hostmem: fix strict bind policy
[qemu/kevin.git] / exec.c
blob8c0258a7ae9927c370431662137c4dc8d3443772
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg/tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include "qemu.h"
44 #else /* !CONFIG_USER_ONLY */
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
56 #endif
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
68 #include "qemu/pmem.h"
70 #include "migration/vmstate.h"
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
77 #include "monitor/monitor.h"
79 //#define DEBUG_SUBPAGE
81 #if !defined(CONFIG_USER_ONLY)
82 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
83 * are protected by the ramlist lock.
85 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
87 static MemoryRegion *system_memory;
88 static MemoryRegion *system_io;
90 AddressSpace address_space_io;
91 AddressSpace address_space_memory;
93 static MemoryRegion io_mem_unassigned;
94 #endif
96 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
98 /* current CPU in the current thread. It is only valid inside
99 cpu_exec() */
100 __thread CPUState *current_cpu;
102 uintptr_t qemu_host_page_size;
103 intptr_t qemu_host_page_mask;
105 #if !defined(CONFIG_USER_ONLY)
106 /* 0 = Do not count executed instructions.
107 1 = Precise instruction counting.
108 2 = Adaptive rate instruction counting. */
109 int use_icount;
111 typedef struct PhysPageEntry PhysPageEntry;
113 struct PhysPageEntry {
114 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
115 uint32_t skip : 6;
116 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
117 uint32_t ptr : 26;
120 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
122 /* Size of the L2 (and L3, etc) page tables. */
123 #define ADDR_SPACE_BITS 64
125 #define P_L2_BITS 9
126 #define P_L2_SIZE (1 << P_L2_BITS)
128 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
130 typedef PhysPageEntry Node[P_L2_SIZE];
132 typedef struct PhysPageMap {
133 struct rcu_head rcu;
135 unsigned sections_nb;
136 unsigned sections_nb_alloc;
137 unsigned nodes_nb;
138 unsigned nodes_nb_alloc;
139 Node *nodes;
140 MemoryRegionSection *sections;
141 } PhysPageMap;
143 struct AddressSpaceDispatch {
144 MemoryRegionSection *mru_section;
145 /* This is a multi-level map on the physical address space.
146 * The bottom level has pointers to MemoryRegionSections.
148 PhysPageEntry phys_map;
149 PhysPageMap map;
152 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
153 typedef struct subpage_t {
154 MemoryRegion iomem;
155 FlatView *fv;
156 hwaddr base;
157 uint16_t sub_section[];
158 } subpage_t;
160 #define PHYS_SECTION_UNASSIGNED 0
162 static void io_mem_init(void);
163 static void memory_map_init(void);
164 static void tcg_log_global_after_sync(MemoryListener *listener);
165 static void tcg_commit(MemoryListener *listener);
168 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
169 * @cpu: the CPU whose AddressSpace this is
170 * @as: the AddressSpace itself
171 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
172 * @tcg_as_listener: listener for tracking changes to the AddressSpace
174 struct CPUAddressSpace {
175 CPUState *cpu;
176 AddressSpace *as;
177 struct AddressSpaceDispatch *memory_dispatch;
178 MemoryListener tcg_as_listener;
181 struct DirtyBitmapSnapshot {
182 ram_addr_t start;
183 ram_addr_t end;
184 unsigned long dirty[];
187 #endif
189 #if !defined(CONFIG_USER_ONLY)
191 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
193 static unsigned alloc_hint = 16;
194 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
195 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
196 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
197 alloc_hint = map->nodes_nb_alloc;
201 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
203 unsigned i;
204 uint32_t ret;
205 PhysPageEntry e;
206 PhysPageEntry *p;
208 ret = map->nodes_nb++;
209 p = map->nodes[ret];
210 assert(ret != PHYS_MAP_NODE_NIL);
211 assert(ret != map->nodes_nb_alloc);
213 e.skip = leaf ? 0 : 1;
214 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
215 for (i = 0; i < P_L2_SIZE; ++i) {
216 memcpy(&p[i], &e, sizeof(e));
218 return ret;
221 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
222 hwaddr *index, uint64_t *nb, uint16_t leaf,
223 int level)
225 PhysPageEntry *p;
226 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
228 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
229 lp->ptr = phys_map_node_alloc(map, level == 0);
231 p = map->nodes[lp->ptr];
232 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
234 while (*nb && lp < &p[P_L2_SIZE]) {
235 if ((*index & (step - 1)) == 0 && *nb >= step) {
236 lp->skip = 0;
237 lp->ptr = leaf;
238 *index += step;
239 *nb -= step;
240 } else {
241 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
243 ++lp;
247 static void phys_page_set(AddressSpaceDispatch *d,
248 hwaddr index, uint64_t nb,
249 uint16_t leaf)
251 /* Wildly overreserve - it doesn't matter much. */
252 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
254 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
257 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
258 * and update our entry so we can skip it and go directly to the destination.
260 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
262 unsigned valid_ptr = P_L2_SIZE;
263 int valid = 0;
264 PhysPageEntry *p;
265 int i;
267 if (lp->ptr == PHYS_MAP_NODE_NIL) {
268 return;
271 p = nodes[lp->ptr];
272 for (i = 0; i < P_L2_SIZE; i++) {
273 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
274 continue;
277 valid_ptr = i;
278 valid++;
279 if (p[i].skip) {
280 phys_page_compact(&p[i], nodes);
284 /* We can only compress if there's only one child. */
285 if (valid != 1) {
286 return;
289 assert(valid_ptr < P_L2_SIZE);
291 /* Don't compress if it won't fit in the # of bits we have. */
292 if (P_L2_LEVELS >= (1 << 6) &&
293 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
294 return;
297 lp->ptr = p[valid_ptr].ptr;
298 if (!p[valid_ptr].skip) {
299 /* If our only child is a leaf, make this a leaf. */
300 /* By design, we should have made this node a leaf to begin with so we
301 * should never reach here.
302 * But since it's so simple to handle this, let's do it just in case we
303 * change this rule.
305 lp->skip = 0;
306 } else {
307 lp->skip += p[valid_ptr].skip;
311 void address_space_dispatch_compact(AddressSpaceDispatch *d)
313 if (d->phys_map.skip) {
314 phys_page_compact(&d->phys_map, d->map.nodes);
318 static inline bool section_covers_addr(const MemoryRegionSection *section,
319 hwaddr addr)
321 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
322 * the section must cover the entire address space.
324 return int128_gethi(section->size) ||
325 range_covers_byte(section->offset_within_address_space,
326 int128_getlo(section->size), addr);
329 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
331 PhysPageEntry lp = d->phys_map, *p;
332 Node *nodes = d->map.nodes;
333 MemoryRegionSection *sections = d->map.sections;
334 hwaddr index = addr >> TARGET_PAGE_BITS;
335 int i;
337 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
338 if (lp.ptr == PHYS_MAP_NODE_NIL) {
339 return &sections[PHYS_SECTION_UNASSIGNED];
341 p = nodes[lp.ptr];
342 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
345 if (section_covers_addr(&sections[lp.ptr], addr)) {
346 return &sections[lp.ptr];
347 } else {
348 return &sections[PHYS_SECTION_UNASSIGNED];
352 /* Called from RCU critical section */
353 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
354 hwaddr addr,
355 bool resolve_subpage)
357 MemoryRegionSection *section = atomic_read(&d->mru_section);
358 subpage_t *subpage;
360 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
361 !section_covers_addr(section, addr)) {
362 section = phys_page_find(d, addr);
363 atomic_set(&d->mru_section, section);
365 if (resolve_subpage && section->mr->subpage) {
366 subpage = container_of(section->mr, subpage_t, iomem);
367 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
369 return section;
372 /* Called from RCU critical section */
373 static MemoryRegionSection *
374 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
375 hwaddr *plen, bool resolve_subpage)
377 MemoryRegionSection *section;
378 MemoryRegion *mr;
379 Int128 diff;
381 section = address_space_lookup_region(d, addr, resolve_subpage);
382 /* Compute offset within MemoryRegionSection */
383 addr -= section->offset_within_address_space;
385 /* Compute offset within MemoryRegion */
386 *xlat = addr + section->offset_within_region;
388 mr = section->mr;
390 /* MMIO registers can be expected to perform full-width accesses based only
391 * on their address, without considering adjacent registers that could
392 * decode to completely different MemoryRegions. When such registers
393 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
394 * regions overlap wildly. For this reason we cannot clamp the accesses
395 * here.
397 * If the length is small (as is the case for address_space_ldl/stl),
398 * everything works fine. If the incoming length is large, however,
399 * the caller really has to do the clamping through memory_access_size.
401 if (memory_region_is_ram(mr)) {
402 diff = int128_sub(section->size, int128_make64(addr));
403 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
405 return section;
409 * address_space_translate_iommu - translate an address through an IOMMU
410 * memory region and then through the target address space.
412 * @iommu_mr: the IOMMU memory region that we start the translation from
413 * @addr: the address to be translated through the MMU
414 * @xlat: the translated address offset within the destination memory region.
415 * It cannot be %NULL.
416 * @plen_out: valid read/write length of the translated address. It
417 * cannot be %NULL.
418 * @page_mask_out: page mask for the translated address. This
419 * should only be meaningful for IOMMU translated
420 * addresses, since there may be huge pages that this bit
421 * would tell. It can be %NULL if we don't care about it.
422 * @is_write: whether the translation operation is for write
423 * @is_mmio: whether this can be MMIO, set true if it can
424 * @target_as: the address space targeted by the IOMMU
425 * @attrs: transaction attributes
427 * This function is called from RCU critical section. It is the common
428 * part of flatview_do_translate and address_space_translate_cached.
430 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
431 hwaddr *xlat,
432 hwaddr *plen_out,
433 hwaddr *page_mask_out,
434 bool is_write,
435 bool is_mmio,
436 AddressSpace **target_as,
437 MemTxAttrs attrs)
439 MemoryRegionSection *section;
440 hwaddr page_mask = (hwaddr)-1;
442 do {
443 hwaddr addr = *xlat;
444 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
445 int iommu_idx = 0;
446 IOMMUTLBEntry iotlb;
448 if (imrc->attrs_to_index) {
449 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
452 iotlb = imrc->translate(iommu_mr, addr, is_write ?
453 IOMMU_WO : IOMMU_RO, iommu_idx);
455 if (!(iotlb.perm & (1 << is_write))) {
456 goto unassigned;
459 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
460 | (addr & iotlb.addr_mask));
461 page_mask &= iotlb.addr_mask;
462 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
463 *target_as = iotlb.target_as;
465 section = address_space_translate_internal(
466 address_space_to_dispatch(iotlb.target_as), addr, xlat,
467 plen_out, is_mmio);
469 iommu_mr = memory_region_get_iommu(section->mr);
470 } while (unlikely(iommu_mr));
472 if (page_mask_out) {
473 *page_mask_out = page_mask;
475 return *section;
477 unassigned:
478 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
482 * flatview_do_translate - translate an address in FlatView
484 * @fv: the flat view that we want to translate on
485 * @addr: the address to be translated in above address space
486 * @xlat: the translated address offset within memory region. It
487 * cannot be @NULL.
488 * @plen_out: valid read/write length of the translated address. It
489 * can be @NULL when we don't care about it.
490 * @page_mask_out: page mask for the translated address. This
491 * should only be meaningful for IOMMU translated
492 * addresses, since there may be huge pages that this bit
493 * would tell. It can be @NULL if we don't care about it.
494 * @is_write: whether the translation operation is for write
495 * @is_mmio: whether this can be MMIO, set true if it can
496 * @target_as: the address space targeted by the IOMMU
497 * @attrs: memory transaction attributes
499 * This function is called from RCU critical section
501 static MemoryRegionSection flatview_do_translate(FlatView *fv,
502 hwaddr addr,
503 hwaddr *xlat,
504 hwaddr *plen_out,
505 hwaddr *page_mask_out,
506 bool is_write,
507 bool is_mmio,
508 AddressSpace **target_as,
509 MemTxAttrs attrs)
511 MemoryRegionSection *section;
512 IOMMUMemoryRegion *iommu_mr;
513 hwaddr plen = (hwaddr)(-1);
515 if (!plen_out) {
516 plen_out = &plen;
519 section = address_space_translate_internal(
520 flatview_to_dispatch(fv), addr, xlat,
521 plen_out, is_mmio);
523 iommu_mr = memory_region_get_iommu(section->mr);
524 if (unlikely(iommu_mr)) {
525 return address_space_translate_iommu(iommu_mr, xlat,
526 plen_out, page_mask_out,
527 is_write, is_mmio,
528 target_as, attrs);
530 if (page_mask_out) {
531 /* Not behind an IOMMU, use default page size. */
532 *page_mask_out = ~TARGET_PAGE_MASK;
535 return *section;
538 /* Called from RCU critical section */
539 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
540 bool is_write, MemTxAttrs attrs)
542 MemoryRegionSection section;
543 hwaddr xlat, page_mask;
546 * This can never be MMIO, and we don't really care about plen,
547 * but page mask.
