2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
33 #include "hw/fw-path-provider.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/device_tree.h"
42 #include "migration/migration.h"
43 #include "mmu-hash64.h"
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
50 #include "hw/ppc/fdt.h"
51 #include "hw/ppc/spapr.h"
52 #include "hw/ppc/spapr_vio.h"
53 #include "hw/pci-host/spapr.h"
54 #include "hw/ppc/xics.h"
55 #include "hw/pci/msi.h"
57 #include "hw/pci/pci.h"
58 #include "hw/scsi/scsi.h"
59 #include "hw/virtio/virtio-scsi.h"
61 #include "exec/address-spaces.h"
63 #include "qemu/config-file.h"
64 #include "qemu/error-report.h"
68 #include "hw/compat.h"
69 #include "qemu/cutils.h"
70 #include "hw/ppc/spapr_cpu_core.h"
71 #include "qmp-commands.h"
75 /* SLOF memory layout:
77 * SLOF raw image loaded at 0, copies its romfs right below the flat
78 * device-tree, then position SLOF itself 31M below that
80 * So we set FW_OVERHEAD to 40MB which should account for all of that
83 * We load our kernel at 4M, leaving space for SLOF initial image
85 #define FDT_MAX_SIZE 0x100000
86 #define RTAS_MAX_SIZE 0x10000
87 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
88 #define FW_MAX_SIZE 0x400000
89 #define FW_FILE_NAME "slof.bin"
90 #define FW_OVERHEAD 0x2800000
91 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
93 #define MIN_RMA_SLOF 128UL
95 #define PHANDLE_XICP 0x00001111
97 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
99 static XICSState
*try_create_xics(const char *type
, int nr_servers
,
100 int nr_irqs
, Error
**errp
)
105 dev
= qdev_create(NULL
, type
);
106 qdev_prop_set_uint32(dev
, "nr_servers", nr_servers
);
107 qdev_prop_set_uint32(dev
, "nr_irqs", nr_irqs
);
108 object_property_set_bool(OBJECT(dev
), true, "realized", &err
);
110 error_propagate(errp
, err
);
111 object_unparent(OBJECT(dev
));
114 return XICS_COMMON(dev
);
117 static XICSState
*xics_system_init(MachineState
*machine
,
118 int nr_servers
, int nr_irqs
, Error
**errp
)
120 XICSState
*xics
= NULL
;
125 if (machine_kernel_irqchip_allowed(machine
)) {
126 xics
= try_create_xics(TYPE_XICS_SPAPR_KVM
, nr_servers
, nr_irqs
,
129 if (machine_kernel_irqchip_required(machine
) && !xics
) {
130 error_reportf_err(err
,
131 "kernel_irqchip requested but unavailable: ");
138 xics
= try_create_xics(TYPE_XICS_SPAPR
, nr_servers
, nr_irqs
, errp
);
144 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
148 uint32_t servers_prop
[smt_threads
];
149 uint32_t gservers_prop
[smt_threads
* 2];
150 int index
= ppc_get_vcpu_dt_id(cpu
);
152 if (cpu
->cpu_version
) {
153 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->cpu_version
);
159 /* Build interrupt servers and gservers properties */
160 for (i
= 0; i
< smt_threads
; i
++) {
161 servers_prop
[i
] = cpu_to_be32(index
+ i
);
162 /* Hack, direct the group queues back to cpu 0 */
163 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
164 gservers_prop
[i
*2 + 1] = 0;
166 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
167 servers_prop
, sizeof(servers_prop
));
171 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
172 gservers_prop
, sizeof(gservers_prop
));
177 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, CPUState
*cs
)
180 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
181 int index
= ppc_get_vcpu_dt_id(cpu
);
182 uint32_t associativity
[] = {cpu_to_be32(0x5),
186 cpu_to_be32(cs
->numa_node
),
189 /* Advertise NUMA via ibm,associativity */
190 if (nb_numa_nodes
> 1) {
191 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
192 sizeof(associativity
));
198 static int spapr_fixup_cpu_dt(void *fdt
, sPAPRMachineState
*spapr
)
200 int ret
= 0, offset
, cpus_offset
;
203 int smt
= kvmppc_smt_threads();
204 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
207 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
208 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
209 int index
= ppc_get_vcpu_dt_id(cpu
);
211 if ((index
% smt
) != 0) {
215 snprintf(cpu_model
, 32, "%s@%x", dc
->fw_name
, index
);
217 cpus_offset
= fdt_path_offset(fdt
, "/cpus");
218 if (cpus_offset
< 0) {
219 cpus_offset
= fdt_add_subnode(fdt
, fdt_path_offset(fdt
, "/"),
221 if (cpus_offset
< 0) {
225 offset
= fdt_subnode_offset(fdt
, cpus_offset
, cpu_model
);
227 offset
= fdt_add_subnode(fdt
, cpus_offset
, cpu_model
);
233 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
234 pft_size_prop
, sizeof(pft_size_prop
));
239 ret
= spapr_fixup_cpu_numa_dt(fdt
, offset
, cs
);
244 ret
= spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
,
245 ppc_get_compat_smt_threads(cpu
));
253 static hwaddr
spapr_node0_size(void)
255 MachineState
*machine
= MACHINE(qdev_get_machine());
259 for (i
= 0; i
< nb_numa_nodes
; ++i
) {
260 if (numa_info
[i
].node_mem
) {
261 return MIN(pow2floor(numa_info
[i
].node_mem
),
266 return machine
->ram_size
;
269 static void add_str(GString
*s
, const gchar
*s1
)
271 g_string_append_len(s
, s1
, strlen(s1
) + 1);
274 static void *spapr_create_fdt_skel(hwaddr initrd_base
,
278 const char *kernel_cmdline
,
282 uint32_t start_prop
= cpu_to_be32(initrd_base
);
283 uint32_t end_prop
= cpu_to_be32(initrd_base
+ initrd_size
);
284 GString
*hypertas
= g_string_sized_new(256);
285 GString
*qemu_hypertas
= g_string_sized_new(256);
286 uint32_t refpoints
[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
287 uint32_t interrupt_server_ranges_prop
[] = {0, cpu_to_be32(max_cpus
)};
288 unsigned char vec5
[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
291 add_str(hypertas
, "hcall-pft");
292 add_str(hypertas
, "hcall-term");
293 add_str(hypertas
, "hcall-dabr");
294 add_str(hypertas
, "hcall-interrupt");
295 add_str(hypertas
, "hcall-tce");
296 add_str(hypertas
, "hcall-vio");
297 add_str(hypertas
, "hcall-splpar");
298 add_str(hypertas
, "hcall-bulk");
299 add_str(hypertas
, "hcall-set-mode");
300 add_str(hypertas
, "hcall-sprg0");
301 add_str(hypertas
, "hcall-copy");
302 add_str(hypertas
, "hcall-debug");
303 add_str(qemu_hypertas
, "hcall-memop1");
305 fdt
= g_malloc0(FDT_MAX_SIZE
);
306 _FDT((fdt_create(fdt
, FDT_MAX_SIZE
)));
309 _FDT((fdt_add_reservemap_entry(fdt
, KERNEL_LOAD_ADDR
, kernel_size
)));
312 _FDT((fdt_add_reservemap_entry(fdt
, initrd_base
, initrd_size
)));
314 _FDT((fdt_finish_reservemap(fdt
)));
317 _FDT((fdt_begin_node(fdt
, "")));
318 _FDT((fdt_property_string(fdt
, "device_type", "chrp")));
319 _FDT((fdt_property_string(fdt
, "model", "IBM pSeries (emulated by qemu)")));
320 _FDT((fdt_property_string(fdt
, "compatible", "qemu,pseries")));
323 * Add info to guest to indentify which host is it being run on
324 * and what is the uuid of the guest
326 if (kvmppc_get_host_model(&buf
)) {
327 _FDT((fdt_property_string(fdt
, "host-model", buf
)));
330 if (kvmppc_get_host_serial(&buf
)) {
331 _FDT((fdt_property_string(fdt
, "host-serial", buf
)));
335 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
337 _FDT((fdt_property_string(fdt
, "vm,uuid", buf
)));
339 _FDT((fdt_property_string(fdt
, "system-id", buf
)));
343 if (qemu_get_vm_name()) {
344 _FDT((fdt_property_string(fdt
