4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/ram_addr.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/event_notifier.h"
37 #include "trace-root.h"
40 #include "hw/boards.h"
42 /* This check must be after config-host.h is included */
44 #include <sys/eventfd.h>
47 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
48 * need to use the real host PAGE_SIZE, as that's what KVM will use.
50 #define PAGE_SIZE getpagesize()
55 #define DPRINTF(fmt, ...) \
56 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #define DPRINTF(fmt, ...) \
62 #define KVM_MSI_HASHTAB_SIZE 256
64 struct KVMParkedVcpu
{
65 unsigned long vcpu_id
;
67 QLIST_ENTRY(KVMParkedVcpu
) node
;
72 AccelState parent_obj
;
78 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
79 bool coalesced_flush_in_progress
;
80 int broken_set_mem_region
;
82 int robust_singlestep
;
84 #ifdef KVM_CAP_SET_GUEST_DEBUG
85 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
89 /* The man page (and posix) say ioctl numbers are signed int, but
90 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
91 * unsigned, and treating them as signed here can break things */
92 unsigned irq_set_ioctl
;
93 unsigned int sigmask_len
;
95 #ifdef KVM_CAP_IRQ_ROUTING
96 struct kvm_irq_routing
*irq_routes
;
97 int nr_allocated_irq_routes
;
98 unsigned long *used_gsi_bitmap
;
99 unsigned int gsi_count
;
100 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
102 KVMMemoryListener memory_listener
;
103 QLIST_HEAD(, KVMParkedVcpu
) kvm_parked_vcpus
;
107 bool kvm_kernel_irqchip
;
108 bool kvm_split_irqchip
;
109 bool kvm_async_interrupts_allowed
;
110 bool kvm_halt_in_kernel_allowed
;
111 bool kvm_eventfds_allowed
;
112 bool kvm_irqfds_allowed
;
113 bool kvm_resamplefds_allowed
;
114 bool kvm_msi_via_irqfd_allowed
;
115 bool kvm_gsi_routing_allowed
;
116 bool kvm_gsi_direct_mapping
;
118 bool kvm_readonly_mem_allowed
;
119 bool kvm_vm_attributes_allowed
;
120 bool kvm_direct_msi_allowed
;
121 bool kvm_ioeventfd_any_length_allowed
;
122 bool kvm_msi_use_devid
;
123 static bool kvm_immediate_exit
;
125 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
126 KVM_CAP_INFO(USER_MEMORY
),
127 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
131 int kvm_get_max_memslots(void)
133 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
138 static KVMSlot
*kvm_get_free_slot(KVMMemoryListener
*kml
)
140 KVMState
*s
= kvm_state
;
143 for (i
= 0; i
< s
->nr_slots
; i
++) {
144 if (kml
->slots
[i
].memory_size
== 0) {
145 return &kml
->slots
[i
];
152 bool kvm_has_free_slot(MachineState
*ms
)
154 KVMState
*s
= KVM_STATE(ms
->accelerator
);
156 return kvm_get_free_slot(&s
->memory_listener
);
159 static KVMSlot
*kvm_alloc_slot(KVMMemoryListener
*kml
)
161 KVMSlot
*slot
= kvm_get_free_slot(kml
);
167 fprintf(stderr
, "%s: no free slot available\n", __func__
);
171 static KVMSlot
*kvm_lookup_matching_slot(KVMMemoryListener
*kml
,
175 KVMState
*s
= kvm_state
;
178 for (i
= 0; i
< s
->nr_slots
; i
++) {
179 KVMSlot
*mem
= &kml
->slots
[i
];
181 if (start_addr
== mem
->start_addr
&&
182 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
191 * Find overlapping slot with lowest start address
193 static KVMSlot
*kvm_lookup_overlapping_slot(KVMMemoryListener
*kml
,
197 KVMState
*s
= kvm_state
;
198 KVMSlot
*found
= NULL
;
201 for (i
= 0; i
< s
->nr_slots
; i
++) {
202 KVMSlot
*mem
= &kml
->slots
[i
];
204 if (mem
->memory_size
== 0 ||
205 (found
&& found
->start_addr
< mem
->start_addr
)) {
209 if (end_addr
> mem
->start_addr
&&
210 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
218 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
221 KVMMemoryListener
*kml
= &s
->memory_listener
;
224 for (i
= 0; i
< s
->nr_slots
; i
++) {
225 KVMSlot
*mem
= &kml
->slots
[i
];
227 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
228 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
236 static int kvm_set_user_memory_region(KVMMemoryListener
*kml
, KVMSlot
*slot
)
238 KVMState
*s
= kvm_state
;
239 struct kvm_userspace_memory_region mem
;
241 mem
.slot
= slot
->slot
| (kml
->as_id
<< 16);
242 mem
.guest_phys_addr
= slot
->start_addr
;
243 mem
.userspace_addr
= (unsigned long)slot
->ram
;
244 mem
.flags
= slot
->flags
;
246 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
247 /* Set the slot size to 0 before setting the slot to the desired
248 * value. This is needed based on KVM commit 75d61fbc. */
250 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
252 mem
.memory_size
= slot
->memory_size
;
253 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
256 int kvm_destroy_vcpu(CPUState
*cpu
)
258 KVMState
*s
= kvm_state
;
260 struct KVMParkedVcpu
*vcpu
= NULL
;
263 DPRINTF("kvm_destroy_vcpu\n");
265 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
268 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
272 ret
= munmap(cpu
->kvm_run
, mmap_size
);
277 vcpu
= g_malloc0(sizeof(*vcpu
));
278 vcpu
->vcpu_id
= kvm_arch_vcpu_id(cpu
);
279 vcpu
->kvm_fd
= cpu
->kvm_fd
;
280 QLIST_INSERT_HEAD(&kvm_state
->kvm_parked_vcpus
, vcpu
, node
);
285 static int kvm_get_vcpu(KVMState
*s
, unsigned long vcpu_id
)
287 struct KVMParkedVcpu
*cpu
;
289 QLIST_FOREACH(cpu
, &s
->kvm_parked_vcpus
, node
) {
290 if (cpu
->vcpu_id
== vcpu_id
) {
293 QLIST_REMOVE(cpu
, node
);
294 kvm_fd
= cpu
->kvm_fd
;
300 return kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)vcpu_id
);
303 int kvm_init_vcpu(CPUState
*cpu
)
305 KVMState
*s
= kvm_state
;
309 DPRINTF("kvm_init_vcpu\n");
311 ret
= kvm_get_vcpu(s
, kvm_arch_vcpu_id(cpu
));
313 DPRINTF("kvm_create_vcpu failed\n");
319 cpu
->kvm_vcpu_dirty
= true;
321 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
324 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
328 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
330 if (cpu
->kvm_run
== MAP_FAILED
) {
332 DPRINTF("mmap'ing vcpu state failed\n");
336 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
337 s
->coalesced_mmio_ring
=
338 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
341 ret
= kvm_arch_init_vcpu(cpu
);
347 * dirty pages logging control
350 static int kvm_mem_flags(MemoryRegion
*mr
)
352 bool readonly
= mr
->readonly
