2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
42 #include "hw/fw-path-provider.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_vio.h"
65 #include "hw/qdev-properties.h"
66 #include "hw/pci-host/spapr.h"
67 #include "hw/pci/msi.h"
69 #include "hw/pci/pci.h"
70 #include "hw/scsi/scsi.h"
71 #include "hw/virtio/virtio-scsi.h"
72 #include "hw/virtio/vhost-scsi-common.h"
74 #include "exec/ram_addr.h"
76 #include "qemu/config-file.h"
77 #include "qemu/error-report.h"
80 #include "hw/intc/intc.h"
82 #include "hw/ppc/spapr_cpu_core.h"
83 #include "hw/mem/memory-device.h"
84 #include "hw/ppc/spapr_tpm_proxy.h"
85 #include "hw/ppc/spapr_nvdimm.h"
86 #include "hw/ppc/spapr_numa.h"
87 #include "hw/ppc/pef.h"
89 #include "monitor/monitor.h"
93 /* SLOF memory layout:
95 * SLOF raw image loaded at 0, copies its romfs right below the flat
96 * device-tree, then position SLOF itself 31M below that
98 * So we set FW_OVERHEAD to 40MB which should account for all of that
101 * We load our kernel at 4M, leaving space for SLOF initial image
103 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
104 #define FW_MAX_SIZE 0x400000
105 #define FW_FILE_NAME "slof.bin"
106 #define FW_FILE_NAME_VOF "vof.bin"
107 #define FW_OVERHEAD 0x2800000
108 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
110 #define MIN_RMA_SLOF (128 * MiB)
112 #define PHANDLE_INTC 0x00001111
114 /* These two functions implement the VCPU id numbering: one to compute them
115 * all and one to identify thread 0 of a VCORE. Any change to the first one
116 * is likely to have an impact on the second one, so let's keep them close.
118 static int spapr_vcpu_id(SpaprMachineState
*spapr
, int cpu_index
)
120 MachineState
*ms
= MACHINE(spapr
);
121 unsigned int smp_threads
= ms
->smp
.threads
;
125 (cpu_index
/ smp_threads
) * spapr
->vsmt
+ cpu_index
% smp_threads
;
127 static bool spapr_is_thread0_in_vcore(SpaprMachineState
*spapr
,
131 return spapr_get_vcpu_id(cpu
) % spapr
->vsmt
== 0;
134 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
136 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
137 * and newer QEMUs don't even have them. In both cases, we don't want
138 * to send anything on the wire.
143 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
144 .name
= "icp/server",
146 .minimum_version_id
= 1,
147 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
148 .fields
= (VMStateField
[]) {
149 VMSTATE_UNUSED(4), /* uint32_t xirr */
150 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
151 VMSTATE_UNUSED(1), /* uint8_t mfrr */
152 VMSTATE_END_OF_LIST()
156 static void pre_2_10_vmstate_register_dummy_icp(int i
)
158 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
159 (void *)(uintptr_t) i
);
162 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
164 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
165 (void *)(uintptr_t) i
);
168 int spapr_max_server_number(SpaprMachineState
*spapr
)
170 MachineState
*ms
= MACHINE(spapr
);
173 return DIV_ROUND_UP(ms
->smp
.max_cpus
* spapr
->vsmt
, ms
->smp
.threads
);
176 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
180 uint32_t servers_prop
[smt_threads
];
181 uint32_t gservers_prop
[smt_threads
* 2];
182 int index
= spapr_get_vcpu_id(cpu
);
184 if (cpu
->compat_pvr
) {
185 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
191 /* Build interrupt servers and gservers properties */
192 for (i
= 0; i
< smt_threads
; i
++) {
193 servers_prop
[i
] = cpu_to_be32(index
+ i
);
194 /* Hack, direct the group queues back to cpu 0 */
195 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
196 gservers_prop
[i
*2 + 1] = 0;
198 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
199 servers_prop
, sizeof(servers_prop
));
203 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
204 gservers_prop
, sizeof(gservers_prop
));
209 static void spapr_dt_pa_features(SpaprMachineState
*spapr
,
211 void *fdt
, int offset
)
213 uint8_t pa_features_206
[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207
[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300
[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
245 uint8_t *pa_features
= NULL
;
248 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_06
, 0, cpu
->compat_pvr
)) {
249 pa_features
= pa_features_206
;
250 pa_size
= sizeof(pa_features_206
);
252 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_07
, 0, cpu
->compat_pvr
)) {
253 pa_features
= pa_features_207
;
254 pa_size
= sizeof(pa_features_207
);
256 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_3_00
, 0, cpu
->compat_pvr
)) {
257 pa_features
= pa_features_300
;
258 pa_size
= sizeof(pa_features_300
);
264 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
272 pa_features
[3] |= 0x20;
274 if ((spapr_get_cap(spapr
, SPAPR_CAP_HTM
) != 0) && pa_size
> 24) {
275 pa_features
[24] |= 0x80; /* Transactional memory support */
277 if (spapr
->cas_pre_isa3_guest
&& pa_size
> 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
284 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
287 static hwaddr
spapr_node0_size(MachineState
*machine
)
289 if (machine
->numa_state
->num_nodes
) {
291 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
292 if (machine
->numa_state
->nodes
[i
].node_mem
) {
293 return MIN(pow2floor(machine
->numa_state
->nodes
[i
].node_mem
),
298 return machine
->ram_size
;
301 static void add_str(GString
*s
, const gchar
*s1
)
303 g_string_append_len(s
, s1
, strlen(s1
) + 1);
306 static int spapr_dt_memory_node(SpaprMachineState
*spapr
, void *fdt
, int nodeid
,
307 hwaddr start
, hwaddr size
)
310 uint64_t mem_reg_property
[2];
313 mem_reg_property
[0] = cpu_to_be64(start
);
314 mem_reg_property
[1] = cpu_to_be64(size
);
316 sprintf(mem_name
, "memory@%" HWADDR_PRIx
, start
);
317 off
= fdt_add_subnode(fdt
, 0, mem_name
);
319 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
320 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
321 sizeof(mem_reg_property
))));
322 spapr_numa_write_associativity_dt(spapr
, fdt
, off
, nodeid
);
326 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList
*list
, ram_addr_t addr
)
328 MemoryDeviceInfoList
*info
;
330 for (info
= list
; info
; info
= info
->next
) {
331 MemoryDeviceInfo
*value
= info
->value
;
333 if (value
&& value
->type
== MEMORY_DEVICE_INFO_KIND_DIMM
) {
334 PCDIMMDeviceInfo
*pcdimm_info
= value
->u
.dimm
.data
;
336 if (addr
>= pcdimm_info
->addr
&&
337 addr
< (pcdimm_info
->addr
+ pcdimm_info
->size
)) {
338 return pcdimm_info
->node
;
346 struct sPAPRDrconfCellV2
{
354 typedef struct DrconfCellQueue
{
355 struct sPAPRDrconfCellV2 cell
;
356 QSIMPLEQ_ENTRY(DrconfCellQueue
) entry
;
359 static DrconfCellQueue
*
360 spapr_get_drconf_cell(uint32_t seq_lmbs
, uint64_t base_addr
,
361 uint32_t drc_index
, uint32_t aa_index
,
364 DrconfCellQueue
*elem
;
366 elem
= g_malloc0(sizeof(*elem
));
367 elem
->cell
.seq_lmbs
= cpu_to_be32(seq_lmbs
);
368 elem
->cell
.base_addr
= cpu_to_be64(base_addr
);
369 elem
->cell
.drc_index
= cpu_to_be32(drc_index
);
370 elem
->cell
.aa_index
= cpu_to_be32(aa_index
);
371 elem
->cell
.flags
= cpu_to_be32(flags
);
376 static int spapr_dt_dynamic_memory_v2(SpaprMachineState
*spapr
, void *fdt
,
377 int offset
, MemoryDeviceInfoList
*dimms
)
379 MachineState
*machine
= MACHINE(spapr
);
380 uint8_t *int_buf
, *cur_index
;
382 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
383 uint64_t addr
, cur_addr
, size
;
384 uint32_t nr_boot_lmbs
= (machine
->device_memory
->base
/ lmb_size
);
385 uint64_t mem_end
= machine
->device_memory
->base
+
386 memory_region_size(&machine
->device_memory
->mr
);
387 uint32_t node
, buf_len
, nr_entries
= 0;
389 DrconfCellQueue
*elem
, *next
;
390 MemoryDeviceInfoList
*info
;
391 QSIMPLEQ_HEAD(, DrconfCellQueue
) drconf_queue
392 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue
);
394 /* Entry to cover RAM and the gap area */
395 elem
= spapr_get_drconf_cell(nr_boot_lmbs
, 0, 0, -1,
396 SPAPR_LMB_FLAGS_RESERVED
|
397 SPAPR_LMB_FLAGS_DRC_INVALID
);
398 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
401 cur_addr
= machine
->device_memory
->base
;
402 for (info
= dimms
; info
; info
= info
->next
) {
403 PCDIMMDeviceInfo
*di
= info
->value
->u
.dimm
.data
;
410 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
411 * area is marked hotpluggable in the next iteration for the bigger
412 * chunk including the NVDIMM occupied area.
414 if (info
->value
->type
== MEMORY_DEVICE_INFO_KIND_NVDIMM
)
417 /* Entry for hot-pluggable area */
418 if (cur_addr
< addr
) {
419 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
421 elem
= spapr_get_drconf_cell((addr
- cur_addr
) / lmb_size
,
422 cur_addr
, spapr_drc_index(drc
), -1, 0);
423 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
428 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, addr
/ lmb_size
);
430 elem
= spapr_get_drconf_cell(size
/ lmb_size
, addr
,
431 spapr_drc_index(drc
), node
,
432 (SPAPR_LMB_FLAGS_ASSIGNED
|
433 SPAPR_LMB_FLAGS_HOTREMOVABLE
));
434 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
436 cur_addr
= addr
+ size
;
439 /* Entry for remaining hotpluggable area */
440 if (cur_addr
< mem_end
) {
441 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
443 elem
= spapr_get_drconf_cell((mem_end
- cur_addr
) / lmb_size
,
444 cur_addr
, spapr_drc_index(drc
), -1, 0);
445 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
449 buf_len
= nr_entries
* sizeof(struct sPAPRDrconfCellV2
) + sizeof(uint32_t);
450 int_buf
= cur_index
= g_malloc0(buf_len
);
451 *(uint32_t *)int_buf
= cpu_to_be32(nr_entries
);
452 cur_index
+= sizeof(nr_entries
);
454 QSIMPLEQ_FOREACH_SAFE(elem
, &drconf_queue
, entry
, next
) {
455 memcpy(cur_index
, &elem
->cell
, sizeof(elem
->cell
));
456 cur_index
+= sizeof(elem
->cell
);
457 QSIMPLEQ_REMOVE(&drconf_queue
, elem
, DrconfCellQueue
, entry
);
461 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory-v2", int_buf
, buf_len
);
469 static int spapr_dt_dynamic_memory(SpaprMachineState
*spapr
, void *fdt
,
470 int offset
, MemoryDeviceInfoList
*dimms
)
472 MachineState
*machine
= MACHINE(spapr
);
474 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
475 uint32_t device_lmb_start
= machine
->device_memory
->base
/ lmb_size
;
476 uint32_t nr_lmbs
= (machine
->device_memory
->base
+
477 memory_region_size(&machine
->device_memory
->mr
)) /
479 uint32_t *int_buf
, *cur_index
, buf_len
;
482 * Allocate enough buffer size to fit in ibm,dynamic-memory
484 buf_len
= (nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1) * sizeof(uint32_t);
485 cur_index
= int_buf
= g_malloc0(buf_len
);
486 int_buf
[0] = cpu_to_be32(nr_lmbs
);
488 for (i
= 0; i
< nr_lmbs
; i
++) {
489 uint64_t addr
= i
* lmb_size
;
490 uint32_t *dynamic_memory
= cur_index
;
492 if (i
>= device_lmb_start
) {
495 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
498 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
499 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
500 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
501 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
502 dynamic_memory
[4] = cpu_to_be32(spapr_pc_dimm_node(dimms
, addr
));
503 if (memory_region_present(get_system_memory(), addr
)) {
504 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
506 dynamic_memory
[5] = cpu_to_be32(0);
510 * LMB information for RMA, boot time RAM and gap b/n RAM and
511 * device memory region -- all these are marked as reserved
512 * and as having no valid DRC.
514 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
515 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
516 dynamic_memory
[2] = cpu_to_be32(0);
517 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
518 dynamic_memory
[4] = cpu_to_be32(-1);
519 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
520 SPAPR_LMB_FLAGS_DRC_INVALID
);
523 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
525 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
534 * Adds ibm,dynamic-reconfiguration-memory node.
535 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
536 * of this device tree node.
538 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState
*spapr
,
541 MachineState
*machine
= MACHINE(spapr
);
543 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
544 uint32_t prop_lmb_size
[] = {cpu_to_be32(lmb_size
>> 32),
545 cpu_to_be32(lmb_size
& 0xffffffff)};
546 MemoryDeviceInfoList
*dimms
= NULL
;
549 * Don't create the node if there is no device memory
551 if (machine
->ram_size
== machine
->maxram_size
) {
555 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
557 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
558 sizeof(prop_lmb_size
));
563 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
568 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
573 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
574 dimms
= qmp_memory_device_list();
575 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRMEM_V2
)) {
576 ret
= spapr_dt_dynamic_memory_v2(spapr
, fdt
, offset
, dimms
);
578 ret
= spapr_dt_dynamic_memory(spapr
, fdt
, offset
, dimms
);
580 qapi_free_MemoryDeviceInfoList(dimms
);
586 ret
= spapr_numa_write_assoc_lookup_arrays(spapr
, fdt
, offset
);
591 static int spapr_dt_memory(SpaprMachineState
*spapr
, void *fdt
)
593 MachineState
*machine
= MACHINE(spapr
);
594 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
595 hwaddr mem_start
, node_size
;
596 int i
, nb_nodes
= machine
->numa_state
->num_nodes
;
597 NodeInfo
*nodes
= machine
->numa_state
->nodes
;
599 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
600 if (!nodes
[i
].node_mem
) {
603 if (mem_start
>= machine
->ram_size
) {
606 node_size
= nodes
[i
].node_mem
;
607 if (node_size
> machine
->ram_size
- mem_start
) {
608 node_size
= machine
->ram_size
- mem_start
;
612 /* spapr_machine_init() checks for rma_size <= node0_size
614 spapr_dt_memory_node(spapr
, fdt
, i
, 0, spapr
->rma_size
);
615 mem_start
+= spapr
->rma_size
;
616 node_size
-= spapr
->rma_size
;
618 for ( ; node_size
; ) {
619 hwaddr sizetmp
= pow2floor(node_size
);
621 /* mem_start != 0 here */
622 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
623 sizetmp
= 1ULL << ctzl(mem_start
);
626 spapr_dt_memory_node(spapr
, fdt
, i
, mem_start
, sizetmp
);
627 node_size
-= sizetmp
;
628 mem_start
+= sizetmp
;
632 /* Generate ibm,dynamic-reconfiguration-memory node if required */
633 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRCONF_MEMORY
)) {
636 g_assert(smc
->dr_lmb_enabled
);
637 ret
= spapr_dt_dynamic_reconfiguration_memory(spapr
, fdt
);
646 static void spapr_dt_cpu(CPUState
*cs
, void *fdt
, int offset
,
647 SpaprMachineState
*spapr
)
649 MachineState
*ms
= MACHINE(spapr
);
650 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
651 CPUPPCState
*env
= &cpu
->env
;
652 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
653 int index
= spapr_get_vcpu_id(cpu
);
654 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
655 0xffffffff, 0xffffffff};
656 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
657 : SPAPR_TIMEBASE_FREQ
;
658 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
659 uint32_t page_sizes_prop
[64];
660 size_t page_sizes_prop_size
;
661 unsigned int smp_threads
= ms
->smp
.threads
;
662 uint32_t vcpus_per_socket
= smp_threads
* ms
->smp
.cores
;
663 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
664 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
667 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
670 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
672 drc_index
= spapr_drc_index(drc
);
673 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
676 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
677 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
679 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
680 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
681 env
->dcache_line_size
)));
682 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
683 env
->dcache_line_size
)));
684 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
685 env
->icache_line_size
)));
686 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
687 env
->icache_line_size
)));
689 if (pcc
->l1_dcache_size
) {
690 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
691 pcc
->l1_dcache_size
)));
693 warn_report("Unknown L1 dcache size for cpu");
695 if (pcc
->l1_icache_size
) {
696 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
697 pcc
->l1_icache_size
)));
699 warn_report("Unknown L1 icache size for cpu");
702 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
703 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
704 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", cpu
->hash64_opts
->slb_size
)));
705 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", cpu
->hash64_opts
->slb_size
)));
706 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
707 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
709 if (ppc_has_spr(cpu
, SPR_PURR
)) {
710 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,purr", 1)));
712 if (ppc_has_spr(cpu
, SPR_PURR
)) {
713 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,spurr", 1)));
716 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)) {
717 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
718 segs
, sizeof(segs
))));
721 /* Advertise VSX (vector extensions) if available
722 * 1 == VMX / Altivec available
725 * Only CPUs for which we create core types in spapr_cpu_core.c
726 * are possible, and all of those have VMX */
727 if (env
->insns_flags
& PPC_ALTIVEC
) {
728 if (spapr_get_cap(spapr
, SPAPR_CAP_VSX
) != 0) {
729 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 2)));
731 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 1)));
735 /* Advertise DFP (Decimal Floating Point) if available
736 * 0 / no property == no DFP
737 * 1 == DFP available */
738 if (spapr_get_cap(spapr
, SPAPR_CAP_DFP
) != 0) {
739 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
742 page_sizes_prop_size
= ppc_create_page_sizes_prop(cpu
, page_sizes_prop
,
743 sizeof(page_sizes_prop
));
744 if (page_sizes_prop_size
) {
745 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
746 page_sizes_prop
, page_sizes_prop_size
)));
749 spapr_dt_pa_features(spapr
, cpu
, fdt
, offset
);
751 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
752 cs
->cpu_index
/ vcpus_per_socket
)));
754 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
755 pft_size_prop
, sizeof(pft_size_prop
))));
757 if (ms
->numa_state
->num_nodes
> 1) {
758 _FDT(spapr_numa_fixup_cpu_dt(spapr
, fdt
, offset
, cpu
));
761 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
763 if (pcc
->radix_page_info
) {
764 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
765 radix_AP_encodings
[i
] =
766 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
768 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
770 pcc
->radix_page_info
->count
*
771 sizeof(radix_AP_encodings
[0]))));
775 * We set this property to let the guest know that it can use the large
776 * decrementer and its width in bits.