549 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
550 NULL, &page_mask, is_write, false, &as,
551 attrs);
553 /* Illegal translation */
554 if (section.mr == &io_mem_unassigned) {
555 goto iotlb_fail;
558 /* Convert memory region offset into address space offset */
559 xlat += section.offset_within_address_space -
560 section.offset_within_region;
562 return (IOMMUTLBEntry) {
563 .target_as = as,
564 .iova = addr & ~page_mask,
565 .translated_addr = xlat & ~page_mask,
566 .addr_mask = page_mask,
567 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
568 .perm = IOMMU_RW,
571 iotlb_fail:
572 return (IOMMUTLBEntry) {0};
575 /* Called from RCU critical section */
576 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
577 hwaddr *plen, bool is_write,
578 MemTxAttrs attrs)
580 MemoryRegion *mr;
581 MemoryRegionSection section;
582 AddressSpace *as = NULL;
584 /* This can be MMIO, so setup MMIO bit. */
585 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
586 is_write, true, &as, attrs);
587 mr = section.mr;
589 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
590 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
591 *plen = MIN(page, *plen);
594 return mr;
597 typedef struct TCGIOMMUNotifier {
598 IOMMUNotifier n;
599 MemoryRegion *mr;
600 CPUState *cpu;
601 int iommu_idx;
602 bool active;
603 } TCGIOMMUNotifier;
605 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
607 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
609 if (!notifier->active) {
610 return;
612 tlb_flush(notifier->cpu);
613 notifier->active = false;
614 /* We leave the notifier struct on the list to avoid reallocating it later.
615 * Generally the number of IOMMUs a CPU deals with will be small.
616 * In any case we can't unregister the iommu notifier from a notify
617 * callback.
621 static void tcg_register_iommu_notifier(CPUState *cpu,
622 IOMMUMemoryRegion *iommu_mr,
623 int iommu_idx)
625 /* Make sure this CPU has an IOMMU notifier registered for this
626 * IOMMU/IOMMU index combination, so that we can flush its TLB
627 * when the IOMMU tells us the mappings we've cached have changed.
629 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
630 TCGIOMMUNotifier *notifier;
631 Error *err = NULL;
632 int i, ret;
634 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
635 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
636 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
637 break;
640 if (i == cpu->iommu_notifiers->len) {
641 /* Not found, add a new entry at the end of the array */
642 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
643 notifier = g_new0(TCGIOMMUNotifier, 1);
644 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
646 notifier->mr = mr;
647 notifier->iommu_idx = iommu_idx;
648 notifier->cpu = cpu;
649 /* Rather than trying to register interest in the specific part
650 * of the iommu's address space that we've accessed and then
651 * expand it later as subsequent accesses touch more of it, we
652 * just register interest in the whole thing, on the assumption
653 * that iommu reconfiguration will be rare.
655 iommu_notifier_init(&notifier->n,
656 tcg_iommu_unmap_notify,
657 IOMMU_NOTIFIER_UNMAP,
659 HWADDR_MAX,
660 iommu_idx);
661 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
662 &err);
663 if (ret) {
664 error_report_err(err);
665 exit(1);
669 if (!notifier->active) {
670 notifier->active = true;
674 static void tcg_iommu_free_notifier_list(CPUState *cpu)
676 /* Destroy the CPU's notifier list */
677 int i;
678 TCGIOMMUNotifier *notifier;
680 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
681 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
682 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
683 g_free(notifier);
685 g_array_free(cpu->iommu_notifiers, true);
688 /* Called from RCU critical section */
689 MemoryRegionSection *
690 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
691 hwaddr *xlat, hwaddr *plen,
692 MemTxAttrs attrs, int *prot)
694 MemoryRegionSection *section;
695 IOMMUMemoryRegion *iommu_mr;
696 IOMMUMemoryRegionClass *imrc;
697 IOMMUTLBEntry iotlb;
698 int iommu_idx;
699 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
701 for (;;) {
702 section = address_space_translate_internal(d, addr, &addr, plen, false);
704 iommu_mr = memory_region_get_iommu(section->mr);
705 if (!iommu_mr) {
706 break;
709 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
711 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
712 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
713 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
714 * doesn't short-cut its translation table walk.
716 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
717 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
718 | (addr & iotlb.addr_mask));
719 /* Update the caller's prot bits to remove permissions the IOMMU
720 * is giving us a failure response for. If we get down to no
721 * permissions left at all we can give up now.
723 if (!(iotlb.perm & IOMMU_RO)) {
724 *prot &= ~(PAGE_READ | PAGE_EXEC);
726 if (!(iotlb.perm & IOMMU_WO)) {
727 *prot &= ~PAGE_WRITE;
730 if (!*prot) {
731 goto translate_fail;
734 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
737 assert(!memory_region_is_iommu(section->mr));
738 *xlat = addr;
739 return section;
741 translate_fail:
742 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
744 #endif
746 #if !defined(CONFIG_USER_ONLY)
748 static int cpu_common_post_load(void *opaque, int version_id)
750 CPUState *cpu = opaque;
752 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
753 version_id is increased. */
754 cpu->interrupt_request &= ~0x01;
755 tlb_flush(cpu);
757 /* loadvm has just updated the content of RAM, bypassing the
758 * usual mechanisms that ensure we flush TBs for writes to
759 * memory we've translated code from. So we must flush all TBs,
760 * which will now be stale.
762 tb_flush(cpu);
764 return 0;
767 static int cpu_common_pre_load(void *opaque)
769 CPUState *cpu = opaque;
771 cpu->exception_index = -1;
773 return 0;
776 static bool cpu_common_exception_index_needed(void *opaque)
778 CPUState *cpu = opaque;
780 return tcg_enabled() && cpu->exception_index != -1;
783 static const VMStateDescription vmstate_cpu_common_exception_index = {
784 .name = "cpu_common/exception_index",
785 .version_id = 1,
786 .minimum_version_id = 1,
787 .needed = cpu_common_exception_index_needed,
788 .fields = (VMStateField[]) {
789 VMSTATE_INT32(exception_index, CPUState),
790 VMSTATE_END_OF_LIST()
794 static bool cpu_common_crash_occurred_needed(void *opaque)
796 CPUState *cpu = opaque;
798 return cpu->crash_occurred;
801 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
802 .name = "cpu_common/crash_occurred",
803 .version_id = 1,
804 .minimum_version_id = 1,
805 .needed = cpu_common_crash_occurred_needed,
806 .fields = (VMStateField[]) {
807 VMSTATE_BOOL(crash_occurred, CPUState),
808 VMSTATE_END_OF_LIST()
812 const VMStateDescription vmstate_cpu_common = {
813 .name = "cpu_common",
814 .version_id = 1,
815 .minimum_version_id = 1,
816 .pre_load = cpu_common_pre_load,
817 .post_load = cpu_common_post_load,
818 .fields = (VMStateField[]) {
819 VMSTATE_UINT32(halted, CPUState),
820 VMSTATE_UINT32(interrupt_request, CPUState),
821 VMSTATE_END_OF_LIST()
823 .subsections = (const VMStateDescription*[]) {
824 &vmstate_cpu_common_exception_index,
825 &vmstate_cpu_common_crash_occurred,
826 NULL
830 #endif
832 CPUState *qemu_get_cpu(int index)
834 CPUState *cpu;
836 CPU_FOREACH(cpu) {
837 if (cpu->cpu_index == index) {
838 return cpu;
842 return NULL;
845 #if !defined(CONFIG_USER_ONLY)
846 void cpu_address_space_init(CPUState *cpu, int asidx,
847 const char *prefix, MemoryRegion *mr)
849 CPUAddressSpace *newas;
850 AddressSpace *as = g_new0(AddressSpace, 1);
851 char *as_name;
853 assert(mr);
854 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
855 address_space_init(as, mr, as_name);
856 g_free(as_name);
858 /* Target code should have set num_ases before calling us */
859 assert(asidx < cpu->num_ases);
861 if (asidx == 0) {
862 /* address space 0 gets the convenience alias */
863 cpu->as = as;
866 /* KVM cannot currently support multiple address spaces. */
867 assert(asidx == 0 || !kvm_enabled());
869 if (!cpu->cpu_ases) {
870 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
873 newas = &cpu->cpu_ases[asidx];
874 newas->cpu = cpu;
875 newas->as = as;
876 if (tcg_enabled()) {
877 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
878 newas->tcg_as_listener.commit = tcg_commit;
879 memory_listener_register(&newas->tcg_as_listener, as);
883 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
885 /* Return the AddressSpace corresponding to the specified index */
886 return cpu->cpu_ases[asidx].as;
888 #endif
890 void cpu_exec_unrealizefn(CPUState *cpu)
892 CPUClass *cc = CPU_GET_CLASS(cpu);
894 cpu_list_remove(cpu);
896 if (cc->vmsd != NULL) {
897 vmstate_unregister(NULL, cc->vmsd, cpu);
899 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
900 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
902 #ifndef CONFIG_USER_ONLY
903 tcg_iommu_free_notifier_list(cpu);
904 #endif
907 Property cpu_common_props[] = {
908 #ifndef CONFIG_USER_ONLY
909 /* Create a memory property for softmmu CPU object,
910 * so users can wire up its memory. (This can't go in hw/core/cpu.c
911 * because that file is compiled only once for both user-mode
912 * and system builds.) The default if no link is set up is to use
913 * the system address space.
915 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
916 MemoryRegion *),
917 #endif
918 DEFINE_PROP_END_OF_LIST(),
921 void cpu_exec_initfn(CPUState *cpu)
923 cpu->as = NULL;
924 cpu->num_ases = 0;
926 #ifndef CONFIG_USER_ONLY
927 cpu->thread_id = qemu_get_thread_id();
928 cpu->memory = system_memory;
929 object_ref(OBJECT(cpu->memory));
930 #endif
933 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
935 CPUClass *cc = CPU_GET_CLASS(cpu);
936 static bool tcg_target_initialized;
938 cpu_list_add(cpu);
940 if (tcg_enabled() && !tcg_target_initialized) {
941 tcg_target_initialized = true;
942 cc->tcg_initialize();
944 tlb_init(cpu);
946 qemu_plugin_vcpu_init_hook(cpu);
948 #ifndef CONFIG_USER_ONLY
949 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
950 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
952 if (cc->vmsd != NULL) {
953 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
956 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
957 #endif
960 const char *parse_cpu_option(const char *cpu_option)
962 ObjectClass *oc;
963 CPUClass *cc;
964 gchar **model_pieces;
965 const char *cpu_type;
967 model_pieces = g_strsplit(cpu_option, ",", 2);
968 if (!model_pieces[0]) {
969 error_report("-cpu option cannot be empty");
970 exit(1);
973 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
974 if (oc == NULL) {
975 error_report("unable to find CPU model '%s'", model_pieces[0]);
976 g_strfreev(model_pieces);
977 exit(EXIT_FAILURE);
980 cpu_type = object_class_get_name(oc);
981 cc = CPU_CLASS(oc);
982 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
983 g_strfreev(model_pieces);
984 return cpu_type;
987 #if defined(CONFIG_USER_ONLY)
988 void tb_invalidate_phys_addr(target_ulong addr)
990 mmap_lock();
991 tb_invalidate_phys_page_range(addr, addr + 1);
992 mmap_unlock();
995 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
997 tb_invalidate_phys_addr(pc);
999 #else
1000 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1002 ram_addr_t ram_addr;
1003 MemoryRegion *mr;
1004 hwaddr l = 1;
1006 if (!tcg_enabled()) {
1007 return;
1010 RCU_READ_LOCK_GUARD();
1011 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1012 if (!(memory_region_is_ram(mr)
1013 || memory_region_is_romd(mr))) {
1014 return;
1016 ram_addr = memory_region_get_ram_addr(mr) + addr;
1017 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1020 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1023 * There may not be a virtual to physical translation for the pc
1024 * right now, but there may exist cached TB for this pc.
1025 * Flush the whole TB cache to force re-translation of such TBs.
1026 * This is heavyweight, but we're debugging anyway.
