ppc/ppc405_boards: add RAM size checks
[qemu/kevin.git] / target / arm / helper.c
blob366dbcf460d993dd1f7a46e477e34ccac1bd0e8e
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "qemu/range.h"
29 #include "qapi/qapi-commands-machine-target.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
32 #ifdef CONFIG_TCG
33 #include "arm_ldst.h"
34 #include "exec/cpu_ldst.h"
35 #endif
37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
39 #ifndef CONFIG_USER_ONLY
41 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
42 MMUAccessType access_type, ARMMMUIdx mmu_idx,
43 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
44 target_ulong *page_size_ptr,
45 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
46 #endif
48 static void switch_mode(CPUARMState *env, int mode);
50 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
52 int nregs;
54 /* VFP data registers are always little-endian. */
55 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
56 if (reg < nregs) {
57 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
58 return 8;
60 if (arm_feature(env, ARM_FEATURE_NEON)) {
61 /* Aliases for Q regs. */
62 nregs += 16;
63 if (reg < nregs) {
64 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
65 stq_le_p(buf, q[0]);
66 stq_le_p(buf + 8, q[1]);
67 return 16;
70 switch (reg - nregs) {
71 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
72 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
73 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
75 return 0;
78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
80 int nregs;
82 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
83 if (reg < nregs) {
84 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
85 return 8;
87 if (arm_feature(env, ARM_FEATURE_NEON)) {
88 nregs += 16;
89 if (reg < nregs) {
90 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
91 q[0] = ldq_le_p(buf);
92 q[1] = ldq_le_p(buf + 8);
93 return 16;
96 switch (reg - nregs) {
97 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
98 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
99 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
101 return 0;
104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
106 switch (reg) {
107 case 0 ... 31:
108 /* 128 bit FP register */
110 uint64_t *q = aa64_vfp_qreg(env, reg);
111 stq_le_p(buf, q[0]);
112 stq_le_p(buf + 8, q[1]);
113 return 16;
115 case 32:
116 /* FPSR */
117 stl_p(buf, vfp_get_fpsr(env));
118 return 4;
119 case 33:
120 /* FPCR */
121 stl_p(buf, vfp_get_fpcr(env));
122 return 4;
123 default:
124 return 0;
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
130 switch (reg) {
131 case 0 ... 31:
132 /* 128 bit FP register */
134 uint64_t *q = aa64_vfp_qreg(env, reg);
135 q[0] = ldq_le_p(buf);
136 q[1] = ldq_le_p(buf + 8);
137 return 16;
139 case 32:
140 /* FPSR */
141 vfp_set_fpsr(env, ldl_p(buf));
142 return 4;
143 case 33:
144 /* FPCR */
145 vfp_set_fpcr(env, ldl_p(buf));
146 return 4;
147 default:
148 return 0;
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
154 assert(ri->fieldoffset);
155 if (cpreg_field_is_64bit(ri)) {
156 return CPREG_FIELD64(env, ri);
157 } else {
158 return CPREG_FIELD32(env, ri);
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163 uint64_t value)
165 assert(ri->fieldoffset);
166 if (cpreg_field_is_64bit(ri)) {
167 CPREG_FIELD64(env, ri) = value;
168 } else {
169 CPREG_FIELD32(env, ri) = value;
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
175 return (char *)env + ri->fieldoffset;
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
180 /* Raw read of a coprocessor register (as needed for migration, etc). */
181 if (ri->type & ARM_CP_CONST) {
182 return ri->resetvalue;
183 } else if (ri->raw_readfn) {
184 return ri->raw_readfn(env, ri);
185 } else if (ri->readfn) {
186 return ri->readfn(env, ri);
187 } else {
188 return raw_read(env, ri);
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193 uint64_t v)
195 /* Raw write of a coprocessor register (as needed for migration, etc).
196 * Note that constant registers are treated as write-ignored; the
197 * caller should check for success by whether a readback gives the
198 * value written.
200 if (ri->type & ARM_CP_CONST) {
201 return;
202 } else if (ri->raw_writefn) {
203 ri->raw_writefn(env, ri, v);
204 } else if (ri->writefn) {
205 ri->writefn(env, ri, v);
206 } else {
207 raw_write(env, ri, v);
211 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
213 ARMCPU *cpu = env_archcpu(env);
214 const ARMCPRegInfo *ri;
215 uint32_t key;
217 key = cpu->dyn_xml.cpregs_keys[reg];
218 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
219 if (ri) {
220 if (cpreg_field_is_64bit(ri)) {
221 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
222 } else {
223 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
226 return 0;
229 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
231 return 0;
234 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
236 /* Return true if the regdef would cause an assertion if you called
237 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
238 * program bug for it not to have the NO_RAW flag).
239 * NB that returning false here doesn't necessarily mean that calling
240 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
241 * read/write access functions which are safe for raw use" from "has
242 * read/write access functions which have side effects but has forgotten
243 * to provide raw access functions".
244 * The tests here line up with the conditions in read/write_raw_cp_reg()
245 * and assertions in raw_read()/raw_write().
247 if ((ri->type & ARM_CP_CONST) ||
248 ri->fieldoffset ||
249 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
250 return false;
252 return true;
255 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
257 /* Write the coprocessor state from cpu->env to the (index,value) list. */
258 int i;
259 bool ok = true;
261 for (i = 0; i < cpu->cpreg_array_len; i++) {
262 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
263 const ARMCPRegInfo *ri;
264 uint64_t newval;
266 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
267 if (!ri) {
268 ok = false;
269 continue;
271 if (ri->type & ARM_CP_NO_RAW) {
272 continue;
275 newval = read_raw_cp_reg(&cpu->env, ri);
276 if (kvm_sync) {
278 * Only sync if the previous list->cpustate sync succeeded.
279 * Rather than tracking the success/failure state for every
280 * item in the list, we just recheck "does the raw write we must
281 * have made in write_list_to_cpustate() read back OK" here.
283 uint64_t oldval = cpu->cpreg_values[i];
285 if (oldval == newval) {
286 continue;
289 write_raw_cp_reg(&cpu->env, ri, oldval);
290 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
291 continue;
294 write_raw_cp_reg(&cpu->env, ri, newval);
296 cpu->cpreg_values[i] = newval;
298 return ok;
301 bool write_list_to_cpustate(ARMCPU *cpu)
303 int i;
304 bool ok = true;
306 for (i = 0; i < cpu->cpreg_array_len; i++) {
307 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
308 uint64_t v = cpu->cpreg_values[i];
309 const ARMCPRegInfo *ri;
311 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
312 if (!ri) {
313 ok = false;
314 continue;
316 if (ri->type & ARM_CP_NO_RAW) {
317 continue;
319 /* Write value and confirm it reads back as written
320 * (to catch read-only registers and partially read-only
321 * registers where the incoming migration value doesn't match)
323 write_raw_cp_reg(&cpu->env, ri, v);
324 if (read_raw_cp_reg(&cpu->env, ri) != v) {
325 ok = false;
328 return ok;
331 static void add_cpreg_to_list(gpointer key, gpointer opaque)
333 ARMCPU *cpu = opaque;
334 uint64_t regidx;
335 const ARMCPRegInfo *ri;
337 regidx = *(uint32_t *)key;
338 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
340 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
341 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
342 /* The value array need not be initialized at this point */
343 cpu->cpreg_array_len++;
347 static void count_cpreg(gpointer key, gpointer opaque)
349 ARMCPU *cpu = opaque;
350 uint64_t regidx;
351 const ARMCPRegInfo *ri;
353 regidx = *(uint32_t *)key;
354 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
356 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
357 cpu->cpreg_array_len++;
361 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
363 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
364 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
366 if (aidx > bidx) {
367 return 1;
369 if (aidx < bidx) {
370 return -1;
372 return 0;
375 void init_cpreg_list(ARMCPU *cpu)
377 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
378 * Note that we require cpreg_tuples[] to be sorted by key ID.
380 GList *keys;
381 int arraylen;
383 keys = g_hash_table_get_keys(cpu->cp_regs);
384 keys = g_list_sort(keys, cpreg_key_compare);
386 cpu->cpreg_array_len = 0;
388 g_list_foreach(keys, count_cpreg, cpu);
390 arraylen = cpu->cpreg_array_len;
391 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
392 cpu->cpreg_values = g_new(uint64_t, arraylen);
393 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
394 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
395 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
396 cpu->cpreg_array_len = 0;
398 g_list_foreach(keys, add_cpreg_to_list, cpu);
400 assert(cpu->cpreg_array_len == arraylen);
402 g_list_free(keys);
406 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
407 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
409 * access_el3_aa32ns: Used to check AArch32 register views.
410 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
412 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
413 const ARMCPRegInfo *ri,
414 bool isread)
416 bool secure = arm_is_secure_below_el3(env);
418 assert(!arm_el_is_aa64(env, 3));
419 if (secure) {
420 return CP_ACCESS_TRAP_UNCATEGORIZED;
422 return CP_ACCESS_OK;
425 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
426 const ARMCPRegInfo *ri,
427 bool isread)
429 if (!arm_el_is_aa64(env, 3)) {
430 return access_el3_aa32ns(env, ri, isread);
432 return CP_ACCESS_OK;
435 /* Some secure-only AArch32 registers trap to EL3 if used from
436 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
437 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
438 * We assume that the .access field is set to PL1_RW.
440 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
441 const ARMCPRegInfo *ri,
442 bool isread)
444 if (arm_current_el(env) == 3) {
445 return CP_ACCESS_OK;
447 if (arm_is_secure_below_el3(env)) {
448 return CP_ACCESS_TRAP_EL3;
450 /* This will be EL1 NS and EL2 NS, which just UNDEF */
451 return CP_ACCESS_TRAP_UNCATEGORIZED;
454 /* Check for traps to "powerdown debug" registers, which are controlled
455 * by MDCR.TDOSA
457 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
458 bool isread)
460 int el = arm_current_el(env);
461 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
462 (env->cp15.mdcr_el2 & MDCR_TDE) ||
463 (arm_hcr_el2_eff(env) & HCR_TGE);
465 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
466 return CP_ACCESS_TRAP_EL2;
468 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
469 return CP_ACCESS_TRAP_EL3;
471 return CP_ACCESS_OK;
474 /* Check for traps to "debug ROM" registers, which are controlled
475 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
477 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
478 bool isread)
480 int el = arm_current_el(env);
481 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
482 (env->cp15.mdcr_el2 & MDCR_TDE) ||
483 (arm_hcr_el2_eff(env) & HCR_TGE);
485 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
486 return CP_ACCESS_TRAP_EL2;
488 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
489 return CP_ACCESS_TRAP_EL3;
491 return CP_ACCESS_OK;
494 /* Check for traps to general debug registers, which are controlled
495 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
497 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
498 bool isread)
500 int el = arm_current_el(env);
501 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
502 (env->cp15.mdcr_el2 & MDCR_TDE) ||
503 (arm_hcr_el2_eff(env) & HCR_TGE);
505 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
506 return CP_ACCESS_TRAP_EL2;
508 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
509 return CP_ACCESS_TRAP_EL3;
511 return CP_ACCESS_OK;
514 /* Check for traps to performance monitor registers, which are controlled
515 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
517 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
518 bool isread)
520 int el = arm_current_el(env);
522 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
523 && !arm_is_secure_below_el3(env)) {
524 return CP_ACCESS_TRAP_EL2;
526 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
527 return CP_ACCESS_TRAP_EL3;
529 return CP_ACCESS_OK;
532 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
534 ARMCPU *cpu = env_archcpu(env);
536 raw_write(env, ri, value);
537 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
540 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
542 ARMCPU *cpu = env_archcpu(env);
544 if (raw_read(env, ri) != value) {
545 /* Unlike real hardware the qemu TLB uses virtual addresses,
546 * not modified virtual addresses, so this causes a TLB flush.
548 tlb_flush(CPU(cpu));
549 raw_write(env, ri, value);
553 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t value)
556 ARMCPU *cpu = env_archcpu(env);
558 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
559 && !extended_addresses_enabled(env)) {
560 /* For VMSA (when not using the LPAE long descriptor page table
561 * format) this register includes the ASID, so do a TLB flush.
562 * For PMSA it is purely a process ID and no action is needed.
564 tlb_flush(CPU(cpu));
566 raw_write(env, ri, value);
569 /* IS variants of TLB operations must affect all cores */
570 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 uint64_t value)
573 CPUState *cs = env_cpu(env);
575 tlb_flush_all_cpus_synced(cs);
578 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 uint64_t value)
581 CPUState *cs = env_cpu(env);
583 tlb_flush_all_cpus_synced(cs);
586 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
587 uint64_t value)
589 CPUState *cs = env_cpu(env);
591 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
594 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
595 uint64_t value)
597 CPUState *cs = env_cpu(env);
599 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
603 * Non-IS variants of TLB operations are upgraded to
604 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
605 * force broadcast of these operations.
607 static bool tlb_force_broadcast(CPUARMState *env)
609 return (env->cp15.hcr_el2 & HCR_FB) &&
610 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
613 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
614 uint64_t value)
616 /* Invalidate all (TLBIALL) */
617 CPUState *cs = env_cpu(env);
619 if (tlb_force_broadcast(env)) {
620 tlb_flush_all_cpus_synced(cs);
621 } else {
622 tlb_flush(cs);
626 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
627 uint64_t value)
629 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
630 CPUState *cs = env_cpu(env);
632 value &= TARGET_PAGE_MASK;
633 if (tlb_force_broadcast(env)) {
634 tlb_flush_page_all_cpus_synced(cs, value);
635 } else {
636 tlb_flush_page(cs, value);
640 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
641 uint64_t value)
643 /* Invalidate by ASID (TLBIASID) */
644 CPUState *cs = env_cpu(env);
646 if (tlb_force_broadcast(env)) {
647 tlb_flush_all_cpus_synced(cs);
648 } else {
649 tlb_flush(cs);
653 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
654 uint64_t value)
656 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
657 CPUState *cs = env_cpu(env);
659 value &= TARGET_PAGE_MASK;
660 if (tlb_force_broadcast(env)) {
661 tlb_flush_page_all_cpus_synced(cs, value);
662 } else {
663 tlb_flush_page(cs, value);
667 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
668 uint64_t value)
670 CPUState *cs = env_cpu(env);
672 tlb_flush_by_mmuidx(cs,
673 ARMMMUIdxBit_E10_1 |
674 ARMMMUIdxBit_E10_1_PAN |
675 ARMMMUIdxBit_E10_0 |
676 ARMMMUIdxBit_Stage2);
679 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
680 uint64_t value)
682 CPUState *cs = env_cpu(env);
684 tlb_flush_by_mmuidx_all_cpus_synced(cs,
685 ARMMMUIdxBit_E10_1 |
686 ARMMMUIdxBit_E10_1_PAN |
687 ARMMMUIdxBit_E10_0 |
688 ARMMMUIdxBit_Stage2);
691 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
692 uint64_t value)
694 /* Invalidate by IPA. This has to invalidate any structures that
695 * contain only stage 2 translation information, but does not need
696 * to apply to structures that contain combined stage 1 and stage 2
697 * translation information.
698 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
700 CPUState *cs = env_cpu(env);
701 uint64_t pageaddr;
703 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
704 return;
707 pageaddr = sextract64(value << 12, 0, 40);
709 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
712 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
713 uint64_t value)
715 CPUState *cs = env_cpu(env);
716 uint64_t pageaddr;
718 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
719 return;
722 pageaddr = sextract64(value << 12, 0, 40);
724 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
725 ARMMMUIdxBit_Stage2);
728 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
729 uint64_t value)
731 CPUState *cs = env_cpu(env);
733 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
736 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
737 uint64_t value)
739 CPUState *cs = env_cpu(env);
741 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
744 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
745 uint64_t value)
747 CPUState *cs = env_cpu(env);
748 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
750 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
753 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
754 uint64_t value)
756 CPUState *cs = env_cpu(env);
757 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
759 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
760 ARMMMUIdxBit_E2);
763 static const ARMCPRegInfo cp_reginfo[] = {
764 /* Define the secure and non-secure FCSE identifier CP registers
765 * separately because there is no secure bank in V8 (no _EL3). This allows
766 * the secure register to be properly reset and migrated. There is also no
767 * v8 EL1 version of the register so the non-secure instance stands alone.
769 { .name = "FCSEIDR",
770 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
771 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
772 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
773 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
774 { .name = "FCSEIDR_S",
775 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
776 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
777 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
778 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
779 /* Define the secure and non-secure context identifier CP registers
780 * separately because there is no secure bank in V8 (no _EL3). This allows
781 * the secure register to be properly reset and migrated. In the
782 * non-secure case, the 32-bit register will have reset and migration
783 * disabled during registration as it is handled by the 64-bit instance.
785 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
786 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
787 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
788 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
789 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
790 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
791 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
792 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
793 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
794 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
795 REGINFO_SENTINEL
798 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
799 /* NB: Some of these registers exist in v8 but with more precise
800 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
802 /* MMU Domain access control / MPU write buffer control */
803 { .name = "DACR",
804 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
805 .access = PL1_RW, .resetvalue = 0,
806 .writefn = dacr_write, .raw_writefn = raw_write,
807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
808 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
809 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
810 * For v6 and v5, these mappings are overly broad.
812 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
813 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
814 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
815 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
816 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
817 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
818 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
819 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
820 /* Cache maintenance ops; some of this space may be overridden later. */
821 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
822 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
823 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
824 REGINFO_SENTINEL
827 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
828 /* Not all pre-v6 cores implemented this WFI, so this is slightly
829 * over-broad.
831 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
832 .access = PL1_W, .type = ARM_CP_WFI },
833 REGINFO_SENTINEL
836 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
837 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
838 * is UNPREDICTABLE; we choose to NOP as most implementations do).
840 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
841 .access = PL1_W, .type = ARM_CP_WFI },
842 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
843 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
844 * OMAPCP will override this space.
846 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
847 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
848 .resetvalue = 0 },
849 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
850 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
851 .resetvalue = 0 },
852 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
853 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
854 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
855 .resetvalue = 0 },
856 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
857 * implementing it as RAZ means the "debug architecture version" bits
858 * will read as a reserved value, which should cause Linux to not try
859 * to use the debug hardware.
861 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
862 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
863 /* MMU TLB control. Note that the wildcarding means we cover not just
864 * the unified TLB ops but also the dside/iside/inner-shareable variants.
866 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
867 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
868 .type = ARM_CP_NO_RAW },
869 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
870 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
871 .type = ARM_CP_NO_RAW },
872 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
873 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
874 .type = ARM_CP_NO_RAW },
875 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
876 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
877 .type = ARM_CP_NO_RAW },
878 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
879 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
880 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
881 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
882 REGINFO_SENTINEL
885 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
886 uint64_t value)
888 uint32_t mask = 0;
890 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
891 if (!arm_feature(env, ARM_FEATURE_V8)) {
892 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
893 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
894 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
896 if (arm_feature(env, ARM_FEATURE_VFP)) {
897 /* VFP coprocessor: cp10 & cp11 [23:20] */
898 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
900 if (!arm_feature(env, ARM_FEATURE_NEON)) {
901 /* ASEDIS [31] bit is RAO/WI */
902 value |= (1 << 31);
905 /* VFPv3 and upwards with NEON implement 32 double precision
906 * registers (D0-D31).
908 if (!arm_feature(env, ARM_FEATURE_NEON) ||
909 !arm_feature(env, ARM_FEATURE_VFP3)) {
910 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
911 value |= (1 << 30);
914 value &= mask;
918 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
919 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
921 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
922 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
923 value &= ~(0xf << 20);
924 value |= env->cp15.cpacr_el1 & (0xf << 20);
927 env->cp15.cpacr_el1 = value;
930 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
933 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
934 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
936 uint64_t value = env->cp15.cpacr_el1;
938 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
939 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
940 value &= ~(0xf << 20);
942 return value;
946 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
948 /* Call cpacr_write() so that we reset with the correct RAO bits set
949 * for our CPU features.
951 cpacr_write(env, ri, 0);
954 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
955 bool isread)
957 if (arm_feature(env, ARM_FEATURE_V8)) {
958 /* Check if CPACR accesses are to be trapped to EL2 */
959 if (arm_current_el(env) == 1 &&
960 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
961 return CP_ACCESS_TRAP_EL2;
962 /* Check if CPACR accesses are to be trapped to EL3 */
963 } else if (arm_current_el(env) < 3 &&
964 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
965 return CP_ACCESS_TRAP_EL3;
969 return CP_ACCESS_OK;
972 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
973 bool isread)
975 /* Check if CPTR accesses are set to trap to EL3 */
976 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
977 return CP_ACCESS_TRAP_EL3;
980 return CP_ACCESS_OK;
983 static const ARMCPRegInfo v6_cp_reginfo[] = {
984 /* prefetch by MVA in v6, NOP in v7 */
985 { .name = "MVA_prefetch",
986 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
987 .access = PL1_W, .type = ARM_CP_NOP },
988 /* We need to break the TB after ISB to execute self-modifying code
989 * correctly and also to take any pending interrupts immediately.
990 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
992 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
993 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
994 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
995 .access = PL0_W, .type = ARM_CP_NOP },
996 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
997 .access = PL0_W, .type = ARM_CP_NOP },
998 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
999 .access = PL1_RW,
1000 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1001 offsetof(CPUARMState, cp15.ifar_ns) },
1002 .resetvalue = 0, },
1003 /* Watchpoint Fault Address Register : should actually only be present
1004 * for 1136, 1176, 11MPCore.
1006 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1007 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1008 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1009 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1010 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1011 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1012 REGINFO_SENTINEL
1015 /* Definitions for the PMU registers */
1016 #define PMCRN_MASK 0xf800
1017 #define PMCRN_SHIFT 11
1018 #define PMCRLC 0x40
1019 #define PMCRDP 0x10
1020 #define PMCRD 0x8
1021 #define PMCRC 0x4
1022 #define PMCRP 0x2
1023 #define PMCRE 0x1
1025 #define PMXEVTYPER_P 0x80000000
1026 #define PMXEVTYPER_U 0x40000000
1027 #define PMXEVTYPER_NSK 0x20000000
1028 #define PMXEVTYPER_NSU 0x10000000
1029 #define PMXEVTYPER_NSH 0x08000000
1030 #define PMXEVTYPER_M 0x04000000
1031 #define PMXEVTYPER_MT 0x02000000
1032 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1033 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1034 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1035 PMXEVTYPER_M | PMXEVTYPER_MT | \
1036 PMXEVTYPER_EVTCOUNT)
1038 #define PMCCFILTR 0xf8000000
1039 #define PMCCFILTR_M PMXEVTYPER_M
1040 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1042 static inline uint32_t pmu_num_counters(CPUARMState *env)
1044 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1047 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1048 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1050 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1053 typedef struct pm_event {
1054 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1055 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1056 bool (*supported)(CPUARMState *);
1058 * Retrieve the current count of the underlying event. The programmed
1059 * counters hold a difference from the return value from this function
1061 uint64_t (*get_count)(CPUARMState *);
1063 * Return how many nanoseconds it will take (at a minimum) for count events
1064 * to occur. A negative value indicates the counter will never overflow, or
1065 * that the counter has otherwise arranged for the overflow bit to be set
1066 * and the PMU interrupt to be raised on overflow.
1068 int64_t (*ns_per_count)(uint64_t);
1069 } pm_event;
1071 static bool event_always_supported(CPUARMState *env)
1073 return true;
1076 static uint64_t swinc_get_count(CPUARMState *env)
1079 * SW_INCR events are written directly to the pmevcntr's by writes to
1080 * PMSWINC, so there is no underlying count maintained by the PMU itself
1082 return 0;
1085 static int64_t swinc_ns_per(uint64_t ignored)
1087 return -1;
1091 * Return the underlying cycle count for the PMU cycle counters. If we're in
1092 * usermode, simply return 0.
1094 static uint64_t cycles_get_count(CPUARMState *env)
1096 #ifndef CONFIG_USER_ONLY
1097 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1098 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1099 #else
1100 return cpu_get_host_ticks();
1101 #endif
1104 #ifndef CONFIG_USER_ONLY
1105 static int64_t cycles_ns_per(uint64_t cycles)
1107 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1110 static bool instructions_supported(CPUARMState *env)
1112 return use_icount == 1 /* Precise instruction counting */;
1115 static uint64_t instructions_get_count(CPUARMState *env)
1117 return (uint64_t)cpu_get_icount_raw();
1120 static int64_t instructions_ns_per(uint64_t icount)
1122 return cpu_icount_to_ns((int64_t)icount);
1124 #endif
1126 static const pm_event pm_events[] = {
1127 { .number = 0x000, /* SW_INCR */
1128 .supported = event_always_supported,
1129 .get_count = swinc_get_count,
1130 .ns_per_count = swinc_ns_per,
1132 #ifndef CONFIG_USER_ONLY
1133 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1134 .supported = instructions_supported,
1135 .get_count = instructions_get_count,
1136 .ns_per_count = instructions_ns_per,
1138 { .number = 0x011, /* CPU_CYCLES, Cycle */
1139 .supported = event_always_supported,
1140 .get_count = cycles_get_count,
1141 .ns_per_count = cycles_ns_per,
1143 #endif
1147 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1148 * events (i.e. the statistical profiling extension), this implementation
1149 * should first be updated to something sparse instead of the current
1150 * supported_event_map[] array.
1152 #define MAX_EVENT_ID 0x11
1153 #define UNSUPPORTED_EVENT UINT16_MAX
1154 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1157 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1158 * of ARM event numbers to indices in our pm_events array.
1160 * Note: Events in the 0x40XX range are not currently supported.
1162 void pmu_init(ARMCPU *cpu)
1164 unsigned int i;
1167 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1168 * events to them
1170 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1171 supported_event_map[i] = UNSUPPORTED_EVENT;
1173 cpu->pmceid0 = 0;
1174 cpu->pmceid1 = 0;
1176 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1177 const pm_event *cnt = &pm_events[i];
1178 assert(cnt->number <= MAX_EVENT_ID);
1179 /* We do not currently support events in the 0x40xx range */
1180 assert(cnt->number <= 0x3f);
1182 if (cnt->supported(&cpu->env)) {
1183 supported_event_map[cnt->number] = i;
1184 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1185 if (cnt->number & 0x20) {
1186 cpu->pmceid1 |= event_mask;
1187 } else {
1188 cpu->pmceid0 |= event_mask;
1195 * Check at runtime whether a PMU event is supported for the current machine
1197 static bool event_supported(uint16_t number)
1199 if (number > MAX_EVENT_ID) {
1200 return false;
1202 return supported_event_map[number] != UNSUPPORTED_EVENT;
1205 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1206 bool isread)
1208 /* Performance monitor registers user accessibility is controlled
1209 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1210 * trapping to EL2 or EL3 for other accesses.
