4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/hw_accel.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/xen-mapcache.h"
51 #include "trace-root.h"
53 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
59 #include "exec/cpu-all.h"
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "translate-all.h"
63 #include "sysemu/replay.h"
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
69 #include "migration/vmstate.h"
71 #include "qemu/range.h"
73 #include "qemu/mmap-alloc.h"
76 #include "monitor/monitor.h"
78 //#define DEBUG_SUBPAGE
80 #if !defined(CONFIG_USER_ONLY)
81 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
82 * are protected by the ramlist lock.
84 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
86 static MemoryRegion
*system_memory
;
87 static MemoryRegion
*system_io
;
89 AddressSpace address_space_io
;
90 AddressSpace address_space_memory
;
92 MemoryRegion io_mem_rom
, io_mem_notdirty
;
93 static MemoryRegion io_mem_unassigned
;
95 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
96 #define RAM_PREALLOC (1 << 0)
98 /* RAM is mmap-ed with MAP_SHARED */
99 #define RAM_SHARED (1 << 1)
101 /* Only a portion of RAM (used_length) is actually used, and migrated.
102 * This used_length size can change across reboots.
104 #define RAM_RESIZEABLE (1 << 2)
108 #ifdef TARGET_PAGE_BITS_VARY
109 int target_page_bits
;
110 bool target_page_bits_decided
;
113 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
114 /* current CPU in the current thread. It is only valid inside
116 __thread CPUState
*current_cpu
;
117 /* 0 = Do not count executed instructions.
118 1 = Precise instruction counting.
119 2 = Adaptive rate instruction counting. */
122 uintptr_t qemu_host_page_size
;
123 intptr_t qemu_host_page_mask
;
124 uintptr_t qemu_real_host_page_size
;
125 intptr_t qemu_real_host_page_mask
;
127 bool set_preferred_target_page_bits(int bits
)
129 /* The target page size is the lowest common denominator for all
130 * the CPUs in the system, so we can only make it smaller, never
131 * larger. And we can't make it smaller once we've committed to
134 #ifdef TARGET_PAGE_BITS_VARY
135 assert(bits
>= TARGET_PAGE_BITS_MIN
);
136 if (target_page_bits
== 0 || target_page_bits
> bits
) {
137 if (target_page_bits_decided
) {
140 target_page_bits
= bits
;
146 #if !defined(CONFIG_USER_ONLY)
148 static void finalize_target_page_bits(void)
150 #ifdef TARGET_PAGE_BITS_VARY
151 if (target_page_bits
== 0) {
152 target_page_bits
= TARGET_PAGE_BITS_MIN
;
154 target_page_bits_decided
= true;
158 typedef struct PhysPageEntry PhysPageEntry
;
160 struct PhysPageEntry
{
161 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
163 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
167 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
169 /* Size of the L2 (and L3, etc) page tables. */
170 #define ADDR_SPACE_BITS 64
173 #define P_L2_SIZE (1 << P_L2_BITS)
175 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
177 typedef PhysPageEntry Node
[P_L2_SIZE
];
179 typedef struct PhysPageMap
{
182 unsigned sections_nb
;
183 unsigned sections_nb_alloc
;
185 unsigned nodes_nb_alloc
;
187 MemoryRegionSection
*sections
;
190 struct AddressSpaceDispatch
{
193 MemoryRegionSection
*mru_section
;
194 /* This is a multi-level map on the physical address space.
195 * The bottom level has pointers to MemoryRegionSections.
197 PhysPageEntry phys_map
;
202 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
203 typedef struct subpage_t
{
207 uint16_t sub_section
[];
210 #define PHYS_SECTION_UNASSIGNED 0
211 #define PHYS_SECTION_NOTDIRTY 1
212 #define PHYS_SECTION_ROM 2
213 #define PHYS_SECTION_WATCH 3
215 static void io_mem_init(void);
216 static void memory_map_init(void);
217 static void tcg_commit(MemoryListener
*listener
);
219 static MemoryRegion io_mem_watch
;
222 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
223 * @cpu: the CPU whose AddressSpace this is
224 * @as: the AddressSpace itself
225 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
226 * @tcg_as_listener: listener for tracking changes to the AddressSpace
228 struct CPUAddressSpace
{
231 struct AddressSpaceDispatch
*memory_dispatch
;
232 MemoryListener tcg_as_listener
;
235 struct DirtyBitmapSnapshot
{
238 unsigned long dirty
[];
243 #if !defined(CONFIG_USER_ONLY)
245 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
247 static unsigned alloc_hint
= 16;
248 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
249 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
250 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
251 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
252 alloc_hint
= map
->nodes_nb_alloc
;
256 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
263 ret
= map
->nodes_nb
++;
265 assert(ret
!= PHYS_MAP_NODE_NIL
);
266 assert(ret
!= map
->nodes_nb_alloc
);
268 e
.skip
= leaf
? 0 : 1;
269 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
270 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
271 memcpy(&p
[i
], &e
, sizeof(e
));
276 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
277 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
281 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
283 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
284 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
286 p
= map
->nodes
[lp
->ptr
];
287 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
289 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
290 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
296 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
302 static void phys_page_set(AddressSpaceDispatch
*d
,
303 hwaddr index
, hwaddr nb
,
306 /* Wildly overreserve - it doesn't matter much. */
307 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
309 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
312 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
313 * and update our entry so we can skip it and go directly to the destination.
315 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
317 unsigned valid_ptr
= P_L2_SIZE
;
322 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
327 for (i
= 0; i
< P_L2_SIZE
; i
++) {
328 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
335 phys_page_compact(&p
[i
], nodes
);
339 /* We can only compress if there's only one child. */
344 assert(valid_ptr
< P_L2_SIZE
);
346 /* Don't compress if it won't fit in the # of bits we have. */
347 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
351 lp
->ptr
= p
[valid_ptr
].ptr
;
352 if (!p
[valid_ptr
].skip
) {
353 /* If our only child is a leaf, make this a leaf. */
354 /* By design, we should have made this node a leaf to begin with so we
355 * should never reach here.
356 * But since it's so simple to handle this, let's do it just in case we
361 lp
->skip
+= p
[valid_ptr
].skip
;
365 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
367 if (d
->phys_map
.skip
) {
368 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
372 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
375 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
376 * the section must cover the entire address space.
378 return int128_gethi(section
->size
) ||
379 range_covers_byte(section
->offset_within_address_space
,
380 int128_getlo(section
->size
), addr
);
383 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr addr
)
385 PhysPageEntry lp
= d
->phys_map
, *p
;
386 Node
*nodes
= d
->map
.nodes
;
387 MemoryRegionSection
*sections
= d
->map
.sections
;
388 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
391 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
392 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
393 return §ions
[PHYS_SECTION_UNASSIGNED
];
396 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
399 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
400 return §ions
[lp
.ptr
];
402 return §ions
[PHYS_SECTION_UNASSIGNED
];
406 bool memory_region_is_unassigned(MemoryRegion
*mr
)
408 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
409 && mr
!= &io_mem_watch
;
412 /* Called from RCU critical section */
413 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
415 bool resolve_subpage
)
417 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
421 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
422 section_covers_addr(section
, addr
)) {
425 section
= phys_page_find(d
, addr
);
428 if (resolve_subpage
&& section
->mr
->subpage
) {
429 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
430 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
433 atomic_set(&d
->mru_section
, section
);
438 /* Called from RCU critical section */
439 static MemoryRegionSection
*
440 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
441 hwaddr
*plen
, bool resolve_subpage
)
443 MemoryRegionSection
*section
;
447 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
448 /* Compute offset within MemoryRegionSection */
449 addr
-= section
->offset_within_address_space
;
451 /* Compute offset within MemoryRegion */
452 *xlat
= addr
+ section
->offset_within_region
;
456 /* MMIO registers can be expected to perform full-width accesses based only
457 * on their address, without considering adjacent registers that could
458 * decode to completely different MemoryRegions. When such registers
459 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
460 * regions overlap wildly. For this reason we cannot clamp the accesses
463 * If the length is small (as is the case for address_space_ldl/stl),
464 * everything works fine. If the incoming length is large, however,
465 * the caller really has to do the clamping through memory_access_size.