|| memory_region_is_romd(mr
);
355 if (memory_region_get_dirty_log_mask(mr
) != 0) {
356 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
358 if (readonly
&& kvm_readonly_mem_allowed
) {
359 flags
|= KVM_MEM_READONLY
;
364 static int kvm_slot_update_flags(KVMMemoryListener
*kml
, KVMSlot
*mem
,
369 old_flags
= mem
->flags
;
370 mem
->flags
= kvm_mem_flags(mr
);
372 /* If nothing changed effectively, no need to issue ioctl */
373 if (mem
->flags
== old_flags
) {
377 return kvm_set_user_memory_region(kml
, mem
);
380 static int kvm_section_update_flags(KVMMemoryListener
*kml
,
381 MemoryRegionSection
*section
)
383 hwaddr phys_addr
= section
->offset_within_address_space
;
384 ram_addr_t size
= int128_get64(section
->size
);
385 KVMSlot
*mem
= kvm_lookup_matching_slot(kml
, phys_addr
, phys_addr
+ size
);
390 return kvm_slot_update_flags(kml
, mem
, section
->mr
);
394 static void kvm_log_start(MemoryListener
*listener
,
395 MemoryRegionSection
*section
,
398 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
405 r
= kvm_section_update_flags(kml
, section
);
411 static void kvm_log_stop(MemoryListener
*listener
,
412 MemoryRegionSection
*section
,
415 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
422 r
= kvm_section_update_flags(kml
, section
);
428 /* get kvm's dirty pages bitmap and update qemu's */
429 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
430 unsigned long *bitmap
)
432 ram_addr_t start
= section
->offset_within_region
+
433 memory_region_get_ram_addr(section
->mr
);
434 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
436 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
440 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
443 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
444 * This function updates qemu's dirty bitmap using
445 * memory_region_set_dirty(). This means all bits are set
448 * @start_add: start of logged region.
449 * @end_addr: end of logged region.
451 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener
*kml
,
452 MemoryRegionSection
*section
)
454 KVMState
*s
= kvm_state
;
455 unsigned long size
, allocated_size
= 0;
456 struct kvm_dirty_log d
= {};
459 hwaddr start_addr
= section
->offset_within_address_space
;
460 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
462 d
.dirty_bitmap
= NULL
;
463 while (start_addr
< end_addr
) {
464 mem
= kvm_lookup_overlapping_slot(kml
, start_addr
, end_addr
);
469 /* XXX bad kernel interface alert
470 * For dirty bitmap, kernel allocates array of size aligned to
471 * bits-per-long. But for case when the kernel is 64bits and
472 * the userspace is 32bits, userspace can't align to the same
473 * bits-per-long, since sizeof(long) is different between kernel
474 * and user space. This way, userspace will provide buffer which
475 * may be 4 bytes less than the kernel will use, resulting in
476 * userspace memory corruption (which is not detectable by valgrind
477 * too, in most cases).
478 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
479 * a hope that sizeof(long) won't become >8 any time soon.
481 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
482 /*HOST_LONG_BITS*/ 64) / 8;
483 if (!d
.dirty_bitmap
) {
484 d
.dirty_bitmap
= g_malloc(size
);
485 } else if (size
> allocated_size
) {
486 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
488 allocated_size
= size
;
489 memset(d
.dirty_bitmap
, 0, allocated_size
);
491 d
.slot
= mem
->slot
| (kml
->as_id
<< 16);
492 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
493 DPRINTF("ioctl failed %d\n", errno
);
498 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
499 start_addr
= mem
->start_addr
+ mem
->memory_size
;
501 g_free(d
.dirty_bitmap
);
506 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
507 MemoryRegionSection
*secion
,
508 hwaddr start
, hwaddr size
)
510 KVMState
*s
= kvm_state
;
512 if (s
->coalesced_mmio
) {
513 struct kvm_coalesced_mmio_zone zone
;
519 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
523 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
524 MemoryRegionSection
*secion
,
525 hwaddr start
, hwaddr size
)
527 KVMState
*s
= kvm_state
;
529 if (s
->coalesced_mmio
) {
530 struct kvm_coalesced_mmio_zone zone
;
536 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
540 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
544 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
552 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
556 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
558 /* VM wide version not implemented, use global one instead */
559 ret
= kvm_check_extension(s
, extension
);
565 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
567 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
568 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
569 * endianness, but the memory core hands them in target endianness.
570 * For example, PPC is always treated as big-endian even if running
571 * on KVM and on PPC64LE. Correct here.
585 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
586 bool assign
, uint32_t size
, bool datamatch
)
589 struct kvm_ioeventfd iofd
= {
590 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
597 if (!kvm_enabled()) {
602 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
605 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
608 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
617 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
618 bool assign
, uint32_t size
, bool datamatch
)
620 struct kvm_ioeventfd kick
= {
621 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
623 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
628 if (!kvm_enabled()) {
632 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
635 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
637 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
645 static int kvm_check_many_ioeventfds(void)
647 /* Userspace can use ioeventfd for io notification. This requires a host
648 * that supports eventfd(2) and an I/O thread; since eventfd does not
649 * support SIGIO it cannot interrupt the vcpu.
651 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
652 * can avoid creating too many ioeventfds.