, "ibm,partition-name",
345 qemu_get_vm_name())));
348 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x2)));
349 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x2)));
352 _FDT((fdt_begin_node(fdt
, "chosen")));
354 /* Set Form1_affinity */
355 _FDT((fdt_property(fdt
, "ibm,architecture-vec-5", vec5
, sizeof(vec5
))));
357 _FDT((fdt_property_string(fdt
, "bootargs", kernel_cmdline
)));
358 _FDT((fdt_property(fdt
, "linux,initrd-start",
359 &start_prop
, sizeof(start_prop
))));
360 _FDT((fdt_property(fdt
, "linux,initrd-end",
361 &end_prop
, sizeof(end_prop
))));
363 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
364 cpu_to_be64(kernel_size
) };
366 _FDT((fdt_property(fdt
, "qemu,boot-kernel", &kprop
, sizeof(kprop
))));
368 _FDT((fdt_property(fdt
, "qemu,boot-kernel-le", NULL
, 0)));
372 _FDT((fdt_property_cell(fdt
, "qemu,boot-menu", boot_menu
)));
374 _FDT((fdt_property_cell(fdt
, "qemu,graphic-width", graphic_width
)));
375 _FDT((fdt_property_cell(fdt
, "qemu,graphic-height", graphic_height
)));
376 _FDT((fdt_property_cell(fdt
, "qemu,graphic-depth", graphic_depth
)));
378 _FDT((fdt_end_node(fdt
)));
381 _FDT((fdt_begin_node(fdt
, "rtas")));
383 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
384 add_str(hypertas
, "hcall-multi-tce");
386 _FDT((fdt_property(fdt
, "ibm,hypertas-functions", hypertas
->str
,
388 g_string_free(hypertas
, TRUE
);
389 _FDT((fdt_property(fdt
, "qemu,hypertas-functions", qemu_hypertas
->str
,
390 qemu_hypertas
->len
)));
391 g_string_free(qemu_hypertas
, TRUE
);
393 _FDT((fdt_property(fdt
, "ibm,associativity-reference-points",
394 refpoints
, sizeof(refpoints
))));
396 _FDT((fdt_property_cell(fdt
, "rtas-error-log-max", RTAS_ERROR_LOG_MAX
)));
397 _FDT((fdt_property_cell(fdt
, "rtas-event-scan-rate",
398 RTAS_EVENT_SCAN_RATE
)));
401 _FDT((fdt_property(fdt
, "ibm,change-msix-capable", NULL
, 0)));
405 * According to PAPR, rtas ibm,os-term does not guarantee a return
406 * back to the guest cpu.
408 * While an additional ibm,extended-os-term property indicates that
409 * rtas call return will always occur. Set this property.
411 _FDT((fdt_property(fdt
, "ibm,extended-os-term", NULL
, 0)));
413 _FDT((fdt_end_node(fdt
)));
415 /* interrupt controller */
416 _FDT((fdt_begin_node(fdt
, "interrupt-controller")));
418 _FDT((fdt_property_string(fdt
, "device_type",
419 "PowerPC-External-Interrupt-Presentation")));
420 _FDT((fdt_property_string(fdt
, "compatible", "IBM,ppc-xicp")));
421 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
422 _FDT((fdt_property(fdt
, "ibm,interrupt-server-ranges",
423 interrupt_server_ranges_prop
,
424 sizeof(interrupt_server_ranges_prop
))));
425 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 2)));
426 _FDT((fdt_property_cell(fdt
, "linux,phandle", PHANDLE_XICP
)));
427 _FDT((fdt_property_cell(fdt
, "phandle", PHANDLE_XICP
)));
429 _FDT((fdt_end_node(fdt
)));
432 _FDT((fdt_begin_node(fdt
, "vdevice")));
434 _FDT((fdt_property_string(fdt
, "device_type", "vdevice")));
435 _FDT((fdt_property_string(fdt
, "compatible", "IBM,vdevice")));
436 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
437 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
438 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 0x2)));
439 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
441 _FDT((fdt_end_node(fdt
)));
444 spapr_events_fdt_skel(fdt
, epow_irq
);
446 /* /hypervisor node */
448 uint8_t hypercall
[16];
450 /* indicate KVM hypercall interface */
451 _FDT((fdt_begin_node(fdt
, "hypervisor")));
452 _FDT((fdt_property_string(fdt
, "compatible", "linux,kvm")));
453 if (kvmppc_has_cap_fixup_hcalls()) {
455 * Older KVM versions with older guest kernels were broken with the
456 * magic page, don't allow the guest to map it.
458 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
459 sizeof(hypercall
))) {
460 _FDT((fdt_property(fdt
, "hcall-instructions", hypercall
,
461 sizeof(hypercall
))));
464 _FDT((fdt_end_node(fdt
)));
467 _FDT((fdt_end_node(fdt
))); /* close root node */
468 _FDT((fdt_finish(fdt
)));
473 static int spapr_populate_memory_node(void *fdt
, int nodeid
, hwaddr start
,
476 uint32_t associativity
[] = {
477 cpu_to_be32(0x4), /* length */
478 cpu_to_be32(0x0), cpu_to_be32(0x0),
479 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
482 uint64_t mem_reg_property
[2];
485 mem_reg_property
[0] = cpu_to_be64(start
);
486 mem_reg_property
[1] = cpu_to_be64(size
);
488 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, start
);
489 off
= fdt_add_subnode(fdt
, 0, mem_name
);
491 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
492 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
493 sizeof(mem_reg_property
))));
494 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
495 sizeof(associativity
))));
499 static int spapr_populate_memory(sPAPRMachineState
*spapr
, void *fdt
)
501 MachineState
*machine
= MACHINE(spapr
);
502 hwaddr mem_start
, node_size
;
503 int i
, nb_nodes
= nb_numa_nodes
;
504 NodeInfo
*nodes
= numa_info
;
507 /* No NUMA nodes, assume there is just one node with whole RAM */
508 if (!nb_numa_nodes
) {
510 ramnode
.node_mem
= machine
->ram_size
;
514 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
515 if (!nodes
[i
].node_mem
) {
518 if (mem_start
>= machine
->ram_size
) {
521 node_size
= nodes
[i
].node_mem
;
522 if (node_size
> machine
->ram_size
- mem_start
) {
523 node_size
= machine
->ram_size
- mem_start
;
527 /* ppc_spapr_init() checks for rma_size <= node0_size already */
528 spapr_populate_memory_node(fdt
, i
, 0, spapr
->rma_size
);
529 mem_start
+= spapr
->rma_size
;
530 node_size
-= spapr
->rma_size
;
532 for ( ; node_size
; ) {
533 hwaddr sizetmp
= pow2floor(node_size
);
535 /* mem_start != 0 here */
536 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
537 sizetmp
= 1ULL << ctzl(mem_start
);
540 spapr_populate_memory_node(fdt
, i
, mem_start
, sizetmp
);
541 node_size
-= sizetmp
;
542 mem_start
+= sizetmp
;
549 /* Populate the "ibm,pa-features" property */
550 static void spapr_populate_pa_features(CPUPPCState
*env
, void *fdt
, int offset
)
552 uint8_t pa_features_206
[] = { 6, 0,
553 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
554 uint8_t pa_features_207
[] = { 24, 0,
555 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
556 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
557 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
558 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
559 uint8_t *pa_features
;
562 switch (env
->mmu_model
) {
563 case POWERPC_MMU_2_06
:
564 case POWERPC_MMU_2_06a
:
565 pa_features
= pa_features_206
;
566 pa_size
= sizeof(pa_features_206
);
568 case POWERPC_MMU_2_07
:
569 case POWERPC_MMU_2_07a
:
570 pa_features
= pa_features_207
;
571 pa_size
= sizeof(pa_features_207
);
577 if (env
->ci_large_pages
) {
579 * Note: we keep CI large pages off by default because a 64K capable
580 * guest provisioned with large pages might otherwise try to map a qemu
581 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
582 * even if that qemu runs on a 4k host.