467 if (memory_region_is_ram(mr
)) {
468 diff
= int128_sub(section
->size
, int128_make64(addr
));
469 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
474 /* Called from RCU critical section */
475 static MemoryRegionSection
address_space_do_translate(AddressSpace
*as
,
483 MemoryRegionSection
*section
;
484 IOMMUMemoryRegion
*iommu_mr
;
485 IOMMUMemoryRegionClass
*imrc
;
488 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
489 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, is_mmio
);
491 iommu_mr
= memory_region_get_iommu(section
->mr
);
495 imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
497 iotlb
= imrc
->translate(iommu_mr
, addr
, is_write
?
498 IOMMU_WO
: IOMMU_RO
);
499 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
500 | (addr
& iotlb
.addr_mask
));
501 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
502 if (!(iotlb
.perm
& (1 << is_write
))) {
506 as
= iotlb
.target_as
;
514 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
517 /* Called from RCU critical section */
518 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
521 MemoryRegionSection section
;
524 /* Try to get maximum page mask during translation. */
527 /* This can never be MMIO. */
528 section
= address_space_do_translate(as
, addr
, &xlat
, &plen
,
531 /* Illegal translation */
532 if (section
.mr
== &io_mem_unassigned
) {
536 /* Convert memory region offset into address space offset */
537 xlat
+= section
.offset_within_address_space
-
538 section
.offset_within_region
;
540 if (plen
== (hwaddr
)-1) {
542 * We use default page size here. Logically it only happens
543 * for identity mappings.
545 plen
= TARGET_PAGE_SIZE
;
548 /* Convert to address mask */
551 return (IOMMUTLBEntry
) {
552 .target_as
= section
.address_space
,
553 .iova
= addr
& ~plen
,
554 .translated_addr
= xlat
& ~plen
,
556 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
561 return (IOMMUTLBEntry
) {0};
564 /* Called from RCU critical section */
565 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
566 hwaddr
*xlat
, hwaddr
*plen
,
570 MemoryRegionSection section
;
572 /* This can be MMIO, so setup MMIO bit. */
573 section
= address_space_do_translate(as
, addr
, xlat
, plen
, is_write
, true);
576 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
577 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
578 *plen
= MIN(page
, *plen
);
584 /* Called from RCU critical section */
585 MemoryRegionSection
*
586 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
587 hwaddr
*xlat
, hwaddr
*plen
)
589 MemoryRegionSection
*section
;
590 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
592 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
594 assert(!memory_region_is_iommu(section
->mr
));
599 #if !defined(CONFIG_USER_ONLY)
601 static int cpu_common_post_load(void *opaque
, int version_id
)
603 CPUState
*cpu
= opaque
;
605 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
606 version_id is increased. */
607 cpu
->interrupt_request
&= ~0x01;
613 static int cpu_common_pre_load(void *opaque
)
615 CPUState
*cpu
= opaque
;
617 cpu
->exception_index
= -1;
622 static bool cpu_common_exception_index_needed(void *opaque
)
624 CPUState
*cpu
= opaque
;
626 return tcg_enabled() && cpu
->exception_index
!= -1;
629 static const VMStateDescription vmstate_cpu_common_exception_index
= {
630 .name
= "cpu_common/exception_index",
632 .minimum_version_id
= 1,
633 .needed
= cpu_common_exception_index_needed
,
634 .fields
= (VMStateField
[]) {
635 VMSTATE_INT32(exception_index
, CPUState
),
636 VMSTATE_END_OF_LIST()
640 static bool cpu_common_crash_occurred_needed(void *opaque
)
642 CPUState
*cpu
= opaque
;
644 return cpu
->crash_occurred
;
647 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
648 .name
= "cpu_common/crash_occurred",
650 .minimum_version_id
= 1,
651 .needed
= cpu_common_crash_occurred_needed
,
652 .fields
= (VMStateField
[]) {
653 VMSTATE_BOOL(crash_occurred
, CPUState
),
654 VMSTATE_END_OF_LIST()
658 const VMStateDescription vmstate_cpu_common
= {
659 .name
= "cpu_common",
661 .minimum_version_id
= 1,
662 .pre_load
= cpu_common_pre_load
,
663 .post_load
= cpu_common_post_load
,
664 .fields
= (VMStateField
[]) {
665 VMSTATE_UINT32(halted
, CPUState
),
666 VMSTATE_UINT32(interrupt_request
, CPUState
),
667 VMSTATE_END_OF_LIST()
669 .subsections
= (const VMStateDescription
*[]) {
670 &vmstate_cpu_common_exception_index
,
671 &vmstate_cpu_common_crash_occurred
,
678 CPUState
*qemu_get_cpu(int index
)
683 if (cpu
->cpu_index
== index
) {
691 #if !defined(CONFIG_USER_ONLY)
692 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
694 CPUAddressSpace
*newas
;
696 /* Target code should have set num_ases before calling us */
697 assert(asidx
< cpu
->num_ases
);
700 /* address space 0 gets the convenience alias */
704 /* KVM cannot currently support multiple address spaces. */
705 assert(asidx
== 0 || !kvm_enabled());
707 if (!cpu
->cpu_ases
) {
708 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
711 newas
= &cpu
->cpu_ases
[asidx
];
715 newas
->tcg_as_listener
.commit
= tcg_commit
;
716 memory_listener_register(&newas
->tcg_as_listener
, as
);
720 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
722 /* Return the AddressSpace corresponding to the specified index */
723 return cpu
->cpu_ases
[asidx
].as
;
727 void cpu_exec_unrealizefn(CPUState
*cpu
)
729 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
731 cpu_list_remove(cpu
);
733 if (cc
->vmsd
!= NULL
) {
734 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
736 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
737 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
741 Property cpu_common_props
[] = {
742 #ifndef CONFIG_USER_ONLY
743 /* Create a memory property for softmmu CPU object,
744 * so users can wire up its memory. (This can't go in qom/cpu.c
745 * because that file is compiled only once for both user-mode
746 * and system builds.) The default if no link is set up is to use
747 * the system address space.
749 DEFINE_PROP_LINK("memory", CPUState
, memory
, TYPE_MEMORY_REGION
,
752 DEFINE_PROP_END_OF_LIST(),
755 void cpu_exec_initfn(CPUState
*cpu
)
760 #ifndef CONFIG_USER_ONLY
761 cpu
->thread_id
= qemu_get_thread_id();
762 cpu
->memory
= system_memory
;
763 object_ref(OBJECT(cpu
->memory
));
767 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
769 CPUClass
*cc ATTRIBUTE_UNUSED
= CPU_GET_CLASS(cpu
);
773 #ifndef CONFIG_USER_ONLY
774 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
775 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
777 if (cc
->vmsd
!= NULL
) {
778 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
783 #if defined(CONFIG_USER_ONLY)
784 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
788 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
793 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
796 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
797 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
799 /* Locks grabbed by tb_invalidate_phys_addr */
800 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
801 phys
| (pc
& ~TARGET_PAGE_MASK
));
806 #if defined(CONFIG_USER_ONLY)
807 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
812 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
818 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
822 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
823 int flags
, CPUWatchpoint
**watchpoint
)
828 /* Add a watchpoint. */
829 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
830 int flags
, CPUWatchpoint
**watchpoint
)
834 /* forbid ranges which are empty or run off the end of the address space */
835 if (len
== 0 || (addr
+ len
- 1) < addr
) {
836 error_report("tried to set invalid watchpoint at %"
837 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
840 wp
= g_malloc(sizeof(*wp
));
846 /* keep all GDB-injected watchpoints in front */
847 if (flags
& BP_GDB
) {
848 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
850 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
853 tlb_flush_page(cpu
, addr
);
860 /* Remove a specific watchpoint. */
861 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
866 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
867 if (addr
== wp
->vaddr
&& len
== wp
->len
868 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
869 cpu_watchpoint_remove_by_ref(cpu
, wp
);
876 /* Remove a specific watchpoint by reference. */
877 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
879 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
881 tlb_flush_page(cpu
, watchpoint
->vaddr
);
886 /* Remove all matching watchpoints. */
887 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
889 CPUWatchpoint
*wp
, *next
;
891 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
892 if (wp
->flags
& mask
) {
893 cpu_watchpoint_remove_by_ref(cpu
, wp
);
898 /* Return true if this watchpoint address matches the specified
899 * access (ie the address range covered by the watchpoint overlaps
900 * partially or completely with the address range covered by the
903 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
907 /* We know the lengths are non-zero, but a little caution is
908 * required to avoid errors in the case where the range ends
909 * exactly at the top of the address space and so addr + len
910 * wraps round to zero.