654 #if defined(CONFIG_EVENTFD)
657 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
658 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
659 if (ioeventfds
[i
] < 0) {
662 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
664 close(ioeventfds
[i
]);
669 /* Decide whether many devices are supported or not */
670 ret
= i
== ARRAY_SIZE(ioeventfds
);
673 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
674 close(ioeventfds
[i
]);
682 static const KVMCapabilityInfo
*
683 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
686 if (!kvm_check_extension(s
, list
->value
)) {
694 static void kvm_set_phys_mem(KVMMemoryListener
*kml
,
695 MemoryRegionSection
*section
, bool add
)
697 KVMState
*s
= kvm_state
;
700 MemoryRegion
*mr
= section
->mr
;
701 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
702 hwaddr start_addr
= section
->offset_within_address_space
;
703 ram_addr_t size
= int128_get64(section
->size
);
707 /* kvm works in page size chunks, but the function may be called
708 with sub-page size and unaligned start address. Pad the start
709 address to next and truncate size to previous page boundary. */
710 delta
= qemu_real_host_page_size
- (start_addr
& ~qemu_real_host_page_mask
);
711 delta
&= ~qemu_real_host_page_mask
;
717 size
&= qemu_real_host_page_mask
;
718 if (!size
|| (start_addr
& ~qemu_real_host_page_mask
)) {
722 if (!memory_region_is_ram(mr
)) {
723 if (writeable
|| !kvm_readonly_mem_allowed
) {
725 } else if (!mr
->romd_mode
) {
726 /* If the memory device is not in romd_mode, then we actually want
727 * to remove the kvm memory slot so all accesses will trap. */
732 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
735 mem
= kvm_lookup_overlapping_slot(kml
, start_addr
, start_addr
+ size
);
740 if (add
&& start_addr
>= mem
->start_addr
&&
741 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
742 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
743 /* The new slot fits into the existing one and comes with
744 * identical parameters - update flags and done. */
745 kvm_slot_update_flags(kml
, mem
, mr
);
751 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
752 kvm_physical_sync_dirty_bitmap(kml
, section
);
755 /* unregister the overlapping slot */
756 mem
->memory_size
= 0;
757 err
= kvm_set_user_memory_region(kml
, mem
);
759 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
760 __func__
, strerror(-err
));
764 /* Workaround for older KVM versions: we can't join slots, even not by
765 * unregistering the previous ones and then registering the larger
766 * slot. We have to maintain the existing fragmentation. Sigh.
768 * This workaround assumes that the new slot starts at the same
769 * address as the first existing one. If not or if some overlapping
770 * slot comes around later, we will fail (not seen in practice so far)
771 * - and actually require a recent KVM version. */
772 if (s
->broken_set_mem_region
&&
773 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
774 mem
= kvm_alloc_slot(kml
);
775 mem
->memory_size
= old
.memory_size
;
776 mem
->start_addr
= old
.start_addr
;
778 mem
->flags
= kvm_mem_flags(mr
);
780 err
= kvm_set_user_memory_region(kml
, mem
);
782 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
787 start_addr
+= old
.memory_size
;
788 ram
+= old
.memory_size
;
789 size
-= old
.memory_size
;
793 /* register prefix slot */
794 if (old
.start_addr
< start_addr
) {
795 mem
= kvm_alloc_slot(kml
);
796 mem
->memory_size
= start_addr
- old
.start_addr
;
797 mem
->start_addr
= old
.start_addr
;
799 mem
->flags
= kvm_mem_flags(mr
);
801 err
= kvm_set_user_memory_region(kml
, mem
);
803 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
804 __func__
, strerror(-err
));
806 fprintf(stderr
, "%s: This is probably because your kernel's " \
807 "PAGE_SIZE is too big. Please try to use 4k " \
808 "PAGE_SIZE!\n", __func__
);
814 /* register suffix slot */
815 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
816 ram_addr_t size_delta
;
818 mem
= kvm_alloc_slot(kml
);
819 mem
->start_addr
= start_addr
+ size
;
820 size_delta
= mem
->start_addr
- old
.start_addr
;
821 mem
->memory_size
= old
.memory_size
- size_delta
;
822 mem
->ram
= old
.ram
+ size_delta
;
823 mem
->flags
= kvm_mem_flags(mr
);
825 err
= kvm_set_user_memory_region(kml
, mem
);
827 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
828 __func__
, strerror(-err
));
834 /* in case the KVM bug workaround already "consumed" the new slot */
841 mem
= kvm_alloc_slot(kml
);
842 mem
->memory_size
= size
;
843 mem
->start_addr
= start_addr
;
845 mem
->flags
= kvm_mem_flags(mr
);
847 err
= kvm_set_user_memory_region(kml
, mem
);
849 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
855 static void kvm_region_add(MemoryListener
*listener
,
856 MemoryRegionSection
*section
)
858 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
860 memory_region_ref(section
->mr
);
861 kvm_set_phys_mem(kml
, section
, true);
864 static void kvm_region_del(MemoryListener
*listener
,
865 MemoryRegionSection
*section
)
867 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
869 kvm_set_phys_mem(kml
, section
, false);
870 memory_region_unref(section
->mr
);
873 static void kvm_log_sync(MemoryListener
*listener
,
874 MemoryRegionSection
*section
)
876 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
879 r
= kvm_physical_sync_dirty_bitmap(kml
, section
);
885 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
886 MemoryRegionSection
*section
,
887 bool match_data
, uint64_t data
,
890 int fd
= event_notifier_get_fd(e
);
893 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
894 data
, true, int128_get64(section
->size
),
897 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
898 __func__
, strerror(-r
));
903 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
904 MemoryRegionSection
*section
,
905 bool match_data
, uint64_t data
,
908 int fd
= event_notifier_get_fd(e
);
911 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
912 data
, false, int128_get64(section
->size
),
919 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
920 MemoryRegionSection
*section
,
921 bool match_data
, uint64_t data
,
924 int fd
= event_notifier_get_fd(e
);
927 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
928 data
, true, int128_get64(section
->size
),
931 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
932 __func__
, strerror(-r
));
937 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
938 MemoryRegionSection
*section
,
939 bool match_data
, uint64_t data
,
943 int fd
= event_notifier_get_fd(e
);
946 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
947 data
, false, int128_get64(section
->size
),
954 void kvm_memory_listener_register(KVMState