583 * We dd this bit back here if we are confident this is not an issue
585 pa_features
[3] |= 0x20;
588 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
591 static void spapr_populate_cpu_dt(CPUState
*cs
, void *fdt
, int offset
,
592 sPAPRMachineState
*spapr
)
594 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
595 CPUPPCState
*env
= &cpu
->env
;
596 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
597 int index
= ppc_get_vcpu_dt_id(cpu
);
598 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
599 0xffffffff, 0xffffffff};
600 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
601 : SPAPR_TIMEBASE_FREQ
;
602 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
603 uint32_t page_sizes_prop
[64];
604 size_t page_sizes_prop_size
;
605 uint32_t vcpus_per_socket
= smp_threads
* smp_cores
;
606 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
607 sPAPRDRConnector
*drc
;
608 sPAPRDRConnectorClass
*drck
;
611 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU
, index
);
613 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
614 drc_index
= drck
->get_index(drc
);
615 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
618 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
619 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
621 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
622 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
623 env
->dcache_line_size
)));
624 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
625 env
->dcache_line_size
)));
626 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
627 env
->icache_line_size
)));
628 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
629 env
->icache_line_size
)));
631 if (pcc
->l1_dcache_size
) {
632 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
633 pcc
->l1_dcache_size
)));
635 error_report("Warning: Unknown L1 dcache size for cpu");
637 if (pcc
->l1_icache_size
) {
638 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
639 pcc
->l1_icache_size
)));
641 error_report("Warning: Unknown L1 icache size for cpu");
644 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
645 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
646 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", env
->slb_nr
)));
647 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", env
->slb_nr
)));
648 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
649 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
651 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
652 _FDT((fdt_setprop(fdt
, offset
, "ibm,purr", NULL
, 0)));
655 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
656 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
657 segs
, sizeof(segs
))));
660 /* Advertise VMX/VSX (vector extensions) if available
661 * 0 / no property == no vector extensions
662 * 1 == VMX / Altivec available
663 * 2 == VSX available */
664 if (env
->insns_flags
& PPC_ALTIVEC
) {
665 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
667 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", vmx
)));
670 /* Advertise DFP (Decimal Floating Point) if available
671 * 0 / no property == no DFP
672 * 1 == DFP available */
673 if (env
->insns_flags2
& PPC2_DFP
) {
674 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
677 page_sizes_prop_size
= ppc_create_page_sizes_prop(env
, page_sizes_prop
,
678 sizeof(page_sizes_prop
));
679 if (page_sizes_prop_size
) {
680 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
681 page_sizes_prop
, page_sizes_prop_size
)));
684 spapr_populate_pa_features(env
, fdt
, offset
);
686 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
687 cs
->cpu_index
/ vcpus_per_socket
)));
689 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
690 pft_size_prop
, sizeof(pft_size_prop
))));
692 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cs
));
694 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
,
695 ppc_get_compat_smt_threads(cpu
)));
698 static void spapr_populate_cpus_dt_node(void *fdt
, sPAPRMachineState
*spapr
)
703 int smt
= kvmppc_smt_threads();
705 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
707 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
708 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
711 * We walk the CPUs in reverse order to ensure that CPU DT nodes
712 * created by fdt_add_subnode() end up in the right order in FDT
713 * for the guest kernel the enumerate the CPUs correctly.
715 CPU_FOREACH_REVERSE(cs
) {
716 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
717 int index
= ppc_get_vcpu_dt_id(cpu
);
718 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
721 if ((index
% smt
) != 0) {
725 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
726 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
729 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
735 * Adds ibm,dynamic-reconfiguration-memory node.
736 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
737 * of this device tree node.
739 static int spapr_populate_drconf_memory(sPAPRMachineState
*spapr
, void *fdt
)
741 MachineState
*machine
= MACHINE(spapr
);
743 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
744 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
745 uint32_t hotplug_lmb_start
= spapr
->hotplug_memory
.base
/ lmb_size
;
746 uint32_t nr_lmbs
= (spapr
->hotplug_memory
.base
+
747 memory_region_size(&spapr
->hotplug_memory
.mr
)) /
749 uint32_t *int_buf
, *cur_index
, buf_len
;
750 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
753 * Don't create the node if there is no hotpluggable memory
755 if (machine
->ram_size
== machine
->maxram_size
) {
760 * Allocate enough buffer size to fit in ibm,dynamic-memory
761 * or ibm,associativity-lookup-arrays
763 buf_len
= MAX(nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1, nr_nodes
* 4 + 2)
765 cur_index
= int_buf
= g_malloc0(buf_len
);
767 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
769 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
770 sizeof(prop_lmb_size
));
775 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
780 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
785 /* ibm,dynamic-memory */
786 int_buf
[0] = cpu_to_be32(nr_lmbs
);
788 for (i
= 0; i
< nr_lmbs
; i
++) {
789 uint64_t addr
= i
* lmb_size
;
790 uint32_t *dynamic_memory
= cur_index
;
792 if (i
>= hotplug_lmb_start
) {
793 sPAPRDRConnector
*drc
;
794 sPAPRDRConnectorClass
*drck
;
796 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
, i
);
798 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
800 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
801 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
802 dynamic_memory
[2] = cpu_to_be32(drck
->get_index(drc
));
803 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
804 dynamic_memory
[4] = cpu_to_be32(numa_get_node(addr
, NULL
));
805 if (memory_region_present(get_system_memory(), addr
)) {
806 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
808 dynamic_memory
[5] = cpu_to_be32(0);
812 * LMB information for RMA, boot time RAM and gap b/n RAM and
813 * hotplug memory region -- all these are marked as reserved
814 * and as having no valid DRC.
816 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
817 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
818 dynamic_memory
[2] = cpu_to_be32(0);
819 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
820 dynamic_memory
[4] = cpu_to_be32(-1);
821 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
822 SPAPR_LMB_FLAGS_DRC_INVALID
);
825 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
827 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
832 /* ibm,associativity-lookup-arrays */
834 int_buf
[0] = cpu_to_be32(nr_nodes
);
835 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
837 for (i
= 0; i
< nr_nodes
; i
++) {
838 uint32_t associativity
[] = {
844 memcpy(cur_index
, associativity
, sizeof(associativity
));
847 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
848 (cur_index
- int_buf
) * sizeof(uint32_t));
854 int spapr_h_cas_compose_response(sPAPRMachineState
*spapr
,
855 target_ulong addr
, target_ulong size
,
856 bool cpu_update
, bool memory_update
)
858 void *fdt
, *fdt_skel
;
859 sPAPRDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
860 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
864 /* Create sceleton */
865 fdt_skel
= g_malloc0(size
);
866 _FDT((fdt_create(fdt_skel
, size
)));
867 _FDT((fdt_begin_node(fdt_skel
, "")));
868 _FDT((fdt_end_node(fdt_skel
)));
869 _FDT((fdt_finish(fdt_skel
)));
870 fdt
= g_malloc0(size
);
871 _FDT((fdt_open_into(fdt_skel
, fdt
, size
)));
874 /* Fixup cpu nodes */
876 _FDT((spapr_fixup_cpu_dt(fdt
, spapr
)));
879 /* Generate ibm,dynamic-reconfiguration-memory node if required */
880 if (memory_update
&& smc
->dr_lmb_enabled
) {
881 _FDT((spapr_populate_drconf_memory(spapr
, fdt
)));
884 /* Pack resulting tree */
885 _FDT((fdt_pack(fdt
)));
887 if (fdt_totalsize(fdt
) + sizeof(hdr
) > size
) {
888 trace_spapr_cas_failed(size
);
892 cpu_physical_memory_write(addr
, &hdr
, sizeof(hdr
));
893 cpu_physical_memory_write(addr
+ sizeof(hdr
), fdt
, fdt_totalsize(fdt
));
894 trace_spapr_cas_continue(fdt_totalsize(fdt
) + sizeof(hdr
));
900 static void spapr_finalize_fdt(sPAPRMachineState
*spapr
,
905 MachineState
*machine
= MACHINE(qdev_get_machine());