1212 int el = arm_current_el(env);
1214 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1215 return CP_ACCESS_TRAP;
1217 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1218 && !arm_is_secure_below_el3(env)) {
1219 return CP_ACCESS_TRAP_EL2;
1221 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1222 return CP_ACCESS_TRAP_EL3;
1225 return CP_ACCESS_OK;
1228 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1229 const ARMCPRegInfo *ri,
1230 bool isread)
1232 /* ER: event counter read trap control */
1233 if (arm_feature(env, ARM_FEATURE_V8)
1234 && arm_current_el(env) == 0
1235 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1236 && isread) {
1237 return CP_ACCESS_OK;
1240 return pmreg_access(env, ri, isread);
1243 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1244 const ARMCPRegInfo *ri,
1245 bool isread)
1247 /* SW: software increment write trap control */
1248 if (arm_feature(env, ARM_FEATURE_V8)
1249 && arm_current_el(env) == 0
1250 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1251 && !isread) {
1252 return CP_ACCESS_OK;
1255 return pmreg_access(env, ri, isread);
1258 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1259 const ARMCPRegInfo *ri,
1260 bool isread)
1262 /* ER: event counter read trap control */
1263 if (arm_feature(env, ARM_FEATURE_V8)
1264 && arm_current_el(env) == 0
1265 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1266 return CP_ACCESS_OK;
1269 return pmreg_access(env, ri, isread);
1272 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1273 const ARMCPRegInfo *ri,
1274 bool isread)
1276 /* CR: cycle counter read trap control */
1277 if (arm_feature(env, ARM_FEATURE_V8)
1278 && arm_current_el(env) == 0
1279 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1280 && isread) {
1281 return CP_ACCESS_OK;
1284 return pmreg_access(env, ri, isread);
1287 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1288 * the current EL, security state, and register configuration.
1290 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1292 uint64_t filter;
1293 bool e, p, u, nsk, nsu, nsh, m;
1294 bool enabled, prohibited, filtered;
1295 bool secure = arm_is_secure(env);
1296 int el = arm_current_el(env);
1297 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1299 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1300 return false;
1303 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1304 (counter < hpmn || counter == 31)) {
1305 e = env->cp15.c9_pmcr & PMCRE;
1306 } else {
1307 e = env->cp15.mdcr_el2 & MDCR_HPME;
1309 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1311 if (!secure) {
1312 if (el == 2 && (counter < hpmn || counter == 31)) {
1313 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1314 } else {
1315 prohibited = false;
1317 } else {
1318 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1319 (env->cp15.mdcr_el3 & MDCR_SPME);
1322 if (prohibited && counter == 31) {
1323 prohibited = env->cp15.c9_pmcr & PMCRDP;
1326 if (counter == 31) {
1327 filter = env->cp15.pmccfiltr_el0;
1328 } else {
1329 filter = env->cp15.c14_pmevtyper[counter];
1332 p = filter & PMXEVTYPER_P;
1333 u = filter & PMXEVTYPER_U;
1334 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1335 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1336 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1337 m = arm_el_is_aa64(env, 1) &&
1338 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1340 if (el == 0) {
1341 filtered = secure ? u : u != nsu;
1342 } else if (el == 1) {
1343 filtered = secure ? p : p != nsk;
1344 } else if (el == 2) {
1345 filtered = !nsh;
1346 } else { /* EL3 */
1347 filtered = m != p;
1350 if (counter != 31) {
1352 * If not checking PMCCNTR, ensure the counter is setup to an event we
1353 * support
1355 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1356 if (!event_supported(event)) {
1357 return false;
1361 return enabled && !prohibited && !filtered;
1364 static void pmu_update_irq(CPUARMState *env)
1366 ARMCPU *cpu = env_archcpu(env);
1367 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1368 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1372 * Ensure c15_ccnt is the guest-visible count so that operations such as
1373 * enabling/disabling the counter or filtering, modifying the count itself,
1374 * etc. can be done logically. This is essentially a no-op if the counter is
1375 * not enabled at the time of the call.
1377 static void pmccntr_op_start(CPUARMState *env)
1379 uint64_t cycles = cycles_get_count(env);
1381 if (pmu_counter_enabled(env, 31)) {
1382 uint64_t eff_cycles = cycles;
1383 if (env->cp15.c9_pmcr & PMCRD) {
1384 /* Increment once every 64 processor clock cycles */
1385 eff_cycles /= 64;
1388 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1390 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1391 1ull << 63 : 1ull << 31;
1392 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1393 env->cp15.c9_pmovsr |= (1 << 31);
1394 pmu_update_irq(env);
1397 env->cp15.c15_ccnt = new_pmccntr;
1399 env->cp15.c15_ccnt_delta = cycles;
1403 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1404 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1405 * pmccntr_op_start.
1407 static void pmccntr_op_finish(CPUARMState *env)
1409 if (pmu_counter_enabled(env, 31)) {
1410 #ifndef CONFIG_USER_ONLY
1411 /* Calculate when the counter will next overflow */
1412 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1413 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1414 remaining_cycles = (uint32_t)remaining_cycles;
1416 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1418 if (overflow_in > 0) {
1419 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1420 overflow_in;
1421 ARMCPU *cpu = env_archcpu(env);
1422 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1424 #endif
1426 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1427 if (env->cp15.c9_pmcr & PMCRD) {
1428 /* Increment once every 64 processor clock cycles */
1429 prev_cycles /= 64;
1431 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1435 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1438 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1439 uint64_t count = 0;
1440 if (event_supported(event)) {
1441 uint16_t event_idx = supported_event_map[event];
1442 count = pm_events[event_idx].get_count(env);
1445 if (pmu_counter_enabled(env, counter)) {
1446 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1448 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1449 env->cp15.c9_pmovsr |= (1 << counter);
1450 pmu_update_irq(env);
1452 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1454 env->cp15.c14_pmevcntr_delta[counter] = count;
1457 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1459 if (pmu_counter_enabled(env, counter)) {
1460 #ifndef CONFIG_USER_ONLY
1461 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1462 uint16_t event_idx = supported_event_map[event];
1463 uint64_t delta = UINT32_MAX -
1464 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1465 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1467 if (overflow_in > 0) {
1468 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1469 overflow_in;
1470 ARMCPU *cpu = env_archcpu(env);
1471 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1473 #endif
1475 env->cp15.c14_pmevcntr_delta[counter] -=
1476 env->cp15.c14_pmevcntr[counter];
1480 void pmu_op_start(CPUARMState *env)
1482 unsigned int i;
1483 pmccntr_op_start(env);
1484 for (i = 0; i < pmu_num_counters(env); i++) {
1485 pmevcntr_op_start(env, i);
1489 void pmu_op_finish(CPUARMState *env)
1491 unsigned int i;
1492 pmccntr_op_finish(env);
1493 for (i = 0; i < pmu_num_counters(env); i++) {
1494 pmevcntr_op_finish(env, i);
1498 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1500 pmu_op_start(&cpu->env);
1503 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1505 pmu_op_finish(&cpu->env);
1508 void arm_pmu_timer_cb(void *opaque)
1510 ARMCPU *cpu = opaque;
1513 * Update all the counter values based on the current underlying counts,
1514 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1515 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1516 * counter may expire.
1518 pmu_op_start(&cpu->env);
1519 pmu_op_finish(&cpu->env);
1522 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523 uint64_t value)
1525 pmu_op_start(env);
1527 if (value & PMCRC) {
1528 /* The counter has been reset */
1529 env->cp15.c15_ccnt = 0;
1532 if (value & PMCRP) {
1533 unsigned int i;
1534 for (i = 0; i < pmu_num_counters(env); i++) {
1535 env->cp15.c14_pmevcntr[i] = 0;
1539 /* only the DP, X, D and E bits are writable */
1540 env->cp15.c9_pmcr &= ~0x39;
1541 env->cp15.c9_pmcr |= (value & 0x39);
1543 pmu_op_finish(env);
1546 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1547 uint64_t value)
1549 unsigned int i;
1550 for (i = 0; i < pmu_num_counters(env); i++) {
1551 /* Increment a counter's count iff: */
1552 if ((value & (1 << i)) && /* counter's bit is set */
1553 /* counter is enabled and not filtered */
1554 pmu_counter_enabled(env, i) &&
1555 /* counter is SW_INCR */
1556 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1557 pmevcntr_op_start(env, i);
1560 * Detect if this write causes an overflow since we can't predict
1561 * PMSWINC overflows like we can for other events
1563 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1565 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1566 env->cp15.c9_pmovsr |= (1 << i);
1567 pmu_update_irq(env);
1570 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1572 pmevcntr_op_finish(env, i);
1577 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1579 uint64_t ret;
1580 pmccntr_op_start(env);
1581 ret = env->cp15.c15_ccnt;
1582 pmccntr_op_finish(env);
1583 return ret;
1586 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1587 uint64_t value)
1589 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1590 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1591 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1592 * accessed.
1594 env->cp15.c9_pmselr = value & 0x1f;
1597 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1598 uint64_t value)
1600 pmccntr_op_start(env);
1601 env->cp15.c15_ccnt = value;
1602 pmccntr_op_finish(env);
1605 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1606 uint64_t value)
1608 uint64_t cur_val = pmccntr_read(env, NULL);
1610 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1613 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1614 uint64_t value)
1616 pmccntr_op_start(env);
1617 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1618 pmccntr_op_finish(env);
1621 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1622 uint64_t value)
1624 pmccntr_op_start(env);
1625 /* M is not accessible from AArch32 */
1626 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1627 (value & PMCCFILTR);
1628 pmccntr_op_finish(env);
1631 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1633 /* M is not visible in AArch32 */
1634 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1637 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1638 uint64_t value)
1640 value &= pmu_counter_mask(env);
1641 env->cp15.c9_pmcnten |= value;
1644 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1645 uint64_t value)
1647 value &= pmu_counter_mask(env);
1648 env->cp15.c9_pmcnten &= ~value;
1651 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1652 uint64_t value)
1654 value &= pmu_counter_mask(env);
1655 env->cp15.c9_pmovsr &= ~value;
1656 pmu_update_irq(env);
1659 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1660 uint64_t value)
1662 value &= pmu_counter_mask(env);
1663 env->cp15.c9_pmovsr |= value;
1664 pmu_update_irq(env);
1667 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1668 uint64_t value, const uint8_t counter)
1670 if (counter == 31) {
1671 pmccfiltr_write(env, ri, value);
1672 } else if (counter < pmu_num_counters(env)) {
1673 pmevcntr_op_start(env, counter);
1676 * If this counter's event type is changing, store the current
1677 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1678 * pmevcntr_op_finish has the correct baseline when it converts back to
1679 * a delta.
1681 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1682 PMXEVTYPER_EVTCOUNT;
1683 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1684 if (old_event != new_event) {
1685 uint64_t count = 0;
1686 if (event_supported(new_event)) {
1687 uint16_t event_idx = supported_event_map[new_event];
1688 count = pm_events[event_idx].get_count(env);
1690 env->cp15.c14_pmevcntr_delta[counter] = count;
1693 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1694 pmevcntr_op_finish(env, counter);
1696 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1697 * PMSELR value is equal to or greater than the number of implemented
1698 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1702 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1703 const uint8_t counter)
1705 if (counter == 31) {
1706 return env->cp15.pmccfiltr_el0;
1707 } else if (counter < pmu_num_counters(env)) {
1708 return env->cp15.c14_pmevtyper[counter];
1709 } else {
1711 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1712 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1714 return 0;
1718 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1719 uint64_t value)
1721 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1722 pmevtyper_write(env, ri, value, counter);
1725 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1726 uint64_t value)
1728 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1729 env->cp15.c14_pmevtyper[counter] = value;
1732 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1733 * pmu_op_finish calls when loading saved state for a migration. Because
1734 * we're potentially updating the type of event here, the value written to
1735 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1736 * different counter type. Therefore, we need to set this value to the
1737 * current count for the counter type we're writing so that pmu_op_finish
1738 * has the correct count for its calculation.
1740 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1741 if (event_supported(event)) {
1742 uint16_t event_idx = supported_event_map[event];
1743 env->cp15.c14_pmevcntr_delta[counter] =
1744 pm_events[event_idx].get_count(env);
1748 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751 return pmevtyper_read(env, ri, counter);
1754 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1755 uint64_t value)
1757 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1760 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1762 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1765 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1766 uint64_t value, uint8_t counter)
1768 if (counter < pmu_num_counters(env)) {
1769 pmevcntr_op_start(env, counter);
1770 env->cp15.c14_pmevcntr[counter] = value;
1771 pmevcntr_op_finish(env, counter);
1774 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1775 * are CONSTRAINED UNPREDICTABLE.
1779 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1780 uint8_t counter)
1782 if (counter < pmu_num_counters(env)) {
1783 uint64_t ret;
1784 pmevcntr_op_start(env, counter);
1785 ret = env->cp15.c14_pmevcntr[counter];
1786 pmevcntr_op_finish(env, counter);
1787 return ret;
1788 } else {
1789 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1790 * are CONSTRAINED UNPREDICTABLE. */
1791 return 0;
1795 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1796 uint64_t value)
1798 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1799 pmevcntr_write(env, ri, value, counter);
1802 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1804 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1805 return pmevcntr_read(env, ri, counter);
1808 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1809 uint64_t value)
1811 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1812 assert(counter < pmu_num_counters(env));
1813 env->cp15.c14_pmevcntr[counter] = value;
1814 pmevcntr_write(env, ri, value, counter);
1817 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1819 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1820 assert(counter < pmu_num_counters(env));
1821 return env->cp15.c14_pmevcntr[counter];
1824 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1825 uint64_t value)
1827 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1830 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1832 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1835 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1836 uint64_t value)
1838 if (arm_feature(env, ARM_FEATURE_V8)) {
1839 env->cp15.c9_pmuserenr = value & 0xf;
1840 } else {
1841 env->cp15.c9_pmuserenr = value & 1;
1845 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1846 uint64_t value)
1848 /* We have no event counters so only the C bit can be changed */
1849 value &= pmu_counter_mask(env);
1850 env->cp15.c9_pminten |= value;
1851 pmu_update_irq(env);
1854 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1855 uint64_t value)
1857 value &= pmu_counter_mask(env);
1858 env->cp15.c9_pminten &= ~value;
1859 pmu_update_irq(env);
1862 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1863 uint64_t value)
1865 /* Note that even though the AArch64 view of this register has bits
1866 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1867 * architectural requirements for bits which are RES0 only in some
1868 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1869 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1871 raw_write(env, ri, value & ~0x1FULL);
1874 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1876 /* Begin with base v8.0 state. */
1877 uint32_t valid_mask = 0x3fff;
1878 ARMCPU *cpu = env_archcpu(env);
1880 if (arm_el_is_aa64(env, 3)) {
1881 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1882 valid_mask &= ~SCR_NET;
1883 } else {
1884 valid_mask &= ~(SCR_RW | SCR_ST);
1887 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1888 valid_mask &= ~SCR_HCE;
1890 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1891 * supported if EL2 exists. The bit is UNK/SBZP when
1892 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1893 * when EL2 is unavailable.
1894 * On ARMv8, this bit is always available.
1896 if (arm_feature(env, ARM_FEATURE_V7) &&
1897 !arm_feature(env, ARM_FEATURE_V8)) {
1898 valid_mask &= ~SCR_SMD;
1901 if (cpu_isar_feature(aa64_lor, cpu)) {
1902 valid_mask |= SCR_TLOR;
1904 if (cpu_isar_feature(aa64_pauth, cpu)) {
1905 valid_mask |= SCR_API | SCR_APK;
1908 /* Clear all-context RES0 bits. */
1909 value &= valid_mask;
1910 raw_write(env, ri, value);
1913 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1914 const ARMCPRegInfo *ri,
1915 bool isread)
1917 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1918 return CP_ACCESS_TRAP_EL2;
1921 return CP_ACCESS_OK;
1924 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1926 ARMCPU *cpu = env_archcpu(env);
1928 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1929 * bank
1931 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1932 ri->secure & ARM_CP_SECSTATE_S);
1934 return cpu->ccsidr[index];
1937 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1938 uint64_t value)
1940 raw_write(env, ri, value & 0xf);
1943 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1945 CPUState *cs = env_cpu(env);
1946 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1947 uint64_t ret = 0;
1948 bool allow_virt = (arm_current_el(env) == 1 &&
1949 (!arm_is_secure_below_el3(env) ||
1950 (env->cp15.scr_el3 & SCR_EEL2)));
1952 if (allow_virt && (hcr_el2 & HCR_IMO)) {
1953 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1954 ret |= CPSR_I;
1956 } else {
1957 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1958 ret |= CPSR_I;
1962 if (allow_virt && (hcr_el2 & HCR_FMO)) {
1963 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1964 ret |= CPSR_F;
1966 } else {
1967 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1968 ret |= CPSR_F;
1972 /* External aborts are not possible in QEMU so A bit is always clear */
1973 return ret;
1976 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1977 bool isread)
1979 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1980 return CP_ACCESS_TRAP_EL2;
1983 return CP_ACCESS_OK;
1986 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1987 bool isread)
1989 if (arm_feature(env, ARM_FEATURE_V8)) {
1990 return access_aa64_tid1(env, ri, isread);
1993 return CP_ACCESS_OK;
1996 static const ARMCPRegInfo v7_cp_reginfo[] = {
1997 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1998 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1999 .access = PL1_W, .type = ARM_CP_NOP },
2000 /* Performance monitors are implementation defined in v7,
2001 * but with an ARM recommended set of registers, which we
2002 * follow.
2004 * Performance registers fall into three categories:
2005 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2006 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2007 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2008 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2009 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2011 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2012 .access = PL0_RW, .type = ARM_CP_ALIAS,
2013 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2014 .writefn = pmcntenset_write,
2015 .accessfn = pmreg_access,
2016 .raw_writefn = raw_write },
2017 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2019 .access = PL0_RW, .accessfn = pmreg_access,
2020 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2021 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2022 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2023 .access = PL0_RW,
2024 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2025 .accessfn = pmreg_access,
2026 .writefn = pmcntenclr_write,
2027 .type = ARM_CP_ALIAS },
2028 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2029 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2030 .access = PL0_RW, .accessfn = pmreg_access,
2031 .type = ARM_CP_ALIAS,
2032 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2033 .writefn = pmcntenclr_write },
2034 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2035 .access = PL0_RW, .type = ARM_CP_IO,
2036 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2037 .accessfn = pmreg_access,
2038 .writefn = pmovsr_write,
2039 .raw_writefn = raw_write },
2040 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2041 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2042 .access = PL0_RW, .accessfn = pmreg_access,
2043 .type = ARM_CP_ALIAS | ARM_CP_IO,
2044 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2045 .writefn = pmovsr_write,
2046 .raw_writefn = raw_write },
2047 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2048 .access = PL0_W, .accessfn = pmreg_access_swinc,
2049 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2050 .writefn = pmswinc_write },
2051 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2052 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2053 .access = PL0_W, .accessfn = pmreg_access_swinc,
2054 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2055 .writefn = pmswinc_write },
2056 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2057 .access = PL0_RW, .type = ARM_CP_ALIAS,
2058 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2059 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2060 .raw_writefn = raw_write},
2061 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2062 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2063 .access = PL0_RW, .accessfn = pmreg_access_selr,
2064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2065 .writefn = pmselr_write, .raw_writefn = raw_write, },
2066 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2067 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2068 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2069 .accessfn = pmreg_access_ccntr },
2070 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2071 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2072 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2073 .type = ARM_CP_IO,
2074 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2075 .readfn = pmccntr_read, .writefn = pmccntr_write,
2076 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2077 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2078 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2079 .access = PL0_RW, .accessfn = pmreg_access,
2080 .type = ARM_CP_ALIAS | ARM_CP_IO,
2081 .resetvalue = 0, },
2082 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2083 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2084 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2085 .access = PL0_RW, .accessfn = pmreg_access,
2086 .type = ARM_CP_IO,
2087 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2088 .resetvalue = 0, },
2089 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2090 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2091 .accessfn = pmreg_access,
2092 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2093 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2094 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2095 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2096 .accessfn = pmreg_access,
2097 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2098 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2099 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2100 .accessfn = pmreg_access_xevcntr,
2101 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2102 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2103 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2104 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2105 .accessfn = pmreg_access_xevcntr,
2106 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2107 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2108 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2109 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2110 .resetvalue = 0,
2111 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2112 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2113 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2114 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2115 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2116 .resetvalue = 0,
2117 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2118 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2119 .access = PL1_RW, .accessfn = access_tpm,
2120 .type = ARM_CP_ALIAS | ARM_CP_IO,
2121 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2122 .resetvalue = 0,
2123 .writefn = pmintenset_write, .raw_writefn = raw_write },
2124 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2125 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2126 .access = PL1_RW, .accessfn = access_tpm,
2127 .type = ARM_CP_IO,
2128 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2129 .writefn = pmintenset_write, .raw_writefn = raw_write,
2130 .resetvalue = 0x0 },
2131 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2132 .access = PL1_RW, .accessfn = access_tpm,
2133 .type = ARM_CP_ALIAS | ARM_CP_IO,
2134 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2135 .writefn = pmintenclr_write, },
2136 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2137 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2138 .access = PL1_RW, .accessfn = access_tpm,
2139 .type = ARM_CP_ALIAS | ARM_CP_IO,
2140 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2141 .writefn = pmintenclr_write },
2142 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2143 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2144 .access = PL1_R,
2145 .accessfn = access_aa64_tid2,
2146 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2147 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2148 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2149 .access = PL1_RW,
2150 .accessfn = access_aa64_tid2,
2151 .writefn = csselr_write, .resetvalue = 0,
2152 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2153 offsetof(CPUARMState, cp15.csselr_ns) } },
2154 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2155 * just RAZ for all cores:
2157 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2158 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2159 .access = PL1_R, .type = ARM_CP_CONST,
2160 .accessfn = access_aa64_tid1,
2161 .resetvalue = 0 },
2162 /* Auxiliary fault status registers: these also are IMPDEF, and we
2163 * choose to RAZ/WI for all cores.
2165 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2166 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2167 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2168 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2169 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2170 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2171 /* MAIR can just read-as-written because we don't implement caches
2172 * and so don't need to care about memory attributes.
2174 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2175 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2176 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2177 .resetvalue = 0 },
2178 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2179 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2180 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2181 .resetvalue = 0 },
2182 /* For non-long-descriptor page tables these are PRRR and NMRR;
2183 * regardless they still act as reads-as-written for QEMU.
2185 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2186 * allows them to assign the correct fieldoffset based on the endianness
2187 * handled in the field definitions.
2189 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2190 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2191 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2192 offsetof(CPUARMState, cp15.mair0_ns) },
2193 .resetfn = arm_cp_reset_ignore },
2194 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2195 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2196 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2197 offsetof(CPUARMState, cp15.mair1_ns) },
2198 .resetfn = arm_cp_reset_ignore },
2199 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2200 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2201 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2202 /* 32 bit ITLB invalidates */
2203 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2204 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2205 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2206 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2207 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2208 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2209 /* 32 bit DTLB invalidates */
2210 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2211 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2212 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2213 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2214 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2215 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2216 /* 32 bit TLB invalidates */
2217 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2218 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2219 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2220 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2221 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2222 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2223 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2224 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2225 REGINFO_SENTINEL
2228 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2229 /* 32 bit TLB invalidates, Inner Shareable */
2230 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2231 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2232 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2233 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2234 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2235 .type = ARM_CP_NO_RAW, .access = PL1_W,
2236 .writefn = tlbiasid_is_write },
2237 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2238 .type = ARM_CP_NO_RAW, .access = PL1_W,
2239 .writefn = tlbimvaa_is_write },
2240 REGINFO_SENTINEL
2243 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2244 /* PMOVSSET is not implemented in v7 before v7ve */
2245 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2246 .access = PL0_RW, .accessfn = pmreg_access,
2247 .type = ARM_CP_ALIAS | ARM_CP_IO,
2248 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2249 .writefn = pmovsset_write,
2250 .raw_writefn = raw_write },
2251 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2252 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2253 .access = PL0_RW, .accessfn = pmreg_access,
2254 .type = ARM_CP_ALIAS | ARM_CP_IO,
2255 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2256 .writefn = pmovsset_write,
2257 .raw_writefn = raw_write },
2258 REGINFO_SENTINEL
2261 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2262 uint64_t value)
2264 value &= 1;
2265 env->teecr = value;
2268 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2269 bool isread)
2271 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2272 return CP_ACCESS_TRAP;
2274 return CP_ACCESS_OK;
2277 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2278 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2279 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2280 .resetvalue = 0,
2281 .writefn = teecr_write },
2282 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2283 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2284 .accessfn = teehbr_access, .resetvalue = 0 },
2285 REGINFO_SENTINEL
2288 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2289 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2290 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2291 .access = PL0_RW,
2292 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2293 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2294 .access = PL0_RW,
2295 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2296 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2297 .resetfn = arm_cp_reset_ignore },
2298 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2299 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2300 .access = PL0_R|PL1_W,
2301 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2302 .resetvalue = 0},
2303 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2304 .access = PL0_R|PL1_W,
2305 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2306 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2307 .resetfn = arm_cp_reset_ignore },
2308 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2309 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2310 .access = PL1_RW,
2311 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2312 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2313 .access = PL1_RW,
2314 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2315 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2316 .resetvalue = 0 },
2317 REGINFO_SENTINEL
2320 #ifndef CONFIG_USER_ONLY
2322 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2323 bool isread)
2325 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2326 * Writable only at the highest implemented exception level.
2328 int el = arm_current_el(env);
2329 uint64_t hcr;
2330 uint32_t cntkctl;
2332 switch (el) {
2333 case 0:
2334 hcr = arm_hcr_el2_eff(env);
2335 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2336 cntkctl = env->cp15.cnthctl_el2;
2337 } else {
2338 cntkctl = env->cp15.c14_cntkctl;
2340 if (!extract32(cntkctl, 0, 2)) {
2341 return CP_ACCESS_TRAP;
2343 break;
2344 case 1:
2345 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2346 arm_is_secure_below_el3(env)) {
2347 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2348 return CP_ACCESS_TRAP_UNCATEGORIZED;
2350 break;
2351 case 2:
2352 case 3:
2353 break;
2356 if (!isread && el < arm_highest_el(env)) {
2357 return CP_ACCESS_TRAP_UNCATEGORIZED;
2360 return CP_ACCESS_OK;
2363 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2364 bool isread)
2366 unsigned int cur_el = arm_current_el(env);
2367 bool secure = arm_is_secure(env);
2368 uint64_t hcr = arm_hcr_el2_eff(env);
2370 switch (cur_el) {
2371 case 0:
2372 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2373 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2374 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2375 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2378 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2379 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2380 return CP_ACCESS_TRAP;
2383 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2384 if (hcr & HCR_E2H) {
2385 if (timeridx == GTIMER_PHYS &&
2386 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2387 return CP_ACCESS_TRAP_EL2;
2389 } else {
2390 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2391 if (arm_feature(env, ARM_FEATURE_EL2) &&
2392 timeridx == GTIMER_PHYS && !secure &&
2393 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2394 return CP_ACCESS_TRAP_EL2;
2397 break;
2399 case 1:
2400 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2401 if (arm_feature(env, ARM_FEATURE_EL2) &&
2402 timeridx == GTIMER_PHYS && !secure &&
2403 (hcr & HCR_E2H
2404 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2405 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2406 return CP_ACCESS_TRAP_EL2;
2408 break;
2410 return CP_ACCESS_OK;
2413 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2414 bool isread)
2416 unsigned int cur_el = arm_current_el(env);
2417 bool secure = arm_is_secure(env);
2418 uint64_t hcr = arm_hcr_el2_eff(env);
2420 switch (cur_el) {
2421 case 0:
2422 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2423 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2424 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2425 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2429 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2430 * EL0 if EL0[PV]TEN is zero.