*s
, KVMMemoryListener
*kml
,
955 AddressSpace
*as
, int as_id
)
959 kml
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
962 for (i
= 0; i
< s
->nr_slots
; i
++) {
963 kml
->slots
[i
].slot
= i
;
966 kml
->listener
.region_add
= kvm_region_add
;
967 kml
->listener
.region_del
= kvm_region_del
;
968 kml
->listener
.log_start
= kvm_log_start
;
969 kml
->listener
.log_stop
= kvm_log_stop
;
970 kml
->listener
.log_sync
= kvm_log_sync
;
971 kml
->listener
.priority
= 10;
973 memory_listener_register(&kml
->listener
, as
);
976 static MemoryListener kvm_io_listener
= {
977 .eventfd_add
= kvm_io_ioeventfd_add
,
978 .eventfd_del
= kvm_io_ioeventfd_del
,
982 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
984 cpu
->interrupt_request
|= mask
;
986 if (!qemu_cpu_is_self(cpu
)) {
991 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
993 struct kvm_irq_level event
;
996 assert(kvm_async_interrupts_enabled());
1000 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
1002 perror("kvm_set_irq");
1006 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
1009 #ifdef KVM_CAP_IRQ_ROUTING
1010 typedef struct KVMMSIRoute
{
1011 struct kvm_irq_routing_entry kroute
;
1012 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
1015 static void set_gsi(KVMState
*s
, unsigned int gsi
)
1017 set_bit(gsi
, s
->used_gsi_bitmap
);
1020 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
1022 clear_bit(gsi
, s
->used_gsi_bitmap
);
1025 void kvm_init_irq_routing(KVMState
*s
)
1029 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
1030 if (gsi_count
> 0) {
1031 /* Round up so we can search ints using ffs */
1032 s
->used_gsi_bitmap
= bitmap_new(gsi_count
);
1033 s
->gsi_count
= gsi_count
;
1036 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
1037 s
->nr_allocated_irq_routes
= 0;
1039 if (!kvm_direct_msi_allowed
) {
1040 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
1041 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
1045 kvm_arch_init_irq_routing(s
);
1048 void kvm_irqchip_commit_routes(KVMState
*s
)
1052 if (kvm_gsi_direct_mapping()) {
1056 if (!kvm_gsi_routing_enabled()) {
1060 s
->irq_routes
->flags
= 0;
1061 trace_kvm_irqchip_commit_routes();
1062 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1066 static void kvm_add_routing_entry(KVMState
*s
,
1067 struct kvm_irq_routing_entry
*entry
)
1069 struct kvm_irq_routing_entry
*new;
1072 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1073 n
= s
->nr_allocated_irq_routes
* 2;
1077 size
= sizeof(struct kvm_irq_routing
);
1078 size
+= n
* sizeof(*new);
1079 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1080 s
->nr_allocated_irq_routes
= n
;
1082 n
= s
->irq_routes
->nr
++;
1083 new = &s
->irq_routes
->entries
[n
];
1087 set_gsi(s
, entry
->gsi
);
1090 static int kvm_update_routing_entry(KVMState
*s
,
1091 struct kvm_irq_routing_entry
*new_entry
)
1093 struct kvm_irq_routing_entry
*entry
;
1096 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1097 entry
= &s
->irq_routes
->entries
[n
];
1098 if (entry
->gsi
!= new_entry
->gsi
) {
1102 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1106 *entry
= *new_entry
;
1114 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1116 struct kvm_irq_routing_entry e
= {};
1118 assert(pin
< s
->gsi_count
);
1121 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1123 e
.u
.irqchip
.irqchip
= irqchip
;
1124 e
.u
.irqchip
.pin
= pin
;
1125 kvm_add_routing_entry(s
, &e
);
1128 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1130 struct kvm_irq_routing_entry
*e
;
1133 if (kvm_gsi_direct_mapping()) {
1137 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1138 e
= &s
->irq_routes
->entries
[i
];
1139 if (e
->gsi
== virq
) {
1140 s
->irq_routes
->nr
--;
1141 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1145 kvm_arch_release_virq_post(virq
);
1148 static unsigned int kvm_hash_msi(uint32_t data
)
1150 /* This is optimized for IA32 MSI layout. However, no other arch shall
1151 * repeat the mistake of not providing a direct MSI injection API. */
1155 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1157 KVMMSIRoute
*route
, *next
;
1160 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1161 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1162 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1163 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1169 static int kvm_irqchip_get_virq(KVMState
*s
)
1174 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1175 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1176 * number can succeed even though a new route entry cannot be added.
1177 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1179 if (!kvm_direct_msi_allowed
&& s
->irq_routes
->nr
== s
->gsi_count
) {
1180 kvm_flush_dynamic_msi_routes(s
);
1183 /* Return the lowest unused GSI in the bitmap */
1184 next_virq
= find_first_zero_bit(s
->used_gsi_bitmap
, s
->gsi_count
);
1185 if (next_virq
>= s
->gsi_count
) {
1192 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1194 unsigned int hash
= kvm_hash_msi(msg
.data
);
1197 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1198 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1199 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1200 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1207 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1212 if (kvm_direct_msi_allowed
) {
1213 msi
.address_lo
= (uint32_t)msg
.address
;
1214 msi
.address_hi
= msg
.address
>> 32;
1215 msi
.data
= le32_to_cpu(msg
.data
);
1217 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1219 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1222 route
= kvm_lookup_msi_route(s
, msg
);
1226 virq
= kvm_irqchip_get_virq(s
);
1231 route
= g_malloc0(sizeof(KVMMSIRoute
));
1232 route
->kroute
.gsi
= virq
;
1233 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1234 route
->kroute
.flags
= 0;
1235 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1236 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1237 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1239 kvm_add_routing_entry(s
, &route
->kroute
);
1240 kvm_irqchip_commit_routes(s
);
1242 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1246 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1248 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1251 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1253 struct kvm_irq_routing_entry kroute
= {};
1255 MSIMessage msg
= {0, 0};
1258 msg
= pci_get_msi_message(dev
, vector
);
1261 if (kvm_gsi_direct_mapping()) {
1262 return kvm_arch_msi_data_to_gsi(msg
.data
);
1265 if (!kvm_gsi_routing_enabled()) {
1269 virq
= kvm_irqchip_get_virq(s
);