906 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
907 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
908 const char *boot_device
= machine
->boot_order
;
915 fdt
= g_malloc(FDT_MAX_SIZE
);
917 /* open out the base tree into a temp buffer for the final tweaks */
918 _FDT((fdt_open_into(spapr
->fdt_skel
, fdt
, FDT_MAX_SIZE
)));
920 ret
= spapr_populate_memory(spapr
, fdt
);
922 error_report("couldn't setup memory nodes in fdt");
926 ret
= spapr_populate_vdevice(spapr
->vio_bus
, fdt
);
928 error_report("couldn't setup vio devices in fdt");
932 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
933 ret
= spapr_rng_populate_dt(fdt
);
935 error_report("could not set up rng device in the fdt");
940 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
941 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
);
943 error_report("couldn't setup PCI devices in fdt");
949 ret
= spapr_rtas_device_tree_setup(fdt
, rtas_addr
, rtas_size
);
951 error_report("Couldn't set up RTAS device tree properties");
955 spapr_populate_cpus_dt_node(fdt
, spapr
);
957 bootlist
= get_boot_devices_list(&cb
, true);
958 if (cb
&& bootlist
) {
959 int offset
= fdt_path_offset(fdt
, "/chosen");
963 for (i
= 0; i
< cb
; i
++) {
964 if (bootlist
[i
] == '\n') {
969 ret
= fdt_setprop_string(fdt
, offset
, "qemu,boot-list", bootlist
);
972 if (boot_device
&& strlen(boot_device
)) {
973 int offset
= fdt_path_offset(fdt
, "/chosen");
978 fdt_setprop_string(fdt
, offset
, "qemu,boot-device", boot_device
);
981 if (!spapr
->has_graphics
) {
982 spapr_populate_chosen_stdout(fdt
, spapr
->vio_bus
);
985 if (smc
->dr_lmb_enabled
) {
986 _FDT(spapr_drc_populate_dt(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
989 if (mc
->query_hotpluggable_cpus
) {
990 int offset
= fdt_path_offset(fdt
, "/cpus");
991 ret
= spapr_drc_populate_dt(fdt
, offset
, NULL
,
992 SPAPR_DR_CONNECTOR_TYPE_CPU
);
994 error_report("Couldn't set up CPU DR device tree properties");
999 _FDT((fdt_pack(fdt
)));
1001 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
1002 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1003 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
1007 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1008 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1014 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1016 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
1019 static void emulate_spapr_hypercall(PowerPCCPU
*cpu
)
1021 CPUPPCState
*env
= &cpu
->env
;
1024 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1025 env
->gpr
[3] = H_PRIVILEGE
;
1027 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1031 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1032 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1033 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1034 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1035 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1038 * Get the fd to access the kernel htab, re-opening it if necessary
1040 static int get_htab_fd(sPAPRMachineState
*spapr
)
1042 if (spapr
->htab_fd
>= 0) {
1043 return spapr
->htab_fd
;
1046 spapr
->htab_fd
= kvmppc_get_htab_fd(false);
1047 if (spapr
->htab_fd
< 0) {
1048 error_report("Unable to open fd for reading hash table from KVM: %s",
1052 return spapr
->htab_fd
;
1055 static void close_htab_fd(sPAPRMachineState
*spapr
)
1057 if (spapr
->htab_fd
>= 0) {
1058 close(spapr
->htab_fd
);
1060 spapr
->htab_fd
= -1;
1063 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1067 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1068 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1069 * that's much more than is needed for Linux guests */
1070 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1071 shift
= MAX(shift
, 18); /* Minimum architected size */
1072 shift
= MIN(shift
, 46); /* Maximum architected size */
1076 static void spapr_reallocate_hpt(sPAPRMachineState
*spapr
, int shift
,
1081 /* Clean up any HPT info from a previous boot */
1082 g_free(spapr
->htab
);
1084 spapr
->htab_shift
= 0;
1085 close_htab_fd(spapr
);
1087 rc
= kvmppc_reset_htab(shift
);
1089 /* kernel-side HPT needed, but couldn't allocate one */
1090 error_setg_errno(errp
, errno
,
1091 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1093 /* This is almost certainly fatal, but if the caller really
1094 * wants to carry on with shift == 0, it's welcome to try */
1095 } else if (rc
> 0) {
1096 /* kernel-side HPT allocated */
1099 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1103 spapr
->htab_shift
= shift
;
1106 /* kernel-side HPT not needed, allocate in userspace instead */
1107 size_t size
= 1ULL << shift
;
1110 spapr
->htab
= qemu_memalign(size
, size
);
1112 error_setg_errno(errp
, errno
,
1113 "Could not allocate HPT of order %d", shift
);
1117 memset(spapr
->htab
, 0, size
);
1118 spapr
->htab_shift
= shift
;
1120 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1121 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1126 static void find_unknown_sysbus_device(SysBusDevice
*sbdev
, void *opaque
)
1128 bool matched
= false;
1130 if (object_dynamic_cast(OBJECT(sbdev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
1135 error_report("Device %s is not supported by this machine yet.",
1136 qdev_fw_name(DEVICE(sbdev
)));
1141 static void ppc_spapr_reset(void)
1143 MachineState
*machine
= MACHINE(qdev_get_machine());
1144 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1145 PowerPCCPU
*first_ppc_cpu
;
1146 uint32_t rtas_limit
;
1148 /* Check for unknown sysbus devices */
1149 foreach_dynamic_sysbus_device(find_unknown_sysbus_device
, NULL
);
1151 /* Allocate and/or reset the hash page table */
1152 spapr_reallocate_hpt(spapr
,
1153 spapr_hpt_shift_for_ramsize(machine
->maxram_size
),
1156 /* Update the RMA size if necessary */
1157 if (spapr
->vrma_adjust
) {
1158 spapr
->rma_size
= kvmppc_rma_size(spapr_node0_size(),
1162 qemu_devices_reset();
1165 * We place the device tree and RTAS just below either the top of the RMA,
1166 * or just below 2GB, whichever is lowere, so that it can be
1167 * processed with 32-bit real mode code if necessary
1169 rtas_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
);
1170 spapr
->rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
1171 spapr
->fdt_addr
= spapr
->rtas_addr
- FDT_MAX_SIZE
;
1174 spapr_finalize_fdt(spapr
, spapr
->fdt_addr
, spapr
->rtas_addr
,
1177 /* Copy RTAS over */
1178 cpu_physical_memory_write(spapr
->rtas_addr
, spapr
->rtas_blob
,
1181 /* Set up the entry state */
1182 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1183 first_ppc_cpu
->env
.gpr
[3] = spapr
->fdt_addr
;
1184 first_ppc_cpu
->env
.gpr
[5] = 0;
1185 first_cpu
->halted
= 0;
1186 first_ppc_cpu
->env
.nip
= SPAPR_ENTRY_POINT
;
1190 static void spapr_create_nvram(sPAPRMachineState
*spapr
)
1192 DeviceState
*dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
1193 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1196 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1200 qdev_init_nofail(dev
);
1202 spapr
->nvram
= (struct sPAPRNVRAM
*)dev
;
1205 static void spapr_rtc_create(sPAPRMachineState
*spapr
)
1207 DeviceState
*dev
= qdev_create(NULL
, TYPE_SPAPR_RTC
);
1209 qdev_init_nofail(dev
);
1212 object_property_add_alias(qdev_get_machine(), "rtc-time",
1213 OBJECT(spapr
->rtc
), "date", NULL
);
1216 /* Returns whether we want to use VGA or not */
1217 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1219 switch (vga_interface_type
) {
1226 return pci_vga_init(pci_bus
) != NULL
;
1229 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1234 static int spapr_post_load(void *opaque
, int version_id
)
1236 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1239 /* In earlier versions, there was no separate qdev for the PAPR
1240 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1241 * So when migrating from those versions, poke the incoming offset
1242 * value into the RTC device */
1243 if (version_id
< 3) {
1244 err
= spapr_rtc_import_offset(spapr
->rtc
, spapr
->rtc_offset
);
1250 static bool version_before_3(void *opaque
, int version_id
)
1252 return version_id
< 3;
1255 static const VMStateDescription vmstate_spapr
= {
1258 .minimum_version_id
= 1,
1259 .post_load
= spapr_post_load
,
1260 .fields
= (VMStateField
[]) {
1261 /* used to be @next_irq */
1262 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1265 VMSTATE_UINT64_TEST(rtc_offset
, sPAPRMachineState
, version_before_3
),
1267 VMSTATE_PPC_TIMEBASE_V(tb
, sPAPRMachineState
, 2),
1268 VMSTATE_END_OF_LIST()
1272 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
1274 sPAPRMachineState
*spapr
= opaque
;
1276 /* "Iteration" header */
1277 qemu_put_be32(f
, spapr
->htab_shift
);
1280 spapr
->htab_save_index
= 0;
1281 spapr
->htab_first_pass
= true;
1283 assert(kvm_enabled());
1290 static void htab_save_first_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1293 bool has_timeout
= max_ns
!= -1;
1294 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1295 int index
= spapr
->htab_save_index
;
1296 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1298 assert(spapr
->htab_first_pass
);
1303 /* Consume invalid HPTEs */
1304 while ((index
< htabslots
)
1305 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1307 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1310 /* Consume valid HPTEs */