1028 tb_flush(cpu);
1030 #endif
1032 #ifndef CONFIG_USER_ONLY
1033 /* Add a watchpoint. */
1034 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1035 int flags, CPUWatchpoint **watchpoint)
1037 CPUWatchpoint *wp;
1039 /* forbid ranges which are empty or run off the end of the address space */
1040 if (len == 0 || (addr + len - 1) < addr) {
1041 error_report("tried to set invalid watchpoint at %"
1042 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1043 return -EINVAL;
1045 wp = g_malloc(sizeof(*wp));
1047 wp->vaddr = addr;
1048 wp->len = len;
1049 wp->flags = flags;
1051 /* keep all GDB-injected watchpoints in front */
1052 if (flags & BP_GDB) {
1053 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1054 } else {
1055 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1058 tlb_flush_page(cpu, addr);
1060 if (watchpoint)
1061 *watchpoint = wp;
1062 return 0;
1065 /* Remove a specific watchpoint. */
1066 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1067 int flags)
1069 CPUWatchpoint *wp;
1071 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1072 if (addr == wp->vaddr && len == wp->len
1073 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1074 cpu_watchpoint_remove_by_ref(cpu, wp);
1075 return 0;
1078 return -ENOENT;
1081 /* Remove a specific watchpoint by reference. */
1082 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1084 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1086 tlb_flush_page(cpu, watchpoint->vaddr);
1088 g_free(watchpoint);
1091 /* Remove all matching watchpoints. */
1092 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1094 CPUWatchpoint *wp, *next;
1096 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1097 if (wp->flags & mask) {
1098 cpu_watchpoint_remove_by_ref(cpu, wp);
1103 /* Return true if this watchpoint address matches the specified
1104 * access (ie the address range covered by the watchpoint overlaps
1105 * partially or completely with the address range covered by the
1106 * access).
1108 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1109 vaddr addr, vaddr len)
1111 /* We know the lengths are non-zero, but a little caution is
1112 * required to avoid errors in the case where the range ends
1113 * exactly at the top of the address space and so addr + len
1114 * wraps round to zero.
1116 vaddr wpend = wp->vaddr + wp->len - 1;
1117 vaddr addrend = addr + len - 1;
1119 return !(addr > wpend || wp->vaddr > addrend);
1122 /* Return flags for watchpoints that match addr + prot. */
1123 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1125 CPUWatchpoint *wp;
1126 int ret = 0;
1128 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1129 if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1130 ret |= wp->flags;
1133 return ret;
1135 #endif /* !CONFIG_USER_ONLY */
1137 /* Add a breakpoint. */
1138 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1139 CPUBreakpoint **breakpoint)
1141 CPUBreakpoint *bp;
1143 bp = g_malloc(sizeof(*bp));
1145 bp->pc = pc;
1146 bp->flags = flags;
1148 /* keep all GDB-injected breakpoints in front */
1149 if (flags & BP_GDB) {
1150 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1151 } else {
1152 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1155 breakpoint_invalidate(cpu, pc);
1157 if (breakpoint) {
1158 *breakpoint = bp;
1160 return 0;
1163 /* Remove a specific breakpoint. */
1164 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1166 CPUBreakpoint *bp;
1168 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1169 if (bp->pc == pc && bp->flags == flags) {
1170 cpu_breakpoint_remove_by_ref(cpu, bp);
1171 return 0;
1174 return -ENOENT;
1177 /* Remove a specific breakpoint by reference. */
1178 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1180 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1182 breakpoint_invalidate(cpu, breakpoint->pc);
1184 g_free(breakpoint);
1187 /* Remove all matching breakpoints. */
1188 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1190 CPUBreakpoint *bp, *next;
1192 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1193 if (bp->flags & mask) {
1194 cpu_breakpoint_remove_by_ref(cpu, bp);
1199 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1200 CPU loop after each instruction */
1201 void cpu_single_step(CPUState *cpu, int enabled)
1203 if (cpu->singlestep_enabled != enabled) {
1204 cpu->singlestep_enabled = enabled;
1205 if (kvm_enabled()) {
1206 kvm_update_guest_debug(cpu, 0);
1207 } else {
1208 /* must flush all the translated code to avoid inconsistencies */
1209 /* XXX: only flush what is necessary */
1210 tb_flush(cpu);
1215 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1217 va_list ap;
1218 va_list ap2;
1220 va_start(ap, fmt);
1221 va_copy(ap2, ap);
1222 fprintf(stderr, "qemu: fatal: ");
1223 vfprintf(stderr, fmt, ap);
1224 fprintf(stderr, "\n");
1225 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1226 if (qemu_log_separate()) {
1227 FILE *logfile = qemu_log_lock();
1228 qemu_log("qemu: fatal: ");
1229 qemu_log_vprintf(fmt, ap2);
1230 qemu_log("\n");
1231 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1232 qemu_log_flush();
1233 qemu_log_unlock(logfile);
1234 qemu_log_close();
1236 va_end(ap2);
1237 va_end(ap);
1238 replay_finish();
1239 #if defined(CONFIG_USER_ONLY)
1241 struct sigaction act;
1242 sigfillset(&act.sa_mask);
1243 act.sa_handler = SIG_DFL;
1244 act.sa_flags = 0;
1245 sigaction(SIGABRT, &act, NULL);
1247 #endif
1248 abort();
1251 #if !defined(CONFIG_USER_ONLY)
1252 /* Called from RCU critical section */
1253 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1255 RAMBlock *block;
1257 block = atomic_rcu_read(&ram_list.mru_block);
1258 if (block && addr - block->offset < block->max_length) {
1259 return block;
1261 RAMBLOCK_FOREACH(block) {
1262 if (addr - block->offset < block->max_length) {
1263 goto found;
1267 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1268 abort();
1270 found:
1271 /* It is safe to write mru_block outside the iothread lock. This
1272 * is what happens:
1274 * mru_block = xxx
1275 * rcu_read_unlock()
1276 * xxx removed from list
1277 * rcu_read_lock()
1278 * read mru_block
1279 * mru_block = NULL;
1280 * call_rcu(reclaim_ramblock, xxx);
1281 * rcu_read_unlock()
1283 * atomic_rcu_set is not needed here. The block was already published
1284 * when it was placed into the list. Here we're just making an extra
1285 * copy of the pointer.
1287 ram_list.mru_block = block;
1288 return block;
1291 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1293 CPUState *cpu;
1294 ram_addr_t start1;
1295 RAMBlock *block;
1296 ram_addr_t end;
1298 assert(tcg_enabled());
1299 end = TARGET_PAGE_ALIGN(start + length);
1300 start &= TARGET_PAGE_MASK;
1302 RCU_READ_LOCK_GUARD();
1303 block = qemu_get_ram_block(start);
1304 assert(block == qemu_get_ram_block(end - 1));
1305 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1306 CPU_FOREACH(cpu) {
1307 tlb_reset_dirty(cpu, start1, length);
1311 /* Note: start and end must be within the same ram block. */
1312 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1313 ram_addr_t length,
1314 unsigned client)
1316 DirtyMemoryBlocks *blocks;
1317 unsigned long end, page;
1318 bool dirty = false;
1319 RAMBlock *ramblock;
1320 uint64_t mr_offset, mr_size;
1322 if (length == 0) {
1323 return false;
1326 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1327 page = start >> TARGET_PAGE_BITS;
1329 WITH_RCU_READ_LOCK_GUARD() {
1330 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1331 ramblock = qemu_get_ram_block(start);
1332 /* Range sanity check on the ramblock */
1333 assert(start >= ramblock->offset &&
1334 start + length <= ramblock->offset + ramblock->used_length);
1336 while (page < end) {
1337 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1338 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1339 unsigned long num = MIN(end - page,
1340 DIRTY_MEMORY_BLOCK_SIZE - offset);
1342 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1343 offset, num);
1344 page += num;
1347 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1348 mr_size = (end - page) << TARGET_PAGE_BITS;
1349 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1352 if (dirty && tcg_enabled()) {
1353 tlb_reset_dirty_range_all(start, length);
1356 return dirty;
1359 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1360 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1362 DirtyMemoryBlocks *blocks;
1363 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1364 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1365 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1366 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1367 DirtyBitmapSnapshot *snap;
1368 unsigned long page, end, dest;
1370 snap = g_malloc0(sizeof(*snap) +
1371 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1372 snap->start = first;
1373 snap->end = last;
1375 page = first >> TARGET_PAGE_BITS;
1376 end = last >> TARGET_PAGE_BITS;
1377 dest = 0;
1379 WITH_RCU_READ_LOCK_GUARD() {
1380 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1382 while (page < end) {
1383 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1384 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1385 unsigned long num = MIN(end - page,
1386 DIRTY_MEMORY_BLOCK_SIZE - offset);
1388 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1389 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1390 offset >>= BITS_PER_LEVEL;
1392 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1393 blocks->blocks[idx] + offset,
1394 num);
1395 page += num;
1396 dest += num >> BITS_PER_LEVEL;
1400 if (tcg_enabled()) {
1401 tlb_reset_dirty_range_all(start, length);
1404 memory_region_clear_dirty_bitmap(mr, offset, length);
1406 return snap;
1409 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1410 ram_addr_t start,
1411 ram_addr_t length)
1413 unsigned long page, end;
1415 assert(start >= snap->start);
1416 assert(start + length <= snap->end);
1418 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1419 page = (start - snap->start) >> TARGET_PAGE_BITS;
1421 while (page < end) {
1422 if (test_bit(page, snap->dirty)) {
1423 return true;
1425 page++;
1427 return false;
1430 /* Called from RCU critical section */
1431 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1432 MemoryRegionSection *section)
1434 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1435 return section - d->map.sections;
1437 #endif /* defined(CONFIG_USER_ONLY) */
1439 #if !defined(CONFIG_USER_ONLY)
1441 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1442 uint16_t section);
1443 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1445 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1446 qemu_anon_ram_alloc;
1449 * Set a custom physical guest memory alloator.
1450 * Accelerators with unusual needs may need this. Hopefully, we can
1451 * get rid of it eventually.
1453 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1455 phys_mem_alloc = alloc;
1458 static uint16_t phys_section_add(PhysPageMap *map,
1459 MemoryRegionSection *section)
1461 /* The physical section number is ORed with a page-aligned
1462 * pointer to produce the iotlb entries. Thus it should
1463 * never overflow into the page-aligned value.
1465 assert(map->sections_nb < TARGET_PAGE_SIZE);
1467 if (map->sections_nb == map->sections_nb_alloc) {
1468 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1469 map->sections = g_renew(MemoryRegionSection, map->sections,
1470 map->sections_nb_alloc);
1472 map->sections[map->sections_nb] = *section;
1473 memory_region_ref(section->mr);
1474 return map->sections_nb++;
1477 static void phys_section_destroy(MemoryRegion *mr)
1479 bool have_sub_page = mr->subpage;
1481 memory_region_unref(mr);
1483 if (have_sub_page) {
1484 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1485 object_unref(OBJECT(&subpage->iomem));
1486 g_free(subpage);
1490 static void phys_sections_free(PhysPageMap *map)
1492 while (map->sections_nb > 0) {
1493 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1494 phys_section_destroy(section->mr);
1496 g_free(map->sections);
1497 g_free(map->nodes);
1500 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1502 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1503 subpage_t *subpage;
1504 hwaddr base = section->offset_within_address_space
1505 & TARGET_PAGE_MASK;
1506 MemoryRegionSection *existing = phys_page_find(d, base);
1507 MemoryRegionSection subsection = {
1508 .offset_within_address_space = base,
1509 .size = int128_make64(TARGET_PAGE_SIZE),
1511 hwaddr start, end;
1513 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1515 if (!(existing->mr->subpage)) {
1516 subpage = subpage_init(fv, base);
1517 subsection.fv = fv;
1518 subsection.mr = &subpage->iomem;
1519 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1520 phys_section_add(&d->map, &subsection));
1521 } else {
1522 subpage = container_of(existing->mr, subpage_t, iomem);
1524 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1525 end = start + int128_get64(section->size) - 1;
1526 subpage_register(subpage, start, end,
1527 phys_section_add(&d->map, section));
1531 static void register_multipage(FlatView *fv,
1532 MemoryRegionSection *section)
1534 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1535 hwaddr start_addr = section->offset_within_address_space;
1536 uint16_t section_index = phys_section_add(&d->map, section);
1537 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1538 TARGET_PAGE_BITS));
1540 assert(num_pages);
1541 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1545 * The range in *section* may look like this:
1547 * |s|PPPPPPP|s|
1549 * where s stands for subpage and P for page.