1275 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1277 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1278 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1279 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1280 if (kvm_msi_devid_required()) {
1281 kroute
.flags
= KVM_MSI_VALID_DEVID
;
1282 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
1284 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1285 kvm_irqchip_release_virq(s
, virq
);
1289 trace_kvm_irqchip_add_msi_route(virq
);
1291 kvm_add_routing_entry(s
, &kroute
);
1292 kvm_arch_add_msi_route_post(&kroute
, vector
, dev
);
1293 kvm_irqchip_commit_routes(s
);
1298 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
,
1301 struct kvm_irq_routing_entry kroute
= {};
1303 if (kvm_gsi_direct_mapping()) {
1307 if (!kvm_irqchip_in_kernel()) {
1312 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1314 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1315 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1316 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1317 if (kvm_msi_devid_required()) {
1318 kroute
.flags
= KVM_MSI_VALID_DEVID
;
1319 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
1321 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1325 trace_kvm_irqchip_update_msi_route(virq
);
1327 return kvm_update_routing_entry(s
, &kroute
);
1330 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1333 struct kvm_irqfd irqfd
= {
1336 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1340 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1341 irqfd
.resamplefd
= rfd
;
1344 if (!kvm_irqfds_enabled()) {
1348 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1351 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1353 struct kvm_irq_routing_entry kroute
= {};
1356 if (!kvm_gsi_routing_enabled()) {
1360 virq
= kvm_irqchip_get_virq(s
);
1366 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1368 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1369 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1370 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1371 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1372 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1374 kvm_add_routing_entry(s
, &kroute
);
1379 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1381 struct kvm_irq_routing_entry kroute
= {};
1384 if (!kvm_gsi_routing_enabled()) {
1387 if (!kvm_check_extension(s
, KVM_CAP_HYPERV_SYNIC
)) {
1390 virq
= kvm_irqchip_get_virq(s
);
1396 kroute
.type
= KVM_IRQ_ROUTING_HV_SINT
;
1398 kroute
.u
.hv_sint
.vcpu
= vcpu
;
1399 kroute
.u
.hv_sint
.sint
= sint
;
1401 kvm_add_routing_entry(s
, &kroute
);
1402 kvm_irqchip_commit_routes(s
);
1407 #else /* !KVM_CAP_IRQ_ROUTING */
1409 void kvm_init_irq_routing(KVMState
*s
)
1413 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1417 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1422 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1427 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1432 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1437 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1442 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1446 #endif /* !KVM_CAP_IRQ_ROUTING */
1448 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1449 EventNotifier
*rn
, int virq
)
1451 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1452 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1455 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1458 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1462 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1463 EventNotifier
*rn
, qemu_irq irq
)
1466 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1471 return kvm_irqchip_add_irqfd_notifier_gsi(s
, n
, rn
, GPOINTER_TO_INT(gsi
));
1474 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1478 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1483 return kvm_irqchip_remove_irqfd_notifier_gsi(s
, n
, GPOINTER_TO_INT(gsi
));
1486 void kvm_irqchip_set_qemuirq_gsi(KVMState
*s
, qemu_irq irq
, int gsi
)
1488 g_hash_table_insert(s
->gsimap
, irq
, GINT_TO_POINTER(gsi
));
1491 static void kvm_irqchip_create(MachineState
*machine
, KVMState
*s
)
1495 if (kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1497 } else if (kvm_check_extension(s
, KVM_CAP_S390_IRQCHIP
)) {
1498 ret
= kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0);
1500 fprintf(stderr
, "Enable kernel irqchip failed: %s\n", strerror(-ret
));
1507 /* First probe and see if there's a arch-specific hook to create the
1508 * in-kernel irqchip for us */
1509 ret
= kvm_arch_irqchip_create(machine
, s
);
1511 if (machine_kernel_irqchip_split(machine
)) {
1512 perror("Split IRQ chip mode not supported.");
1515 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1519 fprintf(stderr
, "Create kernel irqchip failed: %s\n", strerror(-ret
));
1523 kvm_kernel_irqchip
= true;
1524 /* If we have an in-kernel IRQ chip then we must have asynchronous
1525 * interrupt delivery (though the reverse is not necessarily true)
1527 kvm_async_interrupts_allowed
= true;
1528 kvm_halt_in_kernel_allowed
= true;
1530 kvm_init_irq_routing(s
);
1532 s
->gsimap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
1535 /* Find number of supported CPUs using the recommended
1536 * procedure from the kernel API documentation to cope with
1537 * older kernels that may be missing capabilities.
1539 static int kvm_recommended_vcpus(KVMState
*s
)
1541 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1542 return (ret
) ? ret
: 4;
1545 static int kvm_max_vcpus(KVMState
*s
)
1547 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1548 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1551 static int kvm_max_vcpu_id(KVMState
*s
)
1553 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPU_ID
);
1554 return (ret
) ? ret
: kvm_max_vcpus(s
);
1557 bool kvm_vcpu_id_is_valid(int vcpu_id
)
1559 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
1560 return vcpu_id
>= 0 && vcpu_id
< kvm_max_vcpu_id(s
);
1563 static int kvm_init(MachineState
*ms
)
1565 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1566 static const char upgrade_note
[] =
1567 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1568 "(see http://sourceforge.net/projects/kvm).\n";
1573 { "SMP", smp_cpus
},
1574 { "hotpluggable", max_cpus
},
1577 int soft_vcpus_limit
, hard_vcpus_limit
;
1579 const KVMCapabilityInfo
*missing_cap
;
1582 const char *kvm_type
;
1584 s
= KVM_STATE(ms
->accelerator
);
1587 * On systems where the kernel can support different base page
1588 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1589 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1590 * page size for the system though.