1312 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1313 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1315 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1318 if (index
> chunkstart
) {
1319 int n_valid
= index
- chunkstart
;
1321 qemu_put_be32(f
, chunkstart
);
1322 qemu_put_be16(f
, n_valid
);
1323 qemu_put_be16(f
, 0);
1324 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1325 HASH_PTE_SIZE_64
* n_valid
);
1328 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1332 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
1334 if (index
>= htabslots
) {
1335 assert(index
== htabslots
);
1337 spapr
->htab_first_pass
= false;
1339 spapr
->htab_save_index
= index
;
1342 static int htab_save_later_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1345 bool final
= max_ns
< 0;
1346 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1347 int examined
= 0, sent
= 0;
1348 int index
= spapr
->htab_save_index
;
1349 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1351 assert(!spapr
->htab_first_pass
);
1354 int chunkstart
, invalidstart
;
1356 /* Consume non-dirty HPTEs */
1357 while ((index
< htabslots
)
1358 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
1364 /* Consume valid dirty HPTEs */
1365 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1366 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1367 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1368 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1373 invalidstart
= index
;
1374 /* Consume invalid dirty HPTEs */
1375 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
1376 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1377 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1378 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1383 if (index
> chunkstart
) {
1384 int n_valid
= invalidstart
- chunkstart
;
1385 int n_invalid
= index
- invalidstart
;
1387 qemu_put_be32(f
, chunkstart
);
1388 qemu_put_be16(f
, n_valid
);
1389 qemu_put_be16(f
, n_invalid
);
1390 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1391 HASH_PTE_SIZE_64
* n_valid
);
1392 sent
+= index
- chunkstart
;
1394 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1399 if (examined
>= htabslots
) {
1403 if (index
>= htabslots
) {
1404 assert(index
== htabslots
);
1407 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
1409 if (index
>= htabslots
) {
1410 assert(index
== htabslots
);
1414 spapr
->htab_save_index
= index
;
1416 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
1419 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1420 #define MAX_KVM_BUF_SIZE 2048
1422 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
1424 sPAPRMachineState
*spapr
= opaque
;
1428 /* Iteration header */
1429 qemu_put_be32(f
, 0);
1432 assert(kvm_enabled());
1434 fd
= get_htab_fd(spapr
);
1439 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
1443 } else if (spapr
->htab_first_pass
) {
1444 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
1446 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
1450 qemu_put_be32(f
, 0);
1451 qemu_put_be16(f
, 0);
1452 qemu_put_be16(f
, 0);
1457 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
1459 sPAPRMachineState
*spapr
= opaque
;
1462 /* Iteration header */
1463 qemu_put_be32(f
, 0);
1468 assert(kvm_enabled());
1470 fd
= get_htab_fd(spapr
);
1475 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
1480 if (spapr
->htab_first_pass
) {
1481 htab_save_first_pass(f
, spapr
, -1);
1483 htab_save_later_pass(f
, spapr
, -1);
1487 qemu_put_be32(f
, 0);
1488 qemu_put_be16(f
, 0);
1489 qemu_put_be16(f
, 0);
1494 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
1496 sPAPRMachineState
*spapr
= opaque
;
1497 uint32_t section_hdr
;
1500 if (version_id
< 1 || version_id
> 1) {
1501 error_report("htab_load() bad version");
1505 section_hdr
= qemu_get_be32(f
);
1508 Error
*local_err
= NULL
;
1510 /* First section gives the htab size */
1511 spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
1513 error_report_err(local_err
);
1520 assert(kvm_enabled());
1522 fd
= kvmppc_get_htab_fd(true);
1524 error_report("Unable to open fd to restore KVM hash table: %s",
1531 uint16_t n_valid
, n_invalid
;
1533 index
= qemu_get_be32(f
);
1534 n_valid
= qemu_get_be16(f
);
1535 n_invalid
= qemu_get_be16(f
);
1537 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
1542 if ((index
+ n_valid
+ n_invalid
) >
1543 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
1544 /* Bad index in stream */
1546 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1547 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
1553 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
1554 HASH_PTE_SIZE_64
* n_valid
);
1557 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
1558 HASH_PTE_SIZE_64
* n_invalid
);
1565 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
1580 static void htab_cleanup(void *opaque
)
1582 sPAPRMachineState
*spapr
= opaque
;
1584 close_htab_fd(spapr
);
1587 static SaveVMHandlers savevm_htab_handlers
= {
1588 .save_live_setup
= htab_save_setup
,
1589 .save_live_iterate
= htab_save_iterate
,
1590 .save_live_complete_precopy
= htab_save_complete
,
1591 .cleanup
= htab_cleanup
,
1592 .load_state
= htab_load
,
1595 static void spapr_boot_set(void *opaque
, const char *boot_device
,
1598 MachineState
*machine
= MACHINE(qdev_get_machine());
1599 machine
->boot_order
= g_strdup(boot_device
);
1603 * Reset routine for LMB DR devices.
1605 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1606 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1607 * when it walks all its children devices. LMB devices reset occurs
1608 * as part of spapr_ppc_reset().
1610 static void spapr_drc_reset(void *opaque
)
1612 sPAPRDRConnector
*drc
= opaque
;
1613 DeviceState
*d
= DEVICE(drc
);
1620 static void spapr_create_lmb_dr_connectors(sPAPRMachineState
*spapr
)
1622 MachineState
*machine
= MACHINE(spapr
);
1623 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
1624 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
1627 for (i
= 0; i
< nr_lmbs
; i
++) {
1628 sPAPRDRConnector
*drc
;
1631 addr
= i
* lmb_size
+ spapr
->hotplug_memory
.base
;
1632 drc
= spapr_dr_connector_new(OBJECT(spapr
), SPAPR_DR_CONNECTOR_TYPE_LMB
,
1634 qemu_register_reset(spapr_drc_reset
, drc
);
1639 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1640 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1641 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1643 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
1647 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
1648 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
1649 " is not aligned to %llu MiB",
1651 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
1655 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
1656 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
1657 " is not aligned to %llu MiB",
1659 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
1663 for (i
= 0; i
< nb_numa_nodes
; i
++) {
1664 if (numa_info
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
1666 "Node %d memory size 0x%" PRIx64
1667 " is not aligned to %llu MiB",
1668 i
, numa_info
[i
].node_mem
,
1669 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
1675 /* pSeries LPAR / sPAPR hardware init */
1676 static void ppc_spapr_init(MachineState
*machine
)
1678 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1679 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1680 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1681 const char *kernel_filename
= machine
->kernel_filename
;
1682 const char *kernel_cmdline
= machine
->kernel_cmdline
;
1683 const char *initrd_filename
= machine
->initrd_filename
;
1686 MemoryRegion
*sysmem
= get_system_memory();
1687 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1688 MemoryRegion
*rma_region
;
1690 hwaddr rma_alloc_size
;
1691 hwaddr node0_size
= spapr_node0_size();
1692 uint32_t initrd_base
= 0;
1693 long kernel_size
= 0, initrd_size
= 0;
1694 long load_limit
, fw_size
;
1695 bool kernel_le
= false;
1697 int smt
= kvmppc_smt_threads();
1698 int spapr_cores
= smp_cpus
/ smp_threads
;
1699 int spapr_max_cores
= max_cpus
/ smp_threads
;
1701 if (mc
->query_hotpluggable_cpus
) {
1702 if (smp_cpus
% smp_threads
) {
1703 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1704 smp_cpus
, smp_threads
);
1707 if (max_cpus
% smp_threads
) {
1708 error_report("max_cpus (%u) must be multiple of threads (%u)",
1709 max_cpus
, smp_threads
);
1714 msi_nonbroken
= true;
1716 QLIST_INIT(&spapr
->phbs
);
1718 cpu_ppc_hypercall
= emulate_spapr_hypercall
;
1720 /* Allocate RMA if necessary */
1721 rma_alloc_size
= kvmppc_alloc_rma(&rma
);
1723 if (rma_alloc_size
== -1) {
1724 error_report("Unable to create RMA");
1728 if (rma_alloc_size
&& (rma_alloc_size
< node0_size
)) {
1729 spapr
->rma_size
= rma_alloc_size
;
1731 spapr
->rma_size
= node0_size
;
1733 /* With KVM, we don't actually know whether KVM supports an
1734 * unbounded RMA (PR KVM) or is limited by the hash table size
1735 * (HV KVM using VRMA), so we always assume the latter
1737 * In that case, we also limit the initial allocations for RTAS
1738 * etc... to 256M since we have no way to know what the VRMA size
1739 * is going to be as it depends on the size of the hash table
1740 * isn't determined yet.