778 if (spapr_get_cap(spapr
, SPAPR_CAP_LARGE_DECREMENTER
) != SPAPR_CAP_OFF
)
779 _FDT((fdt_setprop_u32(fdt
, offset
, "ibm,dec-bits",
780 pcc
->lrg_decr_bits
)));
783 static void spapr_dt_cpus(void *fdt
, SpaprMachineState
*spapr
)
791 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
793 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
794 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
797 * We walk the CPUs in reverse order to ensure that CPU DT nodes
798 * created by fdt_add_subnode() end up in the right order in FDT
799 * for the guest kernel the enumerate the CPUs correctly.
801 * The CPU list cannot be traversed in reverse order, so we need
807 rev
= g_renew(CPUState
*, rev
, n_cpus
+ 1);
811 for (i
= n_cpus
- 1; i
>= 0; i
--) {
812 CPUState
*cs
= rev
[i
];
813 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
814 int index
= spapr_get_vcpu_id(cpu
);
815 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
816 g_autofree
char *nodename
= NULL
;
819 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
823 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
824 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
826 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
832 static int spapr_dt_rng(void *fdt
)
837 node
= qemu_fdt_add_subnode(fdt
, "/ibm,platform-facilities");
841 ret
= fdt_setprop_string(fdt
, node
, "device_type",
842 "ibm,platform-facilities");
843 ret
|= fdt_setprop_cell(fdt
, node
, "#address-cells", 0x1);
844 ret
|= fdt_setprop_cell(fdt
, node
, "#size-cells", 0x0);
846 node
= fdt_add_subnode(fdt
, node
, "ibm,random-v1");
850 ret
|= fdt_setprop_string(fdt
, node
, "compatible", "ibm,random");
855 static void spapr_dt_rtas(SpaprMachineState
*spapr
, void *fdt
)
857 MachineState
*ms
= MACHINE(spapr
);
859 GString
*hypertas
= g_string_sized_new(256);
860 GString
*qemu_hypertas
= g_string_sized_new(256);
861 uint64_t max_device_addr
= MACHINE(spapr
)->device_memory
->base
+
862 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
863 uint32_t lrdr_capacity
[] = {
864 cpu_to_be32(max_device_addr
>> 32),
865 cpu_to_be32(max_device_addr
& 0xffffffff),
866 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
>> 32),
867 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
& 0xffffffff),
868 cpu_to_be32(ms
->smp
.max_cpus
/ ms
->smp
.threads
),
871 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
874 add_str(hypertas
, "hcall-pft");
875 add_str(hypertas
, "hcall-term");
876 add_str(hypertas
, "hcall-dabr");
877 add_str(hypertas
, "hcall-interrupt");
878 add_str(hypertas
, "hcall-tce");
879 add_str(hypertas
, "hcall-vio");
880 add_str(hypertas
, "hcall-splpar");
881 add_str(hypertas
, "hcall-join");
882 add_str(hypertas
, "hcall-bulk");
883 add_str(hypertas
, "hcall-set-mode");
884 add_str(hypertas
, "hcall-sprg0");
885 add_str(hypertas
, "hcall-copy");
886 add_str(hypertas
, "hcall-debug");
887 add_str(hypertas
, "hcall-vphn");
888 if (spapr_get_cap(spapr
, SPAPR_CAP_RPT_INVALIDATE
) == SPAPR_CAP_ON
) {
889 add_str(hypertas
, "hcall-rpt-invalidate");
892 add_str(qemu_hypertas
, "hcall-memop1");
894 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
895 add_str(hypertas
, "hcall-multi-tce");
898 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
899 add_str(hypertas
, "hcall-hpt-resize");
902 add_str(hypertas
, "hcall-watchdog");
904 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
905 hypertas
->str
, hypertas
->len
));
906 g_string_free(hypertas
, TRUE
);
907 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
908 qemu_hypertas
->str
, qemu_hypertas
->len
));
909 g_string_free(qemu_hypertas
, TRUE
);
911 spapr_numa_write_rtas_dt(spapr
, fdt
, rtas
);
914 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
915 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
917 * The system reset requirements are driven by existing Linux and PowerVM
918 * implementation which (contrary to PAPR) saves r3 in the error log
919 * structure like machine check, so Linux expects to find the saved r3
920 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
921 * does not look at the error value).
923 * System reset interrupts are not subject to interlock like machine
924 * check, so this memory area could be corrupted if the sreset is
925 * interrupted by a machine check (or vice versa) if it was shared. To
926 * prevent this, system reset uses per-CPU areas for the sreset save
927 * area. A system reset that interrupts a system reset handler could
928 * still overwrite this area, but Linux doesn't try to recover in that
931 * The extra 8 bytes is required because Linux's FWNMI error log check
934 * RTAS_MIN_SIZE is required for the RTAS blob itself.
936 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-size", RTAS_MIN_SIZE
+
938 ms
->smp
.max_cpus
* sizeof(uint64_t) * 2 +
940 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
941 RTAS_ERROR_LOG_MAX
));
942 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
943 RTAS_EVENT_SCAN_RATE
));
945 g_assert(msi_nonbroken
);
946 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
949 * According to PAPR, rtas ibm,os-term does not guarantee a return
950 * back to the guest cpu.
952 * While an additional ibm,extended-os-term property indicates
953 * that rtas call return will always occur. Set this property.
955 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
957 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
958 lrdr_capacity
, sizeof(lrdr_capacity
)));
960 spapr_dt_rtas_tokens(fdt
, rtas
);
964 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
965 * and the XIVE features that the guest may request and thus the valid
966 * values for bytes 23..26 of option vector 5:
968 static void spapr_dt_ov5_platform_support(SpaprMachineState
*spapr
, void *fdt
,
971 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
974 23, 0x00, /* XICS / XIVE mode */
975 24, 0x00, /* Hash/Radix, filled in below. */
976 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
977 26, 0x40, /* Radix options: GTSE == yes. */
980 if (spapr
->irq
->xics
&& spapr
->irq
->xive
) {
981 val
[1] = SPAPR_OV5_XIVE_BOTH
;
982 } else if (spapr
->irq
->xive
) {
983 val
[1] = SPAPR_OV5_XIVE_EXPLOIT
;
985 assert(spapr
->irq
->xics
);
986 val
[1] = SPAPR_OV5_XIVE_LEGACY
;
989 if (!ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
990 first_ppc_cpu
->compat_pvr
)) {
992 * If we're in a pre POWER9 compat mode then the guest should
993 * do hash and use the legacy interrupt mode
995 val
[1] = SPAPR_OV5_XIVE_LEGACY
; /* XICS */
996 val
[3] = 0x00; /* Hash */
997 spapr_check_mmu_mode(false);
998 } else if (kvm_enabled()) {
999 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1000 val
[3] = 0x80; /* OV5_MMU_BOTH */
1001 } else if (kvmppc_has_cap_mmu_radix()) {
1002 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
1004 val
[3] = 0x00; /* Hash */
1007 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1010 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
1014 static void spapr_dt_chosen(SpaprMachineState
*spapr
, void *fdt
, bool reset
)
1016 MachineState
*machine
= MACHINE(spapr
);
1017 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1018 uint8_t rng_seed
[32];
1021 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
1024 const char *boot_device
= spapr
->boot_device
;
1025 g_autofree
char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
1027 g_autofree
char *bootlist
= get_boot_devices_list(&cb
);
1029 if (machine
->kernel_cmdline
&& machine
->kernel_cmdline
[0]) {
1030 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs",
1031 machine
->kernel_cmdline
));
1034 if (spapr
->initrd_size
) {
1035 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
1036 spapr
->initrd_base
));
1037 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
1038 spapr
->initrd_base
+ spapr
->initrd_size
));
1041 if (spapr
->kernel_size
) {
1042 uint64_t kprop
[2] = { cpu_to_be64(spapr
->kernel_addr
),
1043 cpu_to_be64(spapr
->kernel_size
) };
1045 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
1046 &kprop
, sizeof(kprop
)));
1047 if (spapr
->kernel_le
) {
1048 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
1051 if (machine
->boot_config
.has_menu
&& machine
->boot_config
.menu
) {
1052 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", true)));
1054 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
1055 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
1056 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
1058 if (cb
&& bootlist
) {
1061 for (i
= 0; i
< cb
; i
++) {
1062 if (bootlist
[i
] == '\n') {
1066 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
1069 if (boot_device
&& strlen(boot_device
)) {
1070 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
1073 if (spapr
->want_stdout_path
&& stdout_path
) {
1075 * "linux,stdout-path" and "stdout" properties are
1076 * deprecated by linux kernel. New platforms should only
1077 * use the "stdout-path" property. Set the new property
1078 * and continue using older property to remain compatible
1079 * with the existing firmware.
1081 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
1082 _FDT(fdt_setprop_string(fdt
, chosen
, "stdout-path", stdout_path
));
1086 * We can deal with BAR reallocation just fine, advertise it
1089 if (smc
->linux_pci_probe
) {
1090 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,pci-probe-only", 0));
1093 spapr_dt_ov5_platform_support(spapr
, fdt
, chosen
);
1096 qemu_guest_getrandom_nofail(rng_seed
, sizeof(rng_seed
));
1097 _FDT(fdt_setprop(fdt
, chosen
, "rng-seed", rng_seed
, sizeof(rng_seed
)));
1099 _FDT(spapr_dt_ovec(fdt
, chosen
, spapr
->ov5_cas
, "ibm,architecture-vec-5"));
1102 static void spapr_dt_hypervisor(SpaprMachineState
*spapr
, void *fdt
)
1104 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1105 * KVM to work under pHyp with some guest co-operation */
1107 uint8_t hypercall
[16];
1109 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1110 /* indicate KVM hypercall interface */
1111 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1112 if (kvmppc_has_cap_fixup_hcalls()) {
1114 * Older KVM versions with older guest kernels were broken
1115 * with the magic page, don't allow the guest to map it.