1592 assert(TARGET_PAGE_SIZE
<= getpagesize());
1596 #ifdef KVM_CAP_SET_GUEST_DEBUG
1597 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1599 QLIST_INIT(&s
->kvm_parked_vcpus
);
1601 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1603 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1608 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1609 if (ret
< KVM_API_VERSION
) {
1613 fprintf(stderr
, "kvm version too old\n");
1617 if (ret
> KVM_API_VERSION
) {
1619 fprintf(stderr
, "kvm version not supported\n");
1623 kvm_immediate_exit
= kvm_check_extension(s
, KVM_CAP_IMMEDIATE_EXIT
);
1624 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1626 /* If unspecified, use the default value */
1631 /* check the vcpu limits */
1632 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1633 hard_vcpus_limit
= kvm_max_vcpus(s
);
1636 if (nc
->num
> soft_vcpus_limit
) {
1638 "Warning: Number of %s cpus requested (%d) exceeds "
1639 "the recommended cpus supported by KVM (%d)\n",
1640 nc
->name
, nc
->num
, soft_vcpus_limit
);
1642 if (nc
->num
> hard_vcpus_limit
) {
1643 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1644 "the maximum cpus supported by KVM (%d)\n",
1645 nc
->name
, nc
->num
, hard_vcpus_limit
);
1652 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1654 type
= mc
->kvm_type(kvm_type
);
1655 } else if (kvm_type
) {
1657 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1662 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1663 } while (ret
== -EINTR
);
1666 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1670 if (ret
== -EINVAL
) {
1672 "Host kernel setup problem detected. Please verify:\n");
1673 fprintf(stderr
, "- for kernels supporting the switch_amode or"
1674 " user_mode parameters, whether\n");
1676 " user space is running in primary address space\n");
1678 "- for kernels supporting the vm.allocate_pgste sysctl, "
1679 "whether it is enabled\n");
1686 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1689 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1693 fprintf(stderr
, "kvm does not support %s\n%s",
1694 missing_cap
->name
, upgrade_note
);
1698 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1700 s
->broken_set_mem_region
= 1;
1701 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1703 s
->broken_set_mem_region
= 0;
1706 #ifdef KVM_CAP_VCPU_EVENTS
1707 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1710 s
->robust_singlestep
=
1711 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1713 #ifdef KVM_CAP_DEBUGREGS
1714 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1717 #ifdef KVM_CAP_IRQ_ROUTING
1718 kvm_direct_msi_allowed
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1721 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1723 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1724 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1725 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1728 #ifdef KVM_CAP_READONLY_MEM
1729 kvm_readonly_mem_allowed
=
1730 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1733 kvm_eventfds_allowed
=
1734 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1736 kvm_irqfds_allowed
=
1737 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
1739 kvm_resamplefds_allowed
=
1740 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
1742 kvm_vm_attributes_allowed
=
1743 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
1745 kvm_ioeventfd_any_length_allowed
=
1746 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD_ANY_LENGTH
) > 0);
1748 ret
= kvm_arch_init(ms
, s
);
1753 if (machine_kernel_irqchip_allowed(ms
)) {
1754 kvm_irqchip_create(ms
, s
);
1759 if (kvm_eventfds_allowed
) {
1760 s
->memory_listener
.listener
.eventfd_add
= kvm_mem_ioeventfd_add
;
1761 s
->memory_listener
.listener
.eventfd_del
= kvm_mem_ioeventfd_del
;
1763 s
->memory_listener
.listener
.coalesced_mmio_add
= kvm_coalesce_mmio_region
;
1764 s
->memory_listener
.listener
.coalesced_mmio_del
= kvm_uncoalesce_mmio_region
;
1766 kvm_memory_listener_register(s
, &s
->memory_listener
,
1767 &address_space_memory
, 0);
1768 memory_listener_register(&kvm_io_listener
,
1771 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1773 cpu_interrupt_handler
= kvm_handle_interrupt
;
1785 g_free(s
->memory_listener
.slots
);
1790 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1792 s
->sigmask_len
= sigmask_len
;
1795 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
1796 int size
, uint32_t count
)
1799 uint8_t *ptr
= data
;
1801 for (i
= 0; i
< count
; i
++) {
1802 address_space_rw(&address_space_io
, port
, attrs
,
1804 direction
== KVM_EXIT_IO_OUT
);
1809 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1811 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1812 run
->internal
.suberror
);
1814 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1817 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1818 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1819 i
, (uint64_t)run
->internal
.data
[i
]);
1822 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1823 fprintf(stderr
, "emulation failure\n");
1824 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1825 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1826 return EXCP_INTERRUPT
;
1829 /* FIXME: Should trigger a qmp message to let management know
1830 * something went wrong.
1835 void kvm_flush_coalesced_mmio_buffer(void)
1837 KVMState
*s
= kvm_state
;
1839 if (s
->coalesced_flush_in_progress
) {
1843 s
->coalesced_flush_in_progress
= true;
1845 if (s
->coalesced_mmio_ring
) {
1846 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1847 while (ring
->first
!= ring
->last
) {
1848 struct kvm_coalesced_mmio
*ent
;
1850 ent
= &ring
->coalesced_mmio
[ring
->first
];
1852 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1854 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1858 s
->coalesced_flush_in_progress
= false;
1861 static void do_kvm_cpu_synchronize_state(CPUState
*cpu
, run_on_cpu_data arg
)
1863 if (!cpu
->kvm_vcpu_dirty
) {
1864 kvm_arch_get_registers(cpu
);
1865 cpu
->kvm_vcpu_dirty
= true;
1869 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1871 if (!cpu
->kvm_vcpu_dirty
) {
1872 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, RUN_ON_CPU_NULL
);
1876 static void do_kvm_cpu_synchronize_post_reset(CPUState
*cpu
, run_on_cpu_data arg
)
1878 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1879 cpu
->kvm_vcpu_dirty
= false;
1882 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1884 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, RUN_ON_CPU_NULL
);
1887 static void do_kvm_cpu_synchronize_post_init(CPUState
*cpu
, run_on_cpu_data arg
)
1889 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1890 cpu
->kvm_vcpu_dirty
= false;
1893 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1895 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, RUN_ON_CPU_NULL
);
1898 #ifdef KVM_HAVE_MCE_INJECTION
1899 static __thread
void *pending_sigbus_addr
;
1900 static __thread
int pending_sigbus_code
;
1901 static __thread
bool have_sigbus_pending
;
1904 static void kvm_cpu_kick(CPUState
*cpu
)
1906 atomic_set(&cpu
->kvm_run
->immediate_exit
, 1);
1909 static void kvm_cpu_kick_self(void)
1911 if (kvm_immediate_exit
) {
1912 kvm_cpu_kick(current_cpu
);
1914 qemu_cpu_kick_self();
1918 static void kvm_eat_signals(CPUState
*cpu
)
1920 struct timespec ts
= { 0, 0 };
1926 if (kvm_immediate_exit
) {
1927 atomic_set(&cpu
->kvm_run
->immediate_exit
, 0);
1928 /* Write kvm_run->immediate_exit before the cpu->exit_request
1929 * write in kvm_cpu_exec.