1742 if (kvm_enabled()) {
1743 spapr
->vrma_adjust
= 1;
1744 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
1747 /* Actually we don't support unbounded RMA anymore since we
1748 * added proper emulation of HV mode. The max we can get is
1749 * 16G which also happens to be what we configure for PAPR
1750 * mode so make sure we don't do anything bigger than that
1752 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x400000000ull
);
1755 if (spapr
->rma_size
> node0_size
) {
1756 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx
")",
1761 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1762 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
1764 /* Set up Interrupt Controller before we create the VCPUs */
1765 spapr
->xics
= xics_system_init(machine
,
1766 DIV_ROUND_UP(max_cpus
* smt
, smp_threads
),
1767 XICS_IRQS_SPAPR
, &error_fatal
);
1769 if (smc
->dr_lmb_enabled
) {
1770 spapr_validate_node_memory(machine
, &error_fatal
);
1774 if (machine
->cpu_model
== NULL
) {
1775 machine
->cpu_model
= kvm_enabled() ? "host" : "POWER7";
1778 ppc_cpu_parse_features(machine
->cpu_model
);
1780 if (mc
->query_hotpluggable_cpus
) {
1781 char *type
= spapr_get_cpu_core_type(machine
->cpu_model
);
1784 error_report("Unable to find sPAPR CPU Core definition");
1788 spapr
->cores
= g_new0(Object
*, spapr_max_cores
);
1789 for (i
= 0; i
< spapr_max_cores
; i
++) {
1790 int core_id
= i
* smp_threads
;
1791 sPAPRDRConnector
*drc
=
1792 spapr_dr_connector_new(OBJECT(spapr
),
1793 SPAPR_DR_CONNECTOR_TYPE_CPU
,
1794 (core_id
/ smp_threads
) * smt
);
1796 qemu_register_reset(spapr_drc_reset
, drc
);
1798 if (i
< spapr_cores
) {
1799 Object
*core
= object_new(type
);
1800 object_property_set_int(core
, smp_threads
, "nr-threads",
1802 object_property_set_int(core
, core_id
, CPU_CORE_PROP_CORE_ID
,
1804 object_property_set_bool(core
, true, "realized", &error_fatal
);
1809 for (i
= 0; i
< smp_cpus
; i
++) {
1810 PowerPCCPU
*cpu
= cpu_ppc_init(machine
->cpu_model
);
1812 error_report("Unable to find PowerPC CPU definition");
1815 spapr_cpu_init(spapr
, cpu
, &error_fatal
);
1819 if (kvm_enabled()) {
1820 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1821 kvmppc_enable_logical_ci_hcalls();
1822 kvmppc_enable_set_mode_hcall();
1824 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
1825 kvmppc_enable_clear_ref_mod_hcalls();
1829 memory_region_allocate_system_memory(ram
, NULL
, "ppc_spapr.ram",
1831 memory_region_add_subregion(sysmem
, 0, ram
);
1833 if (rma_alloc_size
&& rma
) {
1834 rma_region
= g_new(MemoryRegion
, 1);
1835 memory_region_init_ram_ptr(rma_region
, NULL
, "ppc_spapr.rma",
1836 rma_alloc_size
, rma
);
1837 vmstate_register_ram_global(rma_region
);
1838 memory_region_add_subregion(sysmem
, 0, rma_region
);
1841 /* initialize hotplug memory address space */
1842 if (machine
->ram_size
< machine
->maxram_size
) {
1843 ram_addr_t hotplug_mem_size
= machine
->maxram_size
- machine
->ram_size
;
1845 * Limit the number of hotpluggable memory slots to half the number
1846 * slots that KVM supports, leaving the other half for PCI and other
1847 * devices. However ensure that number of slots doesn't drop below 32.
1849 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
1850 SPAPR_MAX_RAM_SLOTS
;
1852 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
1853 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
1855 if (machine
->ram_slots
> max_memslots
) {
1856 error_report("Specified number of memory slots %"
1857 PRIu64
" exceeds max supported %d",
1858 machine
->ram_slots
, max_memslots
);
1862 spapr
->hotplug_memory
.base
= ROUND_UP(machine
->ram_size
,
1863 SPAPR_HOTPLUG_MEM_ALIGN
);
1864 memory_region_init(&spapr
->hotplug_memory
.mr
, OBJECT(spapr
),
1865 "hotplug-memory", hotplug_mem_size
);
1866 memory_region_add_subregion(sysmem
, spapr
->hotplug_memory
.base
,
1867 &spapr
->hotplug_memory
.mr
);
1870 if (smc
->dr_lmb_enabled
) {
1871 spapr_create_lmb_dr_connectors(spapr
);
1874 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
1876 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1879 spapr
->rtas_size
= get_image_size(filename
);
1880 if (spapr
->rtas_size
< 0) {
1881 error_report("Could not get size of LPAR rtas '%s'", filename
);
1884 spapr
->rtas_blob
= g_malloc(spapr
->rtas_size
);
1885 if (load_image_size(filename
, spapr
->rtas_blob
, spapr
->rtas_size
) < 0) {
1886 error_report("Could not load LPAR rtas '%s'", filename
);
1889 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
1890 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1891 (size_t)spapr
->rtas_size
, RTAS_MAX_SIZE
);
1896 /* Set up EPOW events infrastructure */
1897 spapr_events_init(spapr
);
1899 /* Set up the RTC RTAS interfaces */
1900 spapr_rtc_create(spapr
);
1902 /* Set up VIO bus */
1903 spapr
->vio_bus
= spapr_vio_bus_init();
1905 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
1906 if (serial_hds
[i
]) {
1907 spapr_vty_create(spapr
->vio_bus
, serial_hds
[i
]);
1911 /* We always have at least the nvram device on VIO */
1912 spapr_create_nvram(spapr
);
1915 spapr_pci_rtas_init();
1917 phb
= spapr_create_phb(spapr
, 0);
1919 for (i
= 0; i
< nb_nics
; i
++) {
1920 NICInfo
*nd
= &nd_table
[i
];
1923 nd
->model
= g_strdup("ibmveth");
1926 if (strcmp(nd
->model
, "ibmveth") == 0) {
1927 spapr_vlan_create(spapr
->vio_bus
, nd
);
1929 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
1933 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
1934 spapr_vscsi_create(spapr
->vio_bus
);
1938 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
1939 spapr
->has_graphics
= true;
1940 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
1944 if (smc
->use_ohci_by_default
) {
1945 pci_create_simple(phb
->bus
, -1, "pci-ohci");
1947 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
1950 if (spapr
->has_graphics
) {
1951 USBBus
*usb_bus
= usb_bus_find(-1);
1953 usb_create_simple(usb_bus
, "usb-kbd");
1954 usb_create_simple(usb_bus
, "usb-mouse");
1958 if (spapr
->rma_size
< (MIN_RMA_SLOF
<< 20)) {
1960 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1965 if (kernel_filename
) {
1966 uint64_t lowaddr
= 0;
1968 kernel_size
= load_elf(kernel_filename
, translate_kernel_address
, NULL
,
1969 NULL
, &lowaddr
, NULL
, 1, PPC_ELF_MACHINE
,
1971 if (kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
1972 kernel_size
= load_elf(kernel_filename
,
1973 translate_kernel_address
, NULL
,
1974 NULL
, &lowaddr
, NULL
, 0, PPC_ELF_MACHINE
,
1976 kernel_le
= kernel_size
> 0;
1978 if (kernel_size
< 0) {
1979 error_report("error loading %s: %s",
1980 kernel_filename
, load_elf_strerror(kernel_size
));
1985 if (initrd_filename
) {
1986 /* Try to locate the initrd in the gap between the kernel
1987 * and the firmware. Add a bit of space just in case
1989 initrd_base
= (KERNEL_LOAD_ADDR
+ kernel_size
+ 0x1ffff) & ~0xffff;
1990 initrd_size
= load_image_targphys(initrd_filename
, initrd_base
,
1991 load_limit
- initrd_base
);
1992 if (initrd_size
< 0) {
1993 error_report("could not load initial ram disk '%s'",
2003 if (bios_name
== NULL
) {
2004 bios_name
= FW_FILE_NAME
;
2006 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2008 error_report("Could not find LPAR firmware '%s'", bios_name
);
2011 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2013 error_report("Could not load LPAR firmware '%s'", filename
);