2432 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2433 return CP_ACCESS_TRAP;
2435 /* fall through */
2437 case 1:
2438 if (arm_feature(env, ARM_FEATURE_EL2) &&
2439 timeridx == GTIMER_PHYS && !secure) {
2440 if (hcr & HCR_E2H) {
2441 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2442 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2443 return CP_ACCESS_TRAP_EL2;
2445 } else {
2446 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2447 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2448 return CP_ACCESS_TRAP_EL2;
2452 break;
2454 return CP_ACCESS_OK;
2457 static CPAccessResult gt_pct_access(CPUARMState *env,
2458 const ARMCPRegInfo *ri,
2459 bool isread)
2461 return gt_counter_access(env, GTIMER_PHYS, isread);
2464 static CPAccessResult gt_vct_access(CPUARMState *env,
2465 const ARMCPRegInfo *ri,
2466 bool isread)
2468 return gt_counter_access(env, GTIMER_VIRT, isread);
2471 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2472 bool isread)
2474 return gt_timer_access(env, GTIMER_PHYS, isread);
2477 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2478 bool isread)
2480 return gt_timer_access(env, GTIMER_VIRT, isread);
2483 static CPAccessResult gt_stimer_access(CPUARMState *env,
2484 const ARMCPRegInfo *ri,
2485 bool isread)
2487 /* The AArch64 register view of the secure physical timer is
2488 * always accessible from EL3, and configurably accessible from
2489 * Secure EL1.
2491 switch (arm_current_el(env)) {
2492 case 1:
2493 if (!arm_is_secure(env)) {
2494 return CP_ACCESS_TRAP;
2496 if (!(env->cp15.scr_el3 & SCR_ST)) {
2497 return CP_ACCESS_TRAP_EL3;
2499 return CP_ACCESS_OK;
2500 case 0:
2501 case 2:
2502 return CP_ACCESS_TRAP;
2503 case 3:
2504 return CP_ACCESS_OK;
2505 default:
2506 g_assert_not_reached();
2510 static uint64_t gt_get_countervalue(CPUARMState *env)
2512 ARMCPU *cpu = env_archcpu(env);
2514 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2517 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2519 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2521 if (gt->ctl & 1) {
2522 /* Timer enabled: calculate and set current ISTATUS, irq, and
2523 * reset timer to when ISTATUS next has to change
2525 uint64_t offset = timeridx == GTIMER_VIRT ?
2526 cpu->env.cp15.cntvoff_el2 : 0;
2527 uint64_t count = gt_get_countervalue(&cpu->env);
2528 /* Note that this must be unsigned 64 bit arithmetic: */
2529 int istatus = count - offset >= gt->cval;
2530 uint64_t nexttick;
2531 int irqstate;
2533 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2535 irqstate = (istatus && !(gt->ctl & 2));
2536 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2538 if (istatus) {
2539 /* Next transition is when count rolls back over to zero */
2540 nexttick = UINT64_MAX;
2541 } else {
2542 /* Next transition is when we hit cval */
2543 nexttick = gt->cval + offset;
2545 /* Note that the desired next expiry time might be beyond the
2546 * signed-64-bit range of a QEMUTimer -- in this case we just
2547 * set the timer for as far in the future as possible. When the
2548 * timer expires we will reset the timer for any remaining period.
2550 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2551 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2552 } else {
2553 timer_mod(cpu->gt_timer[timeridx], nexttick);
2555 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2556 } else {
2557 /* Timer disabled: ISTATUS and timer output always clear */
2558 gt->ctl &= ~4;
2559 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2560 timer_del(cpu->gt_timer[timeridx]);
2561 trace_arm_gt_recalc_disabled(timeridx);
2565 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2566 int timeridx)
2568 ARMCPU *cpu = env_archcpu(env);
2570 timer_del(cpu->gt_timer[timeridx]);
2573 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2575 return gt_get_countervalue(env);
2578 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2580 uint64_t hcr;
2582 switch (arm_current_el(env)) {
2583 case 2:
2584 hcr = arm_hcr_el2_eff(env);
2585 if (hcr & HCR_E2H) {
2586 return 0;
2588 break;
2589 case 0:
2590 hcr = arm_hcr_el2_eff(env);
2591 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2592 return 0;
2594 break;
2597 return env->cp15.cntvoff_el2;
2600 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2602 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2605 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2606 int timeridx,
2607 uint64_t value)
2609 trace_arm_gt_cval_write(timeridx, value);
2610 env->cp15.c14_timer[timeridx].cval = value;
2611 gt_recalc_timer(env_archcpu(env), timeridx);
2614 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2615 int timeridx)
2617 uint64_t offset = 0;
2619 switch (timeridx) {
2620 case GTIMER_VIRT:
2621 case GTIMER_HYPVIRT:
2622 offset = gt_virt_cnt_offset(env);
2623 break;
2626 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2627 (gt_get_countervalue(env) - offset));
2630 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2631 int timeridx,
2632 uint64_t value)
2634 uint64_t offset = 0;
2636 switch (timeridx) {
2637 case GTIMER_VIRT:
2638 case GTIMER_HYPVIRT:
2639 offset = gt_virt_cnt_offset(env);
2640 break;
2643 trace_arm_gt_tval_write(timeridx, value);
2644 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2645 sextract64(value, 0, 32);
2646 gt_recalc_timer(env_archcpu(env), timeridx);
2649 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2650 int timeridx,
2651 uint64_t value)
2653 ARMCPU *cpu = env_archcpu(env);
2654 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2656 trace_arm_gt_ctl_write(timeridx, value);
2657 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2658 if ((oldval ^ value) & 1) {
2659 /* Enable toggled */
2660 gt_recalc_timer(cpu, timeridx);
2661 } else if ((oldval ^ value) & 2) {
2662 /* IMASK toggled: don't need to recalculate,
2663 * just set the interrupt line based on ISTATUS
2665 int irqstate = (oldval & 4) && !(value & 2);
2667 trace_arm_gt_imask_toggle(timeridx, irqstate);
2668 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2672 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2674 gt_timer_reset(env, ri, GTIMER_PHYS);
2677 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2678 uint64_t value)
2680 gt_cval_write(env, ri, GTIMER_PHYS, value);
2683 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2685 return gt_tval_read(env, ri, GTIMER_PHYS);
2688 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2689 uint64_t value)
2691 gt_tval_write(env, ri, GTIMER_PHYS, value);
2694 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2695 uint64_t value)
2697 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2700 static int gt_phys_redir_timeridx(CPUARMState *env)
2702 switch (arm_mmu_idx(env)) {
2703 case ARMMMUIdx_E20_0:
2704 case ARMMMUIdx_E20_2:
2705 case ARMMMUIdx_E20_2_PAN:
2706 return GTIMER_HYP;
2707 default:
2708 return GTIMER_PHYS;
2712 static int gt_virt_redir_timeridx(CPUARMState *env)
2714 switch (arm_mmu_idx(env)) {
2715 case ARMMMUIdx_E20_0:
2716 case ARMMMUIdx_E20_2:
2717 case ARMMMUIdx_E20_2_PAN:
2718 return GTIMER_HYPVIRT;
2719 default:
2720 return GTIMER_VIRT;
2724 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2725 const ARMCPRegInfo *ri)
2727 int timeridx = gt_phys_redir_timeridx(env);
2728 return env->cp15.c14_timer[timeridx].cval;
2731 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2732 uint64_t value)
2734 int timeridx = gt_phys_redir_timeridx(env);
2735 gt_cval_write(env, ri, timeridx, value);
2738 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2739 const ARMCPRegInfo *ri)
2741 int timeridx = gt_phys_redir_timeridx(env);
2742 return gt_tval_read(env, ri, timeridx);
2745 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2746 uint64_t value)
2748 int timeridx = gt_phys_redir_timeridx(env);
2749 gt_tval_write(env, ri, timeridx, value);
2752 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2753 const ARMCPRegInfo *ri)
2755 int timeridx = gt_phys_redir_timeridx(env);
2756 return env->cp15.c14_timer[timeridx].ctl;
2759 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2760 uint64_t value)
2762 int timeridx = gt_phys_redir_timeridx(env);
2763 gt_ctl_write(env, ri, timeridx, value);
2766 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2768 gt_timer_reset(env, ri, GTIMER_VIRT);
2771 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2772 uint64_t value)
2774 gt_cval_write(env, ri, GTIMER_VIRT, value);
2777 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2779 return gt_tval_read(env, ri, GTIMER_VIRT);
2782 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2783 uint64_t value)
2785 gt_tval_write(env, ri, GTIMER_VIRT, value);
2788 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2789 uint64_t value)
2791 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2794 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2795 uint64_t value)
2797 ARMCPU *cpu = env_archcpu(env);
2799 trace_arm_gt_cntvoff_write(value);
2800 raw_write(env, ri, value);
2801 gt_recalc_timer(cpu, GTIMER_VIRT);
2804 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2805 const ARMCPRegInfo *ri)
2807 int timeridx = gt_virt_redir_timeridx(env);
2808 return env->cp15.c14_timer[timeridx].cval;
2811 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2812 uint64_t value)
2814 int timeridx = gt_virt_redir_timeridx(env);
2815 gt_cval_write(env, ri, timeridx, value);
2818 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2819 const ARMCPRegInfo *ri)
2821 int timeridx = gt_virt_redir_timeridx(env);
2822 return gt_tval_read(env, ri, timeridx);
2825 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2826 uint64_t value)
2828 int timeridx = gt_virt_redir_timeridx(env);
2829 gt_tval_write(env, ri, timeridx, value);
2832 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2833 const ARMCPRegInfo *ri)
2835 int timeridx = gt_virt_redir_timeridx(env);
2836 return env->cp15.c14_timer[timeridx].ctl;
2839 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2840 uint64_t value)
2842 int timeridx = gt_virt_redir_timeridx(env);
2843 gt_ctl_write(env, ri, timeridx, value);
2846 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2848 gt_timer_reset(env, ri, GTIMER_HYP);
2851 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2852 uint64_t value)
2854 gt_cval_write(env, ri, GTIMER_HYP, value);
2857 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2859 return gt_tval_read(env, ri, GTIMER_HYP);
2862 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2863 uint64_t value)
2865 gt_tval_write(env, ri, GTIMER_HYP, value);
2868 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2869 uint64_t value)
2871 gt_ctl_write(env, ri, GTIMER_HYP, value);
2874 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2876 gt_timer_reset(env, ri, GTIMER_SEC);
2879 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2880 uint64_t value)
2882 gt_cval_write(env, ri, GTIMER_SEC, value);
2885 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2887 return gt_tval_read(env, ri, GTIMER_SEC);
2890 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2891 uint64_t value)
2893 gt_tval_write(env, ri, GTIMER_SEC, value);
2896 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2897 uint64_t value)
2899 gt_ctl_write(env, ri, GTIMER_SEC, value);
2902 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2904 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2907 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2908 uint64_t value)
2910 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2913 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2915 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2918 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2919 uint64_t value)
2921 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2924 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2925 uint64_t value)
2927 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2930 void arm_gt_ptimer_cb(void *opaque)
2932 ARMCPU *cpu = opaque;
2934 gt_recalc_timer(cpu, GTIMER_PHYS);
2937 void arm_gt_vtimer_cb(void *opaque)
2939 ARMCPU *cpu = opaque;
2941 gt_recalc_timer(cpu, GTIMER_VIRT);
2944 void arm_gt_htimer_cb(void *opaque)
2946 ARMCPU *cpu = opaque;
2948 gt_recalc_timer(cpu, GTIMER_HYP);
2951 void arm_gt_stimer_cb(void *opaque)
2953 ARMCPU *cpu = opaque;
2955 gt_recalc_timer(cpu, GTIMER_SEC);
2958 void arm_gt_hvtimer_cb(void *opaque)
2960 ARMCPU *cpu = opaque;
2962 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2965 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2967 ARMCPU *cpu = env_archcpu(env);
2969 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2972 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2973 /* Note that CNTFRQ is purely reads-as-written for the benefit
2974 * of software; writing it doesn't actually change the timer frequency.
2975 * Our reset value matches the fixed frequency we implement the timer at.
2977 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2978 .type = ARM_CP_ALIAS,
2979 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2980 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2982 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2983 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2984 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2985 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2986 .resetfn = arm_gt_cntfrq_reset,
2988 /* overall control: mostly access permissions */
2989 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2990 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2991 .access = PL1_RW,
2992 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2993 .resetvalue = 0,
2995 /* per-timer control */
2996 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2997 .secure = ARM_CP_SECSTATE_NS,
2998 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2999 .accessfn = gt_ptimer_access,
3000 .fieldoffset = offsetoflow32(CPUARMState,
3001 cp15.c14_timer[GTIMER_PHYS].ctl),
3002 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3003 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3005 { .name = "CNTP_CTL_S",
3006 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3007 .secure = ARM_CP_SECSTATE_S,
3008 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3009 .accessfn = gt_ptimer_access,
3010 .fieldoffset = offsetoflow32(CPUARMState,
3011 cp15.c14_timer[GTIMER_SEC].ctl),
3012 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3014 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3015 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3016 .type = ARM_CP_IO, .access = PL0_RW,
3017 .accessfn = gt_ptimer_access,
3018 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3019 .resetvalue = 0,
3020 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3021 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3023 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3024 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3025 .accessfn = gt_vtimer_access,
3026 .fieldoffset = offsetoflow32(CPUARMState,
3027 cp15.c14_timer[GTIMER_VIRT].ctl),
3028 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3029 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3031 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3032 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3033 .type = ARM_CP_IO, .access = PL0_RW,
3034 .accessfn = gt_vtimer_access,
3035 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3036 .resetvalue = 0,
3037 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3038 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3040 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3041 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3042 .secure = ARM_CP_SECSTATE_NS,
3043 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3044 .accessfn = gt_ptimer_access,
3045 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3047 { .name = "CNTP_TVAL_S",
3048 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3049 .secure = ARM_CP_SECSTATE_S,
3050 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3051 .accessfn = gt_ptimer_access,
3052 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3054 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3055 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3056 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3057 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3058 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3060 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3061 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3062 .accessfn = gt_vtimer_access,
3063 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3065 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3066 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3067 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3068 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3069 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3071 /* The counter itself */
3072 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3073 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3074 .accessfn = gt_pct_access,
3075 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3077 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3078 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3079 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3080 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3082 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3083 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3084 .accessfn = gt_vct_access,
3085 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3087 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3088 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3089 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3090 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3092 /* Comparison value, indicating when the timer goes off */
3093 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3094 .secure = ARM_CP_SECSTATE_NS,
3095 .access = PL0_RW,
3096 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3097 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3098 .accessfn = gt_ptimer_access,
3099 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3100 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3102 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3103 .secure = ARM_CP_SECSTATE_S,
3104 .access = PL0_RW,
3105 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3106 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3107 .accessfn = gt_ptimer_access,
3108 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3110 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3111 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3112 .access = PL0_RW,
3113 .type = ARM_CP_IO,
3114 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3115 .resetvalue = 0, .accessfn = gt_ptimer_access,
3116 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3117 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3119 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3120 .access = PL0_RW,
3121 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3122 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3123 .accessfn = gt_vtimer_access,
3124 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3125 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3127 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3128 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3129 .access = PL0_RW,
3130 .type = ARM_CP_IO,
3131 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3132 .resetvalue = 0, .accessfn = gt_vtimer_access,
3133 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3134 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3136 /* Secure timer -- this is actually restricted to only EL3
3137 * and configurably Secure-EL1 via the accessfn.
3139 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3140 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3141 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3142 .accessfn = gt_stimer_access,
3143 .readfn = gt_sec_tval_read,
3144 .writefn = gt_sec_tval_write,
3145 .resetfn = gt_sec_timer_reset,
3147 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3148 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3149 .type = ARM_CP_IO, .access = PL1_RW,
3150 .accessfn = gt_stimer_access,
3151 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3152 .resetvalue = 0,
3153 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3155 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3156 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3157 .type = ARM_CP_IO, .access = PL1_RW,
3158 .accessfn = gt_stimer_access,
3159 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3160 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3162 REGINFO_SENTINEL
3165 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3166 bool isread)
3168 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3169 return CP_ACCESS_TRAP;
3171 return CP_ACCESS_OK;
3174 #else
3176 /* In user-mode most of the generic timer registers are inaccessible
3177 * however modern kernels (4.12+) allow access to cntvct_el0
3180 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3182 ARMCPU *cpu = env_archcpu(env);
3184 /* Currently we have no support for QEMUTimer in linux-user so we
3185 * can't call gt_get_countervalue(env), instead we directly
3186 * call the lower level functions.
3188 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3191 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3192 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3193 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3194 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3195 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3196 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3198 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3200 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3201 .readfn = gt_virt_cnt_read,
3203 REGINFO_SENTINEL
3206 #endif
3208 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3210 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3211 raw_write(env, ri, value);
3212 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3213 raw_write(env, ri, value & 0xfffff6ff);
3214 } else {
3215 raw_write(env, ri, value & 0xfffff1ff);
3219 #ifndef CONFIG_USER_ONLY
3220 /* get_phys_addr() isn't present for user-mode-only targets */
3222 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3223 bool isread)
3225 if (ri->opc2 & 4) {
3226 /* The ATS12NSO* operations must trap to EL3 if executed in
3227 * Secure EL1 (which can only happen if EL3 is AArch64).
3228 * They are simply UNDEF if executed from NS EL1.
3229 * They function normally from EL2 or EL3.
3231 if (arm_current_el(env) == 1) {
3232 if (arm_is_secure_below_el3(env)) {
3233 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3235 return CP_ACCESS_TRAP_UNCATEGORIZED;
3238 return CP_ACCESS_OK;
3241 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3242 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3244 hwaddr phys_addr;
3245 target_ulong page_size;
3246 int prot;
3247 bool ret;
3248 uint64_t par64;
3249 bool format64 = false;
3250 MemTxAttrs attrs = {};
3251 ARMMMUFaultInfo fi = {};
3252 ARMCacheAttrs cacheattrs = {};
3254 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3255 &prot, &page_size, &fi, &cacheattrs);
3257 if (ret) {
3259 * Some kinds of translation fault must cause exceptions rather
3260 * than being reported in the PAR.
3262 int current_el = arm_current_el(env);
3263 int target_el;
3264 uint32_t syn, fsr, fsc;
3265 bool take_exc = false;
3267 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
3268 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3270 * Synchronous stage 2 fault on an access made as part of the
3271 * translation table walk for AT S1E0* or AT S1E1* insn
3272 * executed from NS EL1. If this is a synchronous external abort
3273 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3274 * to EL3. Otherwise the fault is taken as an exception to EL2,
3275 * and HPFAR_EL2 holds the faulting IPA.
3277 if (fi.type == ARMFault_SyncExternalOnWalk &&
3278 (env->cp15.scr_el3 & SCR_EA)) {
3279 target_el = 3;
3280 } else {
3281 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3282 target_el = 2;
3284 take_exc = true;
3285 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3287 * Synchronous external aborts during a translation table walk
3288 * are taken as Data Abort exceptions.
3290 if (fi.stage2) {
3291 if (current_el == 3) {
3292 target_el = 3;
3293 } else {
3294 target_el = 2;
3296 } else {
3297 target_el = exception_target_el(env);
3299 take_exc = true;
3302 if (take_exc) {
3303 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3304 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3305 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3306 fsr = arm_fi_to_lfsc(&fi);
3307 fsc = extract32(fsr, 0, 6);
3308 } else {
3309 fsr = arm_fi_to_sfsc(&fi);
3310 fsc = 0x3f;
3313 * Report exception with ESR indicating a fault due to a
3314 * translation table walk for a cache maintenance instruction.
3316 syn = syn_data_abort_no_iss(current_el == target_el,
3317 fi.ea, 1, fi.s1ptw, 1, fsc);
3318 env->exception.vaddress = value;
3319 env->exception.fsr = fsr;
3320 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3324 if (is_a64(env)) {
3325 format64 = true;
3326 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3328 * ATS1Cxx:
3329 * * TTBCR.EAE determines whether the result is returned using the
3330 * 32-bit or the 64-bit PAR format
3331 * * Instructions executed in Hyp mode always use the 64bit format
3333 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3334 * * The Non-secure TTBCR.EAE bit is set to 1
3335 * * The implementation includes EL2, and the value of HCR.VM is 1
3337 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3339 * ATS1Hx always uses the 64bit format.
3341 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3343 if (arm_feature(env, ARM_FEATURE_EL2)) {
3344 if (mmu_idx == ARMMMUIdx_E10_0 ||
3345 mmu_idx == ARMMMUIdx_E10_1 ||
3346 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3347 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3348 } else {
3349 format64 |= arm_current_el(env) == 2;
3354 if (format64) {
3355 /* Create a 64-bit PAR */
3356 par64 = (1 << 11); /* LPAE bit always set */
3357 if (!ret) {
3358 par64 |= phys_addr & ~0xfffULL;
3359 if (!attrs.secure) {
3360 par64 |= (1 << 9); /* NS */
3362 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3363 par64 |= cacheattrs.shareability << 7; /* SH */
3364 } else {
3365 uint32_t fsr = arm_fi_to_lfsc(&fi);
3367 par64 |= 1; /* F */
3368 par64 |= (fsr & 0x3f) << 1; /* FS */
3369 if (fi.stage2) {
3370 par64 |= (1 << 9); /* S */
3372 if (fi.s1ptw) {
3373 par64 |= (1 << 8); /* PTW */
3376 } else {
3377 /* fsr is a DFSR/IFSR value for the short descriptor
3378 * translation table format (with WnR always clear).
3379 * Convert it to a 32-bit PAR.
3381 if (!ret) {
3382 /* We do not set any attribute bits in the PAR */
3383 if (page_size == (1 << 24)
3384 && arm_feature(env, ARM_FEATURE_V7)) {
3385 par64 = (phys_addr & 0xff000000) | (1 << 1);
3386 } else {
3387 par64 = phys_addr & 0xfffff000;
3389 if (!attrs.secure) {
3390 par64 |= (1 << 9); /* NS */
3392 } else {
3393 uint32_t fsr = arm_fi_to_sfsc(&fi);
3395 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3396 ((fsr & 0xf) << 1) | 1;
3399 return par64;
3402 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3404 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3405 uint64_t par64;
3406 ARMMMUIdx mmu_idx;
3407 int el = arm_current_el(env);
3408 bool secure = arm_is_secure_below_el3(env);
3410 switch (ri->opc2 & 6) {
3411 case 0:
3412 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3413 switch (el) {
3414 case 3:
3415 mmu_idx = ARMMMUIdx_SE3;
3416 break;
3417 case 2:
3418 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */
3419 /* fall through */
3420 case 1:
3421 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3422 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3423 : ARMMMUIdx_Stage1_E1_PAN);
3424 } else {
3425 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3427 break;
3428 default:
3429 g_assert_not_reached();
3431 break;
3432 case 2:
3433 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3434 switch (el) {
3435 case 3:
3436 mmu_idx = ARMMMUIdx_SE10_0;
3437 break;
3438 case 2:
3439 mmu_idx = ARMMMUIdx_Stage1_E0;
3440 break;
3441 case 1:
3442 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3443 break;
3444 default:
3445 g_assert_not_reached();
3447 break;
3448 case 4:
3449 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3450 mmu_idx = ARMMMUIdx_E10_1;
3451 break;
3452 case 6:
3453 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3454 mmu_idx = ARMMMUIdx_E10_0;
3455 break;
3456 default:
3457 g_assert_not_reached();
3460 par64 = do_ats_write(env, value, access_type, mmu_idx);
3462 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3465 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3466 uint64_t value)
3468 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3469 uint64_t par64;
3471 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3473 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3476 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3477 bool isread)
3479 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3480 return CP_ACCESS_TRAP;
3482 return CP_ACCESS_OK;
3485 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3486 uint64_t value)
3488 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3489 ARMMMUIdx mmu_idx;
3490 int secure = arm_is_secure_below_el3(env);
3492 switch (ri->opc2 & 6) {
3493 case 0:
3494 switch (ri->opc1) {
3495 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3496 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3497 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3498 : ARMMMUIdx_Stage1_E1_PAN);
3499 } else {
3500 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3502 break;
3503 case 4: /* AT S1E2R, AT S1E2W */
3504 mmu_idx = ARMMMUIdx_E2;
3505 break;
3506 case 6: /* AT S1E3R, AT S1E3W */
3507 mmu_idx = ARMMMUIdx_SE3;
3508 break;
3509 default:
3510 g_assert_not_reached();
3512 break;
3513 case 2: /* AT S1E0R, AT S1E0W */
3514 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3515 break;
3516 case 4: /* AT S12E1R, AT S12E1W */
3517 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3518 break;
3519 case 6: /* AT S12E0R, AT S12E0W */
3520 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3521 break;
3522 default:
3523 g_assert_not_reached();
3526 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3528 #endif
3530 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3531 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3532 .access = PL1_RW, .resetvalue = 0,
3533 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3534 offsetoflow32(CPUARMState, cp15.par_ns) },
3535 .writefn = par_write },
3536 #ifndef CONFIG_USER_ONLY
3537 /* This underdecoding is safe because the reginfo is NO_RAW. */
3538 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3539 .access = PL1_W, .accessfn = ats_access,
3540 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3541 #endif
3542 REGINFO_SENTINEL
3545 /* Return basic MPU access permission bits. */
3546 static uint32_t simple_mpu_ap_bits(uint32_t val)
3548 uint32_t ret;
3549 uint32_t mask;
3550 int i;
3551 ret = 0;
3552 mask = 3;
3553 for (i = 0; i < 16; i += 2) {
3554 ret |= (val >> i) & mask;
3555 mask <<= 2;
3557 return ret;
3560 /* Pad basic MPU access permission bits to extended format. */
3561 static uint32_t extended_mpu_ap_bits(uint32_t val)
3563 uint32_t ret;
3564 uint32_t mask;
3565 int i;
3566 ret = 0;
3567 mask = 3;
3568 for (i = 0; i < 16; i += 2) {
3569 ret |= (val & mask) << i;
3570 mask <<= 2;
3572 return ret;
3575 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3576 uint64_t value)
3578 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3581 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3583 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3586 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3587 uint64_t value)
3589 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3592 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3594 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3597 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3599 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3601 if (!u32p) {
3602 return 0;
3605 u32p += env->pmsav7.rnr[M_REG_NS];
3606 return *u32p;
3609 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3610 uint64_t value)
3612 ARMCPU *cpu = env_archcpu(env);
3613 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3615 if (!u32p) {
3616 return;
3619 u32p += env->pmsav7.rnr[M_REG_NS];
3620 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3621 *u32p = value;
3624 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3625 uint64_t value)
3627 ARMCPU *cpu = env_archcpu(env);
3628 uint32_t nrgs = cpu->pmsav7_dregion;
3630 if (value >= nrgs) {
3631 qemu_log_mask(LOG_GUEST_ERROR,
3632 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3633 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3634 return;
3637 raw_write(env, ri, value);
3640 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3641 /* Reset for all these registers is handled in arm_cpu_reset(),
3642 * because the PMSAv7 is also used by M-profile CPUs, which do
3643 * not register cpregs but still need the state to be reset.