1935 sigemptyset(&waitset
);
1936 sigaddset(&waitset
, SIG_IPI
);
1939 r
= sigtimedwait(&waitset
, &siginfo
, &ts
);
1940 if (r
== -1 && !(errno
== EAGAIN
|| errno
== EINTR
)) {
1941 perror("sigtimedwait");
1945 r
= sigpending(&chkset
);
1947 perror("sigpending");
1950 } while (sigismember(&chkset
, SIG_IPI
));
1953 int kvm_cpu_exec(CPUState
*cpu
)
1955 struct kvm_run
*run
= cpu
->kvm_run
;
1958 DPRINTF("kvm_cpu_exec()\n");
1960 if (kvm_arch_process_async_events(cpu
)) {
1961 atomic_set(&cpu
->exit_request
, 0);
1965 qemu_mutex_unlock_iothread();
1970 if (cpu
->kvm_vcpu_dirty
) {
1971 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1972 cpu
->kvm_vcpu_dirty
= false;
1975 kvm_arch_pre_run(cpu
, run
);
1976 if (atomic_read(&cpu
->exit_request
)) {
1977 DPRINTF("interrupt exit requested\n");
1979 * KVM requires us to reenter the kernel after IO exits to complete
1980 * instruction emulation. This self-signal will ensure that we
1983 kvm_cpu_kick_self();
1986 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1987 * Matching barrier in kvm_eat_signals.
1991 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1993 attrs
= kvm_arch_post_run(cpu
, run
);
1995 #ifdef KVM_HAVE_MCE_INJECTION
1996 if (unlikely(have_sigbus_pending
)) {
1997 qemu_mutex_lock_iothread();
1998 kvm_arch_on_sigbus_vcpu(cpu
, pending_sigbus_code
,
1999 pending_sigbus_addr
);
2000 have_sigbus_pending
= false;
2001 qemu_mutex_unlock_iothread();
2006 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
2007 DPRINTF("io window exit\n");
2008 kvm_eat_signals(cpu
);
2009 ret
= EXCP_INTERRUPT
;
2012 fprintf(stderr
, "error: kvm run failed %s\n",
2013 strerror(-run_ret
));
2015 if (run_ret
== -EBUSY
) {
2017 "This is probably because your SMT is enabled.\n"
2018 "VCPU can only run on primary threads with all "
2019 "secondary threads offline.\n");
2026 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
2027 switch (run
->exit_reason
) {
2029 DPRINTF("handle_io\n");
2030 /* Called outside BQL */
2031 kvm_handle_io(run
->io
.port
, attrs
,
2032 (uint8_t *)run
+ run
->io
.data_offset
,
2039 DPRINTF("handle_mmio\n");
2040 /* Called outside BQL */
2041 address_space_rw(&address_space_memory
,
2042 run
->mmio
.phys_addr
, attrs
,
2045 run
->mmio
.is_write
);
2048 case KVM_EXIT_IRQ_WINDOW_OPEN
:
2049 DPRINTF("irq_window_open\n");
2050 ret
= EXCP_INTERRUPT
;
2052 case KVM_EXIT_SHUTDOWN
:
2053 DPRINTF("shutdown\n");
2054 qemu_system_reset_request();
2055 ret
= EXCP_INTERRUPT
;
2057 case KVM_EXIT_UNKNOWN
:
2058 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
2059 (uint64_t)run
->hw
.hardware_exit_reason
);
2062 case KVM_EXIT_INTERNAL_ERROR
:
2063 ret
= kvm_handle_internal_error(cpu
, run
);
2065 case KVM_EXIT_SYSTEM_EVENT
:
2066 switch (run
->system_event
.type
) {
2067 case KVM_SYSTEM_EVENT_SHUTDOWN
:
2068 qemu_system_shutdown_request();
2069 ret
= EXCP_INTERRUPT
;
2071 case KVM_SYSTEM_EVENT_RESET
:
2072 qemu_system_reset_request();
2073 ret
= EXCP_INTERRUPT
;
2075 case KVM_SYSTEM_EVENT_CRASH
:
2076 kvm_cpu_synchronize_state(cpu
);
2077 qemu_mutex_lock_iothread();
2078 qemu_system_guest_panicked(cpu_get_crash_info(cpu
));
2079 qemu_mutex_unlock_iothread();
2083 DPRINTF("kvm_arch_handle_exit\n");
2084 ret
= kvm_arch_handle_exit(cpu
, run
);
2089 DPRINTF("kvm_arch_handle_exit\n");
2090 ret
= kvm_arch_handle_exit(cpu
, run
);
2095 qemu_mutex_lock_iothread();
2098 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
2099 vm_stop(RUN_STATE_INTERNAL_ERROR
);
2102 atomic_set(&cpu
->exit_request
, 0);
2106 int kvm_ioctl(KVMState
*s
, int type
, ...)
2113 arg
= va_arg(ap
, void *);
2116 trace_kvm_ioctl(type
, arg
);
2117 ret
= ioctl(s
->fd
, type
, arg
);
2124 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
2131 arg
= va_arg(ap
, void *);
2134 trace_kvm_vm_ioctl(type
, arg
);
2135 ret
= ioctl(s
->vmfd
, type
, arg
);
2142 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
2149 arg
= va_arg(ap
, void *);
2152 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
2153 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
2160 int kvm_device_ioctl(int fd
, int type
, ...)