2018 /* FIXME: Should register things through the MachineState's qdev
2019 * interface, this is a legacy from the sPAPREnvironment structure
2020 * which predated MachineState but had a similar function */
2021 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
2022 register_savevm_live(NULL
, "spapr/htab", -1, 1,
2023 &savevm_htab_handlers
, spapr
);
2025 /* Prepare the device tree */
2026 spapr
->fdt_skel
= spapr_create_fdt_skel(initrd_base
, initrd_size
,
2027 kernel_size
, kernel_le
,
2029 spapr
->check_exception_irq
);
2030 assert(spapr
->fdt_skel
!= NULL
);
2033 QTAILQ_INIT(&spapr
->ccs_list
);
2034 qemu_register_reset(spapr_ccs_reset_hook
, spapr
);
2036 qemu_register_boot_set(spapr_boot_set
, spapr
);
2039 static int spapr_kvm_type(const char *vm_type
)
2045 if (!strcmp(vm_type
, "HV")) {
2049 if (!strcmp(vm_type
, "PR")) {
2053 error_report("Unknown kvm-type specified '%s'", vm_type
);
2058 * Implementation of an interface to adjust firmware path
2059 * for the bootindex property handling.
2061 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
2064 #define CAST(type, obj, name) \
2065 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2066 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
2067 sPAPRPHBState
*phb
= CAST(sPAPRPHBState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
2070 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
2071 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
2072 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
2076 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2077 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2078 * in the top 16 bits of the 64-bit LUN
2080 unsigned id
= 0x8000 | (d
->id
<< 8) | d
->lun
;
2081 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2082 (uint64_t)id
<< 48);
2083 } else if (virtio
) {
2085 * We use SRP luns of the form 01000000 | (target << 8) | lun
2086 * in the top 32 bits of the 64-bit LUN
2087 * Note: the quote above is from SLOF and it is wrong,
2088 * the actual binding is:
2089 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2091 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
2092 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2093 (uint64_t)id
<< 32);
2096 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2097 * in the top 32 bits of the 64-bit LUN
2099 unsigned usb_port
= atoi(usb
->port
->path
);
2100 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
2101 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2102 (uint64_t)id
<< 32);
2107 /* Replace "pci" with "pci@800000020000000" */
2108 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
2114 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
2116 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2118 return g_strdup(spapr
->kvm_type
);
2121 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
2123 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2125 g_free(spapr
->kvm_type
);
2126 spapr
->kvm_type
= g_strdup(value
);
2129 static void spapr_machine_initfn(Object
*obj
)
2131 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2133 spapr
->htab_fd
= -1;
2134 object_property_add_str(obj
, "kvm-type",
2135 spapr_get_kvm_type
, spapr_set_kvm_type
, NULL
);
2136 object_property_set_description(obj
, "kvm-type",
2137 "Specifies the KVM virtualization mode (HV, PR)",
2141 static void spapr_machine_finalizefn(Object
*obj
)
2143 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2145 g_free(spapr
->kvm_type
);
2148 static void ppc_cpu_do_nmi_on_cpu(CPUState
*cs
, void *arg
)
2150 cpu_synchronize_state(cs
);
2151 ppc_cpu_do_system_reset(cs
);
2154 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
2159 async_run_on_cpu(cs
, ppc_cpu_do_nmi_on_cpu
, NULL
);
2163 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr
, uint64_t size
,
2164 uint32_t node
, Error
**errp
)
2166 sPAPRDRConnector
*drc
;
2167 sPAPRDRConnectorClass
*drck
;
2168 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
2169 int i
, fdt_offset
, fdt_size
;
2172 for (i
= 0; i
< nr_lmbs
; i
++) {
2173 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2174 addr
/SPAPR_MEMORY_BLOCK_SIZE
);
2177 fdt
= create_device_tree(&fdt_size
);
2178 fdt_offset
= spapr_populate_memory_node(fdt
, node
, addr
,
2179 SPAPR_MEMORY_BLOCK_SIZE
);
2181 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2182 drck
->attach(drc
, dev
, fdt
, fdt_offset
, !dev
->hotplugged
, errp
);
2183 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
2185 /* send hotplug notification to the
2186 * guest only in case of hotplugged memory
2188 if (dev
->hotplugged
) {
2189 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
, nr_lmbs
);
2193 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2194 uint32_t node
, Error
**errp
)
2196 Error
*local_err
= NULL
;
2197 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
2198 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2199 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2200 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2201 uint64_t align
= memory_region_get_alignment(mr
);
2202 uint64_t size
= memory_region_size(mr
);
2205 if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2206 error_setg(&local_err
, "Hotplugged memory size must be a multiple of "
2207 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE
/M_BYTE
);
2211 pc_dimm_memory_plug(dev
, &ms
->hotplug_memory
, mr
, align
, &local_err
);
2216 addr
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
, &local_err
);
2218 pc_dimm_memory_unplug(dev
, &ms
->hotplug_memory
, mr
);
2222 spapr_add_lmbs(dev
, addr
, size
, node
, &error_abort
);
2225 error_propagate(errp
, local_err
);
2228 void *spapr_populate_hotplug_cpu_dt(CPUState
*cs
, int *fdt_offset
,
2229 sPAPRMachineState
*spapr
)
2231 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
2232 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
2233 int id
= ppc_get_vcpu_dt_id(cpu
);
2235 int offset
, fdt_size
;
2238 fdt
= create_device_tree(&fdt_size
);
2239 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
2240 offset
= fdt_add_subnode(fdt
, 0, nodename
);
2242 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
2245 *fdt_offset
= offset
;
2249 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
2250 DeviceState
*dev
, Error
**errp
)
2252 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2254 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2257 if (!smc
->dr_lmb_enabled
) {
2258 error_setg(errp
, "Memory hotplug not supported for this machine");
2261 node
= object_property_get_int(OBJECT(dev
), PC_DIMM_NODE_PROP
, errp
);
2265 if (node
< 0 || node
>= MAX_NODES
) {
2266 error_setg(errp
, "Invaild node %d", node
);
2271 * Currently PowerPC kernel doesn't allow hot-adding memory to
2272 * memory-less node, but instead will silently add the memory
2273 * to the first node that has some memory. This causes two
2274 * unexpected behaviours for the user.
2276 * - Memory gets hotplugged to a different node than what the user
2278 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2279 * to memory-less node, a reboot will set things accordingly
2280 * and the previously hotplugged memory now ends in the right node.
2281 * This appears as if some memory moved from one node to another.
2283 * So until kernel starts supporting memory hotplug to memory-less
2284 * nodes, just prevent such attempts upfront in QEMU.
