962         v = qapi_dealloc_get_visitor(qdv);
963         visit_type_UserDefOne(v, &ret_in, "unused", NULL);
964         qapi_dealloc_visitor_cleanup(qdv);
965     }
967     static void qmp_marshal_my_command(QDict *args, QObject **ret, Error **errp)
968     {
969         Error *err = NULL;
970         UserDefOne *retval;
971         QmpInputVisitor *qiv = qmp_input_visitor_new_strict(QOBJECT(args));
972         QapiDeallocVisitor *qdv;
973         Visitor *v;
974         UserDefOne *arg1 = NULL;
976         v = qmp_input_get_visitor(qiv);
977         visit_type_UserDefOne(v, &arg1, "arg1", &err);
978         if (err) {
979             goto out;
980         }
982         retval = qmp_my_command(arg1, &err);
983         if (err) {
984             goto out;
985         }
987         qmp_marshal_output_UserDefOne(retval, ret, &err);
989     out:
990         error_propagate(errp, err);
991         qmp_input_visitor_cleanup(qiv);
992         qdv = qapi_dealloc_visitor_new();
993         v = qapi_dealloc_get_visitor(qdv);
994         visit_type_UserDefOne(v, &arg1, "arg1", NULL);
995         qapi_dealloc_visitor_cleanup(qdv);
996     }
998     static void qmp_init_marshal(void)
999     {
1000         qmp_register_command("my-command", qmp_marshal_my_command, QCO_NO_OPTIONS);
1001     }
1003     qapi_init(qmp_init_marshal);
1004     $ cat qapi-generated/example-qmp-commands.h
1005 [Uninteresting stuff omitted...]
1007     #ifndef EXAMPLE_QMP_COMMANDS_H
1008     #define EXAMPLE_QMP_COMMANDS_H
1010     #include "example-qapi-types.h"
1011     #include "qapi/qmp/qdict.h"
1012     #include "qapi/error.h"
1014     UserDefOne *qmp_my_command(UserDefOne *arg1, Error **errp);
1016     #endif
1018 === scripts/qapi-event.py ===
1020 Used to generate the event-related C code defined by a schema. The
1021 following files are created:
1023 $(prefix)qapi-event.h - Function prototypes for each event type, plus an
1024                         enumeration of all event names
1025 $(prefix)qapi-event.c - Implementation of functions to send an event
1027 Example:
1029     $ python scripts/qapi-event.py --output-dir="qapi-generated"
1030     --prefix="example-" example-schema.json
1031     $ cat qapi-generated/example-qapi-event.c
1032 [Uninteresting stuff omitted...]
1034     void qapi_event_send_my_event(Error **errp)
1035     {
1036         QDict *qmp;
1037         Error *err = NULL;
1038         QMPEventFuncEmit emit;
1039         emit = qmp_event_get_func_emit();
1040         if (!emit) {
1041             return;
1042         }
1044         qmp = qmp_event_build_dict("MY_EVENT");
1046         emit(EXAMPLE_QAPI_EVENT_MY_EVENT, qmp, &err);
1048         error_propagate(errp, err);
1049         QDECREF(qmp);
1050     }
1052     const char *const example_QAPIEvent_lookup[] = {
1053         [EXAMPLE_QAPI_EVENT_MY_EVENT] = "MY_EVENT",
1054         [EXAMPLE_QAPI_EVENT__MAX] = NULL,
1055     };
1056     $ cat qapi-generated/example-qapi-event.h
1057 [Uninteresting stuff omitted...]
1059     #ifndef EXAMPLE_QAPI_EVENT_H
1060     #define EXAMPLE_QAPI_EVENT_H
1062     #include "qapi/error.h"
1063     #include "qapi/qmp/qdict.h"
1064     #include "example-qapi-types.h"
1067     void qapi_event_send_my_event(Error **errp);
1069     typedef enum example_QAPIEvent {
1070         EXAMPLE_QAPI_EVENT_MY_EVENT = 0,
1071         EXAMPLE_QAPI_EVENT__MAX = 1,
1072     } example_QAPIEvent;
1074     extern const char *const example_QAPIEvent_lookup[];
1076     #endif
1078 === scripts/qapi-introspect.py ===
1080 Used to generate the introspection C code for a schema. The following
1081 files are created:
1083 $(prefix)qmp-introspect.c - Defines a string holding a JSON
1084                             description of the schema.
1085 $(prefix)qmp-introspect.h - Declares the above string.
1087 Example:
1089     $ python scripts/qapi-introspect.py --output-dir="qapi-generated"
1090     --prefix="example-" example-schema.json
1091     $ cat qapi-generated/example-qmp-introspect.c
1092 [Uninteresting stuff omitted...]
1094     const char example_qmp_schema_json[] = "["
1095         "{\"arg-type\": \"0\", \"meta-type\": \"event\", \"name\": \"MY_EVENT\"}, "
1096         "{\"arg-type\": \"1\", \"meta-type\": \"command\", \"name\": \"my-command\", \"ret-type\": \"2\"}, "
1097         "{\"members\": [], \"meta-type\": \"object\", \"name\": \"0\"}, "
1098         "{\"members\": [{\"name\": \"arg1\", \"type\": \"2\"}], \"meta-type\": \"object\", \"name\": \"1\"}, "
1099         "{\"members\": [{\"name\": \"integer\", \"type\": \"int\"}, {\"name\": \"string\", \"type\": \"str\"}], \"meta-type\": \"object\", \"name\": \"2\"}, "
1100         "{\"json-type\": \"int\", \"meta-type\": \"builtin\", \"name\": \"int\"}, "
1101         "{\"json-type\": \"string\", \"meta-type\": \"builtin\", \"name\": \"str\"}]";
1102     $ cat qapi-generated/example-qmp-introspect.h
1103 [Uninteresting stuff omitted...]
1105     #ifndef EXAMPLE_QMP_INTROSPECT_H
1106     #define EXAMPLE_QMP_INTROSPECT_H
1108     extern const char example_qmp_schema_json[];
1110     #endif