3645 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3646 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3647 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3648 .readfn = pmsav7_read, .writefn = pmsav7_write,
3649 .resetfn = arm_cp_reset_ignore },
3650 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3651 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3652 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3653 .readfn = pmsav7_read, .writefn = pmsav7_write,
3654 .resetfn = arm_cp_reset_ignore },
3655 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3656 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3657 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3658 .readfn = pmsav7_read, .writefn = pmsav7_write,
3659 .resetfn = arm_cp_reset_ignore },
3660 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3661 .access = PL1_RW,
3662 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3663 .writefn = pmsav7_rgnr_write,
3664 .resetfn = arm_cp_reset_ignore },
3665 REGINFO_SENTINEL
3668 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3669 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3670 .access = PL1_RW, .type = ARM_CP_ALIAS,
3671 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3672 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3673 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3674 .access = PL1_RW, .type = ARM_CP_ALIAS,
3675 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3676 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3677 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3678 .access = PL1_RW,
3679 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3680 .resetvalue = 0, },
3681 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3682 .access = PL1_RW,
3683 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3684 .resetvalue = 0, },
3685 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3686 .access = PL1_RW,
3687 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3688 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3689 .access = PL1_RW,
3690 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3691 /* Protection region base and size registers */
3692 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3693 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3694 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3695 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3696 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3697 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3698 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3699 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3700 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3701 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3702 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3703 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3704 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3705 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3706 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3707 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3708 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3709 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3710 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3711 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3712 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3713 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3714 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3715 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3716 REGINFO_SENTINEL
3719 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3720 uint64_t value)
3722 TCR *tcr = raw_ptr(env, ri);
3723 int maskshift = extract32(value, 0, 3);
3725 if (!arm_feature(env, ARM_FEATURE_V8)) {
3726 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3727 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3728 * using Long-desciptor translation table format */
3729 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3730 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3731 /* In an implementation that includes the Security Extensions
3732 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3733 * Short-descriptor translation table format.
3735 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3736 } else {
3737 value &= TTBCR_N;
3741 /* Update the masks corresponding to the TCR bank being written
3742 * Note that we always calculate mask and base_mask, but
3743 * they are only used for short-descriptor tables (ie if EAE is 0);
3744 * for long-descriptor tables the TCR fields are used differently
3745 * and the mask and base_mask values are meaningless.
3747 tcr->raw_tcr = value;
3748 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3749 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3752 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3753 uint64_t value)
3755 ARMCPU *cpu = env_archcpu(env);
3756 TCR *tcr = raw_ptr(env, ri);
3758 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3759 /* With LPAE the TTBCR could result in a change of ASID
3760 * via the TTBCR.A1 bit, so do a TLB flush.
3762 tlb_flush(CPU(cpu));
3764 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3765 value = deposit64(tcr->raw_tcr, 0, 32, value);
3766 vmsa_ttbcr_raw_write(env, ri, value);
3769 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3771 TCR *tcr = raw_ptr(env, ri);
3773 /* Reset both the TCR as well as the masks corresponding to the bank of
3774 * the TCR being reset.
3776 tcr->raw_tcr = 0;
3777 tcr->mask = 0;
3778 tcr->base_mask = 0xffffc000u;
3781 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3782 uint64_t value)
3784 ARMCPU *cpu = env_archcpu(env);
3785 TCR *tcr = raw_ptr(env, ri);
3787 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3788 tlb_flush(CPU(cpu));
3789 tcr->raw_tcr = value;
3792 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3793 uint64_t value)
3795 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3796 if (cpreg_field_is_64bit(ri) &&
3797 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3798 ARMCPU *cpu = env_archcpu(env);
3799 tlb_flush(CPU(cpu));
3801 raw_write(env, ri, value);
3804 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3805 uint64_t value)
3808 * If we are running with E2&0 regime, then an ASID is active.
3809 * Flush if that might be changing. Note we're not checking
3810 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3811 * holds the active ASID, only checking the field that might.
3813 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3814 (arm_hcr_el2_eff(env) & HCR_E2H)) {
3815 tlb_flush_by_mmuidx(env_cpu(env),
3816 ARMMMUIdxBit_E20_2 |
3817 ARMMMUIdxBit_E20_2_PAN |
3818 ARMMMUIdxBit_E20_0);
3820 raw_write(env, ri, value);
3823 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3824 uint64_t value)
3826 ARMCPU *cpu = env_archcpu(env);
3827 CPUState *cs = CPU(cpu);
3830 * A change in VMID to the stage2 page table (Stage2) invalidates
3831 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3833 if (raw_read(env, ri) != value) {
3834 tlb_flush_by_mmuidx(cs,
3835 ARMMMUIdxBit_E10_1 |
3836 ARMMMUIdxBit_E10_1_PAN |
3837 ARMMMUIdxBit_E10_0 |
3838 ARMMMUIdxBit_Stage2);
3839 raw_write(env, ri, value);
3843 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3844 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3845 .access = PL1_RW, .type = ARM_CP_ALIAS,
3846 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3847 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3848 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3849 .access = PL1_RW, .resetvalue = 0,
3850 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3851 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3852 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3853 .access = PL1_RW, .resetvalue = 0,
3854 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3855 offsetof(CPUARMState, cp15.dfar_ns) } },
3856 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3857 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3858 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3859 .resetvalue = 0, },
3860 REGINFO_SENTINEL
3863 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3864 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3865 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3866 .access = PL1_RW,
3867 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3868 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3869 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3870 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3871 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3872 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3873 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3874 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3875 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3876 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3877 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3878 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3879 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3880 .access = PL1_RW, .writefn = vmsa_tcr_el12_write,
3881 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3882 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3883 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3884 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3885 .raw_writefn = vmsa_ttbcr_raw_write,
3886 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3887 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3888 REGINFO_SENTINEL
3891 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3892 * qemu tlbs nor adjusting cached masks.
3894 static const ARMCPRegInfo ttbcr2_reginfo = {
3895 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3896 .access = PL1_RW, .type = ARM_CP_ALIAS,
3897 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3898 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3901 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3902 uint64_t value)
3904 env->cp15.c15_ticonfig = value & 0xe7;
3905 /* The OS_TYPE bit in this register changes the reported CPUID! */
3906 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3907 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3910 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3911 uint64_t value)
3913 env->cp15.c15_threadid = value & 0xffff;
3916 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3917 uint64_t value)
3919 /* Wait-for-interrupt (deprecated) */
3920 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3923 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3924 uint64_t value)
3926 /* On OMAP there are registers indicating the max/min index of dcache lines
3927 * containing a dirty line; cache flush operations have to reset these.
3929 env->cp15.c15_i_max = 0x000;
3930 env->cp15.c15_i_min = 0xff0;
3933 static const ARMCPRegInfo omap_cp_reginfo[] = {
3934 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3935 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3936 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3937 .resetvalue = 0, },
3938 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3939 .access = PL1_RW, .type = ARM_CP_NOP },
3940 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3941 .access = PL1_RW,
3942 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3943 .writefn = omap_ticonfig_write },
3944 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3945 .access = PL1_RW,
3946 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3947 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3948 .access = PL1_RW, .resetvalue = 0xff0,
3949 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3950 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3951 .access = PL1_RW,
3952 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3953 .writefn = omap_threadid_write },
3954 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3955 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3956 .type = ARM_CP_NO_RAW,
3957 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3958 /* TODO: Peripheral port remap register:
3959 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3960 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3961 * when MMU is off.
3963 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3964 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3965 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3966 .writefn = omap_cachemaint_write },
3967 { .name = "C9", .cp = 15, .crn = 9,
3968 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3969 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3970 REGINFO_SENTINEL
3973 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3974 uint64_t value)
3976 env->cp15.c15_cpar = value & 0x3fff;
3979 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3980 { .name = "XSCALE_CPAR",
3981 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3982 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3983 .writefn = xscale_cpar_write, },
3984 { .name = "XSCALE_AUXCR",
3985 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3986 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3987 .resetvalue = 0, },
3988 /* XScale specific cache-lockdown: since we have no cache we NOP these
3989 * and hope the guest does not really rely on cache behaviour.
3991 { .name = "XSCALE_LOCK_ICACHE_LINE",
3992 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3993 .access = PL1_W, .type = ARM_CP_NOP },
3994 { .name = "XSCALE_UNLOCK_ICACHE",
3995 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3996 .access = PL1_W, .type = ARM_CP_NOP },
3997 { .name = "XSCALE_DCACHE_LOCK",
3998 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3999 .access = PL1_RW, .type = ARM_CP_NOP },
4000 { .name = "XSCALE_UNLOCK_DCACHE",
4001 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4002 .access = PL1_W, .type = ARM_CP_NOP },
4003 REGINFO_SENTINEL
4006 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4007 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4008 * implementation of this implementation-defined space.
4009 * Ideally this should eventually disappear in favour of actually
4010 * implementing the correct behaviour for all cores.
4012 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4013 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4014 .access = PL1_RW,
4015 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4016 .resetvalue = 0 },
4017 REGINFO_SENTINEL
4020 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4021 /* Cache status: RAZ because we have no cache so it's always clean */
4022 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4023 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4024 .resetvalue = 0 },
4025 REGINFO_SENTINEL
4028 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4029 /* We never have a a block transfer operation in progress */
4030 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4031 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4032 .resetvalue = 0 },
4033 /* The cache ops themselves: these all NOP for QEMU */
4034 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4035 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4036 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4037 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4038 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4039 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4040 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4041 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4042 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4043 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4044 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4045 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4046 REGINFO_SENTINEL
4049 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4050 /* The cache test-and-clean instructions always return (1 << 30)
4051 * to indicate that there are no dirty cache lines.
4053 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4054 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4055 .resetvalue = (1 << 30) },
4056 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4057 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4058 .resetvalue = (1 << 30) },
4059 REGINFO_SENTINEL
4062 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4063 /* Ignore ReadBuffer accesses */
4064 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4065 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4066 .access = PL1_RW, .resetvalue = 0,
4067 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4068 REGINFO_SENTINEL
4071 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4073 ARMCPU *cpu = env_archcpu(env);
4074 unsigned int cur_el = arm_current_el(env);
4075 bool secure = arm_is_secure(env);
4077 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4078 return env->cp15.vpidr_el2;
4080 return raw_read(env, ri);
4083 static uint64_t mpidr_read_val(CPUARMState *env)
4085 ARMCPU *cpu = env_archcpu(env);
4086 uint64_t mpidr = cpu->mp_affinity;
4088 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4089 mpidr |= (1U << 31);
4090 /* Cores which are uniprocessor (non-coherent)
4091 * but still implement the MP extensions set
4092 * bit 30. (For instance, Cortex-R5).
4094 if (cpu->mp_is_up) {
4095 mpidr |= (1u << 30);
4098 return mpidr;
4101 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4103 unsigned int cur_el = arm_current_el(env);
4104 bool secure = arm_is_secure(env);
4106 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4107 return env->cp15.vmpidr_el2;
4109 return mpidr_read_val(env);
4112 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4113 /* NOP AMAIR0/1 */
4114 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4115 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4116 .access = PL1_RW, .type = ARM_CP_CONST,
4117 .resetvalue = 0 },
4118 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4119 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4120 .access = PL1_RW, .type = ARM_CP_CONST,
4121 .resetvalue = 0 },
4122 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4123 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4124 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4125 offsetof(CPUARMState, cp15.par_ns)} },
4126 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4127 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4128 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4129 offsetof(CPUARMState, cp15.ttbr0_ns) },
4130 .writefn = vmsa_ttbr_write, },
4131 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4132 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4133 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4134 offsetof(CPUARMState, cp15.ttbr1_ns) },
4135 .writefn = vmsa_ttbr_write, },
4136 REGINFO_SENTINEL
4139 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4141 return vfp_get_fpcr(env);
4144 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4145 uint64_t value)
4147 vfp_set_fpcr(env, value);
4150 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4152 return vfp_get_fpsr(env);
4155 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4156 uint64_t value)
4158 vfp_set_fpsr(env, value);
4161 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4162 bool isread)
4164 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4165 return CP_ACCESS_TRAP;
4167 return CP_ACCESS_OK;
4170 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4171 uint64_t value)
4173 env->daif = value & PSTATE_DAIF;
4176 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4178 return env->pstate & PSTATE_PAN;
4181 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4182 uint64_t value)
4184 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4187 static const ARMCPRegInfo pan_reginfo = {
4188 .name = "PAN", .state = ARM_CP_STATE_AA64,
4189 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4190 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4191 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4194 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4196 return env->pstate & PSTATE_UAO;
4199 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4200 uint64_t value)
4202 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4205 static const ARMCPRegInfo uao_reginfo = {
4206 .name = "UAO", .state = ARM_CP_STATE_AA64,
4207 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4208 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4209 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4212 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
4213 const ARMCPRegInfo *ri,
4214 bool isread)
4216 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
4217 * SCTLR_EL1.UCI is set.
4219 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UCI)) {
4220 return CP_ACCESS_TRAP;
4222 return CP_ACCESS_OK;
4225 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4226 * Page D4-1736 (DDI0487A.b)
4229 static int vae1_tlbmask(CPUARMState *env)
4231 /* Since we exclude secure first, we may read HCR_EL2 directly. */
4232 if (arm_is_secure_below_el3(env)) {
4233 return ARMMMUIdxBit_SE10_1 |
4234 ARMMMUIdxBit_SE10_1_PAN |
4235 ARMMMUIdxBit_SE10_0;
4236 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4237 == (HCR_E2H | HCR_TGE)) {
4238 return ARMMMUIdxBit_E20_2 |
4239 ARMMMUIdxBit_E20_2_PAN |
4240 ARMMMUIdxBit_E20_0;
4241 } else {
4242 return ARMMMUIdxBit_E10_1 |
4243 ARMMMUIdxBit_E10_1_PAN |
4244 ARMMMUIdxBit_E10_0;
4248 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4249 uint64_t value)
4251 CPUState *cs = env_cpu(env);
4252 int mask = vae1_tlbmask(env);
4254 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4257 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4258 uint64_t value)
4260 CPUState *cs = env_cpu(env);
4261 int mask = vae1_tlbmask(env);
4263 if (tlb_force_broadcast(env)) {
4264 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4265 } else {
4266 tlb_flush_by_mmuidx(cs, mask);
4270 static int alle1_tlbmask(CPUARMState *env)
4273 * Note that the 'ALL' scope must invalidate both stage 1 and
4274 * stage 2 translations, whereas most other scopes only invalidate
4275 * stage 1 translations.
4277 if (arm_is_secure_below_el3(env)) {
4278 return ARMMMUIdxBit_SE10_1 |
4279 ARMMMUIdxBit_SE10_1_PAN |
4280 ARMMMUIdxBit_SE10_0;
4281 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
4282 return ARMMMUIdxBit_E10_1 |
4283 ARMMMUIdxBit_E10_1_PAN |
4284 ARMMMUIdxBit_E10_0 |
4285 ARMMMUIdxBit_Stage2;
4286 } else {
4287 return ARMMMUIdxBit_E10_1 |
4288 ARMMMUIdxBit_E10_1_PAN |
4289 ARMMMUIdxBit_E10_0;
4293 static int e2_tlbmask(CPUARMState *env)
4295 /* TODO: ARMv8.4-SecEL2 */
4296 return ARMMMUIdxBit_E20_0 |
4297 ARMMMUIdxBit_E20_2 |
4298 ARMMMUIdxBit_E20_2_PAN |
4299 ARMMMUIdxBit_E2;
4302 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4303 uint64_t value)
4305 CPUState *cs = env_cpu(env);
4306 int mask = alle1_tlbmask(env);
4308 tlb_flush_by_mmuidx(cs, mask);
4311 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4312 uint64_t value)
4314 CPUState *cs = env_cpu(env);
4315 int mask = e2_tlbmask(env);
4317 tlb_flush_by_mmuidx(cs, mask);
4320 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4321 uint64_t value)
4323 ARMCPU *cpu = env_archcpu(env);
4324 CPUState *cs = CPU(cpu);
4326 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4329 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4330 uint64_t value)
4332 CPUState *cs = env_cpu(env);
4333 int mask = alle1_tlbmask(env);
4335 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4338 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4339 uint64_t value)
4341 CPUState *cs = env_cpu(env);
4342 int mask = e2_tlbmask(env);
4344 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4347 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4348 uint64_t value)
4350 CPUState *cs = env_cpu(env);
4352 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4355 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4356 uint64_t value)
4358 /* Invalidate by VA, EL2
4359 * Currently handles both VAE2 and VALE2, since we don't support
4360 * flush-last-level-only.
4362 CPUState *cs = env_cpu(env);
4363 int mask = e2_tlbmask(env);
4364 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4366 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4369 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4370 uint64_t value)
4372 /* Invalidate by VA, EL3
4373 * Currently handles both VAE3 and VALE3, since we don't support
4374 * flush-last-level-only.
4376 ARMCPU *cpu = env_archcpu(env);
4377 CPUState *cs = CPU(cpu);
4378 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4380 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4383 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4384 uint64_t value)
4386 CPUState *cs = env_cpu(env);
4387 int mask = vae1_tlbmask(env);
4388 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4390 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4393 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4394 uint64_t value)
4396 /* Invalidate by VA, EL1&0 (AArch64 version).
4397 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4398 * since we don't support flush-for-specific-ASID-only or
4399 * flush-last-level-only.
4401 CPUState *cs = env_cpu(env);
4402 int mask = vae1_tlbmask(env);
4403 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4405 if (tlb_force_broadcast(env)) {
4406 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4407 } else {
4408 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4412 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4413 uint64_t value)
4415 CPUState *cs = env_cpu(env);
4416 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4418 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4419 ARMMMUIdxBit_E2);
4422 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4423 uint64_t value)
4425 CPUState *cs = env_cpu(env);
4426 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4428 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4429 ARMMMUIdxBit_SE3);
4432 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4433 uint64_t value)
4435 /* Invalidate by IPA. This has to invalidate any structures that
4436 * contain only stage 2 translation information, but does not need
4437 * to apply to structures that contain combined stage 1 and stage 2
4438 * translation information.
4439 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4441 ARMCPU *cpu = env_archcpu(env);
4442 CPUState *cs = CPU(cpu);
4443 uint64_t pageaddr;
4445 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4446 return;
4449 pageaddr = sextract64(value << 12, 0, 48);
4451 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
4454 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4455 uint64_t value)
4457 CPUState *cs = env_cpu(env);
4458 uint64_t pageaddr;
4460 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4461 return;
4464 pageaddr = sextract64(value << 12, 0, 48);
4466 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4467 ARMMMUIdxBit_Stage2);
4470 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4471 bool isread)
4473 int cur_el = arm_current_el(env);
4475 if (cur_el < 2) {
4476 uint64_t hcr = arm_hcr_el2_eff(env);
4478 if (cur_el == 0) {
4479 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4480 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4481 return CP_ACCESS_TRAP_EL2;
4483 } else {
4484 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4485 return CP_ACCESS_TRAP;
4487 if (hcr & HCR_TDZ) {
4488 return CP_ACCESS_TRAP_EL2;
4491 } else if (hcr & HCR_TDZ) {
4492 return CP_ACCESS_TRAP_EL2;
4495 return CP_ACCESS_OK;
4498 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4500 ARMCPU *cpu = env_archcpu(env);
4501 int dzp_bit = 1 << 4;
4503 /* DZP indicates whether DC ZVA access is allowed */
4504 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4505 dzp_bit = 0;
4507 return cpu->dcz_blocksize | dzp_bit;
4510 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4511 bool isread)
4513 if (!(env->pstate & PSTATE_SP)) {
4514 /* Access to SP_EL0 is undefined if it's being used as
4515 * the stack pointer.
4517 return CP_ACCESS_TRAP_UNCATEGORIZED;
4519 return CP_ACCESS_OK;
4522 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4524 return env->pstate & PSTATE_SP;
4527 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4529 update_spsel(env, val);
4532 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4533 uint64_t value)
4535 ARMCPU *cpu = env_archcpu(env);
4537 if (raw_read(env, ri) == value) {
4538 /* Skip the TLB flush if nothing actually changed; Linux likes
4539 * to do a lot of pointless SCTLR writes.
4541 return;
4544 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4545 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4546 value &= ~SCTLR_M;
4549 raw_write(env, ri, value);
4550 /* ??? Lots of these bits are not implemented. */
4551 /* This may enable/disable the MMU, so do a TLB flush. */
4552 tlb_flush(CPU(cpu));
4554 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4556 * Normally we would always end the TB on an SCTLR write; see the
4557 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4558 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4559 * of hflags from the translator, so do it here.
4561 arm_rebuild_hflags(env);
4565 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4566 bool isread)
4568 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4569 return CP_ACCESS_TRAP_FP_EL2;
4571 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4572 return CP_ACCESS_TRAP_FP_EL3;
4574 return CP_ACCESS_OK;
4577 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4578 uint64_t value)
4580 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4583 static const ARMCPRegInfo v8_cp_reginfo[] = {
4584 /* Minimal set of EL0-visible registers. This will need to be expanded
4585 * significantly for system emulation of AArch64 CPUs.
4587 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4588 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4589 .access = PL0_RW, .type = ARM_CP_NZCV },
4590 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4591 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4592 .type = ARM_CP_NO_RAW,
4593 .access = PL0_RW, .accessfn = aa64_daif_access,
4594 .fieldoffset = offsetof(CPUARMState, daif),
4595 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4596 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4597 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4598 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4599 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4600 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4601 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4602 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4603 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4604 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4605 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4606 .access = PL0_R, .type = ARM_CP_NO_RAW,
4607 .readfn = aa64_dczid_read },
4608 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4609 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4610 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4611 #ifndef CONFIG_USER_ONLY
4612 /* Avoid overhead of an access check that always passes in user-mode */
4613 .accessfn = aa64_zva_access,
4614 #endif
4616 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4617 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4618 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4619 /* Cache ops: all NOPs since we don't emulate caches */
4620 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4621 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4622 .access = PL1_W, .type = ARM_CP_NOP },
4623 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4624 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4625 .access = PL1_W, .type = ARM_CP_NOP },
4626 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4627 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4628 .access = PL0_W, .type = ARM_CP_NOP,
4629 .accessfn = aa64_cacheop_access },
4630 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4631 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4632 .access = PL1_W, .type = ARM_CP_NOP },
4633 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4634 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4635 .access = PL1_W, .type = ARM_CP_NOP },
4636 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4637 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4638 .access = PL0_W, .type = ARM_CP_NOP,
4639 .accessfn = aa64_cacheop_access },
4640 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4641 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4642 .access = PL1_W, .type = ARM_CP_NOP },
4643 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4644 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4645 .access = PL0_W, .type = ARM_CP_NOP,
4646 .accessfn = aa64_cacheop_access },
4647 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4648 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4649 .access = PL0_W, .type = ARM_CP_NOP,
4650 .accessfn = aa64_cacheop_access },
4651 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4652 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4653 .access = PL1_W, .type = ARM_CP_NOP },
4654 /* TLBI operations */
4655 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4656 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4657 .access = PL1_W, .type = ARM_CP_NO_RAW,
4658 .writefn = tlbi_aa64_vmalle1is_write },
4659 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4660 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4661 .access = PL1_W, .type = ARM_CP_NO_RAW,
4662 .writefn = tlbi_aa64_vae1is_write },
4663 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4664 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4665 .access = PL1_W, .type = ARM_CP_NO_RAW,
4666 .writefn = tlbi_aa64_vmalle1is_write },
4667 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4668 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4669 .access = PL1_W, .type = ARM_CP_NO_RAW,
4670 .writefn = tlbi_aa64_vae1is_write },
4671 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4672 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4673 .access = PL1_W, .type = ARM_CP_NO_RAW,
4674 .writefn = tlbi_aa64_vae1is_write },
4675 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4676 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4677 .access = PL1_W, .type = ARM_CP_NO_RAW,
4678 .writefn = tlbi_aa64_vae1is_write },
4679 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4680 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4681 .access = PL1_W, .type = ARM_CP_NO_RAW,
4682 .writefn = tlbi_aa64_vmalle1_write },
4683 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4684 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4685 .access = PL1_W, .type = ARM_CP_NO_RAW,
4686 .writefn = tlbi_aa64_vae1_write },
4687 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4688 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4689 .access = PL1_W, .type = ARM_CP_NO_RAW,
4690 .writefn = tlbi_aa64_vmalle1_write },
4691 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4692 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4693 .access = PL1_W, .type = ARM_CP_NO_RAW,
4694 .writefn = tlbi_aa64_vae1_write },
4695 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4696 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4697 .access = PL1_W, .type = ARM_CP_NO_RAW,
4698 .writefn = tlbi_aa64_vae1_write },
4699 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4700 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4701 .access = PL1_W, .type = ARM_CP_NO_RAW,
4702 .writefn = tlbi_aa64_vae1_write },
4703 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4704 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4705 .access = PL2_W, .type = ARM_CP_NO_RAW,
4706 .writefn = tlbi_aa64_ipas2e1is_write },
4707 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4708 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4709 .access = PL2_W, .type = ARM_CP_NO_RAW,
4710 .writefn = tlbi_aa64_ipas2e1is_write },
4711 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4712 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4713 .access = PL2_W, .type = ARM_CP_NO_RAW,
4714 .writefn = tlbi_aa64_alle1is_write },
4715 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4716 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4717 .access = PL2_W, .type = ARM_CP_NO_RAW,
4718 .writefn = tlbi_aa64_alle1is_write },
4719 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4720 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4721 .access = PL2_W, .type = ARM_CP_NO_RAW,
4722 .writefn = tlbi_aa64_ipas2e1_write },
4723 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4724 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4725 .access = PL2_W, .type = ARM_CP_NO_RAW,
4726 .writefn = tlbi_aa64_ipas2e1_write },
4727 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4728 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4729 .access = PL2_W, .type = ARM_CP_NO_RAW,
4730 .writefn = tlbi_aa64_alle1_write },
4731 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4732 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4733 .access = PL2_W, .type = ARM_CP_NO_RAW,
4734 .writefn = tlbi_aa64_alle1is_write },
4735 #ifndef CONFIG_USER_ONLY
4736 /* 64 bit address translation operations */
4737 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4738 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4739 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4740 .writefn = ats_write64 },
4741 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4742 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4743 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4744 .writefn = ats_write64 },
4745 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4746 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4747 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4748 .writefn = ats_write64 },
4749 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4750 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4751 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4752 .writefn = ats_write64 },
4753 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4754 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4755 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4756 .writefn = ats_write64 },
4757 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4758 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4759 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4760 .writefn = ats_write64 },
4761 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4762 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4763 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4764 .writefn = ats_write64 },
4765 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4766 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4767 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4768 .writefn = ats_write64 },
4769 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4770 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4771 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4772 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4773 .writefn = ats_write64 },
4774 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4775 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4776 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4777 .writefn = ats_write64 },
4778 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4779 .type = ARM_CP_ALIAS,
4780 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4781 .access = PL1_RW, .resetvalue = 0,
4782 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4783 .writefn = par_write },
4784 #endif
4785 /* TLB invalidate last level of translation table walk */
4786 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4787 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4788 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4789 .type = ARM_CP_NO_RAW, .access = PL1_W,
4790 .writefn = tlbimvaa_is_write },
4791 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4792 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4793 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4794 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4795 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4796 .type = ARM_CP_NO_RAW, .access = PL2_W,
4797 .writefn = tlbimva_hyp_write },
4798 { .name = "TLBIMVALHIS",
4799 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4800 .type = ARM_CP_NO_RAW, .access = PL2_W,
4801 .writefn = tlbimva_hyp_is_write },
4802 { .name = "TLBIIPAS2",
4803 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4804 .type = ARM_CP_NO_RAW, .access = PL2_W,
4805 .writefn = tlbiipas2_write },
4806 { .name = "TLBIIPAS2IS",
4807 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4808 .type = ARM_CP_NO_RAW, .access = PL2_W,
4809 .writefn = tlbiipas2_is_write },
4810 { .name = "TLBIIPAS2L",
4811 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4812 .type = ARM_CP_NO_RAW, .access = PL2_W,
4813 .writefn = tlbiipas2_write },
4814 { .name = "TLBIIPAS2LIS",
4815 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4816 .type = ARM_CP_NO_RAW, .access = PL2_W,
4817 .writefn = tlbiipas2_is_write },
4818 /* 32 bit cache operations */
4819 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4820 .type = ARM_CP_NOP, .access = PL1_W },
4821 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4822 .type = ARM_CP_NOP, .access = PL1_W },
4823 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4824 .type = ARM_CP_NOP, .access = PL1_W },
4825 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4826 .type = ARM_CP_NOP, .access = PL1_W },
4827 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4828 .type = ARM_CP_NOP, .access = PL1_W },
4829 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4830 .type = ARM_CP_NOP, .access = PL1_W },
4831 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4832 .type = ARM_CP_NOP, .access = PL1_W },
4833 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4834 .type = ARM_CP_NOP, .access = PL1_W },
4835 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4836 .type = ARM_CP_NOP, .access = PL1_W },
4837 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4838 .type = ARM_CP_NOP, .access = PL1_W },
4839 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4840 .type = ARM_CP_NOP, .access = PL1_W },
4841 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4842 .type = ARM_CP_NOP, .access = PL1_W },
4843 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4844 .type = ARM_CP_NOP, .access = PL1_W },
4845 /* MMU Domain access control / MPU write buffer control */
4846 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4847 .access = PL1_RW, .resetvalue = 0,
4848 .writefn = dacr_write, .raw_writefn = raw_write,
4849 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4850 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4851 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4852 .type = ARM_CP_ALIAS,
4853 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4854 .access = PL1_RW,
4855 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4856 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4857 .type = ARM_CP_ALIAS,
4858 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4859 .access = PL1_RW,
4860 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4861 /* We rely on the access checks not allowing the guest to write to the
4862 * state field when SPSel indicates that it's being used as the stack
4863 * pointer.