2167 arg
= va_arg(ap
, void *);
2170 trace_kvm_device_ioctl(fd
, type
, arg
);
2171 ret
= ioctl(fd
, type
, arg
);
2178 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
2181 struct kvm_device_attr attribute
= {
2186 if (!kvm_vm_attributes_allowed
) {
2190 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
2191 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2195 int kvm_device_check_attr(int dev_fd
, uint32_t group
, uint64_t attr
)
2197 struct kvm_device_attr attribute
= {
2203 return kvm_device_ioctl(dev_fd
, KVM_HAS_DEVICE_ATTR
, &attribute
) ? 0 : 1;
2206 void kvm_device_access(int fd
, int group
, uint64_t attr
,
2207 void *val
, bool write
)
2209 struct kvm_device_attr kvmattr
;
2213 kvmattr
.group
= group
;
2214 kvmattr
.attr
= attr
;
2215 kvmattr
.addr
= (uintptr_t)val
;
2217 err
= kvm_device_ioctl(fd
,
2218 write
? KVM_SET_DEVICE_ATTR
: KVM_GET_DEVICE_ATTR
,
2221 error_report("KVM_%s_DEVICE_ATTR failed: %s",
2222 write
? "SET" : "GET", strerror(-err
));
2223 error_printf("Group %d attr 0x%016" PRIx64
"\n", group
, attr
);
2228 /* Return 1 on success, 0 on failure */
2229 int kvm_has_sync_mmu(void)
2231 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
2234 int kvm_has_vcpu_events(void)
2236 return kvm_state
->vcpu_events
;
2239 int kvm_has_robust_singlestep(void)
2241 return kvm_state
->robust_singlestep
;
2244 int kvm_has_debugregs(void)
2246 return kvm_state
->debugregs
;
2249 int kvm_has_many_ioeventfds(void)
2251 if (!kvm_enabled()) {
2254 return kvm_state
->many_ioeventfds
;
2257 int kvm_has_gsi_routing(void)
2259 #ifdef KVM_CAP_IRQ_ROUTING
2260 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
2266 int kvm_has_intx_set_mask(void)
2268 return kvm_state
->intx_set_mask
;
2271 #ifdef KVM_CAP_SET_GUEST_DEBUG
2272 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2275 struct kvm_sw_breakpoint
*bp
;
2277 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2285 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2287 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2290 struct kvm_set_guest_debug_data
{
2291 struct kvm_guest_debug dbg
;
2295 static void kvm_invoke_set_guest_debug(CPUState
*cpu
, run_on_cpu_data data
)
2297 struct kvm_set_guest_debug_data
*dbg_data
=
2298 (struct kvm_set_guest_debug_data
*) data
.host_ptr
;
2300 dbg_data
->err
= kvm_vcpu_ioctl(cpu
, KVM_SET_GUEST_DEBUG
,
2304 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2306 struct kvm_set_guest_debug_data data
;
2308 data
.dbg
.control
= reinject_trap
;
2310 if (cpu
->singlestep_enabled
) {
2311 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2313 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2315 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
,
2316 RUN_ON_CPU_HOST_PTR(&data
));
2320 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2321 target_ulong len
, int type
)
2323 struct kvm_sw_breakpoint
*bp
;
2326 if (type
== GDB_BREAKPOINT_SW
) {
2327 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2333 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2336 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2342 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2344 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2351 err
= kvm_update_guest_debug(cpu
, 0);
2359 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2360 target_ulong len
, int type
)
2362 struct kvm_sw_breakpoint
*bp
;
2365 if (type
== GDB_BREAKPOINT_SW
) {
2366 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2371 if (bp
->use_count
> 1) {
2376 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2381 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2384 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2391 err
= kvm_update_guest_debug(cpu
, 0);
2399 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2401 struct kvm_sw_breakpoint
*bp
, *next
;
2402 KVMState
*s
= cpu
->kvm_state
;
2405 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2406 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2407 /* Try harder to find a CPU that currently sees the breakpoint. */
2408 CPU_FOREACH(tmpcpu
) {
2409 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2414 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2417 kvm_arch_remove_all_hw_breakpoints();
2420 kvm_update_guest_debug(cpu
, 0);
2424 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2426 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2431 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2432 target_ulong len
, int type
)
2437 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2438 target_ulong len
, int type
)
2443 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2446 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2448 static int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2450 KVMState
*s
= kvm_state
;
2451 struct kvm_signal_mask
*sigmask
;
2454 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2456 sigmask
->len
= s
->sigmask_len
;
2457 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2458 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2464 static void kvm_ipi_signal(int sig
)
2467 assert(kvm_immediate_exit
);
2468 kvm_cpu_kick(current_cpu
);
2472 void kvm_init_cpu_signals(CPUState
*cpu
)
2476 struct sigaction sigact
;
2478 memset(&sigact
, 0, sizeof(sigact
));
2479 sigact
.sa_handler
= kvm_ipi_signal
;
2480 sigaction(SIG_IPI
, &sigact
, NULL
);
2482 pthread_sigmask(SIG_BLOCK
, NULL
, &set
);
2483 #if defined KVM_HAVE_MCE_INJECTION
2484 sigdelset(&set
, SIGBUS
);
2485 pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
2487 sigdelset(&set
, SIG_IPI
);
2488 if (kvm_immediate_exit
) {
2489 r
= pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
2491 r
= kvm_set_signal_mask(cpu
, &set
);
2494 fprintf(stderr
, "kvm_set_signal_mask: %s\n", strerror(-r
));
2499 /* Called asynchronously in VCPU thread. */
2500 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2502 #ifdef KVM_HAVE_MCE_INJECTION
2503 if (have_sigbus_pending
) {
2506 have_sigbus_pending
= true;
2507 pending_sigbus_addr
= addr
;
2508 pending_sigbus_code
= code
;
2509 atomic_set(&cpu
->exit_request
, 1);
2516 /* Called synchronously (via signalfd) in main thread. */
2517 int kvm_on_sigbus(int code
, void *addr
)
2519 #ifdef KVM_HAVE_MCE_INJECTION
2520 /* Action required MCE kills the process if SIGBUS is blocked. Because
2521 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2522 * we can only get action optional here.
2524 assert(code
!= BUS_MCEERR_AR
);
2525 kvm_arch_on_sigbus_vcpu(first_cpu
, code
, addr
);
2532 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2535 struct kvm_create_device create_dev
;
2537 create_dev
.type
= type
;
2539 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2541 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2545 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2550 return test
? 0 : create_dev
.fd
;
2553 bool kvm_device_supported(int vmfd
, uint64_t type
)
2555 struct kvm_create_device create_dev
= {
2558 .flags
= KVM_CREATE_DEVICE_TEST
,
2561 if (ioctl(vmfd
, KVM_CHECK_EXTENSION
, KVM_CAP_DEVICE_CTRL
) <= 0) {
2565 return (ioctl(vmfd
, KVM_CREATE_DEVICE
, &create_dev
) >= 0);
2568 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2570 struct kvm_one_reg reg
;
2574 reg
.addr
= (uintptr_t) source
;
2575 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2577 trace_kvm_failed_reg_set(id
, strerror(-r
));
2582 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2584 struct kvm_one_reg reg
;
2588 reg
.addr
= (uintptr_t) target
;
2589 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2591 trace_kvm_failed_reg_get(id
, strerror(-r
));
2596 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2598 AccelClass
*ac
= ACCEL_CLASS(oc
);
2600 ac
->init_machine
= kvm_init
;
2601 ac
->allowed
= &kvm_allowed
;
2604 static const TypeInfo kvm_accel_type
= {
2605 .name
= TYPE_KVM_ACCEL
,
2606 .parent
= TYPE_ACCEL
,
2607 .class_init
= kvm_accel_class_init
,
2608 .instance_size
= sizeof(KVMState
),
2611 static void kvm_type_init(void)
2613 type_register_static(&kvm_accel_type
);
2616 type_init(kvm_type_init
);