1551 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1553 MemoryRegionSection remain = *section;
1554 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1556 /* register first subpage */
1557 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1558 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1559 - remain.offset_within_address_space;
1561 MemoryRegionSection now = remain;
1562 now.size = int128_min(int128_make64(left), now.size);
1563 register_subpage(fv, &now);
1564 if (int128_eq(remain.size, now.size)) {
1565 return;
1567 remain.size = int128_sub(remain.size, now.size);
1568 remain.offset_within_address_space += int128_get64(now.size);
1569 remain.offset_within_region += int128_get64(now.size);
1572 /* register whole pages */
1573 if (int128_ge(remain.size, page_size)) {
1574 MemoryRegionSection now = remain;
1575 now.size = int128_and(now.size, int128_neg(page_size));
1576 register_multipage(fv, &now);
1577 if (int128_eq(remain.size, now.size)) {
1578 return;
1580 remain.size = int128_sub(remain.size, now.size);
1581 remain.offset_within_address_space += int128_get64(now.size);
1582 remain.offset_within_region += int128_get64(now.size);
1585 /* register last subpage */
1586 register_subpage(fv, &remain);
1589 void qemu_flush_coalesced_mmio_buffer(void)
1591 if (kvm_enabled())
1592 kvm_flush_coalesced_mmio_buffer();
1595 void qemu_mutex_lock_ramlist(void)
1597 qemu_mutex_lock(&ram_list.mutex);
1600 void qemu_mutex_unlock_ramlist(void)
1602 qemu_mutex_unlock(&ram_list.mutex);
1605 void ram_block_dump(Monitor *mon)
1607 RAMBlock *block;
1608 char *psize;
1610 RCU_READ_LOCK_GUARD();
1611 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1612 "Block Name", "PSize", "Offset", "Used", "Total");
1613 RAMBLOCK_FOREACH(block) {
1614 psize = size_to_str(block->page_size);
1615 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1616 " 0x%016" PRIx64 "\n", block->idstr, psize,
1617 (uint64_t)block->offset,
1618 (uint64_t)block->used_length,
1619 (uint64_t)block->max_length);
1620 g_free(psize);
1624 #ifdef __linux__
1626 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1627 * may or may not name the same files / on the same filesystem now as
1628 * when we actually open and map them. Iterate over the file
1629 * descriptors instead, and use qemu_fd_getpagesize().
1631 static int find_min_backend_pagesize(Object *obj, void *opaque)
1633 long *hpsize_min = opaque;
1635 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1636 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1637 long hpsize = host_memory_backend_pagesize(backend);
1639 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1640 *hpsize_min = hpsize;
1644 return 0;
1647 static int find_max_backend_pagesize(Object *obj, void *opaque)
1649 long *hpsize_max = opaque;
1651 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1652 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1653 long hpsize = host_memory_backend_pagesize(backend);
1655 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1656 *hpsize_max = hpsize;
1660 return 0;
1664 * TODO: We assume right now that all mapped host memory backends are
1665 * used as RAM, however some might be used for different purposes.
1667 long qemu_minrampagesize(void)
1669 long hpsize = LONG_MAX;
1670 Object *memdev_root = object_resolve_path("/objects", NULL);
1672 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1673 return hpsize;
1676 long qemu_maxrampagesize(void)
1678 long pagesize = 0;
1679 Object *memdev_root = object_resolve_path("/objects", NULL);
1681 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1682 return pagesize;
1684 #else
1685 long qemu_minrampagesize(void)
1687 return qemu_real_host_page_size;
1689 long qemu_maxrampagesize(void)
1691 return qemu_real_host_page_size;
1693 #endif
1695 #ifdef CONFIG_POSIX
1696 static int64_t get_file_size(int fd)
1698 int64_t size;
1699 #if defined(__linux__)
1700 struct stat st;
1702 if (fstat(fd, &st) < 0) {
1703 return -errno;
1706 /* Special handling for devdax character devices */
1707 if (S_ISCHR(st.st_mode)) {
1708 g_autofree char *subsystem_path = NULL;
1709 g_autofree char *subsystem = NULL;
1711 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1712 major(st.st_rdev), minor(st.st_rdev));
1713 subsystem = g_file_read_link(subsystem_path, NULL);
1715 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1716 g_autofree char *size_path = NULL;
1717 g_autofree char *size_str = NULL;
1719 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1720 major(st.st_rdev), minor(st.st_rdev));
1722 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1723 return g_ascii_strtoll(size_str, NULL, 0);
1727 #endif /* defined(__linux__) */
1729 /* st.st_size may be zero for special files yet lseek(2) works */
1730 size = lseek(fd, 0, SEEK_END);
1731 if (size < 0) {
1732 return -errno;
1734 return size;
1737 static int file_ram_open(const char *path,
1738 const char *region_name,
1739 bool *created,
1740 Error **errp)
1742 char *filename;
1743 char *sanitized_name;
1744 char *c;
1745 int fd = -1;
1747 *created = false;
1748 for (;;) {
1749 fd = open(path, O_RDWR);
1750 if (fd >= 0) {
1751 /* @path names an existing file, use it */
1752 break;
1754 if (errno == ENOENT) {
1755 /* @path names a file that doesn't exist, create it */
1756 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1757 if (fd >= 0) {
1758 *created = true;
1759 break;
1761 } else if (errno == EISDIR) {
1762 /* @path names a directory, create a file there */
1763 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1764 sanitized_name = g_strdup(region_name);
1765 for (c = sanitized_name; *c != '\0'; c++) {
1766 if (*c == '/') {
1767 *c = '_';
1771 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1772 sanitized_name);
1773 g_free(sanitized_name);
1775 fd = mkstemp(filename);
1776 if (fd >= 0) {
1777 unlink(filename);
1778 g_free(filename);
1779 break;
1781 g_free(filename);
1783 if (errno != EEXIST && errno != EINTR) {
1784 error_setg_errno(errp, errno,
1785 "can't open backing store %s for guest RAM",
1786 path);
1787 return -1;
1790 * Try again on EINTR and EEXIST. The latter happens when
1791 * something else creates the file between our two open().
1795 return fd;
1798 static void *file_ram_alloc(RAMBlock *block,
1799 ram_addr_t memory,
1800 int fd,
1801 bool truncate,
1802 Error **errp)
1804 void *area;
1806 block->page_size = qemu_fd_getpagesize(fd);
1807 if (block->mr->align % block->page_size) {
1808 error_setg(errp, "alignment 0x%" PRIx64
1809 " must be multiples of page size 0x%zx",
1810 block->mr->align, block->page_size);
1811 return NULL;
1812 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1813 error_setg(errp, "alignment 0x%" PRIx64
1814 " must be a power of two", block->mr->align);
1815 return NULL;
1817 block->mr->align = MAX(block->page_size, block->mr->align);
1818 #if defined(__s390x__)
1819 if (kvm_enabled()) {
1820 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1822 #endif
1824 if (memory < block->page_size) {
1825 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1826 "or larger than page size 0x%zx",
1827 memory, block->page_size);
1828 return NULL;
1831 memory = ROUND_UP(memory, block->page_size);
1834 * ftruncate is not supported by hugetlbfs in older
1835 * hosts, so don't bother bailing out on errors.
1836 * If anything goes wrong with it under other filesystems,
1837 * mmap will fail.
1839 * Do not truncate the non-empty backend file to avoid corrupting
1840 * the existing data in the file. Disabling shrinking is not
1841 * enough. For example, the current vNVDIMM implementation stores
1842 * the guest NVDIMM labels at the end of the backend file. If the
1843 * backend file is later extended, QEMU will not be able to find
1844 * those labels. Therefore, extending the non-empty backend file
1845 * is disabled as well.
1847 if (truncate && ftruncate(fd, memory)) {
1848 perror("ftruncate");
1851 area = qemu_ram_mmap(fd, memory, block->mr->align,
1852 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1853 if (area == MAP_FAILED) {
1854 error_setg_errno(errp, errno,
1855 "unable to map backing store for guest RAM");
1856 return NULL;
1859 block->fd = fd;
1860 return area;
1862 #endif
1864 /* Allocate space within the ram_addr_t space that governs the
1865 * dirty bitmaps.
1866 * Called with the ramlist lock held.
1868 static ram_addr_t find_ram_offset(ram_addr_t size)
1870 RAMBlock *block, *next_block;
1871 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1873 assert(size != 0); /* it would hand out same offset multiple times */
1875 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1876 return 0;
1879 RAMBLOCK_FOREACH(block) {
1880 ram_addr_t candidate, next = RAM_ADDR_MAX;
1882 /* Align blocks to start on a 'long' in the bitmap
1883 * which makes the bitmap sync'ing take the fast path.
1885 candidate = block->offset + block->max_length;
1886 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1888 /* Search for the closest following block
1889 * and find the gap.
1891 RAMBLOCK_FOREACH(next_block) {
1892 if (next_block->offset >= candidate) {
1893 next = MIN(next, next_block->offset);
1897 /* If it fits remember our place and remember the size
1898 * of gap, but keep going so that we might find a smaller
1899 * gap to fill so avoiding fragmentation.
1901 if (next - candidate >= size && next - candidate < mingap) {
1902 offset = candidate;
1903 mingap = next - candidate;
1906 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1909 if (offset == RAM_ADDR_MAX) {
1910 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1911 (uint64_t)size);
1912 abort();
1915 trace_find_ram_offset(size, offset);
1917 return offset;
1920 static unsigned long last_ram_page(void)
1922 RAMBlock *block;
1923 ram_addr_t last = 0;
1925 RCU_READ_LOCK_GUARD();
1926 RAMBLOCK_FOREACH(block) {
1927 last = MAX(last, block->offset + block->max_length);
1929 return last >> TARGET_PAGE_BITS;
1932 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1934 int ret;
1936 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1937 if (!machine_dump_guest_core(current_machine)) {
1938 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1939 if (ret) {
1940 perror("qemu_madvise");
1941 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1942 "but dump_guest_core=off specified\n");
1947 const char *qemu_ram_get_idstr(RAMBlock *rb)
1949 return rb->idstr;
1952 void *qemu_ram_get_host_addr(RAMBlock *rb)
1954 return rb->host;
1957 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1959 return rb->offset;
1962 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1964 return rb->used_length;
1967 bool qemu_ram_is_shared(RAMBlock *rb)
1969 return rb->flags & RAM_SHARED;
1972 /* Note: Only set at the start of postcopy */
1973 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1975 return rb->flags & RAM_UF_ZEROPAGE;
1978 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1980 rb->flags |= RAM_UF_ZEROPAGE;
1983 bool qemu_ram_is_migratable(RAMBlock *rb)
1985 return rb->flags & RAM_MIGRATABLE;
1988 void qemu_ram_set_migratable(RAMBlock *rb)
1990 rb->flags |= RAM_MIGRATABLE;
1993 void qemu_ram_unset_migratable(RAMBlock *rb)
1995 rb->flags &= ~RAM_MIGRATABLE;
1998 /* Called with iothread lock held. */
1999 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2001 RAMBlock *block;
2003 assert(new_block);
2004 assert(!new_block->idstr[0]);
2006 if (dev) {
2007 char *id = qdev_get_dev_path(dev);
2008 if (id) {
2009 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2010 g_free(id);
2013 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2015 RCU_READ_LOCK_GUARD();
2016 RAMBLOCK_FOREACH(block) {
2017 if (block != new_block &&
2018 !strcmp(block->idstr, new_block->idstr)) {
2019 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2020 new_block->idstr);
2021 abort();
2026 /* Called with iothread lock held. */
2027 void qemu_ram_unset_idstr(RAMBlock *block)
2029 /* FIXME: arch_init.c assumes that this is not called throughout
2030 * migration. Ignore the problem since hot-unplug during migration
2031 * does not work anyway.
2033 if (block) {
2034 memset(block->idstr, 0, sizeof(block->idstr));
2038 size_t qemu_ram_pagesize(RAMBlock *rb)
2040 return rb->page_size;
2043 /* Returns the largest size of page in use */
2044 size_t qemu_ram_pagesize_largest(void)
2046 RAMBlock *block;
2047 size_t largest = 0;
2049 RAMBLOCK_FOREACH(block) {
2050 largest = MAX(largest, qemu_ram_pagesize(block));
2053 return largest;
2056 static int memory_try_enable_merging(void *addr, size_t len)
2058 if (!machine_mem_merge(current_machine)) {
2059 /* disabled by the user */
2060 return 0;
2063 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2066 /* Only legal before guest might have detected the memory size: e.g. on
2067 * incoming migration, or right after reset.
2069 * As memory core doesn't know how is memory accessed, it is up to
2070 * resize callback to update device state and/or add assertions to detect
2071 * misuse, if necessary.