4865 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4866 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4867 .access = PL1_RW, .accessfn = sp_el0_access,
4868 .type = ARM_CP_ALIAS,
4869 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4870 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4871 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4872 .access = PL2_RW, .type = ARM_CP_ALIAS,
4873 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4874 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4875 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4876 .type = ARM_CP_NO_RAW,
4877 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4878 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4879 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4880 .type = ARM_CP_ALIAS,
4881 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4882 .access = PL2_RW, .accessfn = fpexc32_access },
4883 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4884 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4885 .access = PL2_RW, .resetvalue = 0,
4886 .writefn = dacr_write, .raw_writefn = raw_write,
4887 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4888 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4889 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4890 .access = PL2_RW, .resetvalue = 0,
4891 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4892 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4893 .type = ARM_CP_ALIAS,
4894 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4895 .access = PL2_RW,
4896 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4897 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4898 .type = ARM_CP_ALIAS,
4899 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4900 .access = PL2_RW,
4901 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4902 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4903 .type = ARM_CP_ALIAS,
4904 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4905 .access = PL2_RW,
4906 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4907 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4908 .type = ARM_CP_ALIAS,
4909 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4910 .access = PL2_RW,
4911 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4912 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4913 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4914 .resetvalue = 0,
4915 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4916 { .name = "SDCR", .type = ARM_CP_ALIAS,
4917 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4918 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4919 .writefn = sdcr_write,
4920 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4921 REGINFO_SENTINEL
4924 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4925 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4926 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4927 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4928 .access = PL2_RW,
4929 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4930 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4931 .type = ARM_CP_NO_RAW,
4932 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4933 .access = PL2_RW,
4934 .type = ARM_CP_CONST, .resetvalue = 0 },
4935 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4936 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4937 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4938 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4939 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4940 .access = PL2_RW,
4941 .type = ARM_CP_CONST, .resetvalue = 0 },
4942 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4943 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4944 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4945 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4946 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4947 .access = PL2_RW, .type = ARM_CP_CONST,
4948 .resetvalue = 0 },
4949 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4950 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4951 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4952 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4953 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4954 .access = PL2_RW, .type = ARM_CP_CONST,
4955 .resetvalue = 0 },
4956 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4957 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4958 .access = PL2_RW, .type = ARM_CP_CONST,
4959 .resetvalue = 0 },
4960 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4961 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4962 .access = PL2_RW, .type = ARM_CP_CONST,
4963 .resetvalue = 0 },
4964 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4965 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4966 .access = PL2_RW, .type = ARM_CP_CONST,
4967 .resetvalue = 0 },
4968 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4969 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4970 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4971 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4972 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4973 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4974 .type = ARM_CP_CONST, .resetvalue = 0 },
4975 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4976 .cp = 15, .opc1 = 6, .crm = 2,
4977 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4978 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4979 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4980 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4981 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4982 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4983 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4984 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4985 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4986 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4987 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4988 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4989 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4990 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4991 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4992 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4993 .resetvalue = 0 },
4994 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4995 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4996 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4997 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4998 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4999 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5000 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5001 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5002 .resetvalue = 0 },
5003 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5004 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5005 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5006 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5007 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5008 .resetvalue = 0 },
5009 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5010 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5011 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5012 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5013 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5014 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5015 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5016 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5017 .access = PL2_RW, .accessfn = access_tda,
5018 .type = ARM_CP_CONST, .resetvalue = 0 },
5019 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5020 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5021 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5022 .type = ARM_CP_CONST, .resetvalue = 0 },
5023 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5024 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5025 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5026 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5027 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5028 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5029 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5030 .type = ARM_CP_CONST,
5031 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5032 .access = PL2_RW, .resetvalue = 0 },
5033 REGINFO_SENTINEL
5036 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5037 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5038 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5039 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5040 .access = PL2_RW,
5041 .type = ARM_CP_CONST, .resetvalue = 0 },
5042 REGINFO_SENTINEL
5045 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5047 ARMCPU *cpu = env_archcpu(env);
5048 /* Begin with bits defined in base ARMv8.0. */
5049 uint64_t valid_mask = MAKE_64BIT_MASK(0, 34);
5051 if (arm_feature(env, ARM_FEATURE_EL3)) {
5052 valid_mask &= ~HCR_HCD;
5053 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5054 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5055 * However, if we're using the SMC PSCI conduit then QEMU is
5056 * effectively acting like EL3 firmware and so the guest at
5057 * EL2 should retain the ability to prevent EL1 from being
5058 * able to make SMC calls into the ersatz firmware, so in
5059 * that case HCR.TSC should be read/write.
5061 valid_mask &= ~HCR_TSC;
5063 if (cpu_isar_feature(aa64_vh, cpu)) {
5064 valid_mask |= HCR_E2H;
5066 if (cpu_isar_feature(aa64_lor, cpu)) {
5067 valid_mask |= HCR_TLOR;
5069 if (cpu_isar_feature(aa64_pauth, cpu)) {
5070 valid_mask |= HCR_API | HCR_APK;
5073 /* Clear RES0 bits. */
5074 value &= valid_mask;
5076 /* These bits change the MMU setup:
5077 * HCR_VM enables stage 2 translation
5078 * HCR_PTW forbids certain page-table setups
5079 * HCR_DC Disables stage1 and enables stage2 translation
5081 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
5082 tlb_flush(CPU(cpu));
5084 env->cp15.hcr_el2 = value;
5087 * Updates to VI and VF require us to update the status of
5088 * virtual interrupts, which are the logical OR of these bits
5089 * and the state of the input lines from the GIC. (This requires
5090 * that we have the iothread lock, which is done by marking the
5091 * reginfo structs as ARM_CP_IO.)
5092 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5093 * possible for it to be taken immediately, because VIRQ and
5094 * VFIQ are masked unless running at EL0 or EL1, and HCR
5095 * can only be written at EL2.
5097 g_assert(qemu_mutex_iothread_locked());
5098 arm_cpu_update_virq(cpu);
5099 arm_cpu_update_vfiq(cpu);
5102 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5103 uint64_t value)
5105 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5106 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5107 hcr_write(env, NULL, value);
5110 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5111 uint64_t value)
5113 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5114 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5115 hcr_write(env, NULL, value);
5119 * Return the effective value of HCR_EL2.
5120 * Bits that are not included here:
5121 * RW (read from SCR_EL3.RW as needed)
5123 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5125 uint64_t ret = env->cp15.hcr_el2;
5127 if (arm_is_secure_below_el3(env)) {
5129 * "This register has no effect if EL2 is not enabled in the
5130 * current Security state". This is ARMv8.4-SecEL2 speak for
5131 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5133 * Prior to that, the language was "In an implementation that
5134 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5135 * as if this field is 0 for all purposes other than a direct
5136 * read or write access of HCR_EL2". With lots of enumeration
5137 * on a per-field basis. In current QEMU, this is condition
5138 * is arm_is_secure_below_el3.
5140 * Since the v8.4 language applies to the entire register, and
5141 * appears to be backward compatible, use that.
5143 ret = 0;
5144 } else if (ret & HCR_TGE) {
5145 /* These bits are up-to-date as of ARMv8.4. */
5146 if (ret & HCR_E2H) {
5147 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5148 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5149 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5150 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
5151 } else {
5152 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5154 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5155 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5156 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5157 HCR_TLOR);
5160 return ret;
5163 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5164 uint64_t value)
5167 * For A-profile AArch32 EL3, if NSACR.CP10
5168 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5170 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5171 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5172 value &= ~(0x3 << 10);
5173 value |= env->cp15.cptr_el[2] & (0x3 << 10);
5175 env->cp15.cptr_el[2] = value;
5178 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5181 * For A-profile AArch32 EL3, if NSACR.CP10
5182 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5184 uint64_t value = env->cp15.cptr_el[2];
5186 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5187 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5188 value |= 0x3 << 10;
5190 return value;
5193 static const ARMCPRegInfo el2_cp_reginfo[] = {
5194 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5195 .type = ARM_CP_IO,
5196 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5197 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5198 .writefn = hcr_write },
5199 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5200 .type = ARM_CP_ALIAS | ARM_CP_IO,
5201 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5202 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5203 .writefn = hcr_writelow },
5204 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5205 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5206 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5207 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5208 .type = ARM_CP_ALIAS,
5209 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5210 .access = PL2_RW,
5211 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5212 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5213 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5214 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5215 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5216 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5217 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5218 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5219 .type = ARM_CP_ALIAS,
5220 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5221 .access = PL2_RW,
5222 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5223 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5224 .type = ARM_CP_ALIAS,
5225 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5226 .access = PL2_RW,
5227 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5228 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5229 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5230 .access = PL2_RW, .writefn = vbar_write,
5231 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5232 .resetvalue = 0 },
5233 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5234 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5235 .access = PL3_RW, .type = ARM_CP_ALIAS,
5236 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5237 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5238 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5239 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5240 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5241 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5242 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5243 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5244 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5245 .resetvalue = 0 },
5246 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5247 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5248 .access = PL2_RW, .type = ARM_CP_ALIAS,
5249 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5250 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5251 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5252 .access = PL2_RW, .type = ARM_CP_CONST,
5253 .resetvalue = 0 },
5254 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5255 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5256 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5257 .access = PL2_RW, .type = ARM_CP_CONST,
5258 .resetvalue = 0 },
5259 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5260 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5261 .access = PL2_RW, .type = ARM_CP_CONST,
5262 .resetvalue = 0 },
5263 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5264 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5265 .access = PL2_RW, .type = ARM_CP_CONST,
5266 .resetvalue = 0 },
5267 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5268 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5269 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5270 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5271 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5272 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5273 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5274 .type = ARM_CP_ALIAS,
5275 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5276 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5277 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5278 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5279 .access = PL2_RW,
5280 /* no .writefn needed as this can't cause an ASID change;
5281 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5283 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5284 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5285 .cp = 15, .opc1 = 6, .crm = 2,
5286 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5287 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5288 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5289 .writefn = vttbr_write },
5290 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5291 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5292 .access = PL2_RW, .writefn = vttbr_write,
5293 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5294 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5295 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5296 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5297 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5298 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5299 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5300 .access = PL2_RW, .resetvalue = 0,
5301 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5302 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5303 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5304 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5305 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5306 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5307 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5308 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5309 { .name = "TLBIALLNSNH",
5310 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5311 .type = ARM_CP_NO_RAW, .access = PL2_W,
5312 .writefn = tlbiall_nsnh_write },
5313 { .name = "TLBIALLNSNHIS",
5314 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5315 .type = ARM_CP_NO_RAW, .access = PL2_W,
5316 .writefn = tlbiall_nsnh_is_write },
5317 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5318 .type = ARM_CP_NO_RAW, .access = PL2_W,
5319 .writefn = tlbiall_hyp_write },
5320 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5321 .type = ARM_CP_NO_RAW, .access = PL2_W,
5322 .writefn = tlbiall_hyp_is_write },
5323 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5324 .type = ARM_CP_NO_RAW, .access = PL2_W,
5325 .writefn = tlbimva_hyp_write },
5326 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5327 .type = ARM_CP_NO_RAW, .access = PL2_W,
5328 .writefn = tlbimva_hyp_is_write },
5329 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5330 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5331 .type = ARM_CP_NO_RAW, .access = PL2_W,
5332 .writefn = tlbi_aa64_alle2_write },
5333 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5334 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5335 .type = ARM_CP_NO_RAW, .access = PL2_W,
5336 .writefn = tlbi_aa64_vae2_write },
5337 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5338 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5339 .access = PL2_W, .type = ARM_CP_NO_RAW,
5340 .writefn = tlbi_aa64_vae2_write },
5341 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5342 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5343 .access = PL2_W, .type = ARM_CP_NO_RAW,
5344 .writefn = tlbi_aa64_alle2is_write },
5345 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5346 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5347 .type = ARM_CP_NO_RAW, .access = PL2_W,
5348 .writefn = tlbi_aa64_vae2is_write },
5349 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5350 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5351 .access = PL2_W, .type = ARM_CP_NO_RAW,
5352 .writefn = tlbi_aa64_vae2is_write },
5353 #ifndef CONFIG_USER_ONLY
5354 /* Unlike the other EL2-related AT operations, these must
5355 * UNDEF from EL3 if EL2 is not implemented, which is why we
5356 * define them here rather than with the rest of the AT ops.
5358 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5359 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5360 .access = PL2_W, .accessfn = at_s1e2_access,
5361 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5362 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5363 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5364 .access = PL2_W, .accessfn = at_s1e2_access,
5365 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5366 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5367 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5368 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5369 * to behave as if SCR.NS was 1.
5371 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5372 .access = PL2_W,
5373 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5374 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5375 .access = PL2_W,
5376 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5377 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5378 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5379 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5380 * reset values as IMPDEF. We choose to reset to 3 to comply with
5381 * both ARMv7 and ARMv8.
5383 .access = PL2_RW, .resetvalue = 3,
5384 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5385 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5386 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5387 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5388 .writefn = gt_cntvoff_write,
5389 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5390 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5391 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5392 .writefn = gt_cntvoff_write,
5393 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5394 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5395 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5396 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5397 .type = ARM_CP_IO, .access = PL2_RW,
5398 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5399 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5400 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5401 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5402 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5403 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5404 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5405 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5406 .resetfn = gt_hyp_timer_reset,
5407 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5408 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5409 .type = ARM_CP_IO,
5410 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5411 .access = PL2_RW,
5412 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5413 .resetvalue = 0,
5414 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5415 #endif
5416 /* The only field of MDCR_EL2 that has a defined architectural reset value
5417 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5418 * don't implement any PMU event counters, so using zero as a reset
5419 * value for MDCR_EL2 is okay
5421 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5422 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5423 .access = PL2_RW, .resetvalue = 0,
5424 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5425 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5426 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5427 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5428 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5429 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5430 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5431 .access = PL2_RW,
5432 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5433 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5434 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5435 .access = PL2_RW,
5436 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5437 REGINFO_SENTINEL
5440 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5441 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5442 .type = ARM_CP_ALIAS | ARM_CP_IO,
5443 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5444 .access = PL2_RW,
5445 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5446 .writefn = hcr_writehigh },
5447 REGINFO_SENTINEL
5450 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5451 bool isread)
5453 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5454 * At Secure EL1 it traps to EL3.
5456 if (arm_current_el(env) == 3) {
5457 return CP_ACCESS_OK;
5459 if (arm_is_secure_below_el3(env)) {
5460 return CP_ACCESS_TRAP_EL3;
5462 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5463 if (isread) {
5464 return CP_ACCESS_OK;
5466 return CP_ACCESS_TRAP_UNCATEGORIZED;
5469 static const ARMCPRegInfo el3_cp_reginfo[] = {
5470 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5471 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5472 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5473 .resetvalue = 0, .writefn = scr_write },
5474 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5475 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5476 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5477 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5478 .writefn = scr_write },
5479 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5480 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5481 .access = PL3_RW, .resetvalue = 0,
5482 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5483 { .name = "SDER",
5484 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5485 .access = PL3_RW, .resetvalue = 0,
5486 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5487 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5488 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5489 .writefn = vbar_write, .resetvalue = 0,
5490 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5491 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5492 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5493 .access = PL3_RW, .resetvalue = 0,
5494 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5495 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5496 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5497 .access = PL3_RW,
5498 /* no .writefn needed as this can't cause an ASID change;
5499 * we must provide a .raw_writefn and .resetfn because we handle
5500 * reset and migration for the AArch32 TTBCR(S), which might be
5501 * using mask and base_mask.
5503 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5504 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5505 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5506 .type = ARM_CP_ALIAS,
5507 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5508 .access = PL3_RW,
5509 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5510 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5511 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5512 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5513 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5514 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5515 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5516 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5517 .type = ARM_CP_ALIAS,
5518 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5519 .access = PL3_RW,
5520 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5521 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5522 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5523 .access = PL3_RW, .writefn = vbar_write,
5524 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5525 .resetvalue = 0 },
5526 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5527 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5528 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5529 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5530 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5531 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5532 .access = PL3_RW, .resetvalue = 0,
5533 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5534 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5535 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5536 .access = PL3_RW, .type = ARM_CP_CONST,
5537 .resetvalue = 0 },
5538 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5539 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5540 .access = PL3_RW, .type = ARM_CP_CONST,
5541 .resetvalue = 0 },
5542 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5543 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5544 .access = PL3_RW, .type = ARM_CP_CONST,
5545 .resetvalue = 0 },
5546 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5547 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5548 .access = PL3_W, .type = ARM_CP_NO_RAW,
5549 .writefn = tlbi_aa64_alle3is_write },
5550 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5551 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5552 .access = PL3_W, .type = ARM_CP_NO_RAW,
5553 .writefn = tlbi_aa64_vae3is_write },
5554 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5555 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5556 .access = PL3_W, .type = ARM_CP_NO_RAW,
5557 .writefn = tlbi_aa64_vae3is_write },
5558 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5559 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5560 .access = PL3_W, .type = ARM_CP_NO_RAW,
5561 .writefn = tlbi_aa64_alle3_write },
5562 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5563 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5564 .access = PL3_W, .type = ARM_CP_NO_RAW,
5565 .writefn = tlbi_aa64_vae3_write },
5566 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5567 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5568 .access = PL3_W, .type = ARM_CP_NO_RAW,
5569 .writefn = tlbi_aa64_vae3_write },
5570 REGINFO_SENTINEL
5573 #ifndef CONFIG_USER_ONLY
5574 /* Test if system register redirection is to occur in the current state. */
5575 static bool redirect_for_e2h(CPUARMState *env)
5577 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5580 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5582 CPReadFn *readfn;
5584 if (redirect_for_e2h(env)) {
5585 /* Switch to the saved EL2 version of the register. */
5586 ri = ri->opaque;
5587 readfn = ri->readfn;
5588 } else {
5589 readfn = ri->orig_readfn;
5591 if (readfn == NULL) {
5592 readfn = raw_read;
5594 return readfn(env, ri);
5597 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5598 uint64_t value)
5600 CPWriteFn *writefn;
5602 if (redirect_for_e2h(env)) {
5603 /* Switch to the saved EL2 version of the register. */
5604 ri = ri->opaque;
5605 writefn = ri->writefn;
5606 } else {
5607 writefn = ri->orig_writefn;
5609 if (writefn == NULL) {
5610 writefn = raw_write;
5612 writefn(env, ri, value);
5615 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5617 struct E2HAlias {
5618 uint32_t src_key, dst_key, new_key;
5619 const char *src_name, *dst_name, *new_name;
5620 bool (*feature)(const ARMISARegisters *id);
5623 #define K(op0, op1, crn, crm, op2) \
5624 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5626 static const struct E2HAlias aliases[] = {
5627 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5628 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5629 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5630 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5631 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5632 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5633 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5634 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5635 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5636 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5637 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5638 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5639 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5640 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5641 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5642 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5643 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5644 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5645 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5646 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5647 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5648 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5649 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5650 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5651 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5652 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5653 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5654 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5655 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5656 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5657 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5658 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5661 * Note that redirection of ZCR is mentioned in the description
5662 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5663 * not in the summary table.
5665 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5666 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5668 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5669 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5671 #undef K
5673 size_t i;
5675 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5676 const struct E2HAlias *a = &aliases[i];
5677 ARMCPRegInfo *src_reg, *dst_reg;
5679 if (a->feature && !a->feature(&cpu->isar)) {
5680 continue;
5683 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5684 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5685 g_assert(src_reg != NULL);
5686 g_assert(dst_reg != NULL);
5688 /* Cross-compare names to detect typos in the keys. */
5689 g_assert(strcmp(src_reg->name, a->src_name) == 0);
5690 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5692 /* None of the core system registers use opaque; we will. */
5693 g_assert(src_reg->opaque == NULL);
5695 /* Create alias before redirection so we dup the right data. */
5696 if (a->new_key) {
5697 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5698 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5699 bool ok;
5701 new_reg->name = a->new_name;
5702 new_reg->type |= ARM_CP_ALIAS;
5703 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
5704 new_reg->access &= PL2_RW | PL3_RW;
5706 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5707 g_assert(ok);
5710 src_reg->opaque = dst_reg;
5711 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5712 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5713 if (!src_reg->raw_readfn) {
5714 src_reg->raw_readfn = raw_read;
5716 if (!src_reg->raw_writefn) {
5717 src_reg->raw_writefn = raw_write;
5719 src_reg->readfn = el2_e2h_read;
5720 src_reg->writefn = el2_e2h_write;
5723 #endif
5725 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5726 bool isread)
5728 int cur_el = arm_current_el(env);
5730 if (cur_el < 2) {
5731 uint64_t hcr = arm_hcr_el2_eff(env);
5733 if (cur_el == 0) {
5734 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5735 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5736 return CP_ACCESS_TRAP_EL2;
5738 } else {
5739 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5740 return CP_ACCESS_TRAP;
5742 if (hcr & HCR_TID2) {
5743 return CP_ACCESS_TRAP_EL2;
5746 } else if (hcr & HCR_TID2) {
5747 return CP_ACCESS_TRAP_EL2;
5751 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5752 return CP_ACCESS_TRAP_EL2;
5755 return CP_ACCESS_OK;
5758 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5759 uint64_t value)
5761 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5762 * read via a bit in OSLSR_EL1.
5764 int oslock;
5766 if (ri->state == ARM_CP_STATE_AA32) {
5767 oslock = (value == 0xC5ACCE55);
5768 } else {
5769 oslock = value & 1;
5772 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5775 static const ARMCPRegInfo debug_cp_reginfo[] = {
5776 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5777 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5778 * unlike DBGDRAR it is never accessible from EL0.
5779 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5780 * accessor.
5782 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5783 .access = PL0_R, .accessfn = access_tdra,
5784 .type = ARM_CP_CONST, .resetvalue = 0 },
5785 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5786 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5787 .access = PL1_R, .accessfn = access_tdra,
5788 .type = ARM_CP_CONST, .resetvalue = 0 },
5789 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5790 .access = PL0_R, .accessfn = access_tdra,
5791 .type = ARM_CP_CONST, .resetvalue = 0 },
5792 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5793 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5794 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5795 .access = PL1_RW, .accessfn = access_tda,
5796 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5797 .resetvalue = 0 },
5798 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5799 * We don't implement the configurable EL0 access.
5801 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5802 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5803 .type = ARM_CP_ALIAS,
5804 .access = PL1_R, .accessfn = access_tda,
5805 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5806 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5807 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5808 .access = PL1_W, .type = ARM_CP_NO_RAW,
5809 .accessfn = access_tdosa,
5810 .writefn = oslar_write },
5811 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5812 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5813 .access = PL1_R, .resetvalue = 10,
5814 .accessfn = access_tdosa,
5815 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5816 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5817 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5818 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5819 .access = PL1_RW, .accessfn = access_tdosa,
5820 .type = ARM_CP_NOP },
5821 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5822 * implement vector catch debug events yet.
5824 { .name = "DBGVCR",
5825 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5826 .access = PL1_RW, .accessfn = access_tda,
5827 .type = ARM_CP_NOP },
5828 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5829 * to save and restore a 32-bit guest's DBGVCR)
5831 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5832 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5833 .access = PL2_RW, .accessfn = access_tda,
5834 .type = ARM_CP_NOP },
5835 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5836 * Channel but Linux may try to access this register. The 32-bit
5837 * alias is DBGDCCINT.
5839 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5840 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5841 .access = PL1_RW, .accessfn = access_tda,
5842 .type = ARM_CP_NOP },
5843 REGINFO_SENTINEL
5846 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5847 /* 64 bit access versions of the (dummy) debug registers */
5848 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5849 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5850 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5851 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5852 REGINFO_SENTINEL
5855 /* Return the exception level to which exceptions should be taken
5856 * via SVEAccessTrap. If an exception should be routed through
5857 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5858 * take care of raising that exception.
5859 * C.f. the ARM pseudocode function CheckSVEEnabled.
5861 int sve_exception_el(CPUARMState *env, int el)
5863 #ifndef CONFIG_USER_ONLY
5864 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
5866 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
5867 bool disabled = false;
5869 /* The CPACR.ZEN controls traps to EL1:
5870 * 0, 2 : trap EL0 and EL1 accesses
5871 * 1 : trap only EL0 accesses
5872 * 3 : trap no accesses
5874 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5875 disabled = true;
5876 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5877 disabled = el == 0;
5879 if (disabled) {
5880 /* route_to_el2 */
5881 return hcr_el2 & HCR_TGE ? 2 : 1;
5884 /* Check CPACR.FPEN. */
5885 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5886 disabled = true;
5887 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5888 disabled = el == 0;
5890 if (disabled) {
5891 return 0;
5895 /* CPTR_EL2. Since TZ and TFP are positive,
5896 * they will be zero when EL2 is not present.
5898 if (el <= 2 && !arm_is_secure_below_el3(env)) {
5899 if (env->cp15.cptr_el[2] & CPTR_TZ) {
5900 return 2;
5902 if (env->cp15.cptr_el[2] & CPTR_TFP) {
5903 return 0;
5907 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5908 if (arm_feature(env, ARM_FEATURE_EL3)
5909 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5910 return 3;
5912 #endif
5913 return 0;
5916 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
5918 uint32_t end_len;
5920 end_len = start_len &= 0xf;
5921 if (!test_bit(start_len, cpu->sve_vq_map)) {
5922 end_len = find_last_bit(cpu->sve_vq_map, start_len);
5923 assert(end_len < start_len);
5925 return end_len;
5929 * Given that SVE is enabled, return the vector length for EL.