912 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
913 vaddr addrend
= addr
+ len
- 1;
915 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
920 /* Add a breakpoint. */
921 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
922 CPUBreakpoint
**breakpoint
)
926 bp
= g_malloc(sizeof(*bp
));
931 /* keep all GDB-injected breakpoints in front */
932 if (flags
& BP_GDB
) {
933 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
935 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
938 breakpoint_invalidate(cpu
, pc
);
946 /* Remove a specific breakpoint. */
947 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
951 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
952 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
953 cpu_breakpoint_remove_by_ref(cpu
, bp
);
960 /* Remove a specific breakpoint by reference. */
961 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
963 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
965 breakpoint_invalidate(cpu
, breakpoint
->pc
);
970 /* Remove all matching breakpoints. */
971 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
973 CPUBreakpoint
*bp
, *next
;
975 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
976 if (bp
->flags
& mask
) {
977 cpu_breakpoint_remove_by_ref(cpu
, bp
);
982 /* enable or disable single step mode. EXCP_DEBUG is returned by the
983 CPU loop after each instruction */
984 void cpu_single_step(CPUState
*cpu
, int enabled
)
986 if (cpu
->singlestep_enabled
!= enabled
) {
987 cpu
->singlestep_enabled
= enabled
;
989 kvm_update_guest_debug(cpu
, 0);
991 /* must flush all the translated code to avoid inconsistencies */
992 /* XXX: only flush what is necessary */
998 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
1005 fprintf(stderr
, "qemu: fatal: ");
1006 vfprintf(stderr
, fmt
, ap
);
1007 fprintf(stderr
, "\n");
1008 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1009 if (qemu_log_separate()) {
1011 qemu_log("qemu: fatal: ");
1012 qemu_log_vprintf(fmt
, ap2
);
1014 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1022 #if defined(CONFIG_USER_ONLY)
1024 struct sigaction act
;
1025 sigfillset(&act
.sa_mask
);
1026 act
.sa_handler
= SIG_DFL
;
1027 sigaction(SIGABRT
, &act
, NULL
);
1033 #if !defined(CONFIG_USER_ONLY)
1034 /* Called from RCU critical section */
1035 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1039 block
= atomic_rcu_read(&ram_list
.mru_block
);
1040 if (block
&& addr
- block
->offset
< block
->max_length
) {
1043 RAMBLOCK_FOREACH(block
) {
1044 if (addr
- block
->offset
< block
->max_length
) {
1049 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1053 /* It is safe to write mru_block outside the iothread lock. This
1058 * xxx removed from list
1062 * call_rcu(reclaim_ramblock, xxx);
1065 * atomic_rcu_set is not needed here. The block was already published
1066 * when it was placed into the list. Here we're just making an extra
1067 * copy of the pointer.
1069 ram_list
.mru_block
= block
;
1073 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1080 end
= TARGET_PAGE_ALIGN(start
+ length
);
1081 start
&= TARGET_PAGE_MASK
;
1084 block
= qemu_get_ram_block(start
);
1085 assert(block
== qemu_get_ram_block(end
- 1));
1086 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1088 tlb_reset_dirty(cpu
, start1
, length
);
1093 /* Note: start and end must be within the same ram block. */
1094 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1098 DirtyMemoryBlocks
*blocks
;
1099 unsigned long end
, page
;
1106 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1107 page
= start
>> TARGET_PAGE_BITS
;
1111 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1113 while (page
< end
) {
1114 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1115 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1116 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1118 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1125 if (dirty
&& tcg_enabled()) {
1126 tlb_reset_dirty_range_all(start
, length
);
1132 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1133 (ram_addr_t start
, ram_addr_t length
, unsigned client
)
1135 DirtyMemoryBlocks
*blocks
;
1136 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1137 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1138 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1139 DirtyBitmapSnapshot
*snap
;
1140 unsigned long page
, end
, dest
;
1142 snap
= g_malloc0(sizeof(*snap
) +
1143 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1144 snap
->start
= first
;
1147 page
= first
>> TARGET_PAGE_BITS
;
1148 end
= last
>> TARGET_PAGE_BITS
;
1153 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1155 while (page
< end
) {
1156 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1157 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1158 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1160 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1161 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1162 offset
>>= BITS_PER_LEVEL
;
1164 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1165 blocks
->blocks
[idx
] + offset
,
1168 dest
+= num
>> BITS_PER_LEVEL
;
1173 if (tcg_enabled()) {
1174 tlb_reset_dirty_range_all(start
, length
);
1180 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1184 unsigned long page
, end
;
1186 assert(start
>= snap
->start
);
1187 assert(start
+ length
<= snap
->end
);
1189 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1190 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1192 while (page
< end
) {
1193 if (test_bit(page
, snap
->dirty
)) {
1201 /* Called from RCU critical section */
1202 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1203 MemoryRegionSection
*section
,
1205 hwaddr paddr
, hwaddr xlat
,
1207 target_ulong
*address
)
1212 if (memory_region_is_ram(section
->mr
)) {
1214 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1215 if (!section
->readonly
) {
1216 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1218 iotlb
|= PHYS_SECTION_ROM
;
1221 AddressSpaceDispatch
*d
;
1223 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1224 iotlb
= section
- d
->map
.sections
;
1228 /* Make accesses to pages with watchpoints go via the
1229 watchpoint trap routines. */
1230 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1231 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1232 /* Avoid trapping reads of pages with a write breakpoint. */
1233 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1234 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1235 *address
|= TLB_MMIO
;
1243 #endif /* defined(CONFIG_USER_ONLY) */
1245 #if !defined(CONFIG_USER_ONLY)
1247 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1249 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1251 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1252 qemu_anon_ram_alloc
;
1255 * Set a custom physical guest memory alloator.
1256 * Accelerators with unusual needs may need this. Hopefully, we can
1257 * get rid of it eventually.
1259 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1261 phys_mem_alloc
= alloc
;
1264 static uint16_t phys_section_add(PhysPageMap
*map
,
1265 MemoryRegionSection
*section
)
1267 /* The physical section number is ORed with a page-aligned
1268 * pointer to produce the iotlb entries. Thus it should
1269 * never overflow into the page-aligned value.
1271 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1273 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1274 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1275 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1276 map
->sections_nb_alloc
);
1278 map
->sections
[map
->sections_nb
] = *section
;
1279 memory_region_ref(section
->mr
);
1280 return map
->sections_nb
++;
1283 static void phys_section_destroy(MemoryRegion
*mr
)
1285 bool have_sub_page
= mr
->subpage
;
1287 memory_region_unref(mr
);
1289 if (have_sub_page
) {
1290 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1291 object_unref(OBJECT(&subpage
->iomem
));
1296 static void phys_sections_free(PhysPageMap
*map
)
1298 while (map
->sections_nb
> 0) {
1299 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1300 phys_section_destroy(section
->mr
);
1302 g_free(map
->sections
);
1306 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1309 hwaddr base
= section
->offset_within_address_space
1311 MemoryRegionSection
*existing
= phys_page_find(d
, base
);
1312 MemoryRegionSection subsection
= {
1313 .offset_within_address_space
= base
,
1314 .size
= int128_make64(TARGET_PAGE_SIZE
),
1318 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1320 if (!(existing
->mr
->subpage
)) {
1321 subpage
= subpage_init(d
->as
, base
);
1322 subsection
.address_space
= d
->as
;
1323 subsection
.mr
= &subpage
->iomem
;
1324 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1325 phys_section_add(&d
->map
, &subsection
));
1327 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1329 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1330 end
= start
+ int128_get64(section
->size
) - 1;
1331 subpage_register(subpage
, start
, end
,
1332 phys_section_add(&d
->map
, section
));
1336 static void register_multipage(AddressSpaceDispatch
*d
,
1337 MemoryRegionSection
*section
)
1339 hwaddr start_addr
= section
->offset_within_address_space
;
1340 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1341 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1345 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1348 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1350 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1351 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1352 MemoryRegionSection now
= *section
, remain
= *section
;
1353 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1355 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1356 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1357 - now
.offset_within_address_space
;
1359 now
.size
= int128_min(int128_make64(left
), now
.size
);
1360 register_subpage(d
, &now
);
1362 now
.size
= int128_zero();
1364 while (int128_ne(remain
.size
, now
.size
)) {
1365 remain
.size
= int128_sub(remain
.size
, now
.size
);
1366 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1367 remain
.offset_within_region
+= int128_get64(now
.size
);
1369 if (int128_lt(remain
.size
, page_size
)) {
1370 register_subpage(d
, &now
);
1371 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1372 now
.size
= page_size
;
1373 register_subpage(d
, &now
);
1375 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1376 register_multipage(d
, &now
);
1381 void qemu_flush_coalesced_mmio_buffer(void)
1384 kvm_flush_coalesced_mmio_buffer();
1387 void qemu_mutex_lock_ramlist(void)
1389 qemu_mutex_lock(&ram_list
.mutex
);
1392 void qemu_mutex_unlock_ramlist(void)
1394 qemu_mutex_unlock(&ram_list
.mutex
);
1397 void ram_block_dump(Monitor
*mon
)
1403 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1404 "Block Name", "PSize", "Offset", "Used", "Total");
1405 RAMBLOCK_FOREACH(block
) {
1406 psize
= size_to_str(block
->page_size
);
1407 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1408 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1409 (uint64_t)block
->offset
,
1410 (uint64_t)block
->used_length
,
1411 (uint64_t)block
->max_length
);
1419 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1420 * may or may not name the same files / on the same filesystem now as
1421 * when we actually open and map them. Iterate over the file
1422 * descriptors instead, and use qemu_fd_getpagesize().