2073 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2075 assert(block);
2077 newsize = HOST_PAGE_ALIGN(newsize);
2079 if (block->used_length == newsize) {
2080 return 0;
2083 if (!(block->flags & RAM_RESIZEABLE)) {
2084 error_setg_errno(errp, EINVAL,
2085 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2086 " in != 0x" RAM_ADDR_FMT, block->idstr,
2087 newsize, block->used_length);
2088 return -EINVAL;
2091 if (block->max_length < newsize) {
2092 error_setg_errno(errp, EINVAL,
2093 "Length too large: %s: 0x" RAM_ADDR_FMT
2094 " > 0x" RAM_ADDR_FMT, block->idstr,
2095 newsize, block->max_length);
2096 return -EINVAL;
2099 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2100 block->used_length = newsize;
2101 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2102 DIRTY_CLIENTS_ALL);
2103 memory_region_set_size(block->mr, newsize);
2104 if (block->resized) {
2105 block->resized(block->idstr, newsize, block->host);
2107 return 0;
2111 * Trigger sync on the given ram block for range [start, start + length]
2112 * with the backing store if one is available.
2113 * Otherwise no-op.
2114 * @Note: this is supposed to be a synchronous op.
2116 void qemu_ram_writeback(RAMBlock *block, ram_addr_t start, ram_addr_t length)
2118 void *addr = ramblock_ptr(block, start);
2120 /* The requested range should fit in within the block range */
2121 g_assert((start + length) <= block->used_length);
2123 #ifdef CONFIG_LIBPMEM
2124 /* The lack of support for pmem should not block the sync */
2125 if (ramblock_is_pmem(block)) {
2126 pmem_persist(addr, length);
2127 return;
2129 #endif
2130 if (block->fd >= 0) {
2132 * Case there is no support for PMEM or the memory has not been
2133 * specified as persistent (or is not one) - use the msync.
2134 * Less optimal but still achieves the same goal
2136 if (qemu_msync(addr, length, block->fd)) {
2137 warn_report("%s: failed to sync memory range: start: "
2138 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2139 __func__, start, length);
2144 /* Called with ram_list.mutex held */
2145 static void dirty_memory_extend(ram_addr_t old_ram_size,
2146 ram_addr_t new_ram_size)
2148 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2149 DIRTY_MEMORY_BLOCK_SIZE);
2150 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2151 DIRTY_MEMORY_BLOCK_SIZE);
2152 int i;
2154 /* Only need to extend if block count increased */
2155 if (new_num_blocks <= old_num_blocks) {
2156 return;
2159 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2160 DirtyMemoryBlocks *old_blocks;
2161 DirtyMemoryBlocks *new_blocks;
2162 int j;
2164 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2165 new_blocks = g_malloc(sizeof(*new_blocks) +
2166 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2168 if (old_num_blocks) {
2169 memcpy(new_blocks->blocks, old_blocks->blocks,
2170 old_num_blocks * sizeof(old_blocks->blocks[0]));
2173 for (j = old_num_blocks; j < new_num_blocks; j++) {
2174 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2177 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2179 if (old_blocks) {
2180 g_free_rcu(old_blocks, rcu);
2185 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2187 RAMBlock *block;
2188 RAMBlock *last_block = NULL;
2189 ram_addr_t old_ram_size, new_ram_size;
2190 Error *err = NULL;
2192 old_ram_size = last_ram_page();
2194 qemu_mutex_lock_ramlist();
2195 new_block->offset = find_ram_offset(new_block->max_length);
2197 if (!new_block->host) {
2198 if (xen_enabled()) {
2199 xen_ram_alloc(new_block->offset, new_block->max_length,
2200 new_block->mr, &err);
2201 if (err) {
2202 error_propagate(errp, err);
2203 qemu_mutex_unlock_ramlist();
2204 return;
2206 } else {
2207 new_block->host = phys_mem_alloc(new_block->max_length,
2208 &new_block->mr->align, shared);
2209 if (!new_block->host) {
2210 error_setg_errno(errp, errno,
2211 "cannot set up guest memory '%s'",
2212 memory_region_name(new_block->mr));
2213 qemu_mutex_unlock_ramlist();
2214 return;
2216 memory_try_enable_merging(new_block->host, new_block->max_length);
2220 new_ram_size = MAX(old_ram_size,
2221 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2222 if (new_ram_size > old_ram_size) {
2223 dirty_memory_extend(old_ram_size, new_ram_size);
2225 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2226 * QLIST (which has an RCU-friendly variant) does not have insertion at
2227 * tail, so save the last element in last_block.
2229 RAMBLOCK_FOREACH(block) {
2230 last_block = block;
2231 if (block->max_length < new_block->max_length) {
2232 break;
2235 if (block) {
2236 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2237 } else if (last_block) {
2238 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2239 } else { /* list is empty */
2240 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2242 ram_list.mru_block = NULL;
2244 /* Write list before version */
2245 smp_wmb();
2246 ram_list.version++;
2247 qemu_mutex_unlock_ramlist();
2249 cpu_physical_memory_set_dirty_range(new_block->offset,
2250 new_block->used_length,
2251 DIRTY_CLIENTS_ALL);
2253 if (new_block->host) {
2254 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2255 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2256 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2257 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2258 ram_block_notify_add(new_block->host, new_block->max_length);
2262 #ifdef CONFIG_POSIX
2263 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2264 uint32_t ram_flags, int fd,
2265 Error **errp)
2267 RAMBlock *new_block;
2268 Error *local_err = NULL;
2269 int64_t file_size;
2271 /* Just support these ram flags by now. */
2272 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2274 if (xen_enabled()) {
2275 error_setg(errp, "-mem-path not supported with Xen");
2276 return NULL;
2279 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2280 error_setg(errp,
2281 "host lacks kvm mmu notifiers, -mem-path unsupported");
2282 return NULL;
2285 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2287 * file_ram_alloc() needs to allocate just like
2288 * phys_mem_alloc, but we haven't bothered to provide
2289 * a hook there.
2291 error_setg(errp,
2292 "-mem-path not supported with this accelerator");
2293 return NULL;
2296 size = HOST_PAGE_ALIGN(size);
2297 file_size = get_file_size(fd);
2298 if (file_size > 0 && file_size < size) {
2299 error_setg(errp, "backing store size 0x%" PRIx64
2300 " does not match 'size' option 0x" RAM_ADDR_FMT,
2301 file_size, size);
2302 return NULL;
2305 new_block = g_malloc0(sizeof(*new_block));
2306 new_block->mr = mr;
2307 new_block->used_length = size;
2308 new_block->max_length = size;
2309 new_block->flags = ram_flags;
2310 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2311 if (!new_block->host) {
2312 g_free(new_block);
2313 return NULL;
2316 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2317 if (local_err) {
2318 g_free(new_block);
2319 error_propagate(errp, local_err);
2320 return NULL;
2322 return new_block;
2327 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2328 uint32_t ram_flags, const char *mem_path,
2329 Error **errp)
2331 int fd;
2332 bool created;
2333 RAMBlock *block;
2335 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2336 if (fd < 0) {
2337 return NULL;
2340 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2341 if (!block) {
2342 if (created) {
2343 unlink(mem_path);
2345 close(fd);
2346 return NULL;
2349 return block;
2351 #endif
2353 static
2354 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2355 void (*resized)(const char*,
2356 uint64_t length,
2357 void *host),
2358 void *host, bool resizeable, bool share,
2359 MemoryRegion *mr, Error **errp)
2361 RAMBlock *new_block;
2362 Error *local_err = NULL;
2364 size = HOST_PAGE_ALIGN(size);
2365 max_size = HOST_PAGE_ALIGN(max_size);
2366 new_block = g_malloc0(sizeof(*new_block));
2367 new_block->mr = mr;
2368 new_block->resized = resized;
2369 new_block->used_length = size;
2370 new_block->max_length = max_size;
2371 assert(max_size >= size);
2372 new_block->fd = -1;
2373 new_block->page_size = qemu_real_host_page_size;
2374 new_block->host = host;
2375 if (host) {
2376 new_block->flags |= RAM_PREALLOC;
2378 if (resizeable) {
2379 new_block->flags |= RAM_RESIZEABLE;
2381 ram_block_add(new_block, &local_err, share);
2382 if (local_err) {
2383 g_free(new_block);
2384 error_propagate(errp, local_err);
2385 return NULL;
2387 return new_block;
2390 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2391 MemoryRegion *mr, Error **errp)
2393 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2394 false, mr, errp);
2397 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2398 MemoryRegion *mr, Error **errp)
2400 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2401 share, mr, errp);
2404 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2405 void (*resized)(const char*,
2406 uint64_t length,
2407 void *host),
2408 MemoryRegion *mr, Error **errp)
2410 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2411 false, mr, errp);
2414 static void reclaim_ramblock(RAMBlock *block)
2416 if (block->flags & RAM_PREALLOC) {
2418 } else if (xen_enabled()) {
2419 xen_invalidate_map_cache_entry(block->host);
2420 #ifndef _WIN32
2421 } else if (block->fd >= 0) {
2422 qemu_ram_munmap(block->fd, block->host, block->max_length);
2423 close(block->fd);
2424 #endif
2425 } else {
2426 qemu_anon_ram_free(block->host, block->max_length);
2428 g_free(block);
2431 void qemu_ram_free(RAMBlock *block)
2433 if (!block) {
2434 return;
2437 if (block->host) {
2438 ram_block_notify_remove(block->host, block->max_length);
2441 qemu_mutex_lock_ramlist();
2442 QLIST_REMOVE_RCU(block, next);
2443 ram_list.mru_block = NULL;
2444 /* Write list before version */
2445 smp_wmb();
2446 ram_list.version++;
2447 call_rcu(block, reclaim_ramblock, rcu);
2448 qemu_mutex_unlock_ramlist();
2451 #ifndef _WIN32
2452 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2454 RAMBlock *block;
2455 ram_addr_t offset;
2456 int flags;
2457 void *area, *vaddr;
2459 RAMBLOCK_FOREACH(block) {
2460 offset = addr - block->offset;
2461 if (offset < block->max_length) {
2462 vaddr = ramblock_ptr(block, offset);
2463 if (block->flags & RAM_PREALLOC) {
2465 } else if (xen_enabled()) {
2466 abort();
2467 } else {
2468 flags = MAP_FIXED;
2469 if (block->fd >= 0) {
2470 flags |= (block->flags & RAM_SHARED ?
2471 MAP_SHARED : MAP_PRIVATE);
2472 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2473 flags, block->fd, offset);
2474 } else {
2476 * Remap needs to match alloc. Accelerators that
2477 * set phys_mem_alloc never remap. If they did,
2478 * we'd need a remap hook here.
2480 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2482 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2483 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2484 flags, -1, 0);
2486 if (area != vaddr) {
2487 error_report("Could not remap addr: "
2488 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2489 length, addr);
2490 exit(1);
2492 memory_try_enable_merging(vaddr, length);
2493 qemu_ram_setup_dump(vaddr, length);
2498 #endif /* !_WIN32 */
2500 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2501 * This should not be used for general purpose DMA. Use address_space_map
2502 * or address_space_rw instead. For local memory (e.g. video ram) that the
2503 * device owns, use memory_region_get_ram_ptr.
2505 * Called within RCU critical section.
2507 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2509 RAMBlock *block = ram_block;
2511 if (block == NULL) {
2512 block = qemu_get_ram_block(addr);
2513 addr -= block->offset;
2516 if (xen_enabled() && block->host == NULL) {
2517 /* We need to check if the requested address is in the RAM
2518 * because we don't want to map the entire memory in QEMU.
2519 * In that case just map until the end of the page.
2521 if (block->offset == 0) {
2522 return xen_map_cache(addr, 0, 0, false);
2525 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2527 return ramblock_ptr(block, addr);
2530 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2531 * but takes a size argument.
2533 * Called within RCU critical section.
2535 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2536 hwaddr *size, bool lock)
2538 RAMBlock *block = ram_block;
2539 if (*size == 0) {
2540 return NULL;
2543 if (block == NULL) {
2544 block = qemu_get_ram_block(addr);
2545 addr -= block->offset;
2547 *size = MIN(*size, block->max_length - addr);
2549 if (xen_enabled() && block->host == NULL) {
2550 /* We need to check if the requested address is in the RAM
2551 * because we don't want to map the entire memory in QEMU.
2552 * In that case just map the requested area.
2554 if (block->offset == 0) {
2555 return xen_map_cache(addr, *size, lock, lock);
2558 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2561 return ramblock_ptr(block, addr);
2564 /* Return the offset of a hostpointer within a ramblock */
2565 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2567 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2568 assert((uintptr_t)host >= (uintptr_t)rb->host);
2569 assert(res < rb->max_length);
2571 return res;
2575 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2576 * in that RAMBlock.