5931 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5933 ARMCPU *cpu = env_archcpu(env);
5934 uint32_t zcr_len = cpu->sve_max_vq - 1;
5936 if (el <= 1) {
5937 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5939 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5940 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5942 if (arm_feature(env, ARM_FEATURE_EL3)) {
5943 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5946 return sve_zcr_get_valid_len(cpu, zcr_len);
5949 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5950 uint64_t value)
5952 int cur_el = arm_current_el(env);
5953 int old_len = sve_zcr_len_for_el(env, cur_el);
5954 int new_len;
5956 /* Bits other than [3:0] are RAZ/WI. */
5957 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
5958 raw_write(env, ri, value & 0xf);
5961 * Because we arrived here, we know both FP and SVE are enabled;
5962 * otherwise we would have trapped access to the ZCR_ELn register.
5964 new_len = sve_zcr_len_for_el(env, cur_el);
5965 if (new_len < old_len) {
5966 aarch64_sve_narrow_vq(env, new_len + 1);
5970 static const ARMCPRegInfo zcr_el1_reginfo = {
5971 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5972 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5973 .access = PL1_RW, .type = ARM_CP_SVE,
5974 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5975 .writefn = zcr_write, .raw_writefn = raw_write
5978 static const ARMCPRegInfo zcr_el2_reginfo = {
5979 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5980 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5981 .access = PL2_RW, .type = ARM_CP_SVE,
5982 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5983 .writefn = zcr_write, .raw_writefn = raw_write
5986 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5987 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5988 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5989 .access = PL2_RW, .type = ARM_CP_SVE,
5990 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5993 static const ARMCPRegInfo zcr_el3_reginfo = {
5994 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5995 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5996 .access = PL3_RW, .type = ARM_CP_SVE,
5997 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5998 .writefn = zcr_write, .raw_writefn = raw_write
6001 void hw_watchpoint_update(ARMCPU *cpu, int n)
6003 CPUARMState *env = &cpu->env;
6004 vaddr len = 0;
6005 vaddr wvr = env->cp15.dbgwvr[n];
6006 uint64_t wcr = env->cp15.dbgwcr[n];
6007 int mask;
6008 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6010 if (env->cpu_watchpoint[n]) {
6011 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6012 env->cpu_watchpoint[n] = NULL;
6015 if (!extract64(wcr, 0, 1)) {
6016 /* E bit clear : watchpoint disabled */
6017 return;
6020 switch (extract64(wcr, 3, 2)) {
6021 case 0:
6022 /* LSC 00 is reserved and must behave as if the wp is disabled */
6023 return;
6024 case 1:
6025 flags |= BP_MEM_READ;
6026 break;
6027 case 2:
6028 flags |= BP_MEM_WRITE;
6029 break;
6030 case 3:
6031 flags |= BP_MEM_ACCESS;
6032 break;
6035 /* Attempts to use both MASK and BAS fields simultaneously are
6036 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6037 * thus generating a watchpoint for every byte in the masked region.
6039 mask = extract64(wcr, 24, 4);
6040 if (mask == 1 || mask == 2) {
6041 /* Reserved values of MASK; we must act as if the mask value was
6042 * some non-reserved value, or as if the watchpoint were disabled.
6043 * We choose the latter.
6045 return;
6046 } else if (mask) {
6047 /* Watchpoint covers an aligned area up to 2GB in size */
6048 len = 1ULL << mask;
6049 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6050 * whether the watchpoint fires when the unmasked bits match; we opt
6051 * to generate the exceptions.
6053 wvr &= ~(len - 1);
6054 } else {
6055 /* Watchpoint covers bytes defined by the byte address select bits */
6056 int bas = extract64(wcr, 5, 8);
6057 int basstart;
6059 if (bas == 0) {
6060 /* This must act as if the watchpoint is disabled */
6061 return;
6064 if (extract64(wvr, 2, 1)) {
6065 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6066 * ignored, and BAS[3:0] define which bytes to watch.
6068 bas &= 0xf;
6070 /* The BAS bits are supposed to be programmed to indicate a contiguous
6071 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6072 * we fire for each byte in the word/doubleword addressed by the WVR.
6073 * We choose to ignore any non-zero bits after the first range of 1s.
6075 basstart = ctz32(bas);
6076 len = cto32(bas >> basstart);
6077 wvr += basstart;
6080 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6081 &env->cpu_watchpoint[n]);
6084 void hw_watchpoint_update_all(ARMCPU *cpu)
6086 int i;
6087 CPUARMState *env = &cpu->env;
6089 /* Completely clear out existing QEMU watchpoints and our array, to
6090 * avoid possible stale entries following migration load.
6092 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6093 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6095 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6096 hw_watchpoint_update(cpu, i);
6100 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6101 uint64_t value)
6103 ARMCPU *cpu = env_archcpu(env);
6104 int i = ri->crm;
6106 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6107 * register reads and behaves as if values written are sign extended.
6108 * Bits [1:0] are RES0.
6110 value = sextract64(value, 0, 49) & ~3ULL;
6112 raw_write(env, ri, value);
6113 hw_watchpoint_update(cpu, i);
6116 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6117 uint64_t value)
6119 ARMCPU *cpu = env_archcpu(env);
6120 int i = ri->crm;
6122 raw_write(env, ri, value);
6123 hw_watchpoint_update(cpu, i);
6126 void hw_breakpoint_update(ARMCPU *cpu, int n)
6128 CPUARMState *env = &cpu->env;
6129 uint64_t bvr = env->cp15.dbgbvr[n];
6130 uint64_t bcr = env->cp15.dbgbcr[n];
6131 vaddr addr;
6132 int bt;
6133 int flags = BP_CPU;
6135 if (env->cpu_breakpoint[n]) {
6136 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6137 env->cpu_breakpoint[n] = NULL;
6140 if (!extract64(bcr, 0, 1)) {
6141 /* E bit clear : watchpoint disabled */
6142 return;
6145 bt = extract64(bcr, 20, 4);
6147 switch (bt) {
6148 case 4: /* unlinked address mismatch (reserved if AArch64) */
6149 case 5: /* linked address mismatch (reserved if AArch64) */
6150 qemu_log_mask(LOG_UNIMP,
6151 "arm: address mismatch breakpoint types not implemented\n");
6152 return;
6153 case 0: /* unlinked address match */
6154 case 1: /* linked address match */
6156 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6157 * we behave as if the register was sign extended. Bits [1:0] are
6158 * RES0. The BAS field is used to allow setting breakpoints on 16
6159 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6160 * a bp will fire if the addresses covered by the bp and the addresses
6161 * covered by the insn overlap but the insn doesn't start at the
6162 * start of the bp address range. We choose to require the insn and
6163 * the bp to have the same address. The constraints on writing to
6164 * BAS enforced in dbgbcr_write mean we have only four cases:
6165 * 0b0000 => no breakpoint
6166 * 0b0011 => breakpoint on addr
6167 * 0b1100 => breakpoint on addr + 2
6168 * 0b1111 => breakpoint on addr
6169 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6171 int bas = extract64(bcr, 5, 4);
6172 addr = sextract64(bvr, 0, 49) & ~3ULL;
6173 if (bas == 0) {
6174 return;
6176 if (bas == 0xc) {
6177 addr += 2;
6179 break;
6181 case 2: /* unlinked context ID match */
6182 case 8: /* unlinked VMID match (reserved if no EL2) */
6183 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6184 qemu_log_mask(LOG_UNIMP,
6185 "arm: unlinked context breakpoint types not implemented\n");
6186 return;
6187 case 9: /* linked VMID match (reserved if no EL2) */
6188 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6189 case 3: /* linked context ID match */
6190 default:
6191 /* We must generate no events for Linked context matches (unless
6192 * they are linked to by some other bp/wp, which is handled in
6193 * updates for the linking bp/wp). We choose to also generate no events
6194 * for reserved values.
6196 return;
6199 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6202 void hw_breakpoint_update_all(ARMCPU *cpu)
6204 int i;
6205 CPUARMState *env = &cpu->env;
6207 /* Completely clear out existing QEMU breakpoints and our array, to
6208 * avoid possible stale entries following migration load.
6210 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6211 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6213 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6214 hw_breakpoint_update(cpu, i);
6218 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6219 uint64_t value)
6221 ARMCPU *cpu = env_archcpu(env);
6222 int i = ri->crm;
6224 raw_write(env, ri, value);
6225 hw_breakpoint_update(cpu, i);
6228 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6229 uint64_t value)
6231 ARMCPU *cpu = env_archcpu(env);
6232 int i = ri->crm;
6234 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6235 * copy of BAS[0].
6237 value = deposit64(value, 6, 1, extract64(value, 5, 1));
6238 value = deposit64(value, 8, 1, extract64(value, 7, 1));
6240 raw_write(env, ri, value);
6241 hw_breakpoint_update(cpu, i);
6244 static void define_debug_regs(ARMCPU *cpu)
6246 /* Define v7 and v8 architectural debug registers.
6247 * These are just dummy implementations for now.
6249 int i;
6250 int wrps, brps, ctx_cmps;
6251 ARMCPRegInfo dbgdidr = {
6252 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
6253 .access = PL0_R, .accessfn = access_tda,
6254 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
6257 /* Note that all these register fields hold "number of Xs minus 1". */
6258 brps = extract32(cpu->dbgdidr, 24, 4);
6259 wrps = extract32(cpu->dbgdidr, 28, 4);
6260 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
6262 assert(ctx_cmps <= brps);
6264 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
6265 * of the debug registers such as number of breakpoints;
6266 * check that if they both exist then they agree.
6268 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
6269 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
6270 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
6271 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
6274 define_one_arm_cp_reg(cpu, &dbgdidr);
6275 define_arm_cp_regs(cpu, debug_cp_reginfo);
6277 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6278 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6281 for (i = 0; i < brps + 1; i++) {
6282 ARMCPRegInfo dbgregs[] = {
6283 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6284 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6285 .access = PL1_RW, .accessfn = access_tda,
6286 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6287 .writefn = dbgbvr_write, .raw_writefn = raw_write
6289 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6290 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6291 .access = PL1_RW, .accessfn = access_tda,
6292 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6293 .writefn = dbgbcr_write, .raw_writefn = raw_write
6295 REGINFO_SENTINEL
6297 define_arm_cp_regs(cpu, dbgregs);
6300 for (i = 0; i < wrps + 1; i++) {
6301 ARMCPRegInfo dbgregs[] = {
6302 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6303 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6304 .access = PL1_RW, .accessfn = access_tda,
6305 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6306 .writefn = dbgwvr_write, .raw_writefn = raw_write
6308 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6309 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6310 .access = PL1_RW, .accessfn = access_tda,
6311 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6312 .writefn = dbgwcr_write, .raw_writefn = raw_write
6314 REGINFO_SENTINEL
6316 define_arm_cp_regs(cpu, dbgregs);
6320 /* We don't know until after realize whether there's a GICv3
6321 * attached, and that is what registers the gicv3 sysregs.
6322 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6323 * at runtime.
6325 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6327 ARMCPU *cpu = env_archcpu(env);
6328 uint64_t pfr1 = cpu->id_pfr1;
6330 if (env->gicv3state) {
6331 pfr1 |= 1 << 28;
6333 return pfr1;
6336 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6338 ARMCPU *cpu = env_archcpu(env);
6339 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6341 if (env->gicv3state) {
6342 pfr0 |= 1 << 24;
6344 return pfr0;
6347 /* Shared logic between LORID and the rest of the LOR* registers.
6348 * Secure state has already been delt with.
6350 static CPAccessResult access_lor_ns(CPUARMState *env)
6352 int el = arm_current_el(env);
6354 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6355 return CP_ACCESS_TRAP_EL2;
6357 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6358 return CP_ACCESS_TRAP_EL3;
6360 return CP_ACCESS_OK;
6363 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
6364 bool isread)
6366 if (arm_is_secure_below_el3(env)) {
6367 /* Access ok in secure mode. */
6368 return CP_ACCESS_OK;
6370 return access_lor_ns(env);
6373 static CPAccessResult access_lor_other(CPUARMState *env,
6374 const ARMCPRegInfo *ri, bool isread)
6376 if (arm_is_secure_below_el3(env)) {
6377 /* Access denied in secure mode. */
6378 return CP_ACCESS_TRAP;
6380 return access_lor_ns(env);
6384 * A trivial implementation of ARMv8.1-LOR leaves all of these
6385 * registers fixed at 0, which indicates that there are zero
6386 * supported Limited Ordering regions.
6388 static const ARMCPRegInfo lor_reginfo[] = {
6389 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6390 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6391 .access = PL1_RW, .accessfn = access_lor_other,
6392 .type = ARM_CP_CONST, .resetvalue = 0 },
6393 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6394 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6395 .access = PL1_RW, .accessfn = access_lor_other,
6396 .type = ARM_CP_CONST, .resetvalue = 0 },
6397 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6398 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6399 .access = PL1_RW, .accessfn = access_lor_other,
6400 .type = ARM_CP_CONST, .resetvalue = 0 },
6401 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6402 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6403 .access = PL1_RW, .accessfn = access_lor_other,
6404 .type = ARM_CP_CONST, .resetvalue = 0 },
6405 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6406 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6407 .access = PL1_R, .accessfn = access_lorid,
6408 .type = ARM_CP_CONST, .resetvalue = 0 },
6409 REGINFO_SENTINEL
6412 #ifdef TARGET_AARCH64
6413 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6414 bool isread)
6416 int el = arm_current_el(env);
6418 if (el < 2 &&
6419 arm_feature(env, ARM_FEATURE_EL2) &&
6420 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6421 return CP_ACCESS_TRAP_EL2;
6423 if (el < 3 &&
6424 arm_feature(env, ARM_FEATURE_EL3) &&
6425 !(env->cp15.scr_el3 & SCR_APK)) {
6426 return CP_ACCESS_TRAP_EL3;
6428 return CP_ACCESS_OK;
6431 static const ARMCPRegInfo pauth_reginfo[] = {
6432 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6433 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6434 .access = PL1_RW, .accessfn = access_pauth,
6435 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6436 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6437 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6438 .access = PL1_RW, .accessfn = access_pauth,
6439 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6440 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6441 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6442 .access = PL1_RW, .accessfn = access_pauth,
6443 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6444 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6445 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6446 .access = PL1_RW, .accessfn = access_pauth,
6447 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6448 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6449 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6450 .access = PL1_RW, .accessfn = access_pauth,
6451 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6452 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6453 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6454 .access = PL1_RW, .accessfn = access_pauth,
6455 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6456 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6457 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6458 .access = PL1_RW, .accessfn = access_pauth,
6459 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6460 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6461 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6462 .access = PL1_RW, .accessfn = access_pauth,
6463 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6464 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6465 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6466 .access = PL1_RW, .accessfn = access_pauth,
6467 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6468 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6469 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6470 .access = PL1_RW, .accessfn = access_pauth,
6471 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6472 REGINFO_SENTINEL
6475 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6477 Error *err = NULL;
6478 uint64_t ret;
6480 /* Success sets NZCV = 0000. */
6481 env->NF = env->CF = env->VF = 0, env->ZF = 1;
6483 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6485 * ??? Failed, for unknown reasons in the crypto subsystem.
6486 * The best we can do is log the reason and return the
6487 * timed-out indication to the guest. There is no reason
6488 * we know to expect this failure to be transitory, so the
6489 * guest may well hang retrying the operation.
6491 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6492 ri->name, error_get_pretty(err));
6493 error_free(err);
6495 env->ZF = 0; /* NZCF = 0100 */
6496 return 0;
6498 return ret;
6501 /* We do not support re-seeding, so the two registers operate the same. */
6502 static const ARMCPRegInfo rndr_reginfo[] = {
6503 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6504 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6505 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6506 .access = PL0_R, .readfn = rndr_readfn },
6507 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6508 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6509 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6510 .access = PL0_R, .readfn = rndr_readfn },
6511 REGINFO_SENTINEL
6514 #ifndef CONFIG_USER_ONLY
6515 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6516 uint64_t value)
6518 ARMCPU *cpu = env_archcpu(env);
6519 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6520 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6521 uint64_t vaddr_in = (uint64_t) value;
6522 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6523 void *haddr;
6524 int mem_idx = cpu_mmu_index(env, false);
6526 /* This won't be crossing page boundaries */
6527 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6528 if (haddr) {
6530 ram_addr_t offset;
6531 MemoryRegion *mr;
6533 /* RCU lock is already being held */
6534 mr = memory_region_from_host(haddr, &offset);
6536 if (mr) {
6537 memory_region_do_writeback(mr, offset, dline_size);
6542 static const ARMCPRegInfo dcpop_reg[] = {
6543 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6544 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6545 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6546 .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn },
6547 REGINFO_SENTINEL
6550 static const ARMCPRegInfo dcpodp_reg[] = {
6551 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6552 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6553 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6554 .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn },
6555 REGINFO_SENTINEL
6557 #endif /*CONFIG_USER_ONLY*/
6559 #endif
6561 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
6562 bool isread)
6564 int el = arm_current_el(env);
6566 if (el == 0) {
6567 uint64_t sctlr = arm_sctlr(env, el);
6568 if (!(sctlr & SCTLR_EnRCTX)) {
6569 return CP_ACCESS_TRAP;
6571 } else if (el == 1) {
6572 uint64_t hcr = arm_hcr_el2_eff(env);
6573 if (hcr & HCR_NV) {
6574 return CP_ACCESS_TRAP_EL2;
6577 return CP_ACCESS_OK;
6580 static const ARMCPRegInfo predinv_reginfo[] = {
6581 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
6582 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
6583 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6584 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
6585 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
6586 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6587 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
6588 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
6589 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6591 * Note the AArch32 opcodes have a different OPC1.
6593 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
6594 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
6595 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6596 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
6597 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
6598 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6599 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
6600 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
6601 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6602 REGINFO_SENTINEL
6605 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6606 bool isread)
6608 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
6609 return CP_ACCESS_TRAP_EL2;
6612 return CP_ACCESS_OK;
6615 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6616 bool isread)
6618 if (arm_feature(env, ARM_FEATURE_V8)) {
6619 return access_aa64_tid3(env, ri, isread);
6622 return CP_ACCESS_OK;
6625 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
6626 bool isread)
6628 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
6629 return CP_ACCESS_TRAP_EL2;
6632 return CP_ACCESS_OK;
6635 static const ARMCPRegInfo jazelle_regs[] = {
6636 { .name = "JIDR",
6637 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
6638 .access = PL1_R, .accessfn = access_jazelle,
6639 .type = ARM_CP_CONST, .resetvalue = 0 },
6640 { .name = "JOSCR",
6641 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
6642 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6643 { .name = "JMCR",
6644 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
6645 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6646 REGINFO_SENTINEL
6649 static const ARMCPRegInfo vhe_reginfo[] = {
6650 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
6651 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
6652 .access = PL2_RW,
6653 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
6654 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
6655 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
6656 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
6657 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
6658 #ifndef CONFIG_USER_ONLY
6659 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6660 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
6661 .fieldoffset =
6662 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
6663 .type = ARM_CP_IO, .access = PL2_RW,
6664 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
6665 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6666 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
6667 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6668 .resetfn = gt_hv_timer_reset,
6669 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
6670 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6671 .type = ARM_CP_IO,
6672 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
6673 .access = PL2_RW,
6674 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
6675 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
6676 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
6677 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
6678 .type = ARM_CP_IO | ARM_CP_ALIAS,
6679 .access = PL2_RW, .accessfn = e2h_access,
6680 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
6681 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
6682 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
6683 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
6684 .type = ARM_CP_IO | ARM_CP_ALIAS,
6685 .access = PL2_RW, .accessfn = e2h_access,
6686 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
6687 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
6688 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
6689 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
6690 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
6691 .access = PL2_RW, .accessfn = e2h_access,
6692 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
6693 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
6694 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
6695 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
6696 .access = PL2_RW, .accessfn = e2h_access,
6697 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
6698 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
6699 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
6700 .type = ARM_CP_IO | ARM_CP_ALIAS,
6701 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
6702 .access = PL2_RW, .accessfn = e2h_access,
6703 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
6704 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
6705 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
6706 .type = ARM_CP_IO | ARM_CP_ALIAS,
6707 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
6708 .access = PL2_RW, .accessfn = e2h_access,
6709 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
6710 #endif
6711 REGINFO_SENTINEL
6714 #ifndef CONFIG_USER_ONLY
6715 static const ARMCPRegInfo ats1e1_reginfo[] = {
6716 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
6717 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
6718 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
6719 .writefn = ats_write64 },
6720 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
6721 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
6722 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
6723 .writefn = ats_write64 },
6724 REGINFO_SENTINEL
6727 static const ARMCPRegInfo ats1cp_reginfo[] = {
6728 { .name = "ATS1CPRP",
6729 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
6730 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
6731 .writefn = ats_write },
6732 { .name = "ATS1CPWP",
6733 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
6734 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
6735 .writefn = ats_write },
6736 REGINFO_SENTINEL
6738 #endif
6740 void register_cp_regs_for_features(ARMCPU *cpu)
6742 /* Register all the coprocessor registers based on feature bits */
6743 CPUARMState *env = &cpu->env;
6744 if (arm_feature(env, ARM_FEATURE_M)) {
6745 /* M profile has no coprocessor registers */
6746 return;
6749 define_arm_cp_regs(cpu, cp_reginfo);
6750 if (!arm_feature(env, ARM_FEATURE_V8)) {
6751 /* Must go early as it is full of wildcards that may be
6752 * overridden by later definitions.
6754 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
6757 if (arm_feature(env, ARM_FEATURE_V6)) {
6758 /* The ID registers all have impdef reset values */
6759 ARMCPRegInfo v6_idregs[] = {
6760 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
6761 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6762 .access = PL1_R, .type = ARM_CP_CONST,
6763 .accessfn = access_aa32_tid3,
6764 .resetvalue = cpu->id_pfr0 },
6765 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
6766 * the value of the GIC field until after we define these regs.
6768 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
6769 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
6770 .access = PL1_R, .type = ARM_CP_NO_RAW,
6771 .accessfn = access_aa32_tid3,
6772 .readfn = id_pfr1_read,
6773 .writefn = arm_cp_write_ignore },
6774 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
6775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
6776 .access = PL1_R, .type = ARM_CP_CONST,
6777 .accessfn = access_aa32_tid3,
6778 .resetvalue = cpu->id_dfr0 },
6779 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
6780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
6781 .access = PL1_R, .type = ARM_CP_CONST,
6782 .accessfn = access_aa32_tid3,
6783 .resetvalue = cpu->id_afr0 },
6784 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
6785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
6786 .access = PL1_R, .type = ARM_CP_CONST,
6787 .accessfn = access_aa32_tid3,
6788 .resetvalue = cpu->id_mmfr0 },
6789 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
6790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
6791 .access = PL1_R, .type = ARM_CP_CONST,
6792 .accessfn = access_aa32_tid3,
6793 .resetvalue = cpu->id_mmfr1 },
6794 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
6795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
6796 .access = PL1_R, .type = ARM_CP_CONST,
6797 .accessfn = access_aa32_tid3,
6798 .resetvalue = cpu->id_mmfr2 },
6799 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
6800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
6801 .access = PL1_R, .type = ARM_CP_CONST,
6802 .accessfn = access_aa32_tid3,
6803 .resetvalue = cpu->id_mmfr3 },
6804 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
6805 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6806 .access = PL1_R, .type = ARM_CP_CONST,
6807 .accessfn = access_aa32_tid3,
6808 .resetvalue = cpu->isar.id_isar0 },
6809 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
6810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
6811 .access = PL1_R, .type = ARM_CP_CONST,
6812 .accessfn = access_aa32_tid3,
6813 .resetvalue = cpu->isar.id_isar1 },
6814 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
6815 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6816 .access = PL1_R, .type = ARM_CP_CONST,
6817 .accessfn = access_aa32_tid3,
6818 .resetvalue = cpu->isar.id_isar2 },
6819 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
6820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
6821 .access = PL1_R, .type = ARM_CP_CONST,
6822 .accessfn = access_aa32_tid3,
6823 .resetvalue = cpu->isar.id_isar3 },
6824 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
6825 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
6826 .access = PL1_R, .type = ARM_CP_CONST,
6827 .accessfn = access_aa32_tid3,
6828 .resetvalue = cpu->isar.id_isar4 },
6829 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
6830 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
6831 .access = PL1_R, .type = ARM_CP_CONST,
6832 .accessfn = access_aa32_tid3,
6833 .resetvalue = cpu->isar.id_isar5 },
6834 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
6835 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
6836 .access = PL1_R, .type = ARM_CP_CONST,
6837 .accessfn = access_aa32_tid3,
6838 .resetvalue = cpu->id_mmfr4 },
6839 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
6840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
6841 .access = PL1_R, .type = ARM_CP_CONST,
6842 .accessfn = access_aa32_tid3,
6843 .resetvalue = cpu->isar.id_isar6 },
6844 REGINFO_SENTINEL
6846 define_arm_cp_regs(cpu, v6_idregs);
6847 define_arm_cp_regs(cpu, v6_cp_reginfo);
6848 } else {
6849 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
6851 if (arm_feature(env, ARM_FEATURE_V6K)) {
6852 define_arm_cp_regs(cpu, v6k_cp_reginfo);
6854 if (arm_feature(env, ARM_FEATURE_V7MP) &&
6855 !arm_feature(env, ARM_FEATURE_PMSA)) {
6856 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
6858 if (arm_feature(env, ARM_FEATURE_V7VE)) {
6859 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
6861 if (arm_feature(env, ARM_FEATURE_V7)) {
6862 /* v7 performance monitor control register: same implementor
6863 * field as main ID register, and we implement four counters in
6864 * addition to the cycle count register.
6866 unsigned int i, pmcrn = 4;
6867 ARMCPRegInfo pmcr = {
6868 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6869 .access = PL0_RW,
6870 .type = ARM_CP_IO | ARM_CP_ALIAS,
6871 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6872 .accessfn = pmreg_access, .writefn = pmcr_write,
6873 .raw_writefn = raw_write,
6875 ARMCPRegInfo pmcr64 = {
6876 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6877 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6878 .access = PL0_RW, .accessfn = pmreg_access,
6879 .type = ARM_CP_IO,
6880 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6881 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
6882 .writefn = pmcr_write, .raw_writefn = raw_write,
6884 define_one_arm_cp_reg(cpu, &pmcr);
6885 define_one_arm_cp_reg(cpu, &pmcr64);
6886 for (i = 0; i < pmcrn; i++) {
6887 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6888 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6889 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6890 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6891 ARMCPRegInfo pmev_regs[] = {
6892 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6893 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6894 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6895 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6896 .accessfn = pmreg_access },
6897 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6898 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6899 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6900 .type = ARM_CP_IO,
6901 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6902 .raw_readfn = pmevcntr_rawread,
6903 .raw_writefn = pmevcntr_rawwrite },
6904 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6905 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6906 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6907 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6908 .accessfn = pmreg_access },
6909 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6910 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6911 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6912 .type = ARM_CP_IO,
6913 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6914 .raw_writefn = pmevtyper_rawwrite },
6915 REGINFO_SENTINEL
6917 define_arm_cp_regs(cpu, pmev_regs);
6918 g_free(pmevcntr_name);
6919 g_free(pmevcntr_el0_name);
6920 g_free(pmevtyper_name);
6921 g_free(pmevtyper_el0_name);
6923 ARMCPRegInfo clidr = {
6924 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6925 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
6926 .access = PL1_R, .type = ARM_CP_CONST,
6927 .accessfn = access_aa64_tid2,
6928 .resetvalue = cpu->clidr
6930 define_one_arm_cp_reg(cpu, &clidr);
6931 define_arm_cp_regs(cpu, v7_cp_reginfo);
6932 define_debug_regs(cpu);
6933 } else {
6934 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
6936 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
6937 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
6938 ARMCPRegInfo v81_pmu_regs[] = {
6939 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6940 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6941 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6942 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6943 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6944 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6945 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6946 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6947 REGINFO_SENTINEL
6949 define_arm_cp_regs(cpu, v81_pmu_regs);
6951 if (arm_feature(env, ARM_FEATURE_V8)) {
6952 /* AArch64 ID registers, which all have impdef reset values.