1424 static int find_max_supported_pagesize(Object
*obj
, void *opaque
)
1427 long *hpsize_min
= opaque
;
1429 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1430 mem_path
= object_property_get_str(obj
, "mem-path", NULL
);
1432 long hpsize
= qemu_mempath_getpagesize(mem_path
);
1433 if (hpsize
< *hpsize_min
) {
1434 *hpsize_min
= hpsize
;
1437 *hpsize_min
= getpagesize();
1444 long qemu_getrampagesize(void)
1446 long hpsize
= LONG_MAX
;
1447 long mainrampagesize
;
1448 Object
*memdev_root
;
1451 mainrampagesize
= qemu_mempath_getpagesize(mem_path
);
1453 mainrampagesize
= getpagesize();
1456 /* it's possible we have memory-backend objects with
1457 * hugepage-backed RAM. these may get mapped into system
1458 * address space via -numa parameters or memory hotplug
1459 * hooks. we want to take these into account, but we
1460 * also want to make sure these supported hugepage
1461 * sizes are applicable across the entire range of memory
1462 * we may boot from, so we take the min across all
1463 * backends, and assume normal pages in cases where a
1464 * backend isn't backed by hugepages.
1466 memdev_root
= object_resolve_path("/objects", NULL
);
1468 object_child_foreach(memdev_root
, find_max_supported_pagesize
, &hpsize
);
1470 if (hpsize
== LONG_MAX
) {
1471 /* No additional memory regions found ==> Report main RAM page size */
1472 return mainrampagesize
;
1475 /* If NUMA is disabled or the NUMA nodes are not backed with a
1476 * memory-backend, then there is at least one node using "normal" RAM,
1477 * so if its page size is smaller we have got to report that size instead.
1479 if (hpsize
> mainrampagesize
&&
1480 (nb_numa_nodes
== 0 || numa_info
[0].node_memdev
== NULL
)) {
1483 error_report("Huge page support disabled (n/a for main memory).");
1486 return mainrampagesize
;
1492 long qemu_getrampagesize(void)
1494 return getpagesize();
1499 static int64_t get_file_size(int fd
)
1501 int64_t size
= lseek(fd
, 0, SEEK_END
);
1508 static int file_ram_open(const char *path
,
1509 const char *region_name
,
1514 char *sanitized_name
;
1520 fd
= open(path
, O_RDWR
);
1522 /* @path names an existing file, use it */
1525 if (errno
== ENOENT
) {
1526 /* @path names a file that doesn't exist, create it */
1527 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1532 } else if (errno
== EISDIR
) {
1533 /* @path names a directory, create a file there */
1534 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1535 sanitized_name
= g_strdup(region_name
);
1536 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1542 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1544 g_free(sanitized_name
);
1546 fd
= mkstemp(filename
);
1554 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1555 error_setg_errno(errp
, errno
,
1556 "can't open backing store %s for guest RAM",
1561 * Try again on EINTR and EEXIST. The latter happens when
1562 * something else creates the file between our two open().
1569 static void *file_ram_alloc(RAMBlock
*block
,
1577 block
->page_size
= qemu_fd_getpagesize(fd
);
1578 block
->mr
->align
= block
->page_size
;
1579 #if defined(__s390x__)
1580 if (kvm_enabled()) {
1581 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1585 if (memory
< block
->page_size
) {
1586 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1587 "or larger than page size 0x%zx",
1588 memory
, block
->page_size
);
1592 memory
= ROUND_UP(memory
, block
->page_size
);
1595 * ftruncate is not supported by hugetlbfs in older
1596 * hosts, so don't bother bailing out on errors.
1597 * If anything goes wrong with it under other filesystems,
1600 * Do not truncate the non-empty backend file to avoid corrupting
1601 * the existing data in the file. Disabling shrinking is not
1602 * enough. For example, the current vNVDIMM implementation stores
1603 * the guest NVDIMM labels at the end of the backend file. If the
1604 * backend file is later extended, QEMU will not be able to find
1605 * those labels. Therefore, extending the non-empty backend file
1606 * is disabled as well.
1608 if (truncate
&& ftruncate(fd
, memory
)) {
1609 perror("ftruncate");
1612 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1613 block
->flags
& RAM_SHARED
);
1614 if (area
== MAP_FAILED
) {
1615 error_setg_errno(errp
, errno
,
1616 "unable to map backing store for guest RAM");
1621 os_mem_prealloc(fd
, area
, memory
, smp_cpus
, errp
);
1622 if (errp
&& *errp
) {
1623 qemu_ram_munmap(area
, memory
);
1633 /* Called with the ramlist lock held. */
1634 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1636 RAMBlock
*block
, *next_block
;
1637 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1639 assert(size
!= 0); /* it would hand out same offset multiple times */
1641 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1645 RAMBLOCK_FOREACH(block
) {
1646 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1648 end
= block
->offset
+ block
->max_length
;
1650 RAMBLOCK_FOREACH(next_block
) {
1651 if (next_block
->offset
>= end
) {
1652 next
= MIN(next
, next_block
->offset
);
1655 if (next
- end
>= size
&& next
- end
< mingap
) {
1657 mingap
= next
- end
;
1661 if (offset
== RAM_ADDR_MAX
) {
1662 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1670 unsigned long last_ram_page(void)
1673 ram_addr_t last
= 0;
1676 RAMBLOCK_FOREACH(block
) {
1677 last
= MAX(last
, block
->offset
+ block
->max_length
);
1680 return last
>> TARGET_PAGE_BITS
;
1683 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1687 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1688 if (!machine_dump_guest_core(current_machine
)) {
1689 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1691 perror("qemu_madvise");
1692 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1693 "but dump_guest_core=off specified\n");
1698 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1703 bool qemu_ram_is_shared(RAMBlock
*rb
)
1705 return rb
->flags
& RAM_SHARED
;
1708 /* Called with iothread lock held. */
1709 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1714 assert(!new_block
->idstr
[0]);
1717 char *id
= qdev_get_dev_path(dev
);
1719 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1723 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1726 RAMBLOCK_FOREACH(block
) {
1727 if (block
!= new_block
&&
1728 !strcmp(block
->idstr
, new_block
->idstr
)) {
1729 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1737 /* Called with iothread lock held. */
1738 void qemu_ram_unset_idstr(RAMBlock
*block
)
1740 /* FIXME: arch_init.c assumes that this is not called throughout
1741 * migration. Ignore the problem since hot-unplug during migration
1742 * does not work anyway.
1745 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1749 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1751 return rb
->page_size
;
1754 /* Returns the largest size of page in use */
1755 size_t qemu_ram_pagesize_largest(void)
1760 RAMBLOCK_FOREACH(block
) {
1761 largest
= MAX(largest
, qemu_ram_pagesize(block
));
1767 static int memory_try_enable_merging(void *addr
, size_t len
)
1769 if (!machine_mem_merge(current_machine
)) {
1770 /* disabled by the user */
1774 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1777 /* Only legal before guest might have detected the memory size: e.g. on
1778 * incoming migration, or right after reset.