1117 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1118 sizeof(hypercall
))) {
1119 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1120 hypercall
, sizeof(hypercall
)));
1125 void *spapr_build_fdt(SpaprMachineState
*spapr
, bool reset
, size_t space
)
1127 MachineState
*machine
= MACHINE(spapr
);
1128 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1129 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1130 uint32_t root_drc_type_mask
= 0;
1136 fdt
= g_malloc0(space
);
1137 _FDT((fdt_create_empty_tree(fdt
, space
)));
1140 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1141 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1142 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1144 /* Guest UUID & Name*/
1145 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1146 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1147 if (qemu_uuid_set
) {
1148 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1152 if (qemu_get_vm_name()) {
1153 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1154 qemu_get_vm_name()));
1157 /* Host Model & Serial Number */
1158 if (spapr
->host_model
) {
1159 _FDT(fdt_setprop_string(fdt
, 0, "host-model", spapr
->host_model
));
1160 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_model(&buf
)) {
1161 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1165 if (spapr
->host_serial
) {
1166 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", spapr
->host_serial
));
1167 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_serial(&buf
)) {
1168 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1172 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1173 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1175 /* /interrupt controller */
1176 spapr_irq_dt(spapr
, spapr_max_server_number(spapr
), fdt
, PHANDLE_INTC
);
1178 ret
= spapr_dt_memory(spapr
, fdt
);
1180 error_report("couldn't setup memory nodes in fdt");
1185 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1187 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1188 ret
= spapr_dt_rng(fdt
);
1190 error_report("could not set up rng device in the fdt");
1195 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1196 ret
= spapr_dt_phb(spapr
, phb
, PHANDLE_INTC
, fdt
, NULL
);
1198 error_report("couldn't setup PCI devices in fdt");
1203 spapr_dt_cpus(fdt
, spapr
);
1205 /* ibm,drc-indexes and friends */
1206 if (smc
->dr_lmb_enabled
) {
1207 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_LMB
;
1209 if (smc
->dr_phb_enabled
) {
1210 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_PHB
;
1212 if (mc
->nvdimm_supported
) {
1213 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_PMEM
;
1215 if (root_drc_type_mask
) {
1216 _FDT(spapr_dt_drc(fdt
, 0, NULL
, root_drc_type_mask
));
1219 if (mc
->has_hotpluggable_cpus
) {
1220 int offset
= fdt_path_offset(fdt
, "/cpus");
1221 ret
= spapr_dt_drc(fdt
, offset
, NULL
, SPAPR_DR_CONNECTOR_TYPE_CPU
);
1223 error_report("Couldn't set up CPU DR device tree properties");
1228 /* /event-sources */
1229 spapr_dt_events(spapr
, fdt
);
1232 spapr_dt_rtas(spapr
, fdt
);
1235 spapr_dt_chosen(spapr
, fdt
, reset
);
1238 if (kvm_enabled()) {
1239 spapr_dt_hypervisor(spapr
, fdt
);
1242 /* Build memory reserve map */
1244 if (spapr
->kernel_size
) {
1245 _FDT((fdt_add_mem_rsv(fdt
, spapr
->kernel_addr
,
1246 spapr
->kernel_size
)));
1248 if (spapr
->initrd_size
) {
1249 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
,
1250 spapr
->initrd_size
)));
1254 /* NVDIMM devices */
1255 if (mc
->nvdimm_supported
) {
1256 spapr_dt_persistent_memory(spapr
, fdt
);
1262 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1264 SpaprMachineState
*spapr
= opaque
;
1266 return (addr
& 0x0fffffff) + spapr
->kernel_addr
;
1269 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1272 CPUPPCState
*env
= &cpu
->env
;
1274 /* The TCG path should also be holding the BQL at this point */
1275 g_assert(qemu_mutex_iothread_locked());
1277 g_assert(!vhyp_cpu_in_nested(cpu
));
1279 if (FIELD_EX64(env
->msr
, MSR
, PR
)) {
1280 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1281 env
->gpr
[3] = H_PRIVILEGE
;
1283 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1287 struct LPCRSyncState
{
1292 static void do_lpcr_sync(CPUState
*cs
, run_on_cpu_data arg
)
1294 struct LPCRSyncState
*s
= arg
.host_ptr
;
1295 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1296 CPUPPCState
*env
= &cpu
->env
;
1299 cpu_synchronize_state(cs
);
1300 lpcr
= env
->spr
[SPR_LPCR
];
1303 ppc_store_lpcr(cpu
, lpcr
);
1306 void spapr_set_all_lpcrs(target_ulong value
, target_ulong mask
)
1309 struct LPCRSyncState s
= {
1314 run_on_cpu(cs
, do_lpcr_sync
, RUN_ON_CPU_HOST_PTR(&s
));
1318 static bool spapr_get_pate(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
,
1319 target_ulong lpid
, ppc_v3_pate_t
*entry
)
1321 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1322 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
1324 if (!spapr_cpu
->in_nested
) {
1327 /* Copy PATE1:GR into PATE0:HR */
1328 entry
->dw0
= spapr
->patb_entry
& PATE0_HR
;
1329 entry
->dw1
= spapr
->patb_entry
;
1332 uint64_t patb
, pats
;
1336 patb
= spapr
->nested_ptcr
& PTCR_PATB
;
1337 pats
= spapr
->nested_ptcr
& PTCR_PATS
;
1339 /* Check if partition table is properly aligned */
1340 if (patb
& MAKE_64BIT_MASK(0, pats
+ 12)) {
1344 /* Calculate number of entries */
1345 pats
= 1ull << (pats
+ 12 - 4);
1352 entry
->dw0
= ldq_phys(CPU(cpu
)->as
, patb
);
1353 entry
->dw1
= ldq_phys(CPU(cpu
)->as
, patb
+ 8);
1359 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1360 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1361 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1362 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1363 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1366 * Get the fd to access the kernel htab, re-opening it if necessary
1368 static int get_htab_fd(SpaprMachineState
*spapr
)
1370 Error
*local_err
= NULL
;
1372 if (spapr
->htab_fd
>= 0) {
1373 return spapr
->htab_fd
;
1376 spapr
->htab_fd
= kvmppc_get_htab_fd(false, 0, &local_err
);
1377 if (spapr
->htab_fd
< 0) {
1378 error_report_err(local_err
);
1381 return spapr
->htab_fd
;
1384 void close_htab_fd(SpaprMachineState
*spapr
)
1386 if (spapr
->htab_fd
>= 0) {
1387 close(spapr
->htab_fd
);
1389 spapr
->htab_fd
= -1;
1392 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1394 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1396 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1399 static target_ulong
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor
*vhyp
)
1401 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1403 assert(kvm_enabled());
1409 return (target_ulong
)(uintptr_t)spapr
->htab
| (spapr
->htab_shift
- 18);
1412 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1415 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1416 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1420 * HTAB is controlled by KVM. Fetch into temporary buffer
1422 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1423 kvmppc_read_hptes(hptes
, ptex
, n
);
1428 * HTAB is controlled by QEMU. Just point to the internally
1431 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1434 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1435 const ppc_hash_pte64_t
*hptes
,
1438 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1441 g_free((void *)hptes
);
1444 /* Nothing to do for qemu managed HPT */
1447 void spapr_store_hpte(PowerPCCPU
*cpu
, hwaddr ptex
,
1448 uint64_t pte0
, uint64_t pte1
)
1450 SpaprMachineState
*spapr
= SPAPR_MACHINE(cpu
->vhyp
);
1451 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1454 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1456 if (pte0
& HPTE64_V_VALID
) {
1457 stq_p(spapr
->htab
+ offset
+ HPTE64_DW1
, pte1
);
1459 * When setting valid, we write PTE1 first. This ensures
1460 * proper synchronization with the reading code in
1461 * ppc_hash64_pteg_search()
1464 stq_p(spapr
->htab
+ offset
, pte0
);
1466 stq_p(spapr
->htab
+ offset
, pte0
);
1468 * When clearing it we set PTE0 first. This ensures proper
1469 * synchronization with the reading code in
1470 * ppc_hash64_pteg_search()
1473 stq_p(spapr
->htab
+ offset
+ HPTE64_DW1
, pte1
);
1478 static void spapr_hpte_set_c(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1481 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ HPTE64_DW1_C
;
1482 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1485 /* There should always be a hash table when this is called */
1486 error_report("spapr_hpte_set_c called with no hash table !");
1490 /* The HW performs a non-atomic byte update */
1491 stb_p(spapr
->htab
+ offset
, (pte1
& 0xff) | 0x80);
1494 static void spapr_hpte_set_r(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1497 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ HPTE64_DW1_R
;
1498 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1501 /* There should always be a hash table when this is called */
1502 error_report("spapr_hpte_set_r called with no hash table !");
1506 /* The HW performs a non-atomic byte update */
1507 stb_p(spapr
->htab
+ offset
, ((pte1
>> 8) & 0xff) | 0x01);
1510 int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1514 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1515 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1516 * that's much more than is needed for Linux guests */
1517 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1518 shift
= MAX(shift
, 18); /* Minimum architected size */
1519 shift
= MIN(shift
, 46); /* Maximum architected size */
1523 void spapr_free_hpt(SpaprMachineState
*spapr
)
1525 g_free(spapr
->htab
);
1527 spapr
->htab_shift
= 0;
1528 close_htab_fd(spapr
);
1531 int spapr_reallocate_hpt(SpaprMachineState
*spapr
, int shift
, Error
**errp
)
1536 /* Clean up any HPT info from a previous boot */
1537 spapr_free_hpt(spapr
);
1539 rc
= kvmppc_reset_htab(shift
);
1541 if (rc
== -EOPNOTSUPP
) {
1542 error_setg(errp
, "HPT not supported in nested guests");
1547 /* kernel-side HPT needed, but couldn't allocate one */
1548 error_setg_errno(errp
, errno
, "Failed to allocate KVM HPT of order %d",
1550 error_append_hint(errp
, "Try smaller maxmem?\n");
1552 } else if (rc
> 0) {
1553 /* kernel-side HPT allocated */
1556 "Requested order %d HPT, but kernel allocated order %ld",
1558 error_append_hint(errp
, "Try smaller maxmem?\n");
1562 spapr
->htab_shift
= shift
;
1565 /* kernel-side HPT not needed, allocate in userspace instead */
1566 size_t size
= 1ULL << shift
;
1569 spapr
->htab
= qemu_memalign(size
, size
);
1570 memset(spapr
->htab
, 0, size
);
1571 spapr
->htab_shift
= shift
;
1573 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1574 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1577 /* We're setting up a hash table, so that means we're not radix */
1578 spapr
->patb_entry
= 0;
1579 spapr_set_all_lpcrs(0, LPCR_HR
| LPCR_UPRT
);
1583 void spapr_setup_hpt(SpaprMachineState
*spapr
)
1587 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
1588 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1590 uint64_t current_ram_size
;
1592 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
1593 hpt_shift
= spapr_hpt_shift_for_ramsize(current_ram_size
);
1595 spapr_reallocate_hpt(spapr
, hpt_shift
, &error_fatal
);
1597 if (kvm_enabled()) {
1598 hwaddr vrma_limit
= kvmppc_vrma_limit(spapr
->htab_shift
);
1600 /* Check our RMA fits in the possible VRMA */
1601 if (vrma_limit
< spapr
->rma_size
) {
1602 error_report("Unable to create %" HWADDR_PRIu
1603 "MiB RMA (VRMA only allows %" HWADDR_PRIu
"MiB",
1604 spapr
->rma_size
/ MiB
, vrma_limit
/ MiB
);
1610 void spapr_check_mmu_mode(bool guest_radix
)
1613 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1614 error_report("Guest requested unavailable MMU mode (radix).");
1618 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1619 && !kvmppc_has_cap_mmu_hash_v3()) {
1620 error_report("Guest requested unavailable MMU mode (hash).");
1626 static void spapr_machine_reset(MachineState
*machine
)
1628 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
1629 PowerPCCPU
*first_ppc_cpu
;
1634 pef_kvm_reset(machine
->cgs
, &error_fatal
);
1635 spapr_caps_apply(spapr
);
1637 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1638 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1639 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
1640 spapr
->max_compat_pvr
)) {
1642 * If using KVM with radix mode available, VCPUs can be started
1643 * without a HPT because KVM will start them in radix mode.
1644 * Set the GR bit in PATE so that we know there is no HPT.
1646 spapr
->patb_entry
= PATE1_GR
;
1647 spapr_set_all_lpcrs(LPCR_HR
| LPCR_UPRT
, LPCR_HR
| LPCR_UPRT
);
1649 spapr_setup_hpt(spapr
);
1652 qemu_devices_reset();
1654 spapr_ovec_cleanup(spapr
->ov5_cas
);
1655 spapr
->ov5_cas
= spapr_ovec_new();
1657 ppc_set_compat_all(spapr
->max_compat_pvr
, &error_fatal
);
1660 * This is fixing some of the default configuration of the XIVE
1661 * devices. To be called after the reset of the machine devices.
1663 spapr_irq_reset(spapr
, &error_fatal
);
1666 * There is no CAS under qtest. Simulate one to please the code that
1667 * depends on spapr->ov5_cas. This is especially needed to test device
1668 * unplug, so we do that before resetting the DRCs.
1670 if (qtest_enabled()) {
1671 spapr_ovec_cleanup(spapr
->ov5_cas
);
1672 spapr
->ov5_cas
= spapr_ovec_clone(spapr
->ov5
);
1675 spapr_nvdimm_finish_flushes();
1677 /* DRC reset may cause a device to be unplugged. This will cause troubles
1678 * if this device is used by another device (eg, a running vhost backend
1679 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1680 * situations, we reset DRCs after all devices have been reset.
1682 spapr_drc_reset_all(spapr
);
1684 spapr_clear_pending_events(spapr
);
1687 * We place the device tree just below either the top of the RMA,
1688 * or just below 2GB, whichever is lower, so that it can be
1689 * processed with 32-bit real mode code if necessary
1691 fdt_addr
= MIN(spapr
->rma_size
, FDT_MAX_ADDR
) - FDT_MAX_SIZE
;
1693 fdt
= spapr_build_fdt(spapr
, true, FDT_MAX_SIZE
);
1695 spapr_vof_reset(spapr
, fdt
, &error_fatal
);
1697 * Do not pack the FDT as the client may change properties.
1698 * VOF client does not expect the FDT so we do not load it to the VM.
1702 /* Should only fail if we've built a corrupted tree */
1705 spapr_cpu_set_entry_state(first_ppc_cpu
, SPAPR_ENTRY_POINT
,
1707 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1709 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1711 g_free(spapr
->fdt_blob
);
1712 spapr
->fdt_size
= fdt_totalsize(fdt
);
1713 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1714 spapr
->fdt_blob
= fdt
;
1716 /* Set up the entry state */
1717 first_ppc_cpu
->env
.gpr
[5] = 0;
1719 spapr
->fwnmi_system_reset_addr
= -1;
1720 spapr
->fwnmi_machine_check_addr
= -1;
1721 spapr
->fwnmi_machine_check_interlock
= -1;
1723 /* Signal all vCPUs waiting on this condition */
1724 qemu_cond_broadcast(&spapr
->fwnmi_machine_check_interlock_cond
);
1726 migrate_del_blocker(spapr
->fwnmi_migration_blocker
);
1729 static void spapr_create_nvram(SpaprMachineState
*spapr
)
1731 DeviceState
*dev
= qdev_new("spapr-nvram");
1732 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1735 qdev_prop_set_drive_err(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1739 qdev_realize_and_unref(dev
, &spapr
->vio_bus
->bus
, &error_fatal
);
1741 spapr
->nvram
= (struct SpaprNvram
*)dev
;
1744 static void spapr_rtc_create(SpaprMachineState
*spapr
)
1746 object_initialize_child_with_props(OBJECT(spapr
), "rtc", &spapr
->rtc
,
1747 sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
,
1748 &error_fatal
, NULL
);
1749 qdev_realize(DEVICE(&spapr
->rtc
), NULL
, &error_fatal
);
1750 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1754 /* Returns whether we want to use VGA or not */
1755 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1757 vga_interface_created
= true;
1758 switch (vga_interface_type
) {
1766 return pci_vga_init(pci_bus
) != NULL
;
1769 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1774 static int spapr_pre_load(void *opaque
)
1778 rc
= spapr_caps_pre_load(opaque
);
1786 static int spapr_post_load(void *opaque
, int version_id
)
1788 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1791 err
= spapr_caps_post_migration(spapr
);
1797 * In earlier versions, there was no separate qdev for the PAPR
1798 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1799 * So when migrating from those versions, poke the incoming offset
1800 * value into the RTC device
1802 if (version_id
< 3) {
1803 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1809 if (kvm_enabled() && spapr
->patb_entry
) {
1810 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1811 bool radix
= !!(spapr
->patb_entry
& PATE1_GR
);
1812 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1815 * Update LPCR:HR and UPRT as they may not be set properly in
1818 spapr_set_all_lpcrs(radix
? (LPCR_HR
| LPCR_UPRT
) : 0,
1819 LPCR_HR
| LPCR_UPRT
);
1821 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1823 error_report("Process table config unsupported by the host");
1828 err
= spapr_irq_post_load(spapr
, version_id
);
1836 static int spapr_pre_save(void *opaque
)
1840 rc
= spapr_caps_pre_save(opaque
);
1848 static bool version_before_3(void *opaque
, int version_id
)
1850 return version_id
< 3;
1853 static bool spapr_pending_events_needed(void *opaque
)
1855 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1856 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1859 static const VMStateDescription vmstate_spapr_event_entry
= {
1860 .name
= "spapr_event_log_entry",
1862 .minimum_version_id
= 1,
1863 .fields
= (VMStateField
[]) {
1864 VMSTATE_UINT32(summary
, SpaprEventLogEntry
),
1865 VMSTATE_UINT32(extended_length
, SpaprEventLogEntry
),
1866 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, SpaprEventLogEntry
, 0,
1867 NULL
, extended_length
),
1868 VMSTATE_END_OF_LIST()
1872 static const VMStateDescription vmstate_spapr_pending_events
= {
1873 .name
= "spapr_pending_events",
1875 .minimum_version_id
= 1,
1876 .needed
= spapr_pending_events_needed
,
1877 .fields
= (VMStateField
[]) {
1878 VMSTATE_QTAILQ_V(pending_events
, SpaprMachineState
, 1,
1879 vmstate_spapr_event_entry
, SpaprEventLogEntry
, next
),
1880 VMSTATE_END_OF_LIST()
1884 static bool spapr_ov5_cas_needed(void *opaque
)
1886 SpaprMachineState
*spapr
= opaque
;
1887 SpaprOptionVector
*ov5_mask
= spapr_ovec_new();
1890 /* Prior to the introduction of SpaprOptionVector, we had two option
1891 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1892 * Both of these options encode machine topology into the device-tree
1893 * in such a way that the now-booted OS should still be able to interact
1894 * appropriately with QEMU regardless of what options were actually
1895 * negotiatied on the source side.
1897 * As such, we can avoid migrating the CAS-negotiated options if these
1898 * are the only options available on the current machine/platform.
1899 * Since these are the only options available for pseries-2.7 and
1900 * earlier, this allows us to maintain old->new/new->old migration
1903 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1904 * via default pseries-2.8 machines and explicit command-line parameters.
1905 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1906 * of the actual CAS-negotiated values to continue working properly. For
1907 * example, availability of memory unplug depends on knowing whether
1908 * OV5_HP_EVT was negotiated via CAS.
1910 * Thus, for any cases where the set of available CAS-negotiatable
1911 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1912 * include the CAS-negotiated options in the migration stream, unless
1913 * if they affect boot time behaviour only.