2578 * ptr: Host pointer to look up
2579 * round_offset: If true round the result offset down to a page boundary
2580 * *ram_addr: set to result ram_addr
2581 * *offset: set to result offset within the RAMBlock
2583 * Returns: RAMBlock (or NULL if not found)
2585 * By the time this function returns, the returned pointer is not protected
2586 * by RCU anymore. If the caller is not within an RCU critical section and
2587 * does not hold the iothread lock, it must have other means of protecting the
2588 * pointer, such as a reference to the region that includes the incoming
2589 * ram_addr_t.
2591 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2592 ram_addr_t *offset)
2594 RAMBlock *block;
2595 uint8_t *host = ptr;
2597 if (xen_enabled()) {
2598 ram_addr_t ram_addr;
2599 RCU_READ_LOCK_GUARD();
2600 ram_addr = xen_ram_addr_from_mapcache(ptr);
2601 block = qemu_get_ram_block(ram_addr);
2602 if (block) {
2603 *offset = ram_addr - block->offset;
2605 return block;
2608 RCU_READ_LOCK_GUARD();
2609 block = atomic_rcu_read(&ram_list.mru_block);
2610 if (block && block->host && host - block->host < block->max_length) {
2611 goto found;
2614 RAMBLOCK_FOREACH(block) {
2615 /* This case append when the block is not mapped. */
2616 if (block->host == NULL) {
2617 continue;
2619 if (host - block->host < block->max_length) {
2620 goto found;
2624 return NULL;
2626 found:
2627 *offset = (host - block->host);
2628 if (round_offset) {
2629 *offset &= TARGET_PAGE_MASK;
2631 return block;
2635 * Finds the named RAMBlock
2637 * name: The name of RAMBlock to find
2639 * Returns: RAMBlock (or NULL if not found)
2641 RAMBlock *qemu_ram_block_by_name(const char *name)
2643 RAMBlock *block;
2645 RAMBLOCK_FOREACH(block) {
2646 if (!strcmp(name, block->idstr)) {
2647 return block;
2651 return NULL;
2654 /* Some of the softmmu routines need to translate from a host pointer
2655 (typically a TLB entry) back to a ram offset. */
2656 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2658 RAMBlock *block;
2659 ram_addr_t offset;
2661 block = qemu_ram_block_from_host(ptr, false, &offset);
2662 if (!block) {
2663 return RAM_ADDR_INVALID;
2666 return block->offset + offset;
2669 /* Generate a debug exception if a watchpoint has been hit. */
2670 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2671 MemTxAttrs attrs, int flags, uintptr_t ra)
2673 CPUClass *cc = CPU_GET_CLASS(cpu);
2674 CPUWatchpoint *wp;
2676 assert(tcg_enabled());
2677 if (cpu->watchpoint_hit) {
2679 * We re-entered the check after replacing the TB.
2680 * Now raise the debug interrupt so that it will
2681 * trigger after the current instruction.
2683 qemu_mutex_lock_iothread();
2684 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2685 qemu_mutex_unlock_iothread();
2686 return;
2689 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2690 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2691 if (watchpoint_address_matches(wp, addr, len)
2692 && (wp->flags & flags)) {
2693 if (flags == BP_MEM_READ) {
2694 wp->flags |= BP_WATCHPOINT_HIT_READ;
2695 } else {
2696 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2698 wp->hitaddr = MAX(addr, wp->vaddr);
2699 wp->hitattrs = attrs;
2700 if (!cpu->watchpoint_hit) {
2701 if (wp->flags & BP_CPU &&
2702 !cc->debug_check_watchpoint(cpu, wp)) {
2703 wp->flags &= ~BP_WATCHPOINT_HIT;
2704 continue;
2706 cpu->watchpoint_hit = wp;
2708 mmap_lock();
2709 tb_check_watchpoint(cpu, ra);
2710 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2711 cpu->exception_index = EXCP_DEBUG;
2712 mmap_unlock();
2713 cpu_loop_exit_restore(cpu, ra);
2714 } else {
2715 /* Force execution of one insn next time. */
2716 cpu->cflags_next_tb = 1 | curr_cflags();
2717 mmap_unlock();
2718 if (ra) {
2719 cpu_restore_state(cpu, ra, true);
2721 cpu_loop_exit_noexc(cpu);
2724 } else {
2725 wp->flags &= ~BP_WATCHPOINT_HIT;
2730 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2731 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2732 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2733 const uint8_t *buf, hwaddr len);
2734 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2735 bool is_write, MemTxAttrs attrs);
2737 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2738 unsigned len, MemTxAttrs attrs)
2740 subpage_t *subpage = opaque;
2741 uint8_t buf[8];
2742 MemTxResult res;
2744 #if defined(DEBUG_SUBPAGE)
2745 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2746 subpage, len, addr);
2747 #endif
2748 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2749 if (res) {
2750 return res;
2752 *data = ldn_p(buf, len);
2753 return MEMTX_OK;
2756 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2757 uint64_t value, unsigned len, MemTxAttrs attrs)
2759 subpage_t *subpage = opaque;
2760 uint8_t buf[8];
2762 #if defined(DEBUG_SUBPAGE)
2763 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2764 " value %"PRIx64"\n",
2765 __func__, subpage, len, addr, value);
2766 #endif
2767 stn_p(buf, len, value);
2768 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2771 static bool subpage_accepts(void *opaque, hwaddr addr,
2772 unsigned len, bool is_write,
2773 MemTxAttrs attrs)
2775 subpage_t *subpage = opaque;
2776 #if defined(DEBUG_SUBPAGE)
2777 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2778 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2779 #endif
2781 return flatview_access_valid(subpage->fv, addr + subpage->base,
2782 len, is_write, attrs);
2785 static const MemoryRegionOps subpage_ops = {
2786 .read_with_attrs = subpage_read,
2787 .write_with_attrs = subpage_write,
2788 .impl.min_access_size = 1,
2789 .impl.max_access_size = 8,
2790 .valid.min_access_size = 1,
2791 .valid.max_access_size = 8,
2792 .valid.accepts = subpage_accepts,
2793 .endianness = DEVICE_NATIVE_ENDIAN,
2796 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2797 uint16_t section)
2799 int idx, eidx;
2801 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2802 return -1;
2803 idx = SUBPAGE_IDX(start);
2804 eidx = SUBPAGE_IDX(end);
2805 #if defined(DEBUG_SUBPAGE)
2806 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2807 __func__, mmio, start, end, idx, eidx, section);
2808 #endif
2809 for (; idx <= eidx; idx++) {
2810 mmio->sub_section[idx] = section;
2813 return 0;
2816 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2818 subpage_t *mmio;
2820 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2821 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2822 mmio->fv = fv;
2823 mmio->base = base;
2824 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2825 NULL, TARGET_PAGE_SIZE);
2826 mmio->iomem.subpage = true;
2827 #if defined(DEBUG_SUBPAGE)
2828 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2829 mmio, base, TARGET_PAGE_SIZE);
2830 #endif
2832 return mmio;
2835 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2837 assert(fv);
2838 MemoryRegionSection section = {
2839 .fv = fv,
2840 .mr = mr,
2841 .offset_within_address_space = 0,
2842 .offset_within_region = 0,
2843 .size = int128_2_64(),
2846 return phys_section_add(map, &section);
2849 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2850 hwaddr index, MemTxAttrs attrs)
2852 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2853 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2854 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2855 MemoryRegionSection *sections = d->map.sections;
2857 return &sections[index & ~TARGET_PAGE_MASK];
2860 static void io_mem_init(void)
2862 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2863 NULL, UINT64_MAX);
2866 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2868 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2869 uint16_t n;
2871 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2872 assert(n == PHYS_SECTION_UNASSIGNED);
2874 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2876 return d;
2879 void address_space_dispatch_free(AddressSpaceDispatch *d)
2881 phys_sections_free(&d->map);
2882 g_free(d);
2885 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2889 static void tcg_log_global_after_sync(MemoryListener *listener)
2891 CPUAddressSpace *cpuas;
2893 /* Wait for the CPU to end the current TB. This avoids the following
2894 * incorrect race:
2896 * vCPU migration
2897 * ---------------------- -------------------------
2898 * TLB check -> slow path
2899 * notdirty_mem_write
2900 * write to RAM
2901 * mark dirty
2902 * clear dirty flag
2903 * TLB check -> fast path
2904 * read memory
2905 * write to RAM
2907 * by pushing the migration thread's memory read after the vCPU thread has
2908 * written the memory.
2910 if (replay_mode == REPLAY_MODE_NONE) {
2912 * VGA can make calls to this function while updating the screen.
2913 * In record/replay mode this causes a deadlock, because
2914 * run_on_cpu waits for rr mutex. Therefore no races are possible
2915 * in this case and no need for making run_on_cpu when
2916 * record/replay is not enabled.
2918 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2919 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2923 static void tcg_commit(MemoryListener *listener)
2925 CPUAddressSpace *cpuas;
2926 AddressSpaceDispatch *d;
2928 assert(tcg_enabled());
2929 /* since each CPU stores ram addresses in its TLB cache, we must
2930 reset the modified entries */
2931 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2932 cpu_reloading_memory_map();
2933 /* The CPU and TLB are protected by the iothread lock.
2934 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2935 * may have split the RCU critical section.
2937 d = address_space_to_dispatch(cpuas->as);
2938 atomic_rcu_set(&cpuas->memory_dispatch, d);
2939 tlb_flush(cpuas->cpu);
2942 static void memory_map_init(void)
2944 system_memory = g_malloc(sizeof(*system_memory));
2946 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2947 address_space_init(&address_space_memory, system_memory, "memory");
2949 system_io = g_malloc(sizeof(*system_io));
2950 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2951 65536);
2952 address_space_init(&address_space_io, system_io, "I/O");
2955 MemoryRegion *get_system_memory(void)
2957 return system_memory;
2960 MemoryRegion *get_system_io(void)
2962 return system_io;
2965 #endif /* !defined(CONFIG_USER_ONLY) */
2967 /* physical memory access (slow version, mainly for debug) */
2968 #if defined(CONFIG_USER_ONLY)
2969 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2970 uint8_t *buf, target_ulong len, int is_write)
2972 int flags;
2973 target_ulong l, page;
2974 void * p;
2976 while (len > 0) {
2977 page = addr & TARGET_PAGE_MASK;
2978 l = (page + TARGET_PAGE_SIZE) - addr;
2979 if (l > len)
2980 l = len;
2981 flags = page_get_flags(page);
2982 if (!(flags & PAGE_VALID))
2983 return -1;
2984 if (is_write) {
2985 if (!(flags & PAGE_WRITE))
2986 return -1;
2987 /* XXX: this code should not depend on lock_user */
2988 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2989 return -1;
2990 memcpy(p, buf, l);
2991 unlock_user(p, addr, l);
2992 } else {
2993 if (!(flags & PAGE_READ))
2994 return -1;
2995 /* XXX: this code should not depend on lock_user */
2996 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2997 return -1;
2998 memcpy(buf, p, l);
2999 unlock_user(p, addr, 0);
3001 len -= l;
3002 buf += l;
3003 addr += l;
3005 return 0;
3008 #else
3010 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3011 hwaddr length)
3013 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3014 addr += memory_region_get_ram_addr(mr);
3016 /* No early return if dirty_log_mask is or becomes 0, because
3017 * cpu_physical_memory_set_dirty_range will still call
3018 * xen_modified_memory.
3020 if (dirty_log_mask) {
3021 dirty_log_mask =
3022 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3024 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3025 assert(tcg_enabled());
3026 tb_invalidate_phys_range(addr, addr + length);
3027 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3029 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3032 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3035 * In principle this function would work on other memory region types too,
3036 * but the ROM device use case is the only one where this operation is
3037 * necessary. Other memory regions should use the
3038 * address_space_read/write() APIs.