1780 * As memory core doesn't know how is memory accessed, it is up to
1781 * resize callback to update device state and/or add assertions to detect
1782 * misuse, if necessary.
1784 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1788 newsize
= HOST_PAGE_ALIGN(newsize
);
1790 if (block
->used_length
== newsize
) {
1794 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1795 error_setg_errno(errp
, EINVAL
,
1796 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1797 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1798 newsize
, block
->used_length
);
1802 if (block
->max_length
< newsize
) {
1803 error_setg_errno(errp
, EINVAL
,
1804 "Length too large: %s: 0x" RAM_ADDR_FMT
1805 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1806 newsize
, block
->max_length
);
1810 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1811 block
->used_length
= newsize
;
1812 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1814 memory_region_set_size(block
->mr
, newsize
);
1815 if (block
->resized
) {
1816 block
->resized(block
->idstr
, newsize
, block
->host
);
1821 /* Called with ram_list.mutex held */
1822 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1823 ram_addr_t new_ram_size
)
1825 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1826 DIRTY_MEMORY_BLOCK_SIZE
);
1827 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1828 DIRTY_MEMORY_BLOCK_SIZE
);
1831 /* Only need to extend if block count increased */
1832 if (new_num_blocks
<= old_num_blocks
) {
1836 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1837 DirtyMemoryBlocks
*old_blocks
;
1838 DirtyMemoryBlocks
*new_blocks
;
1841 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1842 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1843 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1845 if (old_num_blocks
) {
1846 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1847 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1850 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1851 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1854 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1857 g_free_rcu(old_blocks
, rcu
);
1862 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1865 RAMBlock
*last_block
= NULL
;
1866 ram_addr_t old_ram_size
, new_ram_size
;
1869 old_ram_size
= last_ram_page();
1871 qemu_mutex_lock_ramlist();
1872 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1874 if (!new_block
->host
) {
1875 if (xen_enabled()) {
1876 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1877 new_block
->mr
, &err
);
1879 error_propagate(errp
, err
);
1880 qemu_mutex_unlock_ramlist();
1884 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1885 &new_block
->mr
->align
);
1886 if (!new_block
->host
) {
1887 error_setg_errno(errp
, errno
,
1888 "cannot set up guest memory '%s'",
1889 memory_region_name(new_block
->mr
));
1890 qemu_mutex_unlock_ramlist();
1893 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1897 new_ram_size
= MAX(old_ram_size
,
1898 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1899 if (new_ram_size
> old_ram_size
) {
1900 dirty_memory_extend(old_ram_size
, new_ram_size
);
1902 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1903 * QLIST (which has an RCU-friendly variant) does not have insertion at
1904 * tail, so save the last element in last_block.
1906 RAMBLOCK_FOREACH(block
) {
1908 if (block
->max_length
< new_block
->max_length
) {
1913 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1914 } else if (last_block
) {
1915 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1916 } else { /* list is empty */
1917 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1919 ram_list
.mru_block
= NULL
;
1921 /* Write list before version */
1924 qemu_mutex_unlock_ramlist();
1926 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1927 new_block
->used_length
,
1930 if (new_block
->host
) {
1931 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1932 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1933 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1934 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1935 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
1940 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
1944 RAMBlock
*new_block
;
1945 Error
*local_err
= NULL
;
1948 if (xen_enabled()) {
1949 error_setg(errp
, "-mem-path not supported with Xen");
1953 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1955 "host lacks kvm mmu notifiers, -mem-path unsupported");
1959 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1961 * file_ram_alloc() needs to allocate just like
1962 * phys_mem_alloc, but we haven't bothered to provide
1966 "-mem-path not supported with this accelerator");
1970 size
= HOST_PAGE_ALIGN(size
);
1971 file_size
= get_file_size(fd
);
1972 if (file_size
> 0 && file_size
< size
) {
1973 error_setg(errp
, "backing store %s size 0x%" PRIx64
1974 " does not match 'size' option 0x" RAM_ADDR_FMT
,
1975 mem_path
, file_size
, size
);
1979 new_block
= g_malloc0(sizeof(*new_block
));
1981 new_block
->used_length
= size
;
1982 new_block
->max_length
= size
;
1983 new_block
->flags
= share
? RAM_SHARED
: 0;
1984 new_block
->host
= file_ram_alloc(new_block
, size
, fd
, !file_size
, errp
);
1985 if (!new_block
->host
) {
1990 ram_block_add(new_block
, &local_err
);
1993 error_propagate(errp
, local_err
);
2001 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
2002 bool share
, const char *mem_path
,
2009 fd
= file_ram_open(mem_path
, memory_region_name(mr
), &created
, errp
);
2014 block
= qemu_ram_alloc_from_fd(size
, mr
, share
, fd
, errp
);
2028 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
2029 void (*resized
)(const char*,
2032 void *host
, bool resizeable
,
2033 MemoryRegion
*mr
, Error
**errp
)
2035 RAMBlock
*new_block
;
2036 Error
*local_err
= NULL
;
2038 size
= HOST_PAGE_ALIGN(size
);
2039 max_size
= HOST_PAGE_ALIGN(max_size
);
2040 new_block
= g_malloc0(sizeof(*new_block
));
2042 new_block
->resized
= resized
;
2043 new_block
->used_length
= size
;
2044 new_block
->max_length
= max_size
;
2045 assert(max_size
>= size
);
2047 new_block
->page_size
= getpagesize();
2048 new_block
->host
= host
;
2050 new_block
->flags
|= RAM_PREALLOC
;
2053 new_block
->flags
|= RAM_RESIZEABLE
;
2055 ram_block_add(new_block
, &local_err
);
2058 error_propagate(errp
, local_err
);
2064 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2065 MemoryRegion
*mr
, Error
**errp
)
2067 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
2070 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
2072 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
2075 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2076 void (*resized
)(const char*,
2079 MemoryRegion
*mr
, Error
**errp
)
2081 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
2084 static void reclaim_ramblock(RAMBlock
*block
)
2086 if (block
->flags
& RAM_PREALLOC
) {
2088 } else if (xen_enabled()) {
2089 xen_invalidate_map_cache_entry(block
->host
);
2091 } else if (block
->fd
>= 0) {
2092 qemu_ram_munmap(block
->host
, block
->max_length
);
2096 qemu_anon_ram_free(block
->host
, block
->max_length
);
2101 void qemu_ram_free(RAMBlock
*block
)
2108 ram_block_notify_remove(block
->host
, block
->max_length
);
2111 qemu_mutex_lock_ramlist();
2112 QLIST_REMOVE_RCU(block
, next
);
2113 ram_list
.mru_block
= NULL
;
2114 /* Write list before version */
2117 call_rcu(block
, reclaim_ramblock
, rcu
);
2118 qemu_mutex_unlock_ramlist();
2122 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2129 RAMBLOCK_FOREACH(block
) {
2130 offset
= addr
- block
->offset
;
2131 if (offset
< block
->max_length
) {
2132 vaddr
= ramblock_ptr(block
, offset
);
2133 if (block
->flags
& RAM_PREALLOC
) {
2135 } else if (xen_enabled()) {
2139 if (block
->fd
>= 0) {
2140 flags
|= (block
->flags
& RAM_SHARED
?
2141 MAP_SHARED
: MAP_PRIVATE
);
2142 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2143 flags
, block
->fd
, offset
);
2146 * Remap needs to match alloc. Accelerators that
2147 * set phys_mem_alloc never remap. If they did,
2148 * we'd need a remap hook here.
2150 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2152 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2153 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2156 if (area
!= vaddr
) {
2157 fprintf(stderr
, "Could not remap addr: "
2158 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
2162 memory_try_enable_merging(vaddr
, length
);
2163 qemu_ram_setup_dump(vaddr
, length
);
2168 #endif /* !_WIN32 */
2170 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2171 * This should not be used for general purpose DMA. Use address_space_map
2172 * or address_space_rw instead. For local memory (e.g. video ram) that the
2173 * device owns, use memory_region_get_ram_ptr.
2175 * Called within RCU critical section.