6953 * Note that within the ID register ranges the unused slots
6954 * must all RAZ, not UNDEF; future architecture versions may
6955 * define new registers here.
6957 ARMCPRegInfo v8_idregs[] = {
6958 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6959 * know the right value for the GIC field until after we
6960 * define these regs.
6962 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6963 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
6964 .access = PL1_R, .type = ARM_CP_NO_RAW,
6965 .accessfn = access_aa64_tid3,
6966 .readfn = id_aa64pfr0_read,
6967 .writefn = arm_cp_write_ignore },
6968 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6969 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6970 .access = PL1_R, .type = ARM_CP_CONST,
6971 .accessfn = access_aa64_tid3,
6972 .resetvalue = cpu->isar.id_aa64pfr1},
6973 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6974 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6975 .access = PL1_R, .type = ARM_CP_CONST,
6976 .accessfn = access_aa64_tid3,
6977 .resetvalue = 0 },
6978 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6979 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6980 .access = PL1_R, .type = ARM_CP_CONST,
6981 .accessfn = access_aa64_tid3,
6982 .resetvalue = 0 },
6983 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
6984 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6985 .access = PL1_R, .type = ARM_CP_CONST,
6986 .accessfn = access_aa64_tid3,
6987 /* At present, only SVEver == 0 is defined anyway. */
6988 .resetvalue = 0 },
6989 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6990 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6991 .access = PL1_R, .type = ARM_CP_CONST,
6992 .accessfn = access_aa64_tid3,
6993 .resetvalue = 0 },
6994 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6995 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6996 .access = PL1_R, .type = ARM_CP_CONST,
6997 .accessfn = access_aa64_tid3,
6998 .resetvalue = 0 },
6999 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7000 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7001 .access = PL1_R, .type = ARM_CP_CONST,
7002 .accessfn = access_aa64_tid3,
7003 .resetvalue = 0 },
7004 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7005 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7006 .access = PL1_R, .type = ARM_CP_CONST,
7007 .accessfn = access_aa64_tid3,
7008 .resetvalue = cpu->id_aa64dfr0 },
7009 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7011 .access = PL1_R, .type = ARM_CP_CONST,
7012 .accessfn = access_aa64_tid3,
7013 .resetvalue = cpu->id_aa64dfr1 },
7014 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7015 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7016 .access = PL1_R, .type = ARM_CP_CONST,
7017 .accessfn = access_aa64_tid3,
7018 .resetvalue = 0 },
7019 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7020 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7021 .access = PL1_R, .type = ARM_CP_CONST,
7022 .accessfn = access_aa64_tid3,
7023 .resetvalue = 0 },
7024 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7025 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7026 .access = PL1_R, .type = ARM_CP_CONST,
7027 .accessfn = access_aa64_tid3,
7028 .resetvalue = cpu->id_aa64afr0 },
7029 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7031 .access = PL1_R, .type = ARM_CP_CONST,
7032 .accessfn = access_aa64_tid3,
7033 .resetvalue = cpu->id_aa64afr1 },
7034 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7035 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7036 .access = PL1_R, .type = ARM_CP_CONST,
7037 .accessfn = access_aa64_tid3,
7038 .resetvalue = 0 },
7039 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7040 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7041 .access = PL1_R, .type = ARM_CP_CONST,
7042 .accessfn = access_aa64_tid3,
7043 .resetvalue = 0 },
7044 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7045 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7046 .access = PL1_R, .type = ARM_CP_CONST,
7047 .accessfn = access_aa64_tid3,
7048 .resetvalue = cpu->isar.id_aa64isar0 },
7049 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7051 .access = PL1_R, .type = ARM_CP_CONST,
7052 .accessfn = access_aa64_tid3,
7053 .resetvalue = cpu->isar.id_aa64isar1 },
7054 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7055 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7056 .access = PL1_R, .type = ARM_CP_CONST,
7057 .accessfn = access_aa64_tid3,
7058 .resetvalue = 0 },
7059 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7060 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7061 .access = PL1_R, .type = ARM_CP_CONST,
7062 .accessfn = access_aa64_tid3,
7063 .resetvalue = 0 },
7064 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7065 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7066 .access = PL1_R, .type = ARM_CP_CONST,
7067 .accessfn = access_aa64_tid3,
7068 .resetvalue = 0 },
7069 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7071 .access = PL1_R, .type = ARM_CP_CONST,
7072 .accessfn = access_aa64_tid3,
7073 .resetvalue = 0 },
7074 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7075 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7076 .access = PL1_R, .type = ARM_CP_CONST,
7077 .accessfn = access_aa64_tid3,
7078 .resetvalue = 0 },
7079 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7080 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7081 .access = PL1_R, .type = ARM_CP_CONST,
7082 .accessfn = access_aa64_tid3,
7083 .resetvalue = 0 },
7084 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7085 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7086 .access = PL1_R, .type = ARM_CP_CONST,
7087 .accessfn = access_aa64_tid3,
7088 .resetvalue = cpu->isar.id_aa64mmfr0 },
7089 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7091 .access = PL1_R, .type = ARM_CP_CONST,
7092 .accessfn = access_aa64_tid3,
7093 .resetvalue = cpu->isar.id_aa64mmfr1 },
7094 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7095 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7096 .access = PL1_R, .type = ARM_CP_CONST,
7097 .accessfn = access_aa64_tid3,
7098 .resetvalue = cpu->isar.id_aa64mmfr2 },
7099 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7100 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7101 .access = PL1_R, .type = ARM_CP_CONST,
7102 .accessfn = access_aa64_tid3,
7103 .resetvalue = 0 },
7104 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7105 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7106 .access = PL1_R, .type = ARM_CP_CONST,
7107 .accessfn = access_aa64_tid3,
7108 .resetvalue = 0 },
7109 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7111 .access = PL1_R, .type = ARM_CP_CONST,
7112 .accessfn = access_aa64_tid3,
7113 .resetvalue = 0 },
7114 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7115 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7116 .access = PL1_R, .type = ARM_CP_CONST,
7117 .accessfn = access_aa64_tid3,
7118 .resetvalue = 0 },
7119 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7120 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7121 .access = PL1_R, .type = ARM_CP_CONST,
7122 .accessfn = access_aa64_tid3,
7123 .resetvalue = 0 },
7124 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7125 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7126 .access = PL1_R, .type = ARM_CP_CONST,
7127 .accessfn = access_aa64_tid3,
7128 .resetvalue = cpu->isar.mvfr0 },
7129 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7130 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7131 .access = PL1_R, .type = ARM_CP_CONST,
7132 .accessfn = access_aa64_tid3,
7133 .resetvalue = cpu->isar.mvfr1 },
7134 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7135 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7136 .access = PL1_R, .type = ARM_CP_CONST,
7137 .accessfn = access_aa64_tid3,
7138 .resetvalue = cpu->isar.mvfr2 },
7139 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7140 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7141 .access = PL1_R, .type = ARM_CP_CONST,
7142 .accessfn = access_aa64_tid3,
7143 .resetvalue = 0 },
7144 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7145 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7146 .access = PL1_R, .type = ARM_CP_CONST,
7147 .accessfn = access_aa64_tid3,
7148 .resetvalue = 0 },
7149 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7150 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7151 .access = PL1_R, .type = ARM_CP_CONST,
7152 .accessfn = access_aa64_tid3,
7153 .resetvalue = 0 },
7154 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7155 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7156 .access = PL1_R, .type = ARM_CP_CONST,
7157 .accessfn = access_aa64_tid3,
7158 .resetvalue = 0 },
7159 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7160 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7161 .access = PL1_R, .type = ARM_CP_CONST,
7162 .accessfn = access_aa64_tid3,
7163 .resetvalue = 0 },
7164 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7165 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7166 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7167 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7168 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7169 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7170 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7171 .resetvalue = cpu->pmceid0 },
7172 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7173 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7174 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7175 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7176 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7177 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7178 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7179 .resetvalue = cpu->pmceid1 },
7180 REGINFO_SENTINEL
7182 #ifdef CONFIG_USER_ONLY
7183 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7184 { .name = "ID_AA64PFR0_EL1",
7185 .exported_bits = 0x000f000f00ff0000,
7186 .fixed_bits = 0x0000000000000011 },
7187 { .name = "ID_AA64PFR1_EL1",
7188 .exported_bits = 0x00000000000000f0 },
7189 { .name = "ID_AA64PFR*_EL1_RESERVED",
7190 .is_glob = true },
7191 { .name = "ID_AA64ZFR0_EL1" },
7192 { .name = "ID_AA64MMFR0_EL1",
7193 .fixed_bits = 0x00000000ff000000 },
7194 { .name = "ID_AA64MMFR1_EL1" },
7195 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7196 .is_glob = true },
7197 { .name = "ID_AA64DFR0_EL1",
7198 .fixed_bits = 0x0000000000000006 },
7199 { .name = "ID_AA64DFR1_EL1" },
7200 { .name = "ID_AA64DFR*_EL1_RESERVED",
7201 .is_glob = true },
7202 { .name = "ID_AA64AFR*",
7203 .is_glob = true },
7204 { .name = "ID_AA64ISAR0_EL1",
7205 .exported_bits = 0x00fffffff0fffff0 },
7206 { .name = "ID_AA64ISAR1_EL1",
7207 .exported_bits = 0x000000f0ffffffff },
7208 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7209 .is_glob = true },
7210 REGUSERINFO_SENTINEL
7212 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7213 #endif
7214 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7215 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7216 !arm_feature(env, ARM_FEATURE_EL2)) {
7217 ARMCPRegInfo rvbar = {
7218 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7219 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7220 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7222 define_one_arm_cp_reg(cpu, &rvbar);
7224 define_arm_cp_regs(cpu, v8_idregs);
7225 define_arm_cp_regs(cpu, v8_cp_reginfo);
7227 if (arm_feature(env, ARM_FEATURE_EL2)) {
7228 uint64_t vmpidr_def = mpidr_read_val(env);
7229 ARMCPRegInfo vpidr_regs[] = {
7230 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7231 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7232 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7233 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7234 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7235 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7236 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7237 .access = PL2_RW, .resetvalue = cpu->midr,
7238 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7239 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7240 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7241 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7242 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7243 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7244 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7245 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7246 .access = PL2_RW,
7247 .resetvalue = vmpidr_def,
7248 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7249 REGINFO_SENTINEL
7251 define_arm_cp_regs(cpu, vpidr_regs);
7252 define_arm_cp_regs(cpu, el2_cp_reginfo);
7253 if (arm_feature(env, ARM_FEATURE_V8)) {
7254 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7256 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7257 if (!arm_feature(env, ARM_FEATURE_EL3)) {
7258 ARMCPRegInfo rvbar = {
7259 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7260 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7261 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7263 define_one_arm_cp_reg(cpu, &rvbar);
7265 } else {
7266 /* If EL2 is missing but higher ELs are enabled, we need to
7267 * register the no_el2 reginfos.
7269 if (arm_feature(env, ARM_FEATURE_EL3)) {
7270 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7271 * of MIDR_EL1 and MPIDR_EL1.
7273 ARMCPRegInfo vpidr_regs[] = {
7274 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7275 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7276 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
7277 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7278 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7279 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7280 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7281 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
7282 .type = ARM_CP_NO_RAW,
7283 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7284 REGINFO_SENTINEL
7286 define_arm_cp_regs(cpu, vpidr_regs);
7287 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7288 if (arm_feature(env, ARM_FEATURE_V8)) {
7289 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7293 if (arm_feature(env, ARM_FEATURE_EL3)) {
7294 define_arm_cp_regs(cpu, el3_cp_reginfo);
7295 ARMCPRegInfo el3_regs[] = {
7296 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7297 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7298 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7299 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7300 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7301 .access = PL3_RW,
7302 .raw_writefn = raw_write, .writefn = sctlr_write,
7303 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7304 .resetvalue = cpu->reset_sctlr },
7305 REGINFO_SENTINEL
7308 define_arm_cp_regs(cpu, el3_regs);
7310 /* The behaviour of NSACR is sufficiently various that we don't
7311 * try to describe it in a single reginfo:
7312 * if EL3 is 64 bit, then trap to EL3 from S EL1,
7313 * reads as constant 0xc00 from NS EL1 and NS EL2
7314 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7315 * if v7 without EL3, register doesn't exist
7316 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7318 if (arm_feature(env, ARM_FEATURE_EL3)) {
7319 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7320 ARMCPRegInfo nsacr = {
7321 .name = "NSACR", .type = ARM_CP_CONST,
7322 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7323 .access = PL1_RW, .accessfn = nsacr_access,
7324 .resetvalue = 0xc00
7326 define_one_arm_cp_reg(cpu, &nsacr);
7327 } else {
7328 ARMCPRegInfo nsacr = {
7329 .name = "NSACR",
7330 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7331 .access = PL3_RW | PL1_R,
7332 .resetvalue = 0,
7333 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7335 define_one_arm_cp_reg(cpu, &nsacr);
7337 } else {
7338 if (arm_feature(env, ARM_FEATURE_V8)) {
7339 ARMCPRegInfo nsacr = {
7340 .name = "NSACR", .type = ARM_CP_CONST,
7341 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7342 .access = PL1_R,
7343 .resetvalue = 0xc00
7345 define_one_arm_cp_reg(cpu, &nsacr);
7349 if (arm_feature(env, ARM_FEATURE_PMSA)) {
7350 if (arm_feature(env, ARM_FEATURE_V6)) {
7351 /* PMSAv6 not implemented */
7352 assert(arm_feature(env, ARM_FEATURE_V7));
7353 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7354 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7355 } else {
7356 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7358 } else {
7359 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7360 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7361 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
7362 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
7363 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7366 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7367 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7369 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7370 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7372 if (arm_feature(env, ARM_FEATURE_VAPA)) {
7373 define_arm_cp_regs(cpu, vapa_cp_reginfo);
7375 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7376 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7378 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7379 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7381 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7382 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7384 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7385 define_arm_cp_regs(cpu, omap_cp_reginfo);
7387 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7388 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7390 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7391 define_arm_cp_regs(cpu, xscale_cp_reginfo);
7393 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7394 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7396 if (arm_feature(env, ARM_FEATURE_LPAE)) {
7397 define_arm_cp_regs(cpu, lpae_cp_reginfo);
7399 if (cpu_isar_feature(jazelle, cpu)) {
7400 define_arm_cp_regs(cpu, jazelle_regs);
7402 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7403 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7404 * be read-only (ie write causes UNDEF exception).
7407 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7408 /* Pre-v8 MIDR space.
7409 * Note that the MIDR isn't a simple constant register because
7410 * of the TI925 behaviour where writes to another register can
7411 * cause the MIDR value to change.
7413 * Unimplemented registers in the c15 0 0 0 space default to
7414 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7415 * and friends override accordingly.
7417 { .name = "MIDR",
7418 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7419 .access = PL1_R, .resetvalue = cpu->midr,
7420 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7421 .readfn = midr_read,
7422 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7423 .type = ARM_CP_OVERRIDE },
7424 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7425 { .name = "DUMMY",
7426 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7427 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7428 { .name = "DUMMY",
7429 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7430 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7431 { .name = "DUMMY",
7432 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7433 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7434 { .name = "DUMMY",
7435 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7436 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7437 { .name = "DUMMY",
7438 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7439 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7440 REGINFO_SENTINEL
7442 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7443 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7444 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7445 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7446 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7447 .readfn = midr_read },
7448 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7449 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7450 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7451 .access = PL1_R, .resetvalue = cpu->midr },
7452 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7453 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7454 .access = PL1_R, .resetvalue = cpu->midr },
7455 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7456 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7457 .access = PL1_R,
7458 .accessfn = access_aa64_tid1,
7459 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7460 REGINFO_SENTINEL
7462 ARMCPRegInfo id_cp_reginfo[] = {
7463 /* These are common to v8 and pre-v8 */
7464 { .name = "CTR",
7465 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7466 .access = PL1_R, .accessfn = ctr_el0_access,
7467 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7468 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7469 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7470 .access = PL0_R, .accessfn = ctr_el0_access,
7471 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7472 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
7473 { .name = "TCMTR",
7474 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
7475 .access = PL1_R,
7476 .accessfn = access_aa32_tid1,
7477 .type = ARM_CP_CONST, .resetvalue = 0 },
7478 REGINFO_SENTINEL
7480 /* TLBTR is specific to VMSA */
7481 ARMCPRegInfo id_tlbtr_reginfo = {
7482 .name = "TLBTR",
7483 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
7484 .access = PL1_R,
7485 .accessfn = access_aa32_tid1,
7486 .type = ARM_CP_CONST, .resetvalue = 0,
7488 /* MPUIR is specific to PMSA V6+ */
7489 ARMCPRegInfo id_mpuir_reginfo = {
7490 .name = "MPUIR",
7491 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7492 .access = PL1_R, .type = ARM_CP_CONST,
7493 .resetvalue = cpu->pmsav7_dregion << 8
7495 ARMCPRegInfo crn0_wi_reginfo = {
7496 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
7497 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
7498 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
7500 #ifdef CONFIG_USER_ONLY
7501 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
7502 { .name = "MIDR_EL1",
7503 .exported_bits = 0x00000000ffffffff },
7504 { .name = "REVIDR_EL1" },
7505 REGUSERINFO_SENTINEL
7507 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
7508 #endif
7509 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
7510 arm_feature(env, ARM_FEATURE_STRONGARM)) {
7511 ARMCPRegInfo *r;
7512 /* Register the blanket "writes ignored" value first to cover the
7513 * whole space. Then update the specific ID registers to allow write
7514 * access, so that they ignore writes rather than causing them to
7515 * UNDEF.
7517 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
7518 for (r = id_pre_v8_midr_cp_reginfo;
7519 r->type != ARM_CP_SENTINEL; r++) {
7520 r->access = PL1_RW;
7522 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
7523 r->access = PL1_RW;
7525 id_mpuir_reginfo.access = PL1_RW;
7526 id_tlbtr_reginfo.access = PL1_RW;
7528 if (arm_feature(env, ARM_FEATURE_V8)) {
7529 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
7530 } else {
7531 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
7533 define_arm_cp_regs(cpu, id_cp_reginfo);
7534 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
7535 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
7536 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7537 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
7541 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
7542 ARMCPRegInfo mpidr_cp_reginfo[] = {
7543 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
7544 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7545 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
7546 REGINFO_SENTINEL
7548 #ifdef CONFIG_USER_ONLY
7549 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
7550 { .name = "MPIDR_EL1",
7551 .fixed_bits = 0x0000000080000000 },
7552 REGUSERINFO_SENTINEL
7554 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
7555 #endif
7556 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
7559 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
7560 ARMCPRegInfo auxcr_reginfo[] = {
7561 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
7562 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
7563 .access = PL1_RW, .type = ARM_CP_CONST,
7564 .resetvalue = cpu->reset_auxcr },
7565 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
7566 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
7567 .access = PL2_RW, .type = ARM_CP_CONST,
7568 .resetvalue = 0 },
7569 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
7570 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
7571 .access = PL3_RW, .type = ARM_CP_CONST,
7572 .resetvalue = 0 },
7573 REGINFO_SENTINEL
7575 define_arm_cp_regs(cpu, auxcr_reginfo);
7576 if (arm_feature(env, ARM_FEATURE_V8)) {
7577 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
7578 ARMCPRegInfo hactlr2_reginfo = {
7579 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7580 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7581 .access = PL2_RW, .type = ARM_CP_CONST,
7582 .resetvalue = 0
7584 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
7588 if (arm_feature(env, ARM_FEATURE_CBAR)) {
7590 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
7591 * There are two flavours:
7592 * (1) older 32-bit only cores have a simple 32-bit CBAR
7593 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
7594 * 32-bit register visible to AArch32 at a different encoding
7595 * to the "flavour 1" register and with the bits rearranged to
7596 * be able to squash a 64-bit address into the 32-bit view.
7597 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
7598 * in future if we support AArch32-only configs of some of the
7599 * AArch64 cores we might need to add a specific feature flag
7600 * to indicate cores with "flavour 2" CBAR.
7602 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7603 /* 32 bit view is [31:18] 0...0 [43:32]. */
7604 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
7605 | extract64(cpu->reset_cbar, 32, 12);
7606 ARMCPRegInfo cbar_reginfo[] = {
7607 { .name = "CBAR",
7608 .type = ARM_CP_CONST,
7609 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
7610 .access = PL1_R, .resetvalue = cbar32 },
7611 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
7612 .type = ARM_CP_CONST,
7613 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
7614 .access = PL1_R, .resetvalue = cpu->reset_cbar },
7615 REGINFO_SENTINEL
7617 /* We don't implement a r/w 64 bit CBAR currently */
7618 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
7619 define_arm_cp_regs(cpu, cbar_reginfo);
7620 } else {
7621 ARMCPRegInfo cbar = {
7622 .name = "CBAR",
7623 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
7624 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
7625 .fieldoffset = offsetof(CPUARMState,
7626 cp15.c15_config_base_address)
7628 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
7629 cbar.access = PL1_R;
7630 cbar.fieldoffset = 0;
7631 cbar.type = ARM_CP_CONST;
7633 define_one_arm_cp_reg(cpu, &cbar);
7637 if (arm_feature(env, ARM_FEATURE_VBAR)) {
7638 ARMCPRegInfo vbar_cp_reginfo[] = {
7639 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
7640 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
7641 .access = PL1_RW, .writefn = vbar_write,
7642 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
7643 offsetof(CPUARMState, cp15.vbar_ns) },
7644 .resetvalue = 0 },
7645 REGINFO_SENTINEL
7647 define_arm_cp_regs(cpu, vbar_cp_reginfo);
7650 /* Generic registers whose values depend on the implementation */
7652 ARMCPRegInfo sctlr = {
7653 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
7654 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
7655 .access = PL1_RW,
7656 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
7657 offsetof(CPUARMState, cp15.sctlr_ns) },
7658 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
7659 .raw_writefn = raw_write,
7661 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7662 /* Normally we would always end the TB on an SCTLR write, but Linux
7663 * arch/arm/mach-pxa/sleep.S expects two instructions following
7664 * an MMU enable to execute from cache. Imitate this behaviour.
7666 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
7668 define_one_arm_cp_reg(cpu, &sctlr);
7671 if (cpu_isar_feature(aa64_lor, cpu)) {
7672 define_arm_cp_regs(cpu, lor_reginfo);
7674 if (cpu_isar_feature(aa64_pan, cpu)) {
7675 define_one_arm_cp_reg(cpu, &pan_reginfo);
7677 #ifndef CONFIG_USER_ONLY
7678 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
7679 define_arm_cp_regs(cpu, ats1e1_reginfo);
7681 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
7682 define_arm_cp_regs(cpu, ats1cp_reginfo);
7684 #endif
7685 if (cpu_isar_feature(aa64_uao, cpu)) {
7686 define_one_arm_cp_reg(cpu, &uao_reginfo);
7689 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7690 define_arm_cp_regs(cpu, vhe_reginfo);
7693 if (cpu_isar_feature(aa64_sve, cpu)) {
7694 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
7695 if (arm_feature(env, ARM_FEATURE_EL2)) {
7696 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
7697 } else {
7698 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
7700 if (arm_feature(env, ARM_FEATURE_EL3)) {
7701 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
7705 #ifdef TARGET_AARCH64
7706 if (cpu_isar_feature(aa64_pauth, cpu)) {
7707 define_arm_cp_regs(cpu, pauth_reginfo);
7709 if (cpu_isar_feature(aa64_rndr, cpu)) {
7710 define_arm_cp_regs(cpu, rndr_reginfo);
7712 #ifndef CONFIG_USER_ONLY
7713 /* Data Cache clean instructions up to PoP */
7714 if (cpu_isar_feature(aa64_dcpop, cpu)) {
7715 define_one_arm_cp_reg(cpu, dcpop_reg);
7717 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
7718 define_one_arm_cp_reg(cpu, dcpodp_reg);
7721 #endif /*CONFIG_USER_ONLY*/
7722 #endif
7725 * While all v8.0 cpus support aarch64, QEMU does have configurations
7726 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
7727 * which will set ID_ISAR6.
7729 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
7730 ? cpu_isar_feature(aa64_predinv, cpu)
7731 : cpu_isar_feature(aa32_predinv, cpu)) {
7732 define_arm_cp_regs(cpu, predinv_reginfo);
7735 #ifndef CONFIG_USER_ONLY
7737 * Register redirections and aliases must be done last,
7738 * after the registers from the other extensions have been defined.
7740 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7741 define_arm_vh_e2h_redirects_aliases(cpu);
7743 #endif
7746 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
7748 CPUState *cs = CPU(cpu);
7749 CPUARMState *env = &cpu->env;
7751 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7752 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
7753 aarch64_fpu_gdb_set_reg,
7754 34, "aarch64-fpu.xml", 0);
7755 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
7756 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7757 51, "arm-neon.xml", 0);
7758 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
7759 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7760 35, "arm-vfp3.xml", 0);
7761 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
7762 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7763 19, "arm-vfp.xml", 0);
7765 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
7766 arm_gen_dynamic_xml(cs),
7767 "system-registers.xml", 0);
7770 /* Sort alphabetically by type name, except for "any". */
7771 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
7773 ObjectClass *class_a = (ObjectClass *)a;
7774 ObjectClass *class_b = (ObjectClass *)b;
7775 const char *name_a, *name_b;
7777 name_a = object_class_get_name(class_a);
7778 name_b = object_class_get_name(class_b);
7779 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
7780 return 1;
7781 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
7782 return -1;
7783 } else {
7784 return strcmp(name_a, name_b);
7788 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
7790 ObjectClass *oc = data;
7791 const char *typename;
7792 char *name;
7794 typename = object_class_get_name(oc);
7795 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
7796 qemu_printf(" %s\n", name);
7797 g_free(name);
7800 void arm_cpu_list(void)
7802 GSList *list;
7804 list = object_class_get_list(TYPE_ARM_CPU, false);
7805 list = g_slist_sort(list, arm_cpu_list_compare);
7806 qemu_printf("Available CPUs:\n");
7807 g_slist_foreach(list, arm_cpu_list_entry, NULL);
7808 g_slist_free(list);
7811 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
7813 ObjectClass *oc = data;
7814 CpuDefinitionInfoList **cpu_list = user_data;
7815 CpuDefinitionInfoList *entry;
7816 CpuDefinitionInfo *info;
7817 const char *typename;
7819 typename = object_class_get_name(oc);
7820 info = g_malloc0(sizeof(*info));
7821 info->name = g_strndup(typename,
7822 strlen(typename) - strlen("-" TYPE_ARM_CPU));
7823 info->q_typename = g_strdup(typename);
7825 entry = g_malloc0(sizeof(*entry));
7826 entry->value = info;
7827 entry->next = *cpu_list;
7828 *cpu_list = entry;
7831 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
7833 CpuDefinitionInfoList *cpu_list = NULL;
7834 GSList *list;
7836 list = object_class_get_list(TYPE_ARM_CPU, false);
7837 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
7838 g_slist_free(list);
7840 return cpu_list;
7843 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
7844 void *opaque, int state, int secstate,
7845 int crm, int opc1, int opc2,
7846 const char *name)
7848 /* Private utility function for define_one_arm_cp_reg_with_opaque():
7849 * add a single reginfo struct to the hash table.