1915 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1916 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1917 spapr_ovec_set(ov5_mask
, OV5_DRMEM_V2
);
1919 /* We need extra information if we have any bits outside the mask
1921 cas_needed
= !spapr_ovec_subset(spapr
->ov5
, ov5_mask
);
1923 spapr_ovec_cleanup(ov5_mask
);
1928 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1929 .name
= "spapr_option_vector_ov5_cas",
1931 .minimum_version_id
= 1,
1932 .needed
= spapr_ov5_cas_needed
,
1933 .fields
= (VMStateField
[]) {
1934 VMSTATE_STRUCT_POINTER_V(ov5_cas
, SpaprMachineState
, 1,
1935 vmstate_spapr_ovec
, SpaprOptionVector
),
1936 VMSTATE_END_OF_LIST()
1940 static bool spapr_patb_entry_needed(void *opaque
)
1942 SpaprMachineState
*spapr
= opaque
;
1944 return !!spapr
->patb_entry
;
1947 static const VMStateDescription vmstate_spapr_patb_entry
= {
1948 .name
= "spapr_patb_entry",
1950 .minimum_version_id
= 1,
1951 .needed
= spapr_patb_entry_needed
,
1952 .fields
= (VMStateField
[]) {
1953 VMSTATE_UINT64(patb_entry
, SpaprMachineState
),
1954 VMSTATE_END_OF_LIST()
1958 static bool spapr_irq_map_needed(void *opaque
)
1960 SpaprMachineState
*spapr
= opaque
;
1962 return spapr
->irq_map
&& !bitmap_empty(spapr
->irq_map
, spapr
->irq_map_nr
);
1965 static const VMStateDescription vmstate_spapr_irq_map
= {
1966 .name
= "spapr_irq_map",
1968 .minimum_version_id
= 1,
1969 .needed
= spapr_irq_map_needed
,
1970 .fields
= (VMStateField
[]) {
1971 VMSTATE_BITMAP(irq_map
, SpaprMachineState
, 0, irq_map_nr
),
1972 VMSTATE_END_OF_LIST()
1976 static bool spapr_dtb_needed(void *opaque
)
1978 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(opaque
);
1980 return smc
->update_dt_enabled
;
1983 static int spapr_dtb_pre_load(void *opaque
)
1985 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1987 g_free(spapr
->fdt_blob
);
1988 spapr
->fdt_blob
= NULL
;
1989 spapr
->fdt_size
= 0;
1994 static const VMStateDescription vmstate_spapr_dtb
= {
1995 .name
= "spapr_dtb",
1997 .minimum_version_id
= 1,
1998 .needed
= spapr_dtb_needed
,
1999 .pre_load
= spapr_dtb_pre_load
,
2000 .fields
= (VMStateField
[]) {
2001 VMSTATE_UINT32(fdt_initial_size
, SpaprMachineState
),
2002 VMSTATE_UINT32(fdt_size
, SpaprMachineState
),
2003 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob
, SpaprMachineState
, 0, NULL
,
2005 VMSTATE_END_OF_LIST()
2009 static bool spapr_fwnmi_needed(void *opaque
)
2011 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
2013 return spapr
->fwnmi_machine_check_addr
!= -1;
2016 static int spapr_fwnmi_pre_save(void *opaque
)
2018 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
2021 * Check if machine check handling is in progress and print a
2024 if (spapr
->fwnmi_machine_check_interlock
!= -1) {
2025 warn_report("A machine check is being handled during migration. The"
2026 "handler may run and log hardware error on the destination");
2032 static const VMStateDescription vmstate_spapr_fwnmi
= {
2033 .name
= "spapr_fwnmi",
2035 .minimum_version_id
= 1,
2036 .needed
= spapr_fwnmi_needed
,
2037 .pre_save
= spapr_fwnmi_pre_save
,
2038 .fields
= (VMStateField
[]) {
2039 VMSTATE_UINT64(fwnmi_system_reset_addr
, SpaprMachineState
),
2040 VMSTATE_UINT64(fwnmi_machine_check_addr
, SpaprMachineState
),
2041 VMSTATE_INT32(fwnmi_machine_check_interlock
, SpaprMachineState
),
2042 VMSTATE_END_OF_LIST()
2046 static const VMStateDescription vmstate_spapr
= {
2049 .minimum_version_id
= 1,
2050 .pre_load
= spapr_pre_load
,
2051 .post_load
= spapr_post_load
,
2052 .pre_save
= spapr_pre_save
,
2053 .fields
= (VMStateField
[]) {
2054 /* used to be @next_irq */
2055 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
2058 VMSTATE_UINT64_TEST(rtc_offset
, SpaprMachineState
, version_before_3
),
2060 VMSTATE_PPC_TIMEBASE_V(tb
, SpaprMachineState
, 2),
2061 VMSTATE_END_OF_LIST()
2063 .subsections
= (const VMStateDescription
*[]) {
2064 &vmstate_spapr_ov5_cas
,
2065 &vmstate_spapr_patb_entry
,
2066 &vmstate_spapr_pending_events
,
2067 &vmstate_spapr_cap_htm
,
2068 &vmstate_spapr_cap_vsx
,
2069 &vmstate_spapr_cap_dfp
,
2070 &vmstate_spapr_cap_cfpc
,
2071 &vmstate_spapr_cap_sbbc
,
2072 &vmstate_spapr_cap_ibs
,
2073 &vmstate_spapr_cap_hpt_maxpagesize
,
2074 &vmstate_spapr_irq_map
,
2075 &vmstate_spapr_cap_nested_kvm_hv
,
2077 &vmstate_spapr_cap_large_decr
,
2078 &vmstate_spapr_cap_ccf_assist
,
2079 &vmstate_spapr_cap_fwnmi
,
2080 &vmstate_spapr_fwnmi
,
2081 &vmstate_spapr_cap_rpt_invalidate
,
2086 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
2088 SpaprMachineState
*spapr
= opaque
;
2090 /* "Iteration" header */
2091 if (!spapr
->htab_shift
) {
2092 qemu_put_be32(f
, -1);
2094 qemu_put_be32(f
, spapr
->htab_shift
);
2098 spapr
->htab_save_index
= 0;
2099 spapr
->htab_first_pass
= true;
2101 if (spapr
->htab_shift
) {
2102 assert(kvm_enabled());
2110 static void htab_save_chunk(QEMUFile
*f
, SpaprMachineState
*spapr
,
2111 int chunkstart
, int n_valid
, int n_invalid
)
2113 qemu_put_be32(f
, chunkstart
);
2114 qemu_put_be16(f
, n_valid
);
2115 qemu_put_be16(f
, n_invalid
);
2116 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
2117 HASH_PTE_SIZE_64
* n_valid
);
2120 static void htab_save_end_marker(QEMUFile
*f
)
2122 qemu_put_be32(f
, 0);
2123 qemu_put_be16(f
, 0);
2124 qemu_put_be16(f
, 0);
2127 static void htab_save_first_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2130 bool has_timeout
= max_ns
!= -1;
2131 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2132 int index
= spapr
->htab_save_index
;
2133 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2135 assert(spapr
->htab_first_pass
);
2140 /* Consume invalid HPTEs */
2141 while ((index
< htabslots
)
2142 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2143 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2147 /* Consume valid HPTEs */
2149 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2150 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2151 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2155 if (index
> chunkstart
) {
2156 int n_valid
= index
- chunkstart
;
2158 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, 0);
2161 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2165 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
2167 if (index
>= htabslots
) {
2168 assert(index
== htabslots
);
2170 spapr
->htab_first_pass
= false;
2172 spapr
->htab_save_index
= index
;
2175 static int htab_save_later_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2178 bool final
= max_ns
< 0;
2179 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2180 int examined
= 0, sent
= 0;
2181 int index
= spapr
->htab_save_index
;
2182 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2184 assert(!spapr
->htab_first_pass
);
2187 int chunkstart
, invalidstart
;
2189 /* Consume non-dirty HPTEs */
2190 while ((index
< htabslots
)
2191 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
2197 /* Consume valid dirty HPTEs */
2198 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2199 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2200 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2201 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2206 invalidstart
= index
;
2207 /* Consume invalid dirty HPTEs */
2208 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
2209 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2210 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2211 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2216 if (index
> chunkstart
) {
2217 int n_valid
= invalidstart
- chunkstart
;
2218 int n_invalid
= index
- invalidstart
;
2220 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, n_invalid
);
2221 sent
+= index
- chunkstart
;
2223 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2228 if (examined
>= htabslots
) {
2232 if (index
>= htabslots
) {
2233 assert(index
== htabslots
);
2236 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
2238 if (index
>= htabslots
) {
2239 assert(index
== htabslots
);
2243 spapr
->htab_save_index
= index
;
2245 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
2248 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2249 #define MAX_KVM_BUF_SIZE 2048
2251 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
2253 SpaprMachineState
*spapr
= opaque
;
2257 /* Iteration header */
2258 if (!spapr
->htab_shift
) {
2259 qemu_put_be32(f
, -1);
2262 qemu_put_be32(f
, 0);
2266 assert(kvm_enabled());
2268 fd
= get_htab_fd(spapr
);
2273 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
2277 } else if (spapr
->htab_first_pass
) {
2278 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
2280 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
2283 htab_save_end_marker(f
);
2288 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
2290 SpaprMachineState
*spapr
= opaque
;
2293 /* Iteration header */
2294 if (!spapr
->htab_shift
) {
2295 qemu_put_be32(f
, -1);
2298 qemu_put_be32(f
, 0);
2304 assert(kvm_enabled());
2306 fd
= get_htab_fd(spapr
);
2311 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
2316 if (spapr
->htab_first_pass
) {
2317 htab_save_first_pass(f
, spapr
, -1);
2319 htab_save_later_pass(f
, spapr
, -1);
2323 htab_save_end_marker(f
);
2328 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
2330 SpaprMachineState
*spapr
= opaque
;
2331 uint32_t section_hdr
;
2333 Error
*local_err
= NULL
;
2335 if (version_id
< 1 || version_id
> 1) {
2336 error_report("htab_load() bad version");
2340 section_hdr
= qemu_get_be32(f
);
2342 if (section_hdr
== -1) {
2343 spapr_free_hpt(spapr
);
2350 /* First section gives the htab size */
2351 ret
= spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
2353 error_report_err(local_err
);
2360 assert(kvm_enabled());
2362 fd
= kvmppc_get_htab_fd(true, 0, &local_err
);
2364 error_report_err(local_err
);
2371 uint16_t n_valid
, n_invalid
;
2373 index
= qemu_get_be32(f
);
2374 n_valid
= qemu_get_be16(f
);
2375 n_invalid
= qemu_get_be16(f
);
2377 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
2382 if ((index
+ n_valid
+ n_invalid
) >
2383 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
2384 /* Bad index in stream */
2386 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2387 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
2393 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
2394 HASH_PTE_SIZE_64
* n_valid
);
2397 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
2398 HASH_PTE_SIZE_64
* n_invalid
);
2405 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
,
2408 error_report_err(local_err
);
2422 static void htab_save_cleanup(void *opaque
)
2424 SpaprMachineState
*spapr
= opaque
;
2426 close_htab_fd(spapr
);
2429 static SaveVMHandlers savevm_htab_handlers
= {
2430 .save_setup
= htab_save_setup
,
2431 .save_live_iterate
= htab_save_iterate
,
2432 .save_live_complete_precopy
= htab_save_complete
,
2433 .save_cleanup
= htab_save_cleanup
,
2434 .load_state
= htab_load
,
2437 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2440 SpaprMachineState
*spapr
= SPAPR_MACHINE(opaque
);
2442 g_free(spapr
->boot_device
);
2443 spapr
->boot_device
= g_strdup(boot_device
);
2446 static void spapr_create_lmb_dr_connectors(SpaprMachineState
*spapr
)
2448 MachineState
*machine
= MACHINE(spapr
);
2449 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2450 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2453 for (i
= 0; i
< nr_lmbs
; i
++) {
2456 addr
= i
* lmb_size
+ machine
->device_memory
->base
;
2457 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2463 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2464 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2465 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2467 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2471 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2472 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2473 " is not aligned to %" PRIu64
" MiB",
2475 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2479 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2480 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2481 " is not aligned to %" PRIu64
" MiB",
2483 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2487 for (i
= 0; i
< machine
->numa_state
->num_nodes
; i
++) {
2488 if (machine
->numa_state
->nodes
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2490 "Node %d memory size 0x%" PRIx64
2491 " is not aligned to %" PRIu64
" MiB",
2492 i
, machine
->numa_state
->nodes
[i
].node_mem
,
2493 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2499 /* find cpu slot in machine->possible_cpus by core_id */
2500 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2502 int index
= id
/ ms
->smp
.threads
;
2504 if (index
>= ms
->possible_cpus
->len
) {
2510 return &ms
->possible_cpus
->cpus
[index
];
2513 static void spapr_set_vsmt_mode(SpaprMachineState
*spapr
, Error
**errp
)
2515 MachineState
*ms
= MACHINE(spapr
);
2516 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2517 Error
*local_err
= NULL
;
2518 bool vsmt_user
= !!spapr
->vsmt
;
2519 int kvm_smt
= kvmppc_smt_threads();
2521 unsigned int smp_threads
= ms
->smp
.threads
;
2523 if (!kvm_enabled() && (smp_threads
> 1)) {
2524 error_setg(errp
, "TCG cannot support more than 1 thread/core "
2525 "on a pseries machine");
2528 if (!is_power_of_2(smp_threads
)) {
2529 error_setg(errp
, "Cannot support %d threads/core on a pseries "
2530 "machine because it must be a power of 2", smp_threads
);
2534 /* Detemine the VSMT mode to use: */
2536 if (spapr
->vsmt
< smp_threads
) {
2537 error_setg(errp
, "Cannot support VSMT mode %d"
2538 " because it must be >= threads/core (%d)",
2539 spapr
->vsmt
, smp_threads
);
2542 /* In this case, spapr->vsmt has been set by the command line */
2543 } else if (!smc
->smp_threads_vsmt
) {
2545 * Default VSMT value is tricky, because we need it to be as
2546 * consistent as possible (for migration), but this requires
2547 * changing it for at least some existing cases. We pick 8 as
2548 * the value that we'd get with KVM on POWER8, the
2549 * overwhelmingly common case in production systems.
2551 spapr
->vsmt
= MAX(8, smp_threads
);
2553 spapr
->vsmt
= smp_threads
;
2556 /* KVM: If necessary, set the SMT mode: */
2557 if (kvm_enabled() && (spapr
->vsmt
!= kvm_smt
)) {
2558 ret
= kvmppc_set_smt_threads(spapr
->vsmt
);
2560 /* Looks like KVM isn't able to change VSMT mode */
2561 error_setg(&local_err
,
2562 "Failed to set KVM's VSMT mode to %d (errno %d)",
2564 /* We can live with that if the default one is big enough
2565 * for the number of threads, and a submultiple of the one
2566 * we want. In this case we'll waste some vcpu ids, but
2567 * behaviour will be correct */
2568 if ((kvm_smt
>= smp_threads
) && ((spapr
->vsmt
% kvm_smt
) == 0)) {
2569 warn_report_err(local_err
);
2572 error_append_hint(&local_err
,
2573 "On PPC, a VM with %d threads/core"
2574 " on a host with %d threads/core"
2575 " requires the use of VSMT mode %d.\n",
2576 smp_threads
, kvm_smt
, spapr
->vsmt
);
2578 kvmppc_error_append_smt_possible_hint(&local_err
);
2579 error_propagate(errp
, local_err
);
2583 /* else TCG: nothing to do currently */
2586 static void spapr_init_cpus(SpaprMachineState
*spapr
)
2588 MachineState
*machine
= MACHINE(spapr
);
2589 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2590 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2591 const char *type
= spapr_get_cpu_core_type(machine
->cpu_type
);
2592 const CPUArchIdList
*possible_cpus
;
2593 unsigned int smp_cpus
= machine
->smp
.cpus
;
2594 unsigned int smp_threads
= machine
->smp
.threads
;
2595 unsigned int max_cpus
= machine
->smp
.max_cpus
;
2596 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2599 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2600 if (mc
->has_hotpluggable_cpus
) {
2601 if (smp_cpus
% smp_threads
) {
2602 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2603 smp_cpus
, smp_threads
);
2606 if (max_cpus
% smp_threads
) {
2607 error_report("max_cpus (%u) must be multiple of threads (%u)",
2608 max_cpus
, smp_threads
);
2612 if (max_cpus
!= smp_cpus
) {
2613 error_report("This machine version does not support CPU hotplug");
2616 boot_cores_nr
= possible_cpus
->len
;
2619 if (smc
->pre_2_10_has_unused_icps
) {
2622 for (i
= 0; i
< spapr_max_server_number(spapr
); i
++) {
2623 /* Dummy entries get deregistered when real ICPState objects
2624 * are registered during CPU core hotplug.
2626 pre_2_10_vmstate_register_dummy_icp(i
);
2630 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2631 int core_id
= i
* smp_threads
;
2633 if (mc
->has_hotpluggable_cpus
) {
2634 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2635 spapr_vcpu_id(spapr
, core_id
));
2638 if (i
< boot_cores_nr
) {
2639 Object
*core
= object_new(type
);
2640 int nr_threads
= smp_threads
;
2642 /* Handle the partially filled core for older machine types */
2643 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2644 nr_threads
= smp_cpus
- i
* smp_threads
;
2647 object_property_set_int(core
, "nr-threads", nr_threads
,
2649 object_property_set_int(core
, CPU_CORE_PROP_CORE_ID
, core_id
,
2651 qdev_realize(DEVICE(core
), NULL
, &error_fatal
);
2658 static PCIHostState
*spapr_create_default_phb(void)
2662 dev
= qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE
);
2663 qdev_prop_set_uint32(dev
, "index", 0);
2664 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
2666 return PCI_HOST_BRIDGE(dev
);
2669 static hwaddr
spapr_rma_size(SpaprMachineState
*spapr
, Error
**errp
)
2671 MachineState
*machine
= MACHINE(spapr
);
2672 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2673 hwaddr rma_size
= machine
->ram_size
;
2674 hwaddr node0_size
= spapr_node0_size(machine
);
2676 /* RMA has to fit in the first NUMA node */
2677 rma_size
= MIN(rma_size
, node0_size
);
2680 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2683 rma_size
= MIN(rma_size
, 1 * TiB
);
2686 * Clamp the RMA size based on machine type. This is for
2687 * migration compatibility with older qemu versions, which limited
2688 * the RMA size for complicated and mostly bad reasons.