2177 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2179 RAMBlock
*block
= ram_block
;
2181 if (block
== NULL
) {
2182 block
= qemu_get_ram_block(addr
);
2183 addr
-= block
->offset
;
2186 if (xen_enabled() && block
->host
== NULL
) {
2187 /* We need to check if the requested address is in the RAM
2188 * because we don't want to map the entire memory in QEMU.
2189 * In that case just map until the end of the page.
2191 if (block
->offset
== 0) {
2192 return xen_map_cache(addr
, 0, 0, false);
2195 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2197 return ramblock_ptr(block
, addr
);
2200 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2201 * but takes a size argument.
2203 * Called within RCU critical section.
2205 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2206 hwaddr
*size
, bool lock
)
2208 RAMBlock
*block
= ram_block
;
2213 if (block
== NULL
) {
2214 block
= qemu_get_ram_block(addr
);
2215 addr
-= block
->offset
;
2217 *size
= MIN(*size
, block
->max_length
- addr
);
2219 if (xen_enabled() && block
->host
== NULL
) {
2220 /* We need to check if the requested address is in the RAM
2221 * because we don't want to map the entire memory in QEMU.
2222 * In that case just map the requested area.
2224 if (block
->offset
== 0) {
2225 return xen_map_cache(addr
, *size
, lock
, lock
);
2228 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, lock
);
2231 return ramblock_ptr(block
, addr
);
2235 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2238 * ptr: Host pointer to look up
2239 * round_offset: If true round the result offset down to a page boundary
2240 * *ram_addr: set to result ram_addr
2241 * *offset: set to result offset within the RAMBlock
2243 * Returns: RAMBlock (or NULL if not found)
2245 * By the time this function returns, the returned pointer is not protected
2246 * by RCU anymore. If the caller is not within an RCU critical section and
2247 * does not hold the iothread lock, it must have other means of protecting the
2248 * pointer, such as a reference to the region that includes the incoming
2251 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2255 uint8_t *host
= ptr
;
2257 if (xen_enabled()) {
2258 ram_addr_t ram_addr
;
2260 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2261 block
= qemu_get_ram_block(ram_addr
);
2263 *offset
= ram_addr
- block
->offset
;
2270 block
= atomic_rcu_read(&ram_list
.mru_block
);
2271 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2275 RAMBLOCK_FOREACH(block
) {
2276 /* This case append when the block is not mapped. */
2277 if (block
->host
== NULL
) {
2280 if (host
- block
->host
< block
->max_length
) {
2289 *offset
= (host
- block
->host
);
2291 *offset
&= TARGET_PAGE_MASK
;
2298 * Finds the named RAMBlock
2300 * name: The name of RAMBlock to find
2302 * Returns: RAMBlock (or NULL if not found)
2304 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2308 RAMBLOCK_FOREACH(block
) {
2309 if (!strcmp(name
, block
->idstr
)) {
2317 /* Some of the softmmu routines need to translate from a host pointer
2318 (typically a TLB entry) back to a ram offset. */
2319 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2324 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2326 return RAM_ADDR_INVALID
;
2329 return block
->offset
+ offset
;
2332 /* Called within RCU critical section. */
2333 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2334 uint64_t val
, unsigned size
)
2336 bool locked
= false;
2338 assert(tcg_enabled());
2339 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2342 tb_invalidate_phys_page_fast(ram_addr
, size
);
2346 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2349 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2352 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2362 /* Set both VGA and migration bits for simplicity and to remove
2363 * the notdirty callback faster.
2365 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2366 DIRTY_CLIENTS_NOCODE
);
2367 /* we remove the notdirty callback only if the code has been
2369 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2370 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2374 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2375 unsigned size
, bool is_write
)
2380 static const MemoryRegionOps notdirty_mem_ops
= {
2381 .write
= notdirty_mem_write
,
2382 .valid
.accepts
= notdirty_mem_accepts
,
2383 .endianness
= DEVICE_NATIVE_ENDIAN
,
2386 /* Generate a debug exception if a watchpoint has been hit. */
2387 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2389 CPUState
*cpu
= current_cpu
;
2390 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2391 CPUArchState
*env
= cpu
->env_ptr
;
2392 target_ulong pc
, cs_base
;
2397 assert(tcg_enabled());
2398 if (cpu
->watchpoint_hit
) {
2399 /* We re-entered the check after replacing the TB. Now raise
2400 * the debug interrupt so that is will trigger after the
2401 * current instruction. */
2402 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2405 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2406 vaddr
= cc
->adjust_watchpoint_address(cpu
, vaddr
, len
);
2407 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2408 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2409 && (wp
->flags
& flags
)) {
2410 if (flags
== BP_MEM_READ
) {
2411 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2413 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2415 wp
->hitaddr
= vaddr
;
2416 wp
->hitattrs
= attrs
;
2417 if (!cpu
->watchpoint_hit
) {
2418 if (wp
->flags
& BP_CPU
&&
2419 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2420 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2423 cpu
->watchpoint_hit
= wp
;
2425 /* Both tb_lock and iothread_mutex will be reset when
2426 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2427 * back into the cpu_exec main loop.
2430 tb_check_watchpoint(cpu
);
2431 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2432 cpu
->exception_index
= EXCP_DEBUG
;
2435 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2436 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2437 cpu_loop_exit_noexc(cpu
);
2441 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2446 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2447 so these check for a hit then pass through to the normal out-of-line
2449 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2450 unsigned size
, MemTxAttrs attrs
)
2454 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2455 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2457 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2460 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2463 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2466 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2474 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2475 uint64_t val
, unsigned size
,
2479 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2480 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2482 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2485 address_space_stb(as
, addr
, val
, attrs
, &res
);
2488 address_space_stw(as
, addr
, val
, attrs
, &res
);
2491 address_space_stl(as
, addr
, val
, attrs
, &res
);
2498 static const MemoryRegionOps watch_mem_ops
= {
2499 .read_with_attrs
= watch_mem_read
,
2500 .write_with_attrs
= watch_mem_write
,
2501 .endianness
= DEVICE_NATIVE_ENDIAN
,
2504 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2505 unsigned len
, MemTxAttrs attrs
)
2507 subpage_t
*subpage
= opaque
;
2511 #if defined(DEBUG_SUBPAGE)
2512 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2513 subpage
, len
, addr
);
2515 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2522 *data
= ldub_p(buf
);
2525 *data
= lduw_p(buf
);
2538 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2539 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2541 subpage_t
*subpage
= opaque
;
2544 #if defined(DEBUG_SUBPAGE)
2545 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2546 " value %"PRIx64
"\n",
2547 __func__
, subpage
, len
, addr
, value
);
2565 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2569 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2570 unsigned len
, bool is_write
)
2572 subpage_t
*subpage
= opaque
;
2573 #if defined(DEBUG_SUBPAGE)
2574 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2575 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2578 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2582 static const MemoryRegionOps subpage_ops
= {
2583 .read_with_attrs
= subpage_read
,
2584 .write_with_attrs
= subpage_write
,
2585 .impl
.min_access_size
= 1,
2586 .impl
.max_access_size
= 8,
2587 .valid
.min_access_size
= 1,
2588 .valid
.max_access_size
= 8,
2589 .valid
.accepts
= subpage_accepts
,
2590 .endianness
= DEVICE_NATIVE_ENDIAN
,
2593 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2598 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2600 idx
= SUBPAGE_IDX(start
);
2601 eidx
= SUBPAGE_IDX(end
);
2602 #if defined(DEBUG_SUBPAGE)
2603 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2604 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2606 for (; idx
<= eidx
; idx
++) {
2607 mmio
->sub_section
[idx
] = section
;
2613 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2617 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2620 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2621 NULL
, TARGET_PAGE_SIZE
);
2622 mmio
->iomem
.subpage
= true;
2623 #if defined(DEBUG_SUBPAGE)
2624 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2625 mmio
, base
, TARGET_PAGE_SIZE
);
2627 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2632 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2636 MemoryRegionSection section
= {
2637 .address_space
= as
,
2639 .offset_within_address_space
= 0,
2640 .offset_within_region
= 0,
2641 .size
= int128_2_64(),
2644 return phys_section_add(map
, §ion
);
2647 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2649 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2650 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2651 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2652 MemoryRegionSection
*sections
= d
->map
.sections
;
2654 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2657 static void io_mem_init(void)
2659 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2660 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2663 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2664 * which can be called without the iothread mutex.