2286 if (nb_numa_nodes
&& !numa_info
[node
].node_mem
) {
2287 error_setg(errp
, "Can't hotplug memory to memory-less node %d",
2292 spapr_memory_plug(hotplug_dev
, dev
, node
, errp
);
2293 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2294 spapr_core_plug(hotplug_dev
, dev
, errp
);
2298 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
2299 DeviceState
*dev
, Error
**errp
)
2301 MachineClass
*mc
= MACHINE_GET_CLASS(qdev_get_machine());
2303 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2304 error_setg(errp
, "Memory hot unplug not supported by sPAPR");
2305 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2306 if (!mc
->query_hotpluggable_cpus
) {
2307 error_setg(errp
, "CPU hot unplug not supported on this machine");
2310 spapr_core_unplug(hotplug_dev
, dev
, errp
);
2314 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
2315 DeviceState
*dev
, Error
**errp
)
2317 if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2318 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
2322 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
2325 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
2326 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2327 return HOTPLUG_HANDLER(machine
);
2332 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index
)
2334 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2335 * socket means much for the paravirtualized PAPR platform) */
2336 return cpu_index
/ smp_threads
/ smp_cores
;
2339 static HotpluggableCPUList
*spapr_query_hotpluggable_cpus(MachineState
*machine
)
2342 HotpluggableCPUList
*head
= NULL
;
2343 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
2344 int spapr_max_cores
= max_cpus
/ smp_threads
;
2346 for (i
= 0; i
< spapr_max_cores
; i
++) {
2347 HotpluggableCPUList
*list_item
= g_new0(typeof(*list_item
), 1);
2348 HotpluggableCPU
*cpu_item
= g_new0(typeof(*cpu_item
), 1);
2349 CpuInstanceProperties
*cpu_props
= g_new0(typeof(*cpu_props
), 1);
2351 cpu_item
->type
= spapr_get_cpu_core_type(machine
->cpu_model
);
2352 cpu_item
->vcpus_count
= smp_threads
;
2353 cpu_props
->has_core_id
= true;
2354 cpu_props
->core_id
= i
* smp_threads
;
2355 /* TODO: add 'has_node/node' here to describe
2356 to which node core belongs */
2358 cpu_item
->props
= cpu_props
;
2359 if (spapr
->cores
[i
]) {
2360 cpu_item
->has_qom_path
= true;
2361 cpu_item
->qom_path
= object_get_canonical_path(spapr
->cores
[i
]);
2363 list_item
->value
= cpu_item
;
2364 list_item
->next
= head
;
2370 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
2372 MachineClass
*mc
= MACHINE_CLASS(oc
);
2373 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
2374 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
2375 NMIClass
*nc
= NMI_CLASS(oc
);
2376 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
2378 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
2381 * We set up the default / latest behaviour here. The class_init
2382 * functions for the specific versioned machine types can override
2383 * these details for backwards compatibility
2385 mc
->init
= ppc_spapr_init
;
2386 mc
->reset
= ppc_spapr_reset
;
2387 mc
->block_default_type
= IF_SCSI
;
2388 mc
->max_cpus
= MAX_CPUMASK_BITS
;
2389 mc
->no_parallel
= 1;
2390 mc
->default_boot_order
= "";
2391 mc
->default_ram_size
= 512 * M_BYTE
;
2392 mc
->kvm_type
= spapr_kvm_type
;
2393 mc
->has_dynamic_sysbus
= true;
2394 mc
->pci_allow_0_address
= true;
2395 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
2396 hc
->pre_plug
= spapr_machine_device_pre_plug
;
2397 hc
->plug
= spapr_machine_device_plug
;
2398 hc
->unplug
= spapr_machine_device_unplug
;
2399 mc
->cpu_index_to_socket_id
= spapr_cpu_index_to_socket_id
;
2401 smc
->dr_lmb_enabled
= true;
2402 mc
->query_hotpluggable_cpus
= spapr_query_hotpluggable_cpus
;
2403 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
2404 nc
->nmi_monitor_handler
= spapr_nmi
;
2407 static const TypeInfo spapr_machine_info
= {
2408 .name
= TYPE_SPAPR_MACHINE
,
2409 .parent
= TYPE_MACHINE
,
2411 .instance_size
= sizeof(sPAPRMachineState
),
2412 .instance_init
= spapr_machine_initfn
,
2413 .instance_finalize
= spapr_machine_finalizefn
,
2414 .class_size
= sizeof(sPAPRMachineClass
),
2415 .class_init
= spapr_machine_class_init
,
2416 .interfaces
= (InterfaceInfo
[]) {
2417 { TYPE_FW_PATH_PROVIDER
},
2419 { TYPE_HOTPLUG_HANDLER
},
2424 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
2425 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2428 MachineClass *mc = MACHINE_CLASS(oc); \
2429 spapr_machine_##suffix##_class_options(mc); \
2431 mc->alias = "pseries"; \
2432 mc->is_default = 1; \
2435 static void spapr_machine_##suffix##_instance_init(Object *obj) \
2437 MachineState *machine = MACHINE(obj); \
2438 spapr_machine_##suffix##_instance_options(machine); \
2440 static const TypeInfo spapr_machine_##suffix##_info = { \
2441 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
2442 .parent = TYPE_SPAPR_MACHINE, \
2443 .class_init = spapr_machine_##suffix##_class_init, \
2444 .instance_init = spapr_machine_##suffix##_instance_init, \
2446 static void spapr_machine_register_##suffix(void) \
2448 type_register(&spapr_machine_##suffix##_info); \
2450 type_init(spapr_machine_register_##suffix)
2455 static void spapr_machine_2_8_instance_options(MachineState
*machine
)
2459 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
2461 /* Defaults for the latest behaviour inherited from the base class */
2464 DEFINE_SPAPR_MACHINE(2_8
, "2.8", true);
2469 #define SPAPR_COMPAT_2_7 \
2472 static void spapr_machine_2_7_instance_options(MachineState *machine)
2476 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
2478 spapr_machine_2_8_class_options(mc
);
2479 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_7
);
2482 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
2487 #define SPAPR_COMPAT_2_6 \
2490 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2492 .value = stringify(off),\
2495 static void spapr_machine_2_6_instance_options(MachineState
*machine
)
2499 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
2501 spapr_machine_2_7_class_options(mc
);
2502 mc
->query_hotpluggable_cpus
= NULL
;
2503 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_6
);
2506 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
2511 #define SPAPR_COMPAT_2_5 \
2514 .driver = "spapr-vlan", \
2515 .property = "use-rx-buffer-pools", \
2519 static void spapr_machine_2_5_instance_options(MachineState
*machine
)
2523 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
2525 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
2527 spapr_machine_2_6_class_options(mc
);
2528 smc
->use_ohci_by_default
= true;
2529 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_5
);
2532 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
2537 #define SPAPR_COMPAT_2_4 \
2540 static void spapr_machine_2_4_instance_options(MachineState
*machine
)
2542 spapr_machine_2_5_instance_options(machine
);
2545 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
2547 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
2549 spapr_machine_2_5_class_options(mc
);
2550 smc
->dr_lmb_enabled
= false;
2551 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_4
);
2554 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
2559 #define SPAPR_COMPAT_2_3 \
2562 .driver = "spapr-pci-host-bridge",\
2563 .property = "dynamic-reconfiguration",\
2567 static void spapr_machine_2_3_instance_options(MachineState
*machine
)
2569 spapr_machine_2_4_instance_options(machine
);
2570 savevm_skip_section_footers();
2571 global_state_set_optional();
2572 savevm_skip_configuration();
2575 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
2577 spapr_machine_2_4_class_options(mc
);
2578 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_3
);
2580 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
2586 #define SPAPR_COMPAT_2_2 \
2589 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2590 .property = "mem_win_size",\
2591 .value = "0x20000000",\
2594 static void spapr_machine_2_2_instance_options(MachineState
*machine
)
2596 spapr_machine_2_3_instance_options(machine
);
2597 machine
->suppress_vmdesc
= true;
2600 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
2602 spapr_machine_2_3_class_options(mc
);
2603 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_2
);
2605 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
2610 #define SPAPR_COMPAT_2_1 \
2613 static void spapr_machine_2_1_instance_options(MachineState
*machine
)
2615 spapr_machine_2_2_instance_options(machine
);
2618 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
2620 spapr_machine_2_2_class_options(mc
);
2621 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_1
);
2623 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
2625 static void spapr_machine_register_types(void)
2627 type_register_static(&spapr_machine_info
);
2630 type_init(spapr_machine_register_types
)