2690 if (smc
->rma_limit
) {
2691 rma_size
= MIN(rma_size
, smc
->rma_limit
);
2694 if (rma_size
< MIN_RMA_SLOF
) {
2696 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2697 "ldMiB guest RMA (Real Mode Area memory)",
2698 MIN_RMA_SLOF
/ MiB
);
2705 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState
*spapr
)
2707 MachineState
*machine
= MACHINE(spapr
);
2710 for (i
= 0; i
< machine
->ram_slots
; i
++) {
2711 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_PMEM
, i
);
2715 /* pSeries LPAR / sPAPR hardware init */
2716 static void spapr_machine_init(MachineState
*machine
)
2718 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
2719 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2720 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2721 const char *bios_default
= spapr
->vof
? FW_FILE_NAME_VOF
: FW_FILE_NAME
;
2722 const char *bios_name
= machine
->firmware
?: bios_default
;
2723 g_autofree
char *filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2724 const char *kernel_filename
= machine
->kernel_filename
;
2725 const char *initrd_filename
= machine
->initrd_filename
;
2729 MemoryRegion
*sysmem
= get_system_memory();
2730 long load_limit
, fw_size
;
2731 Error
*resize_hpt_err
= NULL
;
2734 error_report("Could not find LPAR firmware '%s'", bios_name
);
2737 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2739 error_report("Could not load LPAR firmware '%s'", filename
);
2744 * if Secure VM (PEF) support is configured, then initialize it
2746 pef_kvm_init(machine
->cgs
, &error_fatal
);
2748 msi_nonbroken
= true;
2750 QLIST_INIT(&spapr
->phbs
);
2751 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2753 /* Determine capabilities to run with */
2754 spapr_caps_init(spapr
);
2756 kvmppc_check_papr_resize_hpt(&resize_hpt_err
);
2757 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DEFAULT
) {
2759 * If the user explicitly requested a mode we should either
2760 * supply it, or fail completely (which we do below). But if
2761 * it's not set explicitly, we reset our mode to something
2764 if (resize_hpt_err
) {
2765 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2766 error_free(resize_hpt_err
);
2767 resize_hpt_err
= NULL
;
2769 spapr
->resize_hpt
= smc
->resize_hpt_default
;
2773 assert(spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DEFAULT
);
2775 if ((spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) && resize_hpt_err
) {
2777 * User requested HPT resize, but this host can't supply it. Bail out
2779 error_report_err(resize_hpt_err
);
2782 error_free(resize_hpt_err
);
2784 spapr
->rma_size
= spapr_rma_size(spapr
, &error_fatal
);
2786 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2787 load_limit
= MIN(spapr
->rma_size
, FDT_MAX_ADDR
) - FW_OVERHEAD
;
2790 * VSMT must be set in order to be able to compute VCPU ids, ie to
2791 * call spapr_max_server_number() or spapr_vcpu_id().
2793 spapr_set_vsmt_mode(spapr
, &error_fatal
);
2795 /* Set up Interrupt Controller before we create the VCPUs */
2796 spapr_irq_init(spapr
, &error_fatal
);
2798 /* Set up containers for ibm,client-architecture-support negotiated options
2800 spapr
->ov5
= spapr_ovec_new();
2801 spapr
->ov5_cas
= spapr_ovec_new();
2803 if (smc
->dr_lmb_enabled
) {
2804 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2805 spapr_validate_node_memory(machine
, &error_fatal
);
2808 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2810 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2811 if (!smc
->pre_6_2_numa_affinity
) {
2812 spapr_ovec_set(spapr
->ov5
, OV5_FORM2_AFFINITY
);
2815 /* advertise support for dedicated HP event source to guests */
2816 if (spapr
->use_hotplug_event_source
) {
2817 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2820 /* advertise support for HPT resizing */
2821 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
2822 spapr_ovec_set(spapr
->ov5
, OV5_HPT_RESIZE
);
2825 /* advertise support for ibm,dyamic-memory-v2 */
2826 spapr_ovec_set(spapr
->ov5
, OV5_DRMEM_V2
);
2828 /* advertise XIVE on POWER9 machines */
2829 if (spapr
->irq
->xive
) {
2830 spapr_ovec_set(spapr
->ov5
, OV5_XIVE_EXPLOIT
);
2834 spapr_init_cpus(spapr
);
2836 spapr
->gpu_numa_id
= spapr_numa_initial_nvgpu_numa_id(machine
);
2838 /* Init numa_assoc_array */
2839 spapr_numa_associativity_init(spapr
, machine
);
2841 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2842 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
2843 spapr
->max_compat_pvr
)) {
2844 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_300
);
2845 /* KVM and TCG always allow GTSE with radix... */
2846 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2848 /* ... but not with hash (currently). */
2850 if (kvm_enabled()) {
2851 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2852 kvmppc_enable_logical_ci_hcalls();
2853 kvmppc_enable_set_mode_hcall();
2855 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2856 kvmppc_enable_clear_ref_mod_hcalls();
2858 /* Enable H_PAGE_INIT */
2859 kvmppc_enable_h_page_init();
2863 memory_region_add_subregion(sysmem
, 0, machine
->ram
);
2865 /* always allocate the device memory information */
2866 machine
->device_memory
= g_malloc0(sizeof(*machine
->device_memory
));
2868 /* initialize hotplug memory address space */
2869 if (machine
->ram_size
< machine
->maxram_size
) {
2870 ram_addr_t device_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2872 * Limit the number of hotpluggable memory slots to half the number
2873 * slots that KVM supports, leaving the other half for PCI and other
2874 * devices. However ensure that number of slots doesn't drop below 32.
2876 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2877 SPAPR_MAX_RAM_SLOTS
;
2879 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2880 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2882 if (machine
->ram_slots
> max_memslots
) {
2883 error_report("Specified number of memory slots %"
2884 PRIu64
" exceeds max supported %d",
2885 machine
->ram_slots
, max_memslots
);
2889 machine
->device_memory
->base
= ROUND_UP(machine
->ram_size
,
2890 SPAPR_DEVICE_MEM_ALIGN
);
2891 memory_region_init(&machine
->device_memory
->mr
, OBJECT(spapr
),
2892 "device-memory", device_mem_size
);
2893 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
2894 &machine
->device_memory
->mr
);
2897 if (smc
->dr_lmb_enabled
) {
2898 spapr_create_lmb_dr_connectors(spapr
);
2901 if (spapr_get_cap(spapr
, SPAPR_CAP_FWNMI
) == SPAPR_CAP_ON
) {
2902 /* Create the error string for live migration blocker */
2903 error_setg(&spapr
->fwnmi_migration_blocker
,
2904 "A machine check is being handled during migration. The handler"
2905 "may run and log hardware error on the destination");
2908 if (mc
->nvdimm_supported
) {
2909 spapr_create_nvdimm_dr_connectors(spapr
);
2912 /* Set up RTAS event infrastructure */
2913 spapr_events_init(spapr
);
2915 /* Set up the RTC RTAS interfaces */
2916 spapr_rtc_create(spapr
);
2918 /* Set up VIO bus */
2919 spapr
->vio_bus
= spapr_vio_bus_init();
2921 for (i
= 0; serial_hd(i
); i
++) {
2922 spapr_vty_create(spapr
->vio_bus
, serial_hd(i
));
2925 /* We always have at least the nvram device on VIO */
2926 spapr_create_nvram(spapr
);
2929 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2930 * connectors (described in root DT node's "ibm,drc-types" property)
2931 * are pre-initialized here. additional child connectors (such as
2932 * connectors for a PHBs PCI slots) are added as needed during their
2933 * parent's realization.
2935 if (smc
->dr_phb_enabled
) {
2936 for (i
= 0; i
< SPAPR_MAX_PHBS
; i
++) {
2937 spapr_dr_connector_new(OBJECT(machine
), TYPE_SPAPR_DRC_PHB
, i
);
2942 spapr_pci_rtas_init();
2944 phb
= spapr_create_default_phb();
2946 for (i
= 0; i
< nb_nics
; i
++) {
2947 NICInfo
*nd
= &nd_table
[i
];
2950 nd
->model
= g_strdup("spapr-vlan");
2953 if (g_str_equal(nd
->model
, "spapr-vlan") ||
2954 g_str_equal(nd
->model
, "ibmveth")) {
2955 spapr_vlan_create(spapr
->vio_bus
, nd
);
2957 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2961 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2962 spapr_vscsi_create(spapr
->vio_bus
);
2966 has_vga
= spapr_vga_init(phb
->bus
, &error_fatal
);
2968 spapr
->want_stdout_path
= !machine
->enable_graphics
;
2969 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2971 spapr
->want_stdout_path
= true;
2975 if (smc
->use_ohci_by_default
) {
2976 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2978 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2982 USBBus
*usb_bus
= usb_bus_find(-1);
2984 usb_create_simple(usb_bus
, "usb-kbd");
2985 usb_create_simple(usb_bus
, "usb-mouse");
2989 if (kernel_filename
) {
2990 uint64_t loaded_addr
= 0;
2992 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2993 translate_kernel_address
, spapr
,
2994 NULL
, &loaded_addr
, NULL
, NULL
, 1,
2995 PPC_ELF_MACHINE
, 0, 0);
2996 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2997 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2998 translate_kernel_address
, spapr
,
2999 NULL
, &loaded_addr
, NULL
, NULL
, 0,
3000 PPC_ELF_MACHINE
, 0, 0);
3001 spapr
->kernel_le
= spapr
->kernel_size
> 0;
3003 if (spapr
->kernel_size
< 0) {
3004 error_report("error loading %s: %s", kernel_filename
,
3005 load_elf_strerror(spapr
->kernel_size
));
3009 if (spapr
->kernel_addr
!= loaded_addr
) {
3010 warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3012 spapr
->kernel_addr
, loaded_addr
);
3013 spapr
->kernel_addr
= loaded_addr
;
3017 if (initrd_filename
) {
3018 /* Try to locate the initrd in the gap between the kernel
3019 * and the firmware. Add a bit of space just in case
3021 spapr
->initrd_base
= (spapr
->kernel_addr
+ spapr
->kernel_size
3022 + 0x1ffff) & ~0xffff;
3023 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
3026 - spapr
->initrd_base
);
3027 if (spapr
->initrd_size
< 0) {
3028 error_report("could not load initial ram disk '%s'",
3035 /* FIXME: Should register things through the MachineState's qdev
3036 * interface, this is a legacy from the sPAPREnvironment structure
3037 * which predated MachineState but had a similar function */
3038 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
3039 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY
, 1,
3040 &savevm_htab_handlers
, spapr
);
3042 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine
));
3044 qemu_register_boot_set(spapr_boot_set
, spapr
);
3047 * Nothing needs to be done to resume a suspended guest because
3048 * suspending does not change the machine state, so no need for
3049 * a ->wakeup method.
3051 qemu_register_wakeup_support();
3053 if (kvm_enabled()) {
3054 /* to stop and start vmclock */
3055 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
3058 kvmppc_spapr_enable_inkernel_multitce();
3061 qemu_cond_init(&spapr
->fwnmi_machine_check_interlock_cond
);
3063 spapr
->vof
->fw_size
= fw_size
; /* for claim() on itself */
3064 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT
, spapr_h_vof_client
);
3067 spapr_watchdog_init(spapr
);
3070 #define DEFAULT_KVM_TYPE "auto"
3071 static int spapr_kvm_type(MachineState
*machine
, const char *vm_type
)
3074 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3075 * accomodate the 'HV' and 'PV' formats that exists in the
3076 * wild. The 'auto' mode is being introduced already as
3077 * lower-case, thus we don't need to bother checking for
3080 if (!vm_type
|| !strcmp(vm_type
, DEFAULT_KVM_TYPE
)) {
3084 if (!g_ascii_strcasecmp(vm_type
, "hv")) {
3088 if (!g_ascii_strcasecmp(vm_type
, "pr")) {
3092 error_report("Unknown kvm-type specified '%s'", vm_type
);
3097 * Implementation of an interface to adjust firmware path
3098 * for the bootindex property handling.
3100 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
3103 #define CAST(type, obj, name) \
3104 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3105 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
3106 SpaprPhbState
*phb
= CAST(SpaprPhbState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
3107 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
3108 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
3111 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
3112 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
3113 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
3117 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3118 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3119 * 0x8000 | (target << 8) | (bus << 5) | lun
3120 * (see the "Logical unit addressing format" table in SAM5)
3122 unsigned id
= 0x8000 | (d
->id
<< 8) | (d
->channel
<< 5) | d
->lun
;
3123 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3124 (uint64_t)id
<< 48);
3125 } else if (virtio
) {
3127 * We use SRP luns of the form 01000000 | (target << 8) | lun
3128 * in the top 32 bits of the 64-bit LUN
3129 * Note: the quote above is from SLOF and it is wrong,
3130 * the actual binding is:
3131 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3133 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
3134 if (d
->lun
>= 256) {
3135 /* Use the LUN "flat space addressing method" */
3138 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3139 (uint64_t)id
<< 32);
3142 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3143 * in the top 32 bits of the 64-bit LUN
3145 unsigned usb_port
= atoi(usb
->port
->path
);
3146 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
3147 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3148 (uint64_t)id
<< 32);
3153 * SLOF probes the USB devices, and if it recognizes that the device is a
3154 * storage device, it changes its name to "storage" instead of "usb-host",
3155 * and additionally adds a child node for the SCSI LUN, so the correct
3156 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3158 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
3159 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
3160 if (usb_device_is_scsi_storage(usbdev
)) {
3161 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
3166 /* Replace "pci" with "pci@800000020000000" */
3167 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
3171 /* Same logic as virtio above */
3172 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
3173 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
3176 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
3177 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3178 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
3179 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
3183 return spapr_pci_fw_dev_name(pcidev
);
3189 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
3191 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3193 return g_strdup(spapr
->kvm_type
);
3196 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
3198 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3200 g_free(spapr
->kvm_type
);
3201 spapr
->kvm_type
= g_strdup(value
);
3204 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
3206 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3208 return spapr
->use_hotplug_event_source
;
3211 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
3214 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3216 spapr
->use_hotplug_event_source
= value
;
3219 static bool spapr_get_msix_emulation(Object
*obj
, Error
**errp
)
3224 static char *spapr_get_resize_hpt(Object
*obj
, Error
**errp
)
3226 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3228 switch (spapr
->resize_hpt
) {
3229 case SPAPR_RESIZE_HPT_DEFAULT
:
3230 return g_strdup("default");
3231 case SPAPR_RESIZE_HPT_DISABLED
:
3232 return g_strdup("disabled");
3233 case SPAPR_RESIZE_HPT_ENABLED
:
3234 return g_strdup("enabled");
3235 case SPAPR_RESIZE_HPT_REQUIRED
:
3236 return g_strdup("required");
3238 g_assert_not_reached();
3241 static void spapr_set_resize_hpt(Object
*obj
, const char *value
, Error
**errp
)
3243 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3245 if (strcmp(value
, "default") == 0) {
3246 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DEFAULT
;
3247 } else if (strcmp(value
, "disabled") == 0) {
3248 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
3249 } else if (strcmp(value
, "enabled") == 0) {
3250 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_ENABLED
;
3251 } else if (strcmp(value
, "required") == 0) {
3252 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_REQUIRED
;
3254 error_setg(errp
, "Bad value for \"resize-hpt\" property");
3258 static bool spapr_get_vof(Object
*obj
, Error
**errp
)
3260 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3262 return spapr
->vof
!= NULL
;
3265 static void spapr_set_vof(Object
*obj
, bool value
, Error
**errp
)
3267 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3270 vof_cleanup(spapr
->vof
);
3277 spapr
->vof
= g_malloc0(sizeof(*spapr
->vof
));
3280 static char *spapr_get_ic_mode(Object
*obj
, Error
**errp
)
3282 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3284 if (spapr
->irq
== &spapr_irq_xics_legacy
) {
3285 return g_strdup("legacy");
3286 } else if (spapr
->irq
== &spapr_irq_xics
) {
3287 return g_strdup("xics");
3288 } else if (spapr
->irq
== &spapr_irq_xive
) {
3289 return g_strdup("xive");
3290 } else if (spapr
->irq
== &spapr_irq_dual
) {
3291 return g_strdup("dual");
3293 g_assert_not_reached();
3296 static void spapr_set_ic_mode(Object
*obj
, const char *value
, Error
**errp
)
3298 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3300 if (SPAPR_MACHINE_GET_CLASS(spapr
)->legacy_irq_allocation
) {
3301 error_setg(errp
, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3305 /* The legacy IRQ backend can not be set */
3306 if (strcmp(value
, "xics") == 0) {
3307 spapr
->irq
= &spapr_irq_xics
;
3308 } else if (strcmp(value
, "xive") == 0) {
3309 spapr
->irq
= &spapr_irq_xive
;
3310 } else if (strcmp(value
, "dual") == 0) {
3311 spapr
->irq
= &spapr_irq_dual
;
3313 error_setg(errp
, "Bad value for \"ic-mode\" property");
3317 static char *spapr_get_host_model(Object
*obj
, Error
**errp
)
3319 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3321 return g_strdup(spapr
->host_model
);
3324 static void spapr_set_host_model(Object
*obj
, const char *value
, Error
**errp
)
3326 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3328 g_free(spapr
->host_model
);
3329 spapr
->host_model
= g_strdup(value
);
3332 static char *spapr_get_host_serial(Object
*obj
, Error
**errp
)
3334 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3336 return g_strdup(spapr
->host_serial
);
3339 static void spapr_set_host_serial(Object
*obj
, const char *value
, Error
**errp
)
3341 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3343 g_free(spapr
->host_serial
);
3344 spapr
->host_serial
= g_strdup(value
);
3347 static void spapr_instance_init(Object
*obj
)
3349 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3350 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3351 MachineState
*ms
= MACHINE(spapr
);
3352 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
3355 * NVDIMM support went live in 5.1 without considering that, in
3356 * other archs, the user needs to enable NVDIMM support with the
3357 * 'nvdimm' machine option and the default behavior is NVDIMM
3358 * support disabled. It is too late to roll back to the standard
3359 * behavior without breaking 5.1 guests.