2666 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2668 memory_region_clear_global_locking(&io_mem_notdirty
);
2670 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2674 static void mem_begin(MemoryListener
*listener
)
2676 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2677 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2680 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2681 assert(n
== PHYS_SECTION_UNASSIGNED
);
2682 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2683 assert(n
== PHYS_SECTION_NOTDIRTY
);
2684 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2685 assert(n
== PHYS_SECTION_ROM
);
2686 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2687 assert(n
== PHYS_SECTION_WATCH
);
2689 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2691 as
->next_dispatch
= d
;
2694 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2696 phys_sections_free(&d
->map
);
2700 static void mem_commit(MemoryListener
*listener
)
2702 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2703 AddressSpaceDispatch
*cur
= as
->dispatch
;
2704 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2706 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2708 atomic_rcu_set(&as
->dispatch
, next
);
2710 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2714 static void tcg_commit(MemoryListener
*listener
)
2716 CPUAddressSpace
*cpuas
;
2717 AddressSpaceDispatch
*d
;
2719 /* since each CPU stores ram addresses in its TLB cache, we must
2720 reset the modified entries */
2721 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2722 cpu_reloading_memory_map();
2723 /* The CPU and TLB are protected by the iothread lock.
2724 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2725 * may have split the RCU critical section.
2727 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2728 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2729 tlb_flush(cpuas
->cpu
);
2732 void address_space_init_dispatch(AddressSpace
*as
)
2734 as
->dispatch
= NULL
;
2735 as
->dispatch_listener
= (MemoryListener
) {
2737 .commit
= mem_commit
,
2738 .region_add
= mem_add
,
2739 .region_nop
= mem_add
,
2742 memory_listener_register(&as
->dispatch_listener
, as
);
2745 void address_space_unregister(AddressSpace
*as
)
2747 memory_listener_unregister(&as
->dispatch_listener
);
2750 void address_space_destroy_dispatch(AddressSpace
*as
)
2752 AddressSpaceDispatch
*d
= as
->dispatch
;
2754 atomic_rcu_set(&as
->dispatch
, NULL
);
2756 call_rcu(d
, address_space_dispatch_free
, rcu
);
2760 static void memory_map_init(void)
2762 system_memory
= g_malloc(sizeof(*system_memory
));
2764 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2765 address_space_init(&address_space_memory
, system_memory
, "memory");
2767 system_io
= g_malloc(sizeof(*system_io
));
2768 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2770 address_space_init(&address_space_io
, system_io
, "I/O");
2773 MemoryRegion
*get_system_memory(void)
2775 return system_memory
;
2778 MemoryRegion
*get_system_io(void)
2783 #endif /* !defined(CONFIG_USER_ONLY) */
2785 /* physical memory access (slow version, mainly for debug) */
2786 #if defined(CONFIG_USER_ONLY)
2787 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2788 uint8_t *buf
, int len
, int is_write
)
2795 page
= addr
& TARGET_PAGE_MASK
;
2796 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2799 flags
= page_get_flags(page
);
2800 if (!(flags
& PAGE_VALID
))
2803 if (!(flags
& PAGE_WRITE
))
2805 /* XXX: this code should not depend on lock_user */
2806 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2809 unlock_user(p
, addr
, l
);
2811 if (!(flags
& PAGE_READ
))
2813 /* XXX: this code should not depend on lock_user */
2814 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2817 unlock_user(p
, addr
, 0);
2828 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2831 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2832 addr
+= memory_region_get_ram_addr(mr
);
2834 /* No early return if dirty_log_mask is or becomes 0, because
2835 * cpu_physical_memory_set_dirty_range will still call
2836 * xen_modified_memory.
2838 if (dirty_log_mask
) {
2840 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2842 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2843 assert(tcg_enabled());
2845 tb_invalidate_phys_range(addr
, addr
+ length
);
2847 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2849 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2852 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2854 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2856 /* Regions are assumed to support 1-4 byte accesses unless
2857 otherwise specified. */
2858 if (access_size_max
== 0) {
2859 access_size_max
= 4;
2862 /* Bound the maximum access by the alignment of the address. */
2863 if (!mr
->ops
->impl
.unaligned
) {
2864 unsigned align_size_max
= addr
& -addr
;
2865 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2866 access_size_max
= align_size_max
;
2870 /* Don't attempt accesses larger than the maximum. */
2871 if (l
> access_size_max
) {
2872 l
= access_size_max
;
2879 static bool prepare_mmio_access(MemoryRegion
*mr
)
2881 bool unlocked
= !qemu_mutex_iothread_locked();
2882 bool release_lock
= false;
2884 if (unlocked
&& mr
->global_locking
) {
2885 qemu_mutex_lock_iothread();
2887 release_lock
= true;
2889 if (mr
->flush_coalesced_mmio
) {
2891 qemu_mutex_lock_iothread();
2893 qemu_flush_coalesced_mmio_buffer();
2895 qemu_mutex_unlock_iothread();
2899 return release_lock
;
2902 /* Called within RCU critical section. */
2903 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2906 int len
, hwaddr addr1
,
2907 hwaddr l
, MemoryRegion
*mr
)
2911 MemTxResult result
= MEMTX_OK
;
2912 bool release_lock
= false;
2915 if (!memory_access_is_direct(mr
, true)) {
2916 release_lock
|= prepare_mmio_access(mr
);
2917 l
= memory_access_size(mr
, l
, addr1
);
2918 /* XXX: could force current_cpu to NULL to avoid
2922 /* 64 bit write access */
2924 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2928 /* 32 bit write access */
2929 val
= (uint32_t)ldl_p(buf
);
2930 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2934 /* 16 bit write access */
2936 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2940 /* 8 bit write access */
2942 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2950 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
2951 memcpy(ptr
, buf
, l
);
2952 invalidate_and_set_dirty(mr
, addr1
, l
);
2956 qemu_mutex_unlock_iothread();
2957 release_lock
= false;
2969 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2975 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2976 const uint8_t *buf
, int len
)
2981 MemTxResult result
= MEMTX_OK
;
2986 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2987 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2995 /* Called within RCU critical section. */
2996 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2997 MemTxAttrs attrs
, uint8_t *buf
,
2998 int len
, hwaddr addr1
, hwaddr l
,
3003 MemTxResult result
= MEMTX_OK
;
3004 bool release_lock
= false;
3007 if (!memory_access_is_direct(mr
, false)) {
3009 release_lock
|= prepare_mmio_access(mr
);
3010 l
= memory_access_size(mr
, l
, addr1
);
3013 /* 64 bit read access */
3014 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
3019 /* 32 bit read access */
3020 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
3025 /* 16 bit read access */
3026 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
3031 /* 8 bit read access */
3032 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
3041 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3042 memcpy(buf
, ptr
, l
);
3046 qemu_mutex_unlock_iothread();
3047 release_lock
= false;
3059 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3065 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
3066 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3071 MemTxResult result
= MEMTX_OK
;
3076 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3077 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
3085 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
3086 uint8_t *buf
, int len
, bool is_write
)
3089 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
3091 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
3095 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
3096 int len
, int is_write
)
3098 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
3099 buf
, len
, is_write
);
3102 enum write_rom_type
{
3107 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
3108 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
3118 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3120 if (!(memory_region_is_ram(mr
) ||
3121 memory_region_is_romd(mr
))) {
3122 l
= memory_access_size(mr
, l
, addr1
);
3125 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3128 memcpy(ptr
, buf
, l
);
3129 invalidate_and_set_dirty(mr
, addr1
, l
);
3132 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
3143 /* used for ROM loading : can write in RAM and ROM */
3144 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
3145 const uint8_t *buf
, int len
)
3147 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
3150 void cpu_flush_icache_range(hwaddr start
, int len
)
3153 * This function should do the same thing as an icache flush that was
3154 * triggered from within the guest. For TCG we are always cache coherent,
3155 * so there is no need to flush anything. For KVM / Xen we need to flush
3156 * the host's instruction cache at least.