3040 assert(memory_region_is_romd(mr));
3042 invalidate_and_set_dirty(mr, addr, size);
3045 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3047 unsigned access_size_max = mr->ops->valid.max_access_size;
3049 /* Regions are assumed to support 1-4 byte accesses unless
3050 otherwise specified. */
3051 if (access_size_max == 0) {
3052 access_size_max = 4;
3055 /* Bound the maximum access by the alignment of the address. */
3056 if (!mr->ops->impl.unaligned) {
3057 unsigned align_size_max = addr & -addr;
3058 if (align_size_max != 0 && align_size_max < access_size_max) {
3059 access_size_max = align_size_max;
3063 /* Don't attempt accesses larger than the maximum. */
3064 if (l > access_size_max) {
3065 l = access_size_max;
3067 l = pow2floor(l);
3069 return l;
3072 static bool prepare_mmio_access(MemoryRegion *mr)
3074 bool unlocked = !qemu_mutex_iothread_locked();
3075 bool release_lock = false;
3077 if (unlocked && mr->global_locking) {
3078 qemu_mutex_lock_iothread();
3079 unlocked = false;
3080 release_lock = true;
3082 if (mr->flush_coalesced_mmio) {
3083 if (unlocked) {
3084 qemu_mutex_lock_iothread();
3086 qemu_flush_coalesced_mmio_buffer();
3087 if (unlocked) {
3088 qemu_mutex_unlock_iothread();
3092 return release_lock;
3095 /* Called within RCU critical section. */
3096 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3097 MemTxAttrs attrs,
3098 const uint8_t *buf,
3099 hwaddr len, hwaddr addr1,
3100 hwaddr l, MemoryRegion *mr)
3102 uint8_t *ptr;
3103 uint64_t val;
3104 MemTxResult result = MEMTX_OK;
3105 bool release_lock = false;
3107 for (;;) {
3108 if (!memory_access_is_direct(mr, true)) {
3109 release_lock |= prepare_mmio_access(mr);
3110 l = memory_access_size(mr, l, addr1);
3111 /* XXX: could force current_cpu to NULL to avoid
3112 potential bugs */
3113 val = ldn_he_p(buf, l);
3114 result |= memory_region_dispatch_write(mr, addr1, val,
3115 size_memop(l), attrs);
3116 } else {
3117 /* RAM case */
3118 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3119 memcpy(ptr, buf, l);
3120 invalidate_and_set_dirty(mr, addr1, l);
3123 if (release_lock) {
3124 qemu_mutex_unlock_iothread();
3125 release_lock = false;
3128 len -= l;
3129 buf += l;
3130 addr += l;
3132 if (!len) {
3133 break;
3136 l = len;
3137 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3140 return result;
3143 /* Called from RCU critical section. */
3144 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3145 const uint8_t *buf, hwaddr len)
3147 hwaddr l;
3148 hwaddr addr1;
3149 MemoryRegion *mr;
3150 MemTxResult result = MEMTX_OK;
3152 l = len;
3153 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3154 result = flatview_write_continue(fv, addr, attrs, buf, len,
3155 addr1, l, mr);
3157 return result;
3160 /* Called within RCU critical section. */
3161 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3162 MemTxAttrs attrs, uint8_t *buf,
3163 hwaddr len, hwaddr addr1, hwaddr l,
3164 MemoryRegion *mr)
3166 uint8_t *ptr;
3167 uint64_t val;
3168 MemTxResult result = MEMTX_OK;
3169 bool release_lock = false;
3171 for (;;) {
3172 if (!memory_access_is_direct(mr, false)) {
3173 /* I/O case */
3174 release_lock |= prepare_mmio_access(mr);
3175 l = memory_access_size(mr, l, addr1);
3176 result |= memory_region_dispatch_read(mr, addr1, &val,
3177 size_memop(l), attrs);
3178 stn_he_p(buf, l, val);
3179 } else {
3180 /* RAM case */
3181 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3182 memcpy(buf, ptr, l);
3185 if (release_lock) {
3186 qemu_mutex_unlock_iothread();
3187 release_lock = false;
3190 len -= l;
3191 buf += l;
3192 addr += l;
3194 if (!len) {
3195 break;
3198 l = len;
3199 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3202 return result;
3205 /* Called from RCU critical section. */
3206 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3207 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3209 hwaddr l;
3210 hwaddr addr1;
3211 MemoryRegion *mr;
3213 l = len;
3214 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3215 return flatview_read_continue(fv, addr, attrs, buf, len,
3216 addr1, l, mr);
3219 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3220 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3222 MemTxResult result = MEMTX_OK;
3223 FlatView *fv;
3225 if (len > 0) {
3226 RCU_READ_LOCK_GUARD();
3227 fv = address_space_to_flatview(as);
3228 result = flatview_read(fv, addr, attrs, buf, len);
3231 return result;
3234 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3235 MemTxAttrs attrs,
3236 const uint8_t *buf, hwaddr len)
3238 MemTxResult result = MEMTX_OK;
3239 FlatView *fv;
3241 if (len > 0) {
3242 RCU_READ_LOCK_GUARD();
3243 fv = address_space_to_flatview(as);
3244 result = flatview_write(fv, addr, attrs, buf, len);
3247 return result;
3250 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3251 uint8_t *buf, hwaddr len, bool is_write)
3253 if (is_write) {
3254 return address_space_write(as, addr, attrs, buf, len);
3255 } else {
3256 return address_space_read_full(as, addr, attrs, buf, len);
3260 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3261 hwaddr len, int is_write)
3263 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3264 buf, len, is_write);
3267 enum write_rom_type {
3268 WRITE_DATA,
3269 FLUSH_CACHE,
3272 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3273 hwaddr addr,
3274 MemTxAttrs attrs,
3275 const uint8_t *buf,
3276 hwaddr len,
3277 enum write_rom_type type)
3279 hwaddr l;
3280 uint8_t *ptr;
3281 hwaddr addr1;
3282 MemoryRegion *mr;
3284 RCU_READ_LOCK_GUARD();
3285 while (len > 0) {
3286 l = len;
3287 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3289 if (!(memory_region_is_ram(mr) ||
3290 memory_region_is_romd(mr))) {
3291 l = memory_access_size(mr, l, addr1);
3292 } else {
3293 /* ROM/RAM case */
3294 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3295 switch (type) {
3296 case WRITE_DATA:
3297 memcpy(ptr, buf, l);
3298 invalidate_and_set_dirty(mr, addr1, l);
3299 break;
3300 case FLUSH_CACHE:
3301 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3302 break;
3305 len -= l;
3306 buf += l;
3307 addr += l;
3309 return MEMTX_OK;
3312 /* used for ROM loading : can write in RAM and ROM */
3313 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3314 MemTxAttrs attrs,
3315 const uint8_t *buf, hwaddr len)
3317 return address_space_write_rom_internal(as, addr, attrs,
3318 buf, len, WRITE_DATA);
3321 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3324 * This function should do the same thing as an icache flush that was
3325 * triggered from within the guest. For TCG we are always cache coherent,
3326 * so there is no need to flush anything. For KVM / Xen we need to flush
3327 * the host's instruction cache at least.
3329 if (tcg_enabled()) {
3330 return;
3333 address_space_write_rom_internal(&address_space_memory,
3334 start, MEMTXATTRS_UNSPECIFIED,
3335 NULL, len, FLUSH_CACHE);
3338 typedef struct {
3339 MemoryRegion *mr;
3340 void *buffer;
3341 hwaddr addr;
3342 hwaddr len;
3343 bool in_use;
3344 } BounceBuffer;
3346 static BounceBuffer bounce;
3348 typedef struct MapClient {
3349 QEMUBH *bh;
3350 QLIST_ENTRY(MapClient) link;
3351 } MapClient;
3353 QemuMutex map_client_list_lock;
3354 static QLIST_HEAD(, MapClient) map_client_list
3355 = QLIST_HEAD_INITIALIZER(map_client_list);
3357 static void cpu_unregister_map_client_do(MapClient *client)
3359 QLIST_REMOVE(client, link);
3360 g_free(client);
3363 static void cpu_notify_map_clients_locked(void)
3365 MapClient *client;
3367 while (!QLIST_EMPTY(&map_client_list)) {
3368 client = QLIST_FIRST(&map_client_list);
3369 qemu_bh_schedule(client->bh);
3370 cpu_unregister_map_client_do(client);
3374 void cpu_register_map_client(QEMUBH *bh)
3376 MapClient *client = g_malloc(sizeof(*client));
3378 qemu_mutex_lock(&map_client_list_lock);
3379 client->bh = bh;
3380 QLIST_INSERT_HEAD(&map_client_list, client, link);
3381 if (!atomic_read(&bounce.in_use)) {
3382 cpu_notify_map_clients_locked();
3384 qemu_mutex_unlock(&map_client_list_lock);
3387 void cpu_exec_init_all(void)
3389 qemu_mutex_init(&ram_list.mutex);
3390 /* The data structures we set up here depend on knowing the page size,
3391 * so no more changes can be made after this point.
3392 * In an ideal world, nothing we did before we had finished the
3393 * machine setup would care about the target page size, and we could
3394 * do this much later, rather than requiring board models to state
3395 * up front what their requirements are.
3397 finalize_target_page_bits();
3398 io_mem_init();
3399 memory_map_init();
3400 qemu_mutex_init(&map_client_list_lock);
3403 void cpu_unregister_map_client(QEMUBH *bh)
3405 MapClient *client;
3407 qemu_mutex_lock(&map_client_list_lock);
3408 QLIST_FOREACH(client, &map_client_list, link) {
3409 if (client->bh == bh) {
3410 cpu_unregister_map_client_do(client);
3411 break;
3414 qemu_mutex_unlock(&map_client_list_lock);
3417 static void cpu_notify_map_clients(void)
3419 qemu_mutex_lock(&map_client_list_lock);
3420 cpu_notify_map_clients_locked();
3421 qemu_mutex_unlock(&map_client_list_lock);
3424 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3425 bool is_write, MemTxAttrs attrs)
3427 MemoryRegion *mr;
3428 hwaddr l, xlat;
3430 while (len > 0) {
3431 l = len;
3432 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3433 if (!memory_access_is_direct(mr, is_write)) {
3434 l = memory_access_size(mr, l, addr);
3435 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3436 return false;
3440 len -= l;
3441 addr += l;
3443 return true;
3446 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3447 hwaddr len, bool is_write,
3448 MemTxAttrs attrs)
3450 FlatView *fv;
3451 bool result;
3453 RCU_READ_LOCK_GUARD();
3454 fv = address_space_to_flatview(as);
3455 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3456 return result;
3459 static hwaddr
3460 flatview_extend_translation(FlatView *fv, hwaddr addr,
3461 hwaddr target_len,
3462 MemoryRegion *mr, hwaddr base, hwaddr len,
3463 bool is_write, MemTxAttrs attrs)
3465 hwaddr done = 0;
3466 hwaddr xlat;
3467 MemoryRegion *this_mr;
3469 for (;;) {
3470 target_len -= len;
3471 addr += len;
3472 done += len;
3473 if (target_len == 0) {
3474 return done;
3477 len = target_len;
3478 this_mr = flatview_translate(fv, addr, &xlat,
3479 &len, is_write, attrs);
3480 if (this_mr != mr || xlat != base + done) {
3481 return done;
3486 /* Map a physical memory region into a host virtual address.
3487 * May map a subset of the requested range, given by and returned in *plen.
3488 * May return NULL if resources needed to perform the mapping are exhausted.
3489 * Use only for reads OR writes - not for read-modify-write operations.
3490 * Use cpu_register_map_client() to know when retrying the map operation is
3491 * likely to succeed.
3493 void *address_space_map(AddressSpace *as,
3494 hwaddr addr,
3495 hwaddr *plen,
3496 bool is_write,
3497 MemTxAttrs attrs)
3499 hwaddr len = *plen;
3500 hwaddr l, xlat;
3501 MemoryRegion *mr;
3502 void *ptr;
3503 FlatView *fv;
3505 if (len == 0) {
3506 return NULL;
3509 l = len;
3510 RCU_READ_LOCK_GUARD();
3511 fv = address_space_to_flatview(as);
3512 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3514 if (!memory_access_is_direct(mr, is_write)) {
3515 if (atomic_xchg(&bounce.in_use, true)) {
3516 return NULL;
3518 /* Avoid unbounded allocations */
3519 l = MIN(l, TARGET_PAGE_SIZE);
3520 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3521 bounce.addr = addr;
3522 bounce.len = l;
3524 memory_region_ref(mr);
3525 bounce.mr = mr;
3526 if (!is_write) {
3527 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3528 bounce.buffer, l);
3531 *plen = l;
3532 return bounce.buffer;
3536 memory_region_ref(mr);
3537 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3538 l, is_write, attrs);
3539 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3541 return ptr;
3544 /* Unmaps a memory region previously mapped by address_space_map().
3545 * Will also mark the memory as dirty if is_write == 1. access_len gives
3546 * the amount of memory that was actually read or written by the caller.