3361 if (mc
->nvdimm_supported
) {
3362 ms
->nvdimms_state
->is_enabled
= true;
3365 spapr
->htab_fd
= -1;
3366 spapr
->use_hotplug_event_source
= true;
3367 spapr
->kvm_type
= g_strdup(DEFAULT_KVM_TYPE
);
3368 object_property_add_str(obj
, "kvm-type",
3369 spapr_get_kvm_type
, spapr_set_kvm_type
);
3370 object_property_set_description(obj
, "kvm-type",
3371 "Specifies the KVM virtualization mode (auto,"
3372 " hv, pr). Defaults to 'auto'. This mode will use"
3373 " any available KVM module loaded in the host,"
3374 " where kvm_hv takes precedence if both kvm_hv and"
3375 " kvm_pr are loaded.");
3376 object_property_add_bool(obj
, "modern-hotplug-events",
3377 spapr_get_modern_hotplug_events
,
3378 spapr_set_modern_hotplug_events
);
3379 object_property_set_description(obj
, "modern-hotplug-events",
3380 "Use dedicated hotplug event mechanism in"
3381 " place of standard EPOW events when possible"
3382 " (required for memory hot-unplug support)");
3383 ppc_compat_add_property(obj
, "max-cpu-compat", &spapr
->max_compat_pvr
,
3384 "Maximum permitted CPU compatibility mode");
3386 object_property_add_str(obj
, "resize-hpt",
3387 spapr_get_resize_hpt
, spapr_set_resize_hpt
);
3388 object_property_set_description(obj
, "resize-hpt",
3389 "Resizing of the Hash Page Table (enabled, disabled, required)");
3390 object_property_add_uint32_ptr(obj
, "vsmt",
3391 &spapr
->vsmt
, OBJ_PROP_FLAG_READWRITE
);
3392 object_property_set_description(obj
, "vsmt",
3393 "Virtual SMT: KVM behaves as if this were"
3394 " the host's SMT mode");
3396 object_property_add_bool(obj
, "vfio-no-msix-emulation",
3397 spapr_get_msix_emulation
, NULL
);
3399 object_property_add_uint64_ptr(obj
, "kernel-addr",
3400 &spapr
->kernel_addr
, OBJ_PROP_FLAG_READWRITE
);
3401 object_property_set_description(obj
, "kernel-addr",
3402 stringify(KERNEL_LOAD_ADDR
)
3403 " for -kernel is the default");
3404 spapr
->kernel_addr
= KERNEL_LOAD_ADDR
;
3406 object_property_add_bool(obj
, "x-vof", spapr_get_vof
, spapr_set_vof
);
3407 object_property_set_description(obj
, "x-vof",
3408 "Enable Virtual Open Firmware (experimental)");
3410 /* The machine class defines the default interrupt controller mode */
3411 spapr
->irq
= smc
->irq
;
3412 object_property_add_str(obj
, "ic-mode", spapr_get_ic_mode
,
3414 object_property_set_description(obj
, "ic-mode",
3415 "Specifies the interrupt controller mode (xics, xive, dual)");
3417 object_property_add_str(obj
, "host-model",
3418 spapr_get_host_model
, spapr_set_host_model
);
3419 object_property_set_description(obj
, "host-model",
3420 "Host model to advertise in guest device tree");
3421 object_property_add_str(obj
, "host-serial",
3422 spapr_get_host_serial
, spapr_set_host_serial
);
3423 object_property_set_description(obj
, "host-serial",
3424 "Host serial number to advertise in guest device tree");
3427 static void spapr_machine_finalizefn(Object
*obj
)
3429 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3431 g_free(spapr
->kvm_type
);
3434 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
3436 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
3437 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3438 CPUPPCState
*env
= &cpu
->env
;
3440 cpu_synchronize_state(cs
);
3441 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3442 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3443 uint64_t rtas_addr
, addr
;
3445 /* get rtas addr from fdt */
3446 rtas_addr
= spapr_get_rtas_addr();
3448 qemu_system_guest_panicked(NULL
);
3452 addr
= rtas_addr
+ RTAS_ERROR_LOG_MAX
+ cs
->cpu_index
* sizeof(uint64_t)*2;
3453 stq_be_phys(&address_space_memory
, addr
, env
->gpr
[3]);
3454 stq_be_phys(&address_space_memory
, addr
+ sizeof(uint64_t), 0);
3457 ppc_cpu_do_system_reset(cs
);
3458 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3459 env
->nip
= spapr
->fwnmi_system_reset_addr
;
3463 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
3468 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
3472 int spapr_lmb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3473 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3478 addr
= spapr_drc_index(drc
) * SPAPR_MEMORY_BLOCK_SIZE
;
3479 node
= object_property_get_uint(OBJECT(drc
->dev
), PC_DIMM_NODE_PROP
,
3481 *fdt_start_offset
= spapr_dt_memory_node(spapr
, fdt
, node
, addr
,
3482 SPAPR_MEMORY_BLOCK_SIZE
);
3486 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
3487 bool dedicated_hp_event_source
)
3490 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
3492 uint64_t addr
= addr_start
;
3493 bool hotplugged
= spapr_drc_hotplugged(dev
);
3495 for (i
= 0; i
< nr_lmbs
; i
++) {
3496 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3497 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3501 * memory_device_get_free_addr() provided a range of free addresses
3502 * that doesn't overlap with any existing mapping at pre-plug. The
3503 * corresponding LMB DRCs are thus assumed to be all attachable.
3505 spapr_drc_attach(drc
, dev
);
3507 spapr_drc_reset(drc
);
3509 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3511 /* send hotplug notification to the
3512 * guest only in case of hotplugged memory
3515 if (dedicated_hp_event_source
) {
3516 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3517 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3519 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3521 spapr_drc_index(drc
));
3523 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3529 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3531 SpaprMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
3532 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3533 uint64_t size
, addr
;
3535 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3537 size
= memory_device_get_region_size(MEMORY_DEVICE(dev
), &error_abort
);
3539 pc_dimm_plug(dimm
, MACHINE(ms
));
3542 addr
= object_property_get_uint(OBJECT(dimm
),
3543 PC_DIMM_ADDR_PROP
, &error_abort
);
3544 spapr_add_lmbs(dev
, addr
, size
,
3545 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
));
3547 slot
= object_property_get_int(OBJECT(dimm
),
3548 PC_DIMM_SLOT_PROP
, &error_abort
);
3549 /* We should have valid slot number at this point */
3550 g_assert(slot
>= 0);
3551 spapr_add_nvdimm(dev
, slot
);
3555 static void spapr_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3558 const SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(hotplug_dev
);
3559 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3560 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3561 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3562 Error
*local_err
= NULL
;
3567 if (!smc
->dr_lmb_enabled
) {
3568 error_setg(errp
, "Memory hotplug not supported for this machine");
3572 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &local_err
);
3574 error_propagate(errp
, local_err
);
3579 if (!spapr_nvdimm_validate(hotplug_dev
, NVDIMM(dev
), size
, errp
)) {
3582 } else if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
3583 error_setg(errp
, "Hotplugged memory size must be a multiple of "
3584 "%" PRIu64
" MB", SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
3588 memdev
= object_property_get_link(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
,
3590 pagesize
= host_memory_backend_pagesize(MEMORY_BACKEND(memdev
));
3591 if (!spapr_check_pagesize(spapr
, pagesize
, errp
)) {
3595 pc_dimm_pre_plug(dimm
, MACHINE(hotplug_dev
), NULL
, errp
);
3598 struct SpaprDimmState
{
3601 QTAILQ_ENTRY(SpaprDimmState
) next
;
3604 static SpaprDimmState
*spapr_pending_dimm_unplugs_find(SpaprMachineState
*s
,
3607 SpaprDimmState
*dimm_state
= NULL
;
3609 QTAILQ_FOREACH(dimm_state
, &s
->pending_dimm_unplugs
, next
) {
3610 if (dimm_state
->dimm
== dimm
) {
3617 static SpaprDimmState
*spapr_pending_dimm_unplugs_add(SpaprMachineState
*spapr
,
3621 SpaprDimmState
*ds
= NULL
;
3624 * If this request is for a DIMM whose removal had failed earlier
3625 * (due to guest's refusal to remove the LMBs), we would have this
3626 * dimm already in the pending_dimm_unplugs list. In that
3627 * case don't add again.
3629 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3631 ds
= g_new0(SpaprDimmState
, 1);
3632 ds
->nr_lmbs
= nr_lmbs
;
3634 QTAILQ_INSERT_HEAD(&spapr
->pending_dimm_unplugs
, ds
, next
);
3639 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState
*spapr
,
3640 SpaprDimmState
*dimm_state
)
3642 QTAILQ_REMOVE(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
3646 static SpaprDimmState
*spapr_recover_pending_dimm_state(SpaprMachineState
*ms
,
3650 uint64_t size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
),
3652 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3653 uint32_t avail_lmbs
= 0;
3654 uint64_t addr_start
, addr
;
3657 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3661 for (i
= 0; i
< nr_lmbs
; i
++) {
3662 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3663 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3668 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3671 return spapr_pending_dimm_unplugs_add(ms
, avail_lmbs
, dimm
);
3674 void spapr_memory_unplug_rollback(SpaprMachineState
*spapr
, DeviceState
*dev
)
3680 uint64_t size
, addr_start
, addr
;
3681 g_autofree
char *qapi_error
= NULL
;
3688 dimm
= PC_DIMM(dev
);
3689 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3692 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3693 * unplug state, but one of its DRC is marked as unplug_requested.
3694 * This is bad and weird enough to g_assert() out.
3698 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3700 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &error_abort
);
3701 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3703 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3707 for (i
= 0; i
< nr_lmbs
; i
++) {
3708 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3709 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3712 drc
->unplug_requested
= false;
3713 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3717 * Tell QAPI that something happened and the memory
3718 * hotunplug wasn't successful. Keep sending
3719 * MEM_UNPLUG_ERROR even while sending
3720 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3721 * MEM_UNPLUG_ERROR is due.
3723 qapi_error
= g_strdup_printf("Memory hotunplug rejected by the guest "
3724 "for device %s", dev
->id
);
3726 qapi_event_send_mem_unplug_error(dev
->id
? : "", qapi_error
);
3728 qapi_event_send_device_unplug_guest_error(!!dev
->id
, dev
->id
,
3729 dev
->canonical_path
);
3732 /* Callback to be called during DRC release. */
3733 void spapr_lmb_release(DeviceState
*dev
)
3735 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3736 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_ctrl
);
3737 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3739 /* This information will get lost if a migration occurs
3740 * during the unplug process. In this case recover it. */
3742 ds
= spapr_recover_pending_dimm_state(spapr
, PC_DIMM(dev
));
3744 /* The DRC being examined by the caller at least must be counted */
3745 g_assert(ds
->nr_lmbs
);
3748 if (--ds
->nr_lmbs
) {
3753 * Now that all the LMBs have been removed by the guest, call the
3754 * unplug handler chain. This can never fail.
3756 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3757 object_unparent(OBJECT(dev
));
3760 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3762 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3763 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3765 /* We really shouldn't get this far without anything to unplug */
3768 pc_dimm_unplug(PC_DIMM(dev
), MACHINE(hotplug_dev
));
3769 qdev_unrealize(dev
);
3770 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3773 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
3774 DeviceState
*dev
, Error
**errp
)
3776 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3777 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3779 uint64_t size
, addr_start
, addr
;
3783 if (object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
)) {
3784 error_setg(errp
, "nvdimm device hot unplug is not supported yet.");
3788 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &error_abort
);
3789 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3791 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3795 * An existing pending dimm state for this DIMM means that there is an
3796 * unplug operation in progress, waiting for the spapr_lmb_release
3797 * callback to complete the job (BQL can't cover that far). In this case,
3798 * bail out to avoid detaching DRCs that were already released.
3800 if (spapr_pending_dimm_unplugs_find(spapr
, dimm
)) {
3801 error_setg(errp
, "Memory unplug already in progress for device %s",
3806 spapr_pending_dimm_unplugs_add(spapr
, nr_lmbs
, dimm
);
3809 for (i
= 0; i
< nr_lmbs
; i
++) {
3810 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3811 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3814 spapr_drc_unplug_request(drc
);
3815 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3818 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3819 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3820 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3821 nr_lmbs
, spapr_drc_index(drc
));
3824 /* Callback to be called during DRC release. */
3825 void spapr_core_release(DeviceState
*dev
)
3827 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3829 /* Call the unplug handler chain. This can never fail. */
3830 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3831 object_unparent(OBJECT(dev
));
3834 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3836 MachineState
*ms
= MACHINE(hotplug_dev
);
3837 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
3838 CPUCore
*cc
= CPU_CORE(dev
);
3839 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
3841 if (smc
->pre_2_10_has_unused_icps
) {
3842 SpaprCpuCore
*sc
= SPAPR_CPU_CORE(OBJECT(dev
));
3845 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3846 CPUState
*cs
= CPU(sc
->threads
[i
]);
3848 pre_2_10_vmstate_register_dummy_icp(cs
->cpu_index
);
3853 core_slot
->cpu
= NULL
;
3854 qdev_unrealize(dev
);
3858 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3861 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3864 CPUCore
*cc
= CPU_CORE(dev
);
3866 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
3867 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3872 error_setg(errp
, "Boot CPU core may not be unplugged");
3876 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3877 spapr_vcpu_id(spapr
, cc
->core_id
));
3880 if (!spapr_drc_unplug_requested(drc
)) {
3881 spapr_drc_unplug_request(drc
);
3885 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3886 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3887 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3888 * attempt (e.g. the kernel will refuse to remove the last online
3889 * CPU), we will never attempt it again because unplug_requested
3890 * will still be 'true' in that case.
3892 spapr_hotplug_req_remove_by_index(drc
);
3895 int spapr_core_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3896 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3898 SpaprCpuCore
*core
= SPAPR_CPU_CORE(drc
->dev
);
3899 CPUState
*cs
= CPU(core
->threads
[0]);
3900 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3901 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
3902 int id
= spapr_get_vcpu_id(cpu
);
3903 g_autofree
char *nodename
= NULL
;
3906 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
3907 offset
= fdt_add_subnode(fdt
, 0, nodename
);
3909 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
3912 * spapr_dt_cpu() does not fill the 'name' property in the
3913 * CPU node. The function is called during boot process, before
3914 * and after CAS, and overwriting the 'name' property written
3915 * by SLOF is not allowed.
3917 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3918 * CPUs more compatible with the coldplugged ones, which have
3919 * the 'name' property. Linux Kernel also relies on this
3920 * property to identify CPU nodes.
3922 _FDT((fdt_setprop_string(fdt
, offset
, "name", nodename
)));
3924 *fdt_start_offset
= offset
;
3928 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3930 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3931 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
3932 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3933 SpaprCpuCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
3934 CPUCore
*cc
= CPU_CORE(dev
);
3937 CPUArchId
*core_slot
;
3939 bool hotplugged
= spapr_drc_hotplugged(dev
);
3942 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3943 g_assert(core_slot
); /* Already checked in spapr_core_pre_plug() */
3945 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3946 spapr_vcpu_id(spapr
, cc
->core_id
));
3948 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
3952 * spapr_core_pre_plug() already buys us this is a brand new
3953 * core being plugged into a free slot. Nothing should already
3954 * be attached to the corresponding DRC.
3956 spapr_drc_attach(drc
, dev
);
3960 * Send hotplug notification interrupt to the guest only
3961 * in case of hotplugged CPUs.