7851 uint32_t *key = g_new(uint32_t, 1);
7852 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
7853 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
7854 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
7856 r2->name = g_strdup(name);
7857 /* Reset the secure state to the specific incoming state. This is
7858 * necessary as the register may have been defined with both states.
7860 r2->secure = secstate;
7862 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7863 /* Register is banked (using both entries in array).
7864 * Overwriting fieldoffset as the array is only used to define
7865 * banked registers but later only fieldoffset is used.
7867 r2->fieldoffset = r->bank_fieldoffsets[ns];
7870 if (state == ARM_CP_STATE_AA32) {
7871 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7872 /* If the register is banked then we don't need to migrate or
7873 * reset the 32-bit instance in certain cases:
7875 * 1) If the register has both 32-bit and 64-bit instances then we
7876 * can count on the 64-bit instance taking care of the
7877 * non-secure bank.
7878 * 2) If ARMv8 is enabled then we can count on a 64-bit version
7879 * taking care of the secure bank. This requires that separate
7880 * 32 and 64-bit definitions are provided.
7882 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
7883 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7884 r2->type |= ARM_CP_ALIAS;
7886 } else if ((secstate != r->secure) && !ns) {
7887 /* The register is not banked so we only want to allow migration of
7888 * the non-secure instance.
7890 r2->type |= ARM_CP_ALIAS;
7893 if (r->state == ARM_CP_STATE_BOTH) {
7894 /* We assume it is a cp15 register if the .cp field is left unset.
7896 if (r2->cp == 0) {
7897 r2->cp = 15;
7900 #ifdef HOST_WORDS_BIGENDIAN
7901 if (r2->fieldoffset) {
7902 r2->fieldoffset += sizeof(uint32_t);
7904 #endif
7907 if (state == ARM_CP_STATE_AA64) {
7908 /* To allow abbreviation of ARMCPRegInfo
7909 * definitions, we treat cp == 0 as equivalent to
7910 * the value for "standard guest-visible sysreg".
7911 * STATE_BOTH definitions are also always "standard
7912 * sysreg" in their AArch64 view (the .cp value may
7913 * be non-zero for the benefit of the AArch32 view).
7915 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
7916 r2->cp = CP_REG_ARM64_SYSREG_CP;
7918 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
7919 r2->opc0, opc1, opc2);
7920 } else {
7921 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
7923 if (opaque) {
7924 r2->opaque = opaque;
7926 /* reginfo passed to helpers is correct for the actual access,
7927 * and is never ARM_CP_STATE_BOTH:
7929 r2->state = state;
7930 /* Make sure reginfo passed to helpers for wildcarded regs
7931 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
7933 r2->crm = crm;
7934 r2->opc1 = opc1;
7935 r2->opc2 = opc2;
7936 /* By convention, for wildcarded registers only the first
7937 * entry is used for migration; the others are marked as
7938 * ALIAS so we don't try to transfer the register
7939 * multiple times. Special registers (ie NOP/WFI) are
7940 * never migratable and not even raw-accessible.
7942 if ((r->type & ARM_CP_SPECIAL)) {
7943 r2->type |= ARM_CP_NO_RAW;
7945 if (((r->crm == CP_ANY) && crm != 0) ||
7946 ((r->opc1 == CP_ANY) && opc1 != 0) ||
7947 ((r->opc2 == CP_ANY) && opc2 != 0)) {
7948 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
7951 /* Check that raw accesses are either forbidden or handled. Note that
7952 * we can't assert this earlier because the setup of fieldoffset for
7953 * banked registers has to be done first.
7955 if (!(r2->type & ARM_CP_NO_RAW)) {
7956 assert(!raw_accessors_invalid(r2));
7959 /* Overriding of an existing definition must be explicitly
7960 * requested.
7962 if (!(r->type & ARM_CP_OVERRIDE)) {
7963 ARMCPRegInfo *oldreg;
7964 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
7965 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
7966 fprintf(stderr, "Register redefined: cp=%d %d bit "
7967 "crn=%d crm=%d opc1=%d opc2=%d, "
7968 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
7969 r2->crn, r2->crm, r2->opc1, r2->opc2,
7970 oldreg->name, r2->name);
7971 g_assert_not_reached();
7974 g_hash_table_insert(cpu->cp_regs, key, r2);
7978 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
7979 const ARMCPRegInfo *r, void *opaque)
7981 /* Define implementations of coprocessor registers.
7982 * We store these in a hashtable because typically
7983 * there are less than 150 registers in a space which
7984 * is 16*16*16*8*8 = 262144 in size.
7985 * Wildcarding is supported for the crm, opc1 and opc2 fields.
7986 * If a register is defined twice then the second definition is
7987 * used, so this can be used to define some generic registers and
7988 * then override them with implementation specific variations.
7989 * At least one of the original and the second definition should
7990 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7991 * against accidental use.
7993 * The state field defines whether the register is to be
7994 * visible in the AArch32 or AArch64 execution state. If the
7995 * state is set to ARM_CP_STATE_BOTH then we synthesise a
7996 * reginfo structure for the AArch32 view, which sees the lower
7997 * 32 bits of the 64 bit register.
7999 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8000 * be wildcarded. AArch64 registers are always considered to be 64
8001 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8002 * the register, if any.
8004 int crm, opc1, opc2, state;
8005 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8006 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8007 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8008 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8009 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8010 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8011 /* 64 bit registers have only CRm and Opc1 fields */
8012 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8013 /* op0 only exists in the AArch64 encodings */
8014 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8015 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8016 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8017 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8018 * encodes a minimum access level for the register. We roll this
8019 * runtime check into our general permission check code, so check
8020 * here that the reginfo's specified permissions are strict enough
8021 * to encompass the generic architectural permission check.
8023 if (r->state != ARM_CP_STATE_AA32) {
8024 int mask = 0;
8025 switch (r->opc1) {
8026 case 0:
8027 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8028 mask = PL0U_R | PL1_RW;
8029 break;
8030 case 1: case 2:
8031 /* min_EL EL1 */
8032 mask = PL1_RW;
8033 break;
8034 case 3:
8035 /* min_EL EL0 */
8036 mask = PL0_RW;
8037 break;
8038 case 4:
8039 case 5:
8040 /* min_EL EL2 */
8041 mask = PL2_RW;
8042 break;
8043 case 6:
8044 /* min_EL EL3 */
8045 mask = PL3_RW;
8046 break;
8047 case 7:
8048 /* min_EL EL1, secure mode only (we don't check the latter) */
8049 mask = PL1_RW;
8050 break;
8051 default:
8052 /* broken reginfo with out-of-range opc1 */
8053 assert(false);
8054 break;
8056 /* assert our permissions are not too lax (stricter is fine) */
8057 assert((r->access & ~mask) == 0);
8060 /* Check that the register definition has enough info to handle
8061 * reads and writes if they are permitted.
8063 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8064 if (r->access & PL3_R) {
8065 assert((r->fieldoffset ||
8066 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8067 r->readfn);
8069 if (r->access & PL3_W) {
8070 assert((r->fieldoffset ||
8071 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8072 r->writefn);
8075 /* Bad type field probably means missing sentinel at end of reg list */
8076 assert(cptype_valid(r->type));
8077 for (crm = crmmin; crm <= crmmax; crm++) {
8078 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8079 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8080 for (state = ARM_CP_STATE_AA32;
8081 state <= ARM_CP_STATE_AA64; state++) {
8082 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8083 continue;
8085 if (state == ARM_CP_STATE_AA32) {
8086 /* Under AArch32 CP registers can be common
8087 * (same for secure and non-secure world) or banked.
8089 char *name;
8091 switch (r->secure) {
8092 case ARM_CP_SECSTATE_S:
8093 case ARM_CP_SECSTATE_NS:
8094 add_cpreg_to_hashtable(cpu, r, opaque, state,
8095 r->secure, crm, opc1, opc2,
8096 r->name);
8097 break;
8098 default:
8099 name = g_strdup_printf("%s_S", r->name);
8100 add_cpreg_to_hashtable(cpu, r, opaque, state,
8101 ARM_CP_SECSTATE_S,
8102 crm, opc1, opc2, name);
8103 g_free(name);
8104 add_cpreg_to_hashtable(cpu, r, opaque, state,
8105 ARM_CP_SECSTATE_NS,
8106 crm, opc1, opc2, r->name);
8107 break;
8109 } else {
8110 /* AArch64 registers get mapped to non-secure instance
8111 * of AArch32 */
8112 add_cpreg_to_hashtable(cpu, r, opaque, state,
8113 ARM_CP_SECSTATE_NS,
8114 crm, opc1, opc2, r->name);
8122 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8123 const ARMCPRegInfo *regs, void *opaque)
8125 /* Define a whole list of registers */
8126 const ARMCPRegInfo *r;
8127 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8128 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8133 * Modify ARMCPRegInfo for access from userspace.
8135 * This is a data driven modification directed by
8136 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8137 * user-space cannot alter any values and dynamic values pertaining to
8138 * execution state are hidden from user space view anyway.
8140 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8142 const ARMCPRegUserSpaceInfo *m;
8143 ARMCPRegInfo *r;
8145 for (m = mods; m->name; m++) {
8146 GPatternSpec *pat = NULL;
8147 if (m->is_glob) {
8148 pat = g_pattern_spec_new(m->name);
8150 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8151 if (pat && g_pattern_match_string(pat, r->name)) {
8152 r->type = ARM_CP_CONST;
8153 r->access = PL0U_R;
8154 r->resetvalue = 0;
8155 /* continue */
8156 } else if (strcmp(r->name, m->name) == 0) {
8157 r->type = ARM_CP_CONST;
8158 r->access = PL0U_R;
8159 r->resetvalue &= m->exported_bits;
8160 r->resetvalue |= m->fixed_bits;
8161 break;
8164 if (pat) {
8165 g_pattern_spec_free(pat);
8170 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8172 return g_hash_table_lookup(cpregs, &encoded_cp);
8175 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8176 uint64_t value)
8178 /* Helper coprocessor write function for write-ignore registers */
8181 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8183 /* Helper coprocessor write function for read-as-zero registers */
8184 return 0;
8187 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8189 /* Helper coprocessor reset function for do-nothing-on-reset registers */
8192 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8194 /* Return true if it is not valid for us to switch to
8195 * this CPU mode (ie all the UNPREDICTABLE cases in
8196 * the ARM ARM CPSRWriteByInstr pseudocode).
8199 /* Changes to or from Hyp via MSR and CPS are illegal. */
8200 if (write_type == CPSRWriteByInstr &&
8201 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8202 mode == ARM_CPU_MODE_HYP)) {
8203 return 1;
8206 switch (mode) {
8207 case ARM_CPU_MODE_USR:
8208 return 0;
8209 case ARM_CPU_MODE_SYS:
8210 case ARM_CPU_MODE_SVC:
8211 case ARM_CPU_MODE_ABT:
8212 case ARM_CPU_MODE_UND:
8213 case ARM_CPU_MODE_IRQ:
8214 case ARM_CPU_MODE_FIQ:
8215 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8216 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8218 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8219 * and CPS are treated as illegal mode changes.
8221 if (write_type == CPSRWriteByInstr &&
8222 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8223 (arm_hcr_el2_eff(env) & HCR_TGE)) {
8224 return 1;
8226 return 0;
8227 case ARM_CPU_MODE_HYP:
8228 return !arm_feature(env, ARM_FEATURE_EL2)
8229 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
8230 case ARM_CPU_MODE_MON:
8231 return arm_current_el(env) < 3;
8232 default:
8233 return 1;
8237 uint32_t cpsr_read(CPUARMState *env)
8239 int ZF;
8240 ZF = (env->ZF == 0);
8241 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8242 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8243 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8244 | ((env->condexec_bits & 0xfc) << 8)
8245 | (env->GE << 16) | (env->daif & CPSR_AIF);
8248 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8249 CPSRWriteType write_type)
8251 uint32_t changed_daif;
8253 if (mask & CPSR_NZCV) {
8254 env->ZF = (~val) & CPSR_Z;
8255 env->NF = val;
8256 env->CF = (val >> 29) & 1;
8257 env->VF = (val << 3) & 0x80000000;
8259 if (mask & CPSR_Q)
8260 env->QF = ((val & CPSR_Q) != 0);
8261 if (mask & CPSR_T)
8262 env->thumb = ((val & CPSR_T) != 0);
8263 if (mask & CPSR_IT_0_1) {
8264 env->condexec_bits &= ~3;
8265 env->condexec_bits |= (val >> 25) & 3;
8267 if (mask & CPSR_IT_2_7) {
8268 env->condexec_bits &= 3;
8269 env->condexec_bits |= (val >> 8) & 0xfc;
8271 if (mask & CPSR_GE) {
8272 env->GE = (val >> 16) & 0xf;
8275 /* In a V7 implementation that includes the security extensions but does
8276 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8277 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8278 * bits respectively.
8280 * In a V8 implementation, it is permitted for privileged software to
8281 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8283 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8284 arm_feature(env, ARM_FEATURE_EL3) &&
8285 !arm_feature(env, ARM_FEATURE_EL2) &&
8286 !arm_is_secure(env)) {
8288 changed_daif = (env->daif ^ val) & mask;
8290 if (changed_daif & CPSR_A) {
8291 /* Check to see if we are allowed to change the masking of async
8292 * abort exceptions from a non-secure state.
8294 if (!(env->cp15.scr_el3 & SCR_AW)) {
8295 qemu_log_mask(LOG_GUEST_ERROR,
8296 "Ignoring attempt to switch CPSR_A flag from "
8297 "non-secure world with SCR.AW bit clear\n");
8298 mask &= ~CPSR_A;
8302 if (changed_daif & CPSR_F) {
8303 /* Check to see if we are allowed to change the masking of FIQ
8304 * exceptions from a non-secure state.
8306 if (!(env->cp15.scr_el3 & SCR_FW)) {
8307 qemu_log_mask(LOG_GUEST_ERROR,
8308 "Ignoring attempt to switch CPSR_F flag from "
8309 "non-secure world with SCR.FW bit clear\n");
8310 mask &= ~CPSR_F;
8313 /* Check whether non-maskable FIQ (NMFI) support is enabled.
8314 * If this bit is set software is not allowed to mask
8315 * FIQs, but is allowed to set CPSR_F to 0.
8317 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8318 (val & CPSR_F)) {
8319 qemu_log_mask(LOG_GUEST_ERROR,
8320 "Ignoring attempt to enable CPSR_F flag "
8321 "(non-maskable FIQ [NMFI] support enabled)\n");
8322 mask &= ~CPSR_F;
8327 env->daif &= ~(CPSR_AIF & mask);
8328 env->daif |= val & CPSR_AIF & mask;
8330 if (write_type != CPSRWriteRaw &&
8331 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8332 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8333 /* Note that we can only get here in USR mode if this is a
8334 * gdb stub write; for this case we follow the architectural
8335 * behaviour for guest writes in USR mode of ignoring an attempt
8336 * to switch mode. (Those are caught by translate.c for writes
8337 * triggered by guest instructions.)
8339 mask &= ~CPSR_M;
8340 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8341 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8342 * v7, and has defined behaviour in v8:
8343 * + leave CPSR.M untouched
8344 * + allow changes to the other CPSR fields
8345 * + set PSTATE.IL
8346 * For user changes via the GDB stub, we don't set PSTATE.IL,
8347 * as this would be unnecessarily harsh for a user error.
8349 mask &= ~CPSR_M;
8350 if (write_type != CPSRWriteByGDBStub &&
8351 arm_feature(env, ARM_FEATURE_V8)) {
8352 mask |= CPSR_IL;
8353 val |= CPSR_IL;
8355 qemu_log_mask(LOG_GUEST_ERROR,
8356 "Illegal AArch32 mode switch attempt from %s to %s\n",
8357 aarch32_mode_name(env->uncached_cpsr),
8358 aarch32_mode_name(val));
8359 } else {
8360 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8361 write_type == CPSRWriteExceptionReturn ?
8362 "Exception return from AArch32" :
8363 "AArch32 mode switch from",
8364 aarch32_mode_name(env->uncached_cpsr),
8365 aarch32_mode_name(val), env->regs[15]);
8366 switch_mode(env, val & CPSR_M);
8369 mask &= ~CACHED_CPSR_BITS;
8370 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8373 /* Sign/zero extend */
8374 uint32_t HELPER(sxtb16)(uint32_t x)
8376 uint32_t res;
8377 res = (uint16_t)(int8_t)x;
8378 res |= (uint32_t)(int8_t)(x >> 16) << 16;
8379 return res;
8382 uint32_t HELPER(uxtb16)(uint32_t x)
8384 uint32_t res;
8385 res = (uint16_t)(uint8_t)x;
8386 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8387 return res;
8390 int32_t HELPER(sdiv)(int32_t num, int32_t den)
8392 if (den == 0)
8393 return 0;
8394 if (num == INT_MIN && den == -1)
8395 return INT_MIN;
8396 return num / den;
8399 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
8401 if (den == 0)
8402 return 0;
8403 return num / den;
8406 uint32_t HELPER(rbit)(uint32_t x)
8408 return revbit32(x);
8411 #ifdef CONFIG_USER_ONLY
8413 static void switch_mode(CPUARMState *env, int mode)
8415 ARMCPU *cpu = env_archcpu(env);
8417 if (mode != ARM_CPU_MODE_USR) {
8418 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
8422 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8423 uint32_t cur_el, bool secure)
8425 return 1;
8428 void aarch64_sync_64_to_32(CPUARMState *env)
8430 g_assert_not_reached();
8433 #else
8435 static void switch_mode(CPUARMState *env, int mode)
8437 int old_mode;
8438 int i;
8440 old_mode = env->uncached_cpsr & CPSR_M;
8441 if (mode == old_mode)
8442 return;
8444 if (old_mode == ARM_CPU_MODE_FIQ) {
8445 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8446 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
8447 } else if (mode == ARM_CPU_MODE_FIQ) {
8448 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8449 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
8452 i = bank_number(old_mode);
8453 env->banked_r13[i] = env->regs[13];
8454 env->banked_spsr[i] = env->spsr;
8456 i = bank_number(mode);
8457 env->regs[13] = env->banked_r13[i];
8458 env->spsr = env->banked_spsr[i];
8460 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
8461 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
8464 /* Physical Interrupt Target EL Lookup Table
8466 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
8468 * The below multi-dimensional table is used for looking up the target
8469 * exception level given numerous condition criteria. Specifically, the
8470 * target EL is based on SCR and HCR routing controls as well as the
8471 * currently executing EL and secure state.
8473 * Dimensions:
8474 * target_el_table[2][2][2][2][2][4]
8475 * | | | | | +--- Current EL
8476 * | | | | +------ Non-secure(0)/Secure(1)
8477 * | | | +--------- HCR mask override
8478 * | | +------------ SCR exec state control
8479 * | +--------------- SCR mask override
8480 * +------------------ 32-bit(0)/64-bit(1) EL3
8482 * The table values are as such:
8483 * 0-3 = EL0-EL3
8484 * -1 = Cannot occur
8486 * The ARM ARM target EL table includes entries indicating that an "exception
8487 * is not taken". The two cases where this is applicable are:
8488 * 1) An exception is taken from EL3 but the SCR does not have the exception
8489 * routed to EL3.
8490 * 2) An exception is taken from EL2 but the HCR does not have the exception
8491 * routed to EL2.
8492 * In these two cases, the below table contain a target of EL1. This value is
8493 * returned as it is expected that the consumer of the table data will check
8494 * for "target EL >= current EL" to ensure the exception is not taken.
8496 * SCR HCR
8497 * 64 EA AMO From
8498 * BIT IRQ IMO Non-secure Secure
8499 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
8501 static const int8_t target_el_table[2][2][2][2][2][4] = {
8502 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
8503 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
8504 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
8505 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
8506 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
8507 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
8508 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
8509 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
8510 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
8511 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
8512 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
8513 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
8514 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
8515 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
8516 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
8517 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
8521 * Determine the target EL for physical exceptions
8523 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8524 uint32_t cur_el, bool secure)
8526 CPUARMState *env = cs->env_ptr;
8527 bool rw;
8528 bool scr;
8529 bool hcr;
8530 int target_el;
8531 /* Is the highest EL AArch64? */
8532 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
8533 uint64_t hcr_el2;
8535 if (arm_feature(env, ARM_FEATURE_EL3)) {
8536 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
8537 } else {
8538 /* Either EL2 is the highest EL (and so the EL2 register width
8539 * is given by is64); or there is no EL2 or EL3, in which case
8540 * the value of 'rw' does not affect the table lookup anyway.
8542 rw = is64;
8545 hcr_el2 = arm_hcr_el2_eff(env);
8546 switch (excp_idx) {
8547 case EXCP_IRQ:
8548 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
8549 hcr = hcr_el2 & HCR_IMO;
8550 break;
8551 case EXCP_FIQ:
8552 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
8553 hcr = hcr_el2 & HCR_FMO;
8554 break;
8555 default:
8556 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
8557 hcr = hcr_el2 & HCR_AMO;
8558 break;
8562 * For these purposes, TGE and AMO/IMO/FMO both force the
8563 * interrupt to EL2. Fold TGE into the bit extracted above.
8565 hcr |= (hcr_el2 & HCR_TGE) != 0;
8567 /* Perform a table-lookup for the target EL given the current state */
8568 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
8570 assert(target_el > 0);
8572 return target_el;
8575 void arm_log_exception(int idx)
8577 if (qemu_loglevel_mask(CPU_LOG_INT)) {
8578 const char *exc = NULL;
8579 static const char * const excnames[] = {
8580 [EXCP_UDEF] = "Undefined Instruction",
8581 [EXCP_SWI] = "SVC",
8582 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8583 [EXCP_DATA_ABORT] = "Data Abort",
8584 [EXCP_IRQ] = "IRQ",
8585 [EXCP_FIQ] = "FIQ",
8586 [EXCP_BKPT] = "Breakpoint",
8587 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8588 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8589 [EXCP_HVC] = "Hypervisor Call",
8590 [EXCP_HYP_TRAP] = "Hypervisor Trap",
8591 [EXCP_SMC] = "Secure Monitor Call",
8592 [EXCP_VIRQ] = "Virtual IRQ",
8593 [EXCP_VFIQ] = "Virtual FIQ",
8594 [EXCP_SEMIHOST] = "Semihosting call",
8595 [EXCP_NOCP] = "v7M NOCP UsageFault",
8596 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8597 [EXCP_STKOF] = "v8M STKOF UsageFault",
8598 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
8599 [EXCP_LSERR] = "v8M LSERR UsageFault",
8600 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
8603 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8604 exc = excnames[idx];
8606 if (!exc) {
8607 exc = "unknown";
8609 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8614 * Function used to synchronize QEMU's AArch64 register set with AArch32
8615 * register set. This is necessary when switching between AArch32 and AArch64
8616 * execution state.
8618 void aarch64_sync_32_to_64(CPUARMState *env)
8620 int i;
8621 uint32_t mode = env->uncached_cpsr & CPSR_M;
8623 /* We can blanket copy R[0:7] to X[0:7] */
8624 for (i = 0; i < 8; i++) {
8625 env->xregs[i] = env->regs[i];
8629 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8630 * Otherwise, they come from the banked user regs.
8632 if (mode == ARM_CPU_MODE_FIQ) {
8633 for (i = 8; i < 13; i++) {
8634 env->xregs[i] = env->usr_regs[i - 8];
8636 } else {
8637 for (i = 8; i < 13; i++) {
8638 env->xregs[i] = env->regs[i];
8643 * Registers x13-x23 are the various mode SP and FP registers. Registers
8644 * r13 and r14 are only copied if we are in that mode, otherwise we copy
8645 * from the mode banked register.
8647 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8648 env->xregs[13] = env->regs[13];
8649 env->xregs[14] = env->regs[14];
8650 } else {
8651 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8652 /* HYP is an exception in that it is copied from r14 */
8653 if (mode == ARM_CPU_MODE_HYP) {
8654 env->xregs[14] = env->regs[14];
8655 } else {
8656 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
8660 if (mode == ARM_CPU_MODE_HYP) {
8661 env->xregs[15] = env->regs[13];
8662 } else {
8663 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
8666 if (mode == ARM_CPU_MODE_IRQ) {
8667 env->xregs[16] = env->regs[14];
8668 env->xregs[17] = env->regs[13];
8669 } else {
8670 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
8671 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
8674 if (mode == ARM_CPU_MODE_SVC) {
8675 env->xregs[18] = env->regs[14];
8676 env->xregs[19] = env->regs[13];
8677 } else {
8678 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
8679 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
8682 if (mode == ARM_CPU_MODE_ABT) {
8683 env->xregs[20] = env->regs[14];
8684 env->xregs[21] = env->regs[13];
8685 } else {
8686 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
8687 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
8690 if (mode == ARM_CPU_MODE_UND) {
8691 env->xregs[22] = env->regs[14];
8692 env->xregs[23] = env->regs[13];
8693 } else {
8694 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
8695 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
8699 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8700 * mode, then we can copy from r8-r14. Otherwise, we copy from the
8701 * FIQ bank for r8-r14.
8703 if (mode == ARM_CPU_MODE_FIQ) {
8704 for (i = 24; i < 31; i++) {
8705 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
8707 } else {
8708 for (i = 24; i < 29; i++) {
8709 env->xregs[i] = env->fiq_regs[i - 24];
8711 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
8712 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
8715 env->pc = env->regs[15];
8719 * Function used to synchronize QEMU's AArch32 register set with AArch64
8720 * register set. This is necessary when switching between AArch32 and AArch64
8721 * execution state.
8723 void aarch64_sync_64_to_32(CPUARMState *env)
8725 int i;
8726 uint32_t mode = env->uncached_cpsr & CPSR_M;
8728 /* We can blanket copy X[0:7] to R[0:7] */
8729 for (i = 0; i < 8; i++) {
8730 env->regs[i] = env->xregs[i];
8734 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
8735 * Otherwise, we copy x8-x12 into the banked user regs.
8737 if (mode == ARM_CPU_MODE_FIQ) {
8738 for (i = 8; i < 13; i++) {
8739 env->usr_regs[i - 8] = env->xregs[i];
8741 } else {
8742 for (i = 8; i < 13; i++) {
8743 env->regs[i] = env->xregs[i];
8748 * Registers r13 & r14 depend on the current mode.
8749 * If we are in a given mode, we copy the corresponding x registers to