3548 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3549 int is_write, hwaddr access_len)
3551 if (buffer != bounce.buffer) {
3552 MemoryRegion *mr;
3553 ram_addr_t addr1;
3555 mr = memory_region_from_host(buffer, &addr1);
3556 assert(mr != NULL);
3557 if (is_write) {
3558 invalidate_and_set_dirty(mr, addr1, access_len);
3560 if (xen_enabled()) {
3561 xen_invalidate_map_cache_entry(buffer);
3563 memory_region_unref(mr);
3564 return;
3566 if (is_write) {
3567 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3568 bounce.buffer, access_len);
3570 qemu_vfree(bounce.buffer);
3571 bounce.buffer = NULL;
3572 memory_region_unref(bounce.mr);
3573 atomic_mb_set(&bounce.in_use, false);
3574 cpu_notify_map_clients();
3577 void *cpu_physical_memory_map(hwaddr addr,
3578 hwaddr *plen,
3579 int is_write)
3581 return address_space_map(&address_space_memory, addr, plen, is_write,
3582 MEMTXATTRS_UNSPECIFIED);
3585 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3586 int is_write, hwaddr access_len)
3588 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3591 #define ARG1_DECL AddressSpace *as
3592 #define ARG1 as
3593 #define SUFFIX
3594 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3595 #define RCU_READ_LOCK(...) rcu_read_lock()
3596 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3597 #include "memory_ldst.inc.c"
3599 int64_t address_space_cache_init(MemoryRegionCache *cache,
3600 AddressSpace *as,
3601 hwaddr addr,
3602 hwaddr len,
3603 bool is_write)
3605 AddressSpaceDispatch *d;
3606 hwaddr l;
3607 MemoryRegion *mr;
3609 assert(len > 0);
3611 l = len;
3612 cache->fv = address_space_get_flatview(as);
3613 d = flatview_to_dispatch(cache->fv);
3614 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3616 mr = cache->mrs.mr;
3617 memory_region_ref(mr);
3618 if (memory_access_is_direct(mr, is_write)) {
3619 /* We don't care about the memory attributes here as we're only
3620 * doing this if we found actual RAM, which behaves the same
3621 * regardless of attributes; so UNSPECIFIED is fine.
3623 l = flatview_extend_translation(cache->fv, addr, len, mr,
3624 cache->xlat, l, is_write,
3625 MEMTXATTRS_UNSPECIFIED);
3626 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3627 } else {
3628 cache->ptr = NULL;
3631 cache->len = l;
3632 cache->is_write = is_write;
3633 return l;
3636 void address_space_cache_invalidate(MemoryRegionCache *cache,
3637 hwaddr addr,
3638 hwaddr access_len)
3640 assert(cache->is_write);
3641 if (likely(cache->ptr)) {
3642 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3646 void address_space_cache_destroy(MemoryRegionCache *cache)
3648 if (!cache->mrs.mr) {
3649 return;
3652 if (xen_enabled()) {
3653 xen_invalidate_map_cache_entry(cache->ptr);
3655 memory_region_unref(cache->mrs.mr);
3656 flatview_unref(cache->fv);
3657 cache->mrs.mr = NULL;
3658 cache->fv = NULL;
3661 /* Called from RCU critical section. This function has the same
3662 * semantics as address_space_translate, but it only works on a
3663 * predefined range of a MemoryRegion that was mapped with
3664 * address_space_cache_init.
3666 static inline MemoryRegion *address_space_translate_cached(
3667 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3668 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3670 MemoryRegionSection section;
3671 MemoryRegion *mr;
3672 IOMMUMemoryRegion *iommu_mr;
3673 AddressSpace *target_as;
3675 assert(!cache->ptr);
3676 *xlat = addr + cache->xlat;
3678 mr = cache->mrs.mr;
3679 iommu_mr = memory_region_get_iommu(mr);
3680 if (!iommu_mr) {
3681 /* MMIO region. */
3682 return mr;
3685 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3686 NULL, is_write, true,
3687 &target_as, attrs);
3688 return section.mr;
3691 /* Called from RCU critical section. address_space_read_cached uses this
3692 * out of line function when the target is an MMIO or IOMMU region.
3694 void
3695 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3696 void *buf, hwaddr len)
3698 hwaddr addr1, l;
3699 MemoryRegion *mr;
3701 l = len;
3702 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3703 MEMTXATTRS_UNSPECIFIED);
3704 flatview_read_continue(cache->fv,
3705 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3706 addr1, l, mr);
3709 /* Called from RCU critical section. address_space_write_cached uses this
3710 * out of line function when the target is an MMIO or IOMMU region.
3712 void
3713 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3714 const void *buf, hwaddr len)
3716 hwaddr addr1, l;
3717 MemoryRegion *mr;
3719 l = len;
3720 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3721 MEMTXATTRS_UNSPECIFIED);
3722 flatview_write_continue(cache->fv,
3723 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3724 addr1, l, mr);
3727 #define ARG1_DECL MemoryRegionCache *cache
3728 #define ARG1 cache
3729 #define SUFFIX _cached_slow
3730 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3731 #define RCU_READ_LOCK() ((void)0)
3732 #define RCU_READ_UNLOCK() ((void)0)
3733 #include "memory_ldst.inc.c"
3735 /* virtual memory access for debug (includes writing to ROM) */
3736 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3737 uint8_t *buf, target_ulong len, int is_write)
3739 hwaddr phys_addr;
3740 target_ulong l, page;
3742 cpu_synchronize_state(cpu);
3743 while (len > 0) {
3744 int asidx;
3745 MemTxAttrs attrs;
3747 page = addr & TARGET_PAGE_MASK;
3748 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3749 asidx = cpu_asidx_from_attrs(cpu, attrs);
3750 /* if no physical page mapped, return an error */
3751 if (phys_addr == -1)
3752 return -1;
3753 l = (page + TARGET_PAGE_SIZE) - addr;
3754 if (l > len)
3755 l = len;
3756 phys_addr += (addr & ~TARGET_PAGE_MASK);
3757 if (is_write) {
3758 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3759 attrs, buf, l);
3760 } else {
3761 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3762 attrs, buf, l, 0);
3764 len -= l;
3765 buf += l;
3766 addr += l;
3768 return 0;
3772 * Allows code that needs to deal with migration bitmaps etc to still be built
3773 * target independent.
3775 size_t qemu_target_page_size(void)
3777 return TARGET_PAGE_SIZE;
3780 int qemu_target_page_bits(void)
3782 return TARGET_PAGE_BITS;
3785 int qemu_target_page_bits_min(void)
3787 return TARGET_PAGE_BITS_MIN;
3789 #endif
3791 bool target_words_bigendian(void)
3793 #if defined(TARGET_WORDS_BIGENDIAN)
3794 return true;
3795 #else
3796 return false;
3797 #endif
3800 #ifndef CONFIG_USER_ONLY
3801 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3803 MemoryRegion*mr;
3804 hwaddr l = 1;
3805 bool res;
3807 RCU_READ_LOCK_GUARD();
3808 mr = address_space_translate(&address_space_memory,
3809 phys_addr, &phys_addr, &l, false,
3810 MEMTXATTRS_UNSPECIFIED);
3812 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3813 return res;
3816 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3818 RAMBlock *block;
3819 int ret = 0;
3821 RCU_READ_LOCK_GUARD();
3822 RAMBLOCK_FOREACH(block) {
3823 ret = func(block, opaque);
3824 if (ret) {
3825 break;
3828 return ret;
3832 * Unmap pages of memory from start to start+length such that
3833 * they a) read as 0, b) Trigger whatever fault mechanism
3834 * the OS provides for postcopy.
3835 * The pages must be unmapped by the end of the function.
3836 * Returns: 0 on success, none-0 on failure
3839 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3841 int ret = -1;
3843 uint8_t *host_startaddr = rb->host + start;
3845 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3846 error_report("ram_block_discard_range: Unaligned start address: %p",
3847 host_startaddr);
3848 goto err;
3851 if ((start + length) <= rb->used_length) {
3852 bool need_madvise, need_fallocate;
3853 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3854 error_report("ram_block_discard_range: Unaligned length: %zx",
3855 length);
3856 goto err;
3859 errno = ENOTSUP; /* If we are missing MADVISE etc */
3861 /* The logic here is messy;
3862 * madvise DONTNEED fails for hugepages
3863 * fallocate works on hugepages and shmem
3865 need_madvise = (rb->page_size == qemu_host_page_size);
3866 need_fallocate = rb->fd != -1;
3867 if (need_fallocate) {
3868 /* For a file, this causes the area of the file to be zero'd
3869 * if read, and for hugetlbfs also causes it to be unmapped
3870 * so a userfault will trigger.
3872 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3873 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3874 start, length);
3875 if (ret) {
3876 ret = -errno;
3877 error_report("ram_block_discard_range: Failed to fallocate "
3878 "%s:%" PRIx64 " +%zx (%d)",
3879 rb->idstr, start, length, ret);
3880 goto err;
3882 #else
3883 ret = -ENOSYS;
3884 error_report("ram_block_discard_range: fallocate not available/file"
3885 "%s:%" PRIx64 " +%zx (%d)",
3886 rb->idstr, start, length, ret);
3887 goto err;
3888 #endif
3890 if (need_madvise) {
3891 /* For normal RAM this causes it to be unmapped,
3892 * for shared memory it causes the local mapping to disappear
3893 * and to fall back on the file contents (which we just
3894 * fallocate'd away).
3896 #if defined(CONFIG_MADVISE)
3897 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3898 if (ret) {
3899 ret = -errno;
3900 error_report("ram_block_discard_range: Failed to discard range "
3901 "%s:%" PRIx64 " +%zx (%d)",
3902 rb->idstr, start, length, ret);
3903 goto err;
3905 #else
3906 ret = -ENOSYS;
3907 error_report("ram_block_discard_range: MADVISE not available"
3908 "%s:%" PRIx64 " +%zx (%d)",
3909 rb->idstr, start, length, ret);
3910 goto err;
3911 #endif
3913 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3914 need_madvise, need_fallocate, ret);
3915 } else {
3916 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3917 "/%zx/" RAM_ADDR_FMT")",
3918 rb->idstr, start, length, rb->used_length);
3921 err:
3922 return ret;
3925 bool ramblock_is_pmem(RAMBlock *rb)
3927 return rb->flags & RAM_PMEM;
3930 #endif
3932 void page_size_init(void)
3934 /* NOTE: we can always suppose that qemu_host_page_size >=
3935 TARGET_PAGE_SIZE */
3936 if (qemu_host_page_size == 0) {
3937 qemu_host_page_size = qemu_real_host_page_size;
3939 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3940 qemu_host_page_size = TARGET_PAGE_SIZE;
3942 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3945 #if !defined(CONFIG_USER_ONLY)
3947 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3949 if (start == end - 1) {
3950 qemu_printf("\t%3d ", start);
3951 } else {
3952 qemu_printf("\t%3d..%-3d ", start, end - 1);
3954 qemu_printf(" skip=%d ", skip);
3955 if (ptr == PHYS_MAP_NODE_NIL) {
3956 qemu_printf(" ptr=NIL");
3957 } else if (!skip) {
3958 qemu_printf(" ptr=#%d", ptr);
3959 } else {
3960 qemu_printf(" ptr=[%d]", ptr);
3962 qemu_printf("\n");
3965 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3966 int128_sub((size), int128_one())) : 0)
3968 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3970 int i;
3972 qemu_printf(" Dispatch\n");
3973 qemu_printf(" Physical sections\n");
3975 for (i = 0; i < d->map.sections_nb; ++i) {
3976 MemoryRegionSection *s = d->map.sections + i;
3977 const char *names[] = { " [unassigned]", " [not dirty]",
3978 " [ROM]", " [watch]" };
3980 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3981 " %s%s%s%s%s",
3983 s->offset_within_address_space,
3984 s->offset_within_address_space + MR_SIZE(s->mr->size),
3985 s->mr->name ? s->mr->name : "(noname)",
3986 i < ARRAY_SIZE(names) ? names[i] : "",
3987 s->mr == root ? " [ROOT]" : "",
3988 s == d->mru_section ? " [MRU]" : "",
3989 s->mr->is_iommu ? " [iommu]" : "");
3991 if (s->mr->alias) {
3992 qemu_printf(" alias=%s", s->mr->alias->name ?
3993 s->mr->alias->name : "noname");
3995 qemu_printf("\n");
3998 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3999 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4000 for (i = 0; i < d->map.nodes_nb; ++i) {
4001 int j, jprev;
4002 PhysPageEntry prev;
4003 Node *n = d->map.nodes + i;
4005 qemu_printf(" [%d]\n", i);
4007 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4008 PhysPageEntry *pe = *n + j;
4010 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4011 continue;
4014 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4016 jprev = j;
4017 prev = *pe;
4020 if (jprev != ARRAY_SIZE(*n)) {
4021 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4026 #endif