3158 if (tcg_enabled()) {
3162 cpu_physical_memory_write_rom_internal(&address_space_memory
,
3163 start
, NULL
, len
, FLUSH_CACHE
);
3174 static BounceBuffer bounce
;
3176 typedef struct MapClient
{
3178 QLIST_ENTRY(MapClient
) link
;
3181 QemuMutex map_client_list_lock
;
3182 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3183 = QLIST_HEAD_INITIALIZER(map_client_list
);
3185 static void cpu_unregister_map_client_do(MapClient
*client
)
3187 QLIST_REMOVE(client
, link
);
3191 static void cpu_notify_map_clients_locked(void)
3195 while (!QLIST_EMPTY(&map_client_list
)) {
3196 client
= QLIST_FIRST(&map_client_list
);
3197 qemu_bh_schedule(client
->bh
);
3198 cpu_unregister_map_client_do(client
);
3202 void cpu_register_map_client(QEMUBH
*bh
)
3204 MapClient
*client
= g_malloc(sizeof(*client
));
3206 qemu_mutex_lock(&map_client_list_lock
);
3208 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3209 if (!atomic_read(&bounce
.in_use
)) {
3210 cpu_notify_map_clients_locked();
3212 qemu_mutex_unlock(&map_client_list_lock
);
3215 void cpu_exec_init_all(void)
3217 qemu_mutex_init(&ram_list
.mutex
);
3218 /* The data structures we set up here depend on knowing the page size,
3219 * so no more changes can be made after this point.
3220 * In an ideal world, nothing we did before we had finished the
3221 * machine setup would care about the target page size, and we could
3222 * do this much later, rather than requiring board models to state
3223 * up front what their requirements are.
3225 finalize_target_page_bits();
3228 qemu_mutex_init(&map_client_list_lock
);
3231 void cpu_unregister_map_client(QEMUBH
*bh
)
3235 qemu_mutex_lock(&map_client_list_lock
);
3236 QLIST_FOREACH(client
, &map_client_list
, link
) {
3237 if (client
->bh
== bh
) {
3238 cpu_unregister_map_client_do(client
);
3242 qemu_mutex_unlock(&map_client_list_lock
);
3245 static void cpu_notify_map_clients(void)
3247 qemu_mutex_lock(&map_client_list_lock
);
3248 cpu_notify_map_clients_locked();
3249 qemu_mutex_unlock(&map_client_list_lock
);
3252 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
3260 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3261 if (!memory_access_is_direct(mr
, is_write
)) {
3262 l
= memory_access_size(mr
, l
, addr
);
3263 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
3277 address_space_extend_translation(AddressSpace
*as
, hwaddr addr
, hwaddr target_len
,
3278 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3283 MemoryRegion
*this_mr
;
3289 if (target_len
== 0) {
3294 this_mr
= address_space_translate(as
, addr
, &xlat
, &len
, is_write
);
3295 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3301 /* Map a physical memory region into a host virtual address.
3302 * May map a subset of the requested range, given by and returned in *plen.
3303 * May return NULL if resources needed to perform the mapping are exhausted.
3304 * Use only for reads OR writes - not for read-modify-write operations.
3305 * Use cpu_register_map_client() to know when retrying the map operation is
3306 * likely to succeed.
3308 void *address_space_map(AddressSpace
*as
,
3324 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3326 if (!memory_access_is_direct(mr
, is_write
)) {
3327 if (atomic_xchg(&bounce
.in_use
, true)) {
3331 /* Avoid unbounded allocations */
3332 l
= MIN(l
, TARGET_PAGE_SIZE
);
3333 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3337 memory_region_ref(mr
);
3340 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
3346 return bounce
.buffer
;
3350 memory_region_ref(mr
);
3351 *plen
= address_space_extend_translation(as
, addr
, len
, mr
, xlat
, l
, is_write
);
3352 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
, true);
3358 /* Unmaps a memory region previously mapped by address_space_map().
3359 * Will also mark the memory as dirty if is_write == 1. access_len gives
3360 * the amount of memory that was actually read or written by the caller.
3362 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3363 int is_write
, hwaddr access_len
)
3365 if (buffer
!= bounce
.buffer
) {
3369 mr
= memory_region_from_host(buffer
, &addr1
);
3372 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3374 if (xen_enabled()) {
3375 xen_invalidate_map_cache_entry(buffer
);
3377 memory_region_unref(mr
);
3381 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3382 bounce
.buffer
, access_len
);
3384 qemu_vfree(bounce
.buffer
);
3385 bounce
.buffer
= NULL
;
3386 memory_region_unref(bounce
.mr
);
3387 atomic_mb_set(&bounce
.in_use
, false);
3388 cpu_notify_map_clients();
3391 void *cpu_physical_memory_map(hwaddr addr
,
3395 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3398 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3399 int is_write
, hwaddr access_len
)
3401 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3404 #define ARG1_DECL AddressSpace *as
3407 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3408 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3409 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3410 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3411 #define RCU_READ_LOCK(...) rcu_read_lock()
3412 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3413 #include "memory_ldst.inc.c"
3415 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3427 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3433 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3438 #define ARG1_DECL MemoryRegionCache *cache
3440 #define SUFFIX _cached
3441 #define TRANSLATE(addr, ...) \
3442 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3443 #define IS_DIRECT(mr, is_write) true
3444 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3445 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3446 #define RCU_READ_LOCK() rcu_read_lock()
3447 #define RCU_READ_UNLOCK() rcu_read_unlock()
3448 #include "memory_ldst.inc.c"
3450 /* virtual memory access for debug (includes writing to ROM) */
3451 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3452 uint8_t *buf
, int len
, int is_write
)
3458 cpu_synchronize_state(cpu
);
3463 page
= addr
& TARGET_PAGE_MASK
;
3464 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3465 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3466 /* if no physical page mapped, return an error */
3467 if (phys_addr
== -1)
3469 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3472 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3474 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3477 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3478 MEMTXATTRS_UNSPECIFIED
,
3489 * Allows code that needs to deal with migration bitmaps etc to still be built
3490 * target independent.
3492 size_t qemu_target_page_size(void)
3494 return TARGET_PAGE_SIZE
;
3497 int qemu_target_page_bits(void)
3499 return TARGET_PAGE_BITS
;
3502 int qemu_target_page_bits_min(void)
3504 return TARGET_PAGE_BITS_MIN
;
3509 * A helper function for the _utterly broken_ virtio device model to find out if
3510 * it's running on a big endian machine. Don't do this at home kids!
3512 bool target_words_bigendian(void);
3513 bool target_words_bigendian(void)
3515 #if defined(TARGET_WORDS_BIGENDIAN)
3522 #ifndef CONFIG_USER_ONLY
3523 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3530 mr
= address_space_translate(&address_space_memory
,
3531 phys_addr
, &phys_addr
, &l
, false);
3533 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3538 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3544 RAMBLOCK_FOREACH(block
) {
3545 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3546 block
->used_length
, opaque
);
3556 * Unmap pages of memory from start to start+length such that
3557 * they a) read as 0, b) Trigger whatever fault mechanism
3558 * the OS provides for postcopy.
3559 * The pages must be unmapped by the end of the function.
3560 * Returns: 0 on success, none-0 on failure
3563 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3567 uint8_t *host_startaddr
= rb
->host
+ start
;
3569 if ((uintptr_t)host_startaddr
& (rb
->page_size
- 1)) {
3570 error_report("ram_block_discard_range: Unaligned start address: %p",
3575 if ((start
+ length
) <= rb
->used_length
) {
3576 uint8_t *host_endaddr
= host_startaddr
+ length
;
3577 if ((uintptr_t)host_endaddr
& (rb
->page_size
- 1)) {
3578 error_report("ram_block_discard_range: Unaligned end address: %p",
3583 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
3585 if (rb
->page_size
== qemu_host_page_size
) {
3586 #if defined(CONFIG_MADVISE)
3587 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3590 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
3593 /* Huge page case - unfortunately it can't do DONTNEED, but
3594 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3597 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3598 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
3604 error_report("ram_block_discard_range: Failed to discard range "
3605 "%s:%" PRIx64
" +%zx (%d)",
3606 rb
->idstr
, start
, length
, ret
);
3609 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3610 "/%zx/" RAM_ADDR_FMT
")",
3611 rb
->idstr
, start
, length
, rb
->used_length
);
3620 void page_size_init(void)
3622 /* NOTE: we can always suppose that qemu_host_page_size >=
3624 qemu_real_host_page_size
= getpagesize();
3625 qemu_real_host_page_mask
= -(intptr_t)qemu_real_host_page_size
;
3626 if (qemu_host_page_size
== 0) {
3627 qemu_host_page_size
= qemu_real_host_page_size
;
3629 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
3630 qemu_host_page_size
= TARGET_PAGE_SIZE
;
3632 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;