3963 spapr_hotplug_req_add_by_index(drc
);
3965 spapr_drc_reset(drc
);
3969 core_slot
->cpu
= OBJECT(dev
);
3972 * Set compatibility mode to match the boot CPU, which was either set
3973 * by the machine reset code or by CAS. This really shouldn't fail at
3977 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3978 ppc_set_compat(core
->threads
[i
], POWERPC_CPU(first_cpu
)->compat_pvr
,
3983 if (smc
->pre_2_10_has_unused_icps
) {
3984 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3985 cs
= CPU(core
->threads
[i
]);
3986 pre_2_10_vmstate_unregister_dummy_icp(cs
->cpu_index
);
3991 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3994 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
3995 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
3996 CPUCore
*cc
= CPU_CORE(dev
);
3997 const char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
3998 const char *type
= object_get_typename(OBJECT(dev
));
3999 CPUArchId
*core_slot
;
4001 unsigned int smp_threads
= machine
->smp
.threads
;
4003 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
4004 error_setg(errp
, "CPU hotplug not supported for this machine");
4008 if (strcmp(base_core_type
, type
)) {
4009 error_setg(errp
, "CPU core type should be %s", base_core_type
);
4013 if (cc
->core_id
% smp_threads
) {
4014 error_setg(errp
, "invalid core id %d", cc
->core_id
);
4019 * In general we should have homogeneous threads-per-core, but old
4020 * (pre hotplug support) machine types allow the last core to have
4021 * reduced threads as a compatibility hack for when we allowed
4022 * total vcpus not a multiple of threads-per-core.
4024 if (mc
->has_hotpluggable_cpus
&& (cc
->nr_threads
!= smp_threads
)) {
4025 error_setg(errp
, "invalid nr-threads %d, must be %d", cc
->nr_threads
,
4030 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
4032 error_setg(errp
, "core id %d out of range", cc
->core_id
);
4036 if (core_slot
->cpu
) {
4037 error_setg(errp
, "core %d already populated", cc
->core_id
);
4041 numa_cpu_pre_plug(core_slot
, dev
, errp
);
4044 int spapr_phb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
4045 void *fdt
, int *fdt_start_offset
, Error
**errp
)
4047 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(drc
->dev
);
4050 intc_phandle
= spapr_irq_get_phandle(spapr
, spapr
->fdt_blob
, errp
);
4051 if (intc_phandle
<= 0) {
4055 if (spapr_dt_phb(spapr
, sphb
, intc_phandle
, fdt
, fdt_start_offset
)) {
4056 error_setg(errp
, "unable to create FDT node for PHB %d", sphb
->index
);
4060 /* generally SLOF creates these, for hotplug it's up to QEMU */
4061 _FDT(fdt_setprop_string(fdt
, *fdt_start_offset
, "name", "pci"));
4066 static bool spapr_phb_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
4069 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4070 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
4071 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
4072 const unsigned windows_supported
= spapr_phb_windows_supported(sphb
);
4075 if (dev
->hotplugged
&& !smc
->dr_phb_enabled
) {
4076 error_setg(errp
, "PHB hotplug not supported for this machine");
4080 if (sphb
->index
== (uint32_t)-1) {
4081 error_setg(errp
, "\"index\" for PAPR PHB is mandatory");
4085 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
4086 if (drc
&& drc
->dev
) {
4087 error_setg(errp
, "PHB %d already attached", sphb
->index
);
4092 * This will check that sphb->index doesn't exceed the maximum number of
4093 * PHBs for the current machine type.
4096 smc
->phb_placement(spapr
, sphb
->index
,
4097 &sphb
->buid
, &sphb
->io_win_addr
,
4098 &sphb
->mem_win_addr
, &sphb
->mem64_win_addr
,
4099 windows_supported
, sphb
->dma_liobn
,
4100 &sphb
->nv2_gpa_win_addr
, &sphb
->nv2_atsd_win_addr
,
4104 static void spapr_phb_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4106 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4107 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
4108 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
4110 bool hotplugged
= spapr_drc_hotplugged(dev
);
4112 if (!smc
->dr_phb_enabled
) {
4116 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
4117 /* hotplug hooks should check it's enabled before getting this far */
4120 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4121 spapr_drc_attach(drc
, dev
);
4124 spapr_hotplug_req_add_by_index(drc
);
4126 spapr_drc_reset(drc
);
4130 void spapr_phb_release(DeviceState
*dev
)
4132 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
4134 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
4135 object_unparent(OBJECT(dev
));
4138 static void spapr_phb_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4140 qdev_unrealize(dev
);
4143 static void spapr_phb_unplug_request(HotplugHandler
*hotplug_dev
,
4144 DeviceState
*dev
, Error
**errp
)
4146 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
4149 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
4152 if (!spapr_drc_unplug_requested(drc
)) {
4153 spapr_drc_unplug_request(drc
);
4154 spapr_hotplug_req_remove_by_index(drc
);
4157 "PCI Host Bridge unplug already in progress for device %s",
4163 bool spapr_tpm_proxy_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
4166 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4168 if (spapr
->tpm_proxy
!= NULL
) {
4169 error_setg(errp
, "Only one TPM proxy can be specified for this machine");
4176 static void spapr_tpm_proxy_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4178 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4179 SpaprTpmProxy
*tpm_proxy
= SPAPR_TPM_PROXY(dev
);
4181 /* Already checked in spapr_tpm_proxy_pre_plug() */
4182 g_assert(spapr
->tpm_proxy
== NULL
);
4184 spapr
->tpm_proxy
= tpm_proxy
;
4187 static void spapr_tpm_proxy_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4189 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4191 qdev_unrealize(dev
);
4192 object_unparent(OBJECT(dev
));
4193 spapr
->tpm_proxy
= NULL
;
4196 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
4197 DeviceState
*dev
, Error
**errp
)
4199 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4200 spapr_memory_plug(hotplug_dev
, dev
);
4201 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4202 spapr_core_plug(hotplug_dev
, dev
);
4203 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4204 spapr_phb_plug(hotplug_dev
, dev
);
4205 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4206 spapr_tpm_proxy_plug(hotplug_dev
, dev
);
4210 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
4211 DeviceState
*dev
, Error
**errp
)
4213 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4214 spapr_memory_unplug(hotplug_dev
, dev
);
4215 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4216 spapr_core_unplug(hotplug_dev
, dev
);
4217 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4218 spapr_phb_unplug(hotplug_dev
, dev
);
4219 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4220 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4224 bool spapr_memory_hot_unplug_supported(SpaprMachineState
*spapr
)
4226 return spapr_ovec_test(spapr
->ov5_cas
, OV5_HP_EVT
) ||
4228 * CAS will process all pending unplug requests.
4230 * HACK: a guest could theoretically have cleared all bits in OV5,
4231 * but none of the guests we care for do.
4233 spapr_ovec_empty(spapr
->ov5_cas
);
4236 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
4237 DeviceState
*dev
, Error
**errp
)
4239 SpaprMachineState
*sms
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4240 MachineClass
*mc
= MACHINE_GET_CLASS(sms
);
4241 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4243 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4244 if (spapr_memory_hot_unplug_supported(sms
)) {
4245 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
4247 error_setg(errp
, "Memory hot unplug not supported for this guest");
4249 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4250 if (!mc
->has_hotpluggable_cpus
) {
4251 error_setg(errp
, "CPU hot unplug not supported on this machine");
4254 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
4255 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4256 if (!smc
->dr_phb_enabled
) {
4257 error_setg(errp
, "PHB hot unplug not supported on this machine");
4260 spapr_phb_unplug_request(hotplug_dev
, dev
, errp
);
4261 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4262 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4266 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
4267 DeviceState
*dev
, Error
**errp
)
4269 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4270 spapr_memory_pre_plug(hotplug_dev
, dev
, errp
);
4271 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4272 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
4273 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4274 spapr_phb_pre_plug(hotplug_dev
, dev
, errp
);
4275 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4276 spapr_tpm_proxy_pre_plug(hotplug_dev
, dev
, errp
);
4280 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
4283 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
4284 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
) ||
4285 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
) ||
4286 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4287 return HOTPLUG_HANDLER(machine
);
4289 if (object_dynamic_cast(OBJECT(dev
), TYPE_PCI_DEVICE
)) {
4290 PCIDevice
*pcidev
= PCI_DEVICE(dev
);
4291 PCIBus
*root
= pci_device_root_bus(pcidev
);
4292 SpaprPhbState
*phb
=
4293 (SpaprPhbState
*)object_dynamic_cast(OBJECT(BUS(root
)->parent
),
4294 TYPE_SPAPR_PCI_HOST_BRIDGE
);
4297 return HOTPLUG_HANDLER(phb
);
4303 static CpuInstanceProperties
4304 spapr_cpu_index_to_props(MachineState
*machine
, unsigned cpu_index
)
4306 CPUArchId
*core_slot
;
4307 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4309 /* make sure possible_cpu are intialized */
4310 mc
->possible_cpu_arch_ids(machine
);
4311 /* get CPU core slot containing thread that matches cpu_index */
4312 core_slot
= spapr_find_cpu_slot(machine
, cpu_index
, NULL
);
4314 return core_slot
->props
;
4317 static int64_t spapr_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
4319 return idx
/ ms
->smp
.cores
% ms
->numa_state
->num_nodes
;
4322 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
4325 unsigned int smp_threads
= machine
->smp
.threads
;
4326 unsigned int smp_cpus
= machine
->smp
.cpus
;
4327 const char *core_type
;
4328 int spapr_max_cores
= machine
->smp
.max_cpus
/ smp_threads
;
4329 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4331 if (!mc
->has_hotpluggable_cpus
) {
4332 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
4334 if (machine
->possible_cpus
) {
4335 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
4336 return machine
->possible_cpus
;
4339 core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
4341 error_report("Unable to find sPAPR CPU Core definition");
4345 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
4346 sizeof(CPUArchId
) * spapr_max_cores
);
4347 machine
->possible_cpus
->len
= spapr_max_cores
;
4348 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
4349 int core_id
= i
* smp_threads
;
4351 machine
->possible_cpus
->cpus
[i
].type
= core_type
;
4352 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
4353 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
4354 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
4355 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
4357 return machine
->possible_cpus
;
4360 static bool spapr_phb_placement(SpaprMachineState
*spapr
, uint32_t index
,
4361 uint64_t *buid
, hwaddr
*pio
,
4362 hwaddr
*mmio32
, hwaddr
*mmio64
,
4363 unsigned n_dma
, uint32_t *liobns
,
4364 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4367 * New-style PHB window placement.
4369 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4370 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4373 * Some guest kernels can't work with MMIO windows above 1<<46
4374 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4376 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4377 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4378 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4379 * 1TiB 64-bit MMIO windows for each PHB.
4381 const uint64_t base_buid
= 0x800000020000000ULL
;
4384 /* Sanity check natural alignments */
4385 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4386 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4387 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
4388 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
4389 /* Sanity check bounds */
4390 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
4391 SPAPR_PCI_MEM32_WIN_SIZE
);
4392 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
4393 SPAPR_PCI_MEM64_WIN_SIZE
);
4395 if (index
>= SPAPR_MAX_PHBS
) {
4396 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
4397 SPAPR_MAX_PHBS
- 1);
4401 *buid
= base_buid
+ index
;
4402 for (i
= 0; i
< n_dma
; ++i
) {
4403 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4406 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
4407 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
4408 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
4410 *nv2gpa
= SPAPR_PCI_NV2RAM64_WIN_BASE
+ index
* SPAPR_PCI_NV2RAM64_WIN_SIZE
;
4411 *nv2atsd
= SPAPR_PCI_NV2ATSD_WIN_BASE
+ index
* SPAPR_PCI_NV2ATSD_WIN_SIZE
;
4415 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
4417 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4419 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
4422 static void spapr_ics_resend(XICSFabric
*dev
)
4424 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4426 ics_resend(spapr
->ics
);
4429 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int vcpu_id
)
4431 PowerPCCPU
*cpu
= spapr_find_cpu(vcpu_id
);
4433 return cpu
? spapr_cpu_state(cpu
)->icp
: NULL
;
4436 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
4439 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
4441 spapr_irq_print_info(spapr
, mon
);
4442 monitor_printf(mon
, "irqchip: %s\n",
4443 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4447 * This is a XIVE only operation
4449 static int spapr_match_nvt(XiveFabric
*xfb
, uint8_t format
,
4450 uint8_t nvt_blk
, uint32_t nvt_idx
,
4451 bool cam_ignore
, uint8_t priority
,
4452 uint32_t logic_serv
, XiveTCTXMatch
*match
)
4454 SpaprMachineState
*spapr
= SPAPR_MACHINE(xfb
);
4455 XivePresenter
*xptr
= XIVE_PRESENTER(spapr
->active_intc
);
4456 XivePresenterClass
*xpc
= XIVE_PRESENTER_GET_CLASS(xptr
);
4459 count
= xpc
->match_nvt(xptr
, format
, nvt_blk
, nvt_idx
, cam_ignore
,
4460 priority
, logic_serv
, match
);
4466 * When we implement the save and restore of the thread interrupt
4467 * contexts in the enter/exit CPU handlers of the machine and the
4468 * escalations in QEMU, we should be able to handle non dispatched
4471 * Until this is done, the sPAPR machine should find at least one
4472 * matching context always.
4475 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: NVT %x/%x is not dispatched\n",
4482 int spapr_get_vcpu_id(PowerPCCPU
*cpu
)
4484 return cpu
->vcpu_id
;
4487 bool spapr_set_vcpu_id(PowerPCCPU
*cpu
, int cpu_index
, Error
**errp
)
4489 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
4490 MachineState
*ms
= MACHINE(spapr
);
4493 vcpu_id
= spapr_vcpu_id(spapr
, cpu_index
);
4495 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id
)) {
4496 error_setg(errp
, "Can't create CPU with id %d in KVM", vcpu_id
);
4497 error_append_hint(errp
, "Adjust the number of cpus to %d "
4498 "or try to raise the number of threads per core\n",
4499 vcpu_id
* ms
->smp
.threads
/ spapr
->vsmt
);
4503 cpu
->vcpu_id
= vcpu_id
;
4507 PowerPCCPU
*spapr_find_cpu(int vcpu_id
)
4512 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
4514 if (spapr_get_vcpu_id(cpu
) == vcpu_id
) {
4522 static bool spapr_cpu_in_nested(PowerPCCPU
*cpu
)
4524 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4526 return spapr_cpu
->in_nested
;
4529 static void spapr_cpu_exec_enter(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4531 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4533 /* These are only called by TCG, KVM maintains dispatch state */
4535 spapr_cpu
->prod
= false;
4536 if (spapr_cpu
->vpa_addr
) {
4537 CPUState
*cs
= CPU(cpu
);
4540 dispatch
= ldl_be_phys(cs
->as
,
4541 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4543 if ((dispatch
& 1) != 0) {
4544 qemu_log_mask(LOG_GUEST_ERROR
,
4545 "VPA: incorrect dispatch counter value for "
4546 "dispatched partition %u, correcting.\n", dispatch
);
4550 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4554 static void spapr_cpu_exec_exit(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4556 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4558 if (spapr_cpu
->vpa_addr
) {
4559 CPUState
*cs
= CPU(cpu
);
4562 dispatch
= ldl_be_phys(cs
->as
,
4563 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4565 if ((dispatch
& 1) != 1) {
4566 qemu_log_mask(LOG_GUEST_ERROR
,
4567 "VPA: incorrect dispatch counter value for "
4568 "preempted partition %u, correcting.\n", dispatch
);
4572 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4576 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
4578 MachineClass
*mc
= MACHINE_CLASS(oc
);
4579 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
4580 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
4581 NMIClass
*nc
= NMI_CLASS(oc
);
4582 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
4583 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
4584 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
4585 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
4586 XiveFabricClass
*xfc
= XIVE_FABRIC_CLASS(oc
);
4587 VofMachineIfClass
*vmc
= VOF_MACHINE_CLASS(oc
);
4589 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
4590 mc
->ignore_boot_device_suffixes
= true;
4593 * We set up the default / latest behaviour here. The class_init
4594 * functions for the specific versioned machine types can override
4595 * these details for backwards compatibility
4597 mc
->init
= spapr_machine_init
;
4598 mc
->reset
= spapr_machine_reset
;
4599 mc
->block_default_type
= IF_SCSI
;
4602 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4603 * should be limited by the host capability instead of hardcoded.
4604 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4605 * guests are welcome to have as many CPUs as the host are capable
4608 mc
->max_cpus
= INT32_MAX
;
4610 mc
->no_parallel
= 1;
4611 mc
->default_boot_order
= "";
4612 mc
->default_ram_size
= 512 * MiB
;
4613 mc
->default_ram_id
= "ppc_spapr.ram";
4614 mc
->default_display
= "std";
4615 mc
->kvm_type
= spapr_kvm_type
;
4616 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
4617 mc
->pci_allow_0_address
= true;
4618 assert(!mc
->get_hotplug_handler
);
4619 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
4620 hc
->pre_plug
= spapr_machine_device_pre_plug
;
4621 hc
->plug
= spapr_machine_device_plug
;
4622 mc
->cpu_index_to_instance_props
= spapr_cpu_index_to_props
;
4623 mc
->get_default_cpu_node_id
= spapr_get_default_cpu_node_id
;
4624 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
4625 hc
->unplug_request
= spapr_machine_device_unplug_request
;
4626 hc
->unplug
= spapr_machine_device_unplug
;
4628 smc
->dr_lmb_enabled
= true;
4629 smc
->update_dt_enabled
= true;
4630 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power9_v2.0");
4631 mc
->has_hotpluggable_cpus
= true;
4632 mc
->nvdimm_supported
= true;
4633 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_ENABLED
;
4634 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
4635 nc
->nmi_monitor_handler
= spapr_nmi
;
4636 smc
->phb_placement
= spapr_phb_placement
;
4637 vhc
->cpu_in_nested
= spapr_cpu_in_nested
;
4638 vhc
->deliver_hv_excp
= spapr_exit_nested
;
4639 vhc
->hypercall
= emulate_spapr_hypercall
;
4640 vhc
->hpt_mask
= spapr_hpt_mask
;
4641 vhc
->map_hptes
= spapr_map_hptes
;
4642 vhc
->unmap_hptes
= spapr_unmap_hptes
;
4643 vhc
->hpte_set_c
= spapr_hpte_set_c
;
4644 vhc
->hpte_set_r
= spapr_hpte_set_r
;
4645 vhc
->get_pate
= spapr_get_pate
;
4646 vhc
->encode_hpt_for_kvm_pr
= spapr_encode_hpt_for_kvm_pr
;
4647 vhc
->cpu_exec_enter
= spapr_cpu_exec_enter
;
4648 vhc
->cpu_exec_exit
= spapr_cpu_exec_exit
;
4649 xic
->ics_get
= spapr_ics_get
;
4650 xic
->ics_resend
= spapr_ics_resend
;
4651 xic
->icp_get
= spapr_icp_get
;
4652 ispc
->print_info
= spapr_pic_print_info
;
4653 /* Force NUMA node memory size to be a multiple of
4654 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4655 * in which LMBs are represented and hot-added
4657 mc
->numa_mem_align_shift
= 28;
4658 mc
->auto_enable_numa
= true;
4660 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_OFF
;
4661 smc
->default_caps
.caps
[SPAPR_CAP_VSX
] = SPAPR_CAP_ON
;
4662 smc
->default_caps
.caps
[SPAPR_CAP_DFP
] = SPAPR_CAP_ON
;
4663 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4664 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4665 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_WORKAROUND
;
4666 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 16; /* 64kiB */
4667 smc
->default_caps
.caps
[SPAPR_CAP_NESTED_KVM_HV
] = SPAPR_CAP_OFF
;
4668 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_ON
;
4669 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_ON
;
4670 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_ON
;
4671 smc
->default_caps
.caps
[SPAPR_CAP_RPT_INVALIDATE
] = SPAPR_CAP_OFF
;
4672 spapr_caps_add_properties(smc
);
4673 smc
->irq
= &spapr_irq_dual
;
4674 smc
->dr_phb_enabled
= true;
4675 smc
->linux_pci_probe
= true;
4676 smc
->smp_threads_vsmt
= true;
4677 smc
->nr_xirqs
= SPAPR_NR_XIRQS
;
4678 xfc
->match_nvt
= spapr_match_nvt
;
4679 vmc
->client_architecture_support
= spapr_vof_client_architecture_support
;
4680 vmc
->quiesce
= spapr_vof_quiesce
;
4681 vmc
->setprop
= spapr_vof_setprop
;
4684 static const TypeInfo spapr_machine_info
= {
4685 .name
= TYPE_SPAPR_MACHINE
,
4686 .parent
= TYPE_MACHINE
,
4688 .instance_size
= sizeof(SpaprMachineState
),
4689 .instance_init
= spapr_instance_init
,
4690 .instance_finalize
= spapr_machine_finalizefn
,
4691 .class_size
= sizeof(SpaprMachineClass
),
4692 .class_init
= spapr_machine_class_init
,
4693 .interfaces
= (InterfaceInfo
[]) {
4694 { TYPE_FW_PATH_PROVIDER
},
4696 { TYPE_HOTPLUG_HANDLER
},
4697 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
4698 { TYPE_XICS_FABRIC
},
4699 { TYPE_INTERRUPT_STATS_PROVIDER
},
4700 { TYPE_XIVE_FABRIC
},
4701 { TYPE_VOF_MACHINE_IF
},
4706 static void spapr_machine_latest_class_options(MachineClass
*mc
)
4708 mc
->alias
= "pseries";
4709 mc
->is_default
= true;
4712 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4713 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4716 MachineClass *mc = MACHINE_CLASS(oc); \
4717 spapr_machine_##suffix##_class_options(mc); \
4719 spapr_machine_latest_class_options(mc); \
4722 static const TypeInfo spapr_machine_##suffix##_info = { \
4723 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4724 .parent = TYPE_SPAPR_MACHINE, \
4725 .class_init = spapr_machine_##suffix##_class_init, \
4727 static void spapr_machine_register_##suffix(void) \
4729 type_register(&spapr_machine_##suffix##_info); \
4731 type_init(spapr_machine_register_##suffix)
4736 static void spapr_machine_7_1_class_options(MachineClass
*mc
)
4738 /* Defaults for the latest behaviour inherited from the base class */
4741 DEFINE_SPAPR_MACHINE(7_1
, "7.1", true);
4746 static void spapr_machine_7_0_class_options(MachineClass
*mc
)
4748 spapr_machine_7_1_class_options(mc
);
4749 compat_props_add(mc
->compat_props
, hw_compat_7_0
, hw_compat_7_0_len
);
4752 DEFINE_SPAPR_MACHINE(7_0
, "7.0", false);
4757 static void spapr_machine_6_2_class_options(MachineClass
*mc
)
4759 spapr_machine_7_0_class_options(mc
);
4760 compat_props_add(mc
->compat_props
, hw_compat_6_2
, hw_compat_6_2_len
);
4763 DEFINE_SPAPR_MACHINE(6_2
, "6.2", false);
4768 static void spapr_machine_6_1_class_options(MachineClass
*mc
)
4770 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4772 spapr_machine_6_2_class_options(mc
);
4773 compat_props_add(mc
->compat_props
, hw_compat_6_1
, hw_compat_6_1_len
);
4774 smc
->pre_6_2_numa_affinity
= true;
4775 mc
->smp_props
.prefer_sockets
= true;
4778 DEFINE_SPAPR_MACHINE(6_1
, "6.1", false);
4783 static void spapr_machine_6_0_class_options(MachineClass
*mc
)
4785 spapr_machine_6_1_class_options(mc
);
4786 compat_props_add(mc
->compat_props
, hw_compat_6_0
, hw_compat_6_0_len
);
4789 DEFINE_SPAPR_MACHINE(6_0
, "6.0", false);
4794 static void spapr_machine_5_2_class_options(MachineClass
*mc
)
4796 spapr_machine_6_0_class_options(mc
);
4797 compat_props_add(mc
->compat_props
, hw_compat_5_2
, hw_compat_5_2_len
);
4800 DEFINE_SPAPR_MACHINE(5_2
, "5.2", false);
4805 static void spapr_machine_5_1_class_options(MachineClass
*mc
)
4807 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4809 spapr_machine_5_2_class_options(mc
);
4810 compat_props_add(mc
->compat_props
, hw_compat_5_1
, hw_compat_5_1_len
);
4811 smc
->pre_5_2_numa_associativity
= true;
4814 DEFINE_SPAPR_MACHINE(5_1
, "5.1", false);
4819 static void spapr_machine_5_0_class_options(MachineClass
*mc
)
4821 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4822 static GlobalProperty compat
[] = {
4823 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-5.1-associativity", "on" },
4826 spapr_machine_5_1_class_options(mc
);
4827 compat_props_add(mc
->compat_props
, hw_compat_5_0
, hw_compat_5_0_len
);
4828 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4829 mc
->numa_mem_supported
= true;
4830 smc
->pre_5_1_assoc_refpoints
= true;
4833 DEFINE_SPAPR_MACHINE(5_0
, "5.0", false);
4838 static void spapr_machine_4_2_class_options(MachineClass
*mc
)
4840 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4842 spapr_machine_5_0_class_options(mc
);
4843 compat_props_add(mc
->compat_props
, hw_compat_4_2
, hw_compat_4_2_len
);
4844 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_OFF
;
4845 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_OFF
;
4846 smc
->rma_limit
= 16 * GiB
;
4847 mc
->nvdimm_supported
= false;
4850 DEFINE_SPAPR_MACHINE(4_2
, "4.2", false);
4855 static void spapr_machine_4_1_class_options(MachineClass
*mc
)
4857 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4858 static GlobalProperty compat
[] = {
4859 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4860 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pgsz", "0x11000" },
4863 spapr_machine_4_2_class_options(mc
);
4864 smc
->linux_pci_probe
= false;
4865 smc
->smp_threads_vsmt
= false;
4866 compat_props_add(mc
->compat_props
, hw_compat_4_1
, hw_compat_4_1_len
);
4867 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4870 DEFINE_SPAPR_MACHINE(4_1
, "4.1", false);
4875 static bool phb_placement_4_0(SpaprMachineState
*spapr
, uint32_t index
,
4876 uint64_t *buid
, hwaddr
*pio
,
4877 hwaddr
*mmio32
, hwaddr
*mmio64
,
4878 unsigned n_dma
, uint32_t *liobns
,
4879 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4881 if (!spapr_phb_placement(spapr
, index
, buid
, pio
, mmio32
, mmio64
, n_dma
,
4882 liobns
, nv2gpa
, nv2atsd
, errp
)) {
4890 static void spapr_machine_4_0_class_options(MachineClass
*mc
)
4892 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4894 spapr_machine_4_1_class_options(mc
);
4895 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
4896 smc
->phb_placement
= phb_placement_4_0
;
4897 smc
->irq
= &spapr_irq_xics
;
4898 smc
->pre_4_1_migration
= true;
4901 DEFINE_SPAPR_MACHINE(4_0
, "4.0", false);
4906 static void spapr_machine_3_1_class_options(MachineClass
*mc
)
4908 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4910 spapr_machine_4_0_class_options(mc
);
4911 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
4913 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power8_v2.0");
4914 smc
->update_dt_enabled
= false;
4915 smc
->dr_phb_enabled
= false;
4916 smc
->broken_host_serial_model
= true;
4917 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_BROKEN
;
4918 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_BROKEN
;
4919 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_BROKEN
;
4920 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_OFF
;
4923 DEFINE_SPAPR_MACHINE(3_1
, "3.1", false);
4929 static void spapr_machine_3_0_class_options(MachineClass
*mc
)
4931 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4933 spapr_machine_3_1_class_options(mc
);
4934 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
4936 smc
->legacy_irq_allocation
= true;
4937 smc
->nr_xirqs
= 0x400;
4938 smc
->irq
= &spapr_irq_xics_legacy
;
4941 DEFINE_SPAPR_MACHINE(3_0
, "3.0", false);
4946 static void spapr_machine_2_12_class_options(MachineClass
*mc
)
4948 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4949 static GlobalProperty compat
[] = {
4950 { TYPE_POWERPC_CPU
, "pre-3.0-migration", "on" },
4951 { TYPE_SPAPR_CPU_CORE
, "pre-3.0-migration", "on" },
4954 spapr_machine_3_0_class_options(mc
);
4955 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
4956 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4958 /* We depend on kvm_enabled() to choose a default value for the
4959 * hpt-max-page-size capability. Of course we can't do it here
4960 * because this is too early and the HW accelerator isn't initialzed
4961 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4963 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 0;
4966 DEFINE_SPAPR_MACHINE(2_12
, "2.12", false);
4968 static void spapr_machine_2_12_sxxm_class_options(MachineClass
*mc
)
4970 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4972 spapr_machine_2_12_class_options(mc
);
4973 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4974 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4975 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_FIXED_CCD
;
4978 DEFINE_SPAPR_MACHINE(2_12_sxxm
, "2.12-sxxm", false);
4984 static void spapr_machine_2_11_class_options(MachineClass
*mc
)
4986 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4988 spapr_machine_2_12_class_options(mc
);
4989 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_ON
;
4990 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
4993 DEFINE_SPAPR_MACHINE(2_11
, "2.11", false);
4999 static void spapr_machine_2_10_class_options(MachineClass
*mc
)
5001 spapr_machine_2_11_class_options(mc
);
5002 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
5005 DEFINE_SPAPR_MACHINE(2_10
, "2.10", false);
5011 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
5013 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
5014 static GlobalProperty compat
[] = {
5015 { TYPE_POWERPC_CPU
, "pre-2.10-migration", "on" },
5018 spapr_machine_2_10_class_options(mc
);
5019 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
5020 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5021 smc
->pre_2_10_has_unused_icps
= true;
5022 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_DISABLED
;
5025 DEFINE_SPAPR_MACHINE(2_9
, "2.9", false);
5031 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
5033 static GlobalProperty compat
[] = {
5034 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pcie-extended-configuration-space", "off" },
5037 spapr_machine_2_9_class_options(mc
);
5038 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
5039 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5040 mc
->numa_mem_align_shift
= 23;
5043 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
5049 static bool phb_placement_2_7(SpaprMachineState
*spapr
, uint32_t index
,
5050 uint64_t *buid
, hwaddr
*pio
,
5051 hwaddr
*mmio32
, hwaddr
*mmio64
,
5052 unsigned n_dma
, uint32_t *liobns
,
5053 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
5055 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5056 const uint64_t base_buid
= 0x800000020000000ULL
;
5057 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
5058 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
5059 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
5060 const uint32_t max_index
= 255;
5061 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
5063 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
5064 hwaddr phb0_base
, phb_base
;
5067 /* Do we have device memory? */
5068 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
5069 /* Can't just use maxram_size, because there may be an
5070 * alignment gap between normal and device memory regions
5072 ram_top
= MACHINE(spapr
)->device_memory
->base
+
5073 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
5076 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
5078 if (index
> max_index
) {
5079 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
5084 *buid
= base_buid
+ index
;
5085 for (i
= 0; i
< n_dma
; ++i
) {
5086 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
5089 phb_base
= phb0_base
+ index
* phb_spacing
;
5090 *pio
= phb_base
+ pio_offset
;
5091 *mmio32
= phb_base
+ mmio_offset
;
5093 * We don't set the 64-bit MMIO window, relying on the PHB's
5094 * fallback behaviour of automatically splitting a large "32-bit"
5095 * window into contiguous 32-bit and 64-bit windows
5103 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
5105 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
5106 static GlobalProperty compat
[] = {
5107 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0xf80000000", },
5108 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem64_win_size", "0", },
5109 { TYPE_POWERPC_CPU
, "pre-2.8-migration", "on", },
5110 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-2.8-migration", "on", },
5113 spapr_machine_2_8_class_options(mc
);
5114 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power7_v2.3");
5115 mc
->default_machine_opts
= "modern-hotplug-events=off";
5116 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
5117 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5118 smc
->phb_placement
= phb_placement_2_7
;
5121 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
5127 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
5129 static GlobalProperty compat
[] = {
5130 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "ddw", "off" },
5133 spapr_machine_2_7_class_options(mc
);
5134 mc
->has_hotpluggable_cpus
= false;
5135 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
5136 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5139 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
5145 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
5147 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
5148 static GlobalProperty compat
[] = {
5149 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5152 spapr_machine_2_6_class_options(mc
);
5153 smc
->use_ohci_by_default
= true;
5154 compat_props_add(mc
->compat_props
, hw_compat_2_5
, hw_compat_2_5_len
);
5155 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5158 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
5164 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
5166 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
5168 spapr_machine_2_5_class_options(mc
);
5169 smc
->dr_lmb_enabled
= false;
5170 compat_props_add(mc
->compat_props
, hw_compat_2_4
, hw_compat_2_4_len
);
5173 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
5179 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
5181 static GlobalProperty compat
[] = {
5182 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5184 spapr_machine_2_4_class_options(mc
);
5185 compat_props_add(mc
->compat_props
, hw_compat_2_3
, hw_compat_2_3_len
);
5186 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5188 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
5194 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
5196 static GlobalProperty compat
[] = {
5197 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0x20000000" },
5200 spapr_machine_2_3_class_options(mc
);
5201 compat_props_add(mc
->compat_props
, hw_compat_2_2
, hw_compat_2_2_len
);
5202 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5203 mc
->default_machine_opts
= "modern-hotplug-events=off,suppress-vmdesc=on";
5205 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
5211 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
5213 spapr_machine_2_2_class_options(mc
);
5214 compat_props_add(mc
->compat_props
, hw_compat_2_1
, hw_compat_2_1_len
);
5216 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
5218 static void spapr_machine_register_types(void)
5220 type_register_static(&spapr_machine_info
);
5223 type_init(spapr_machine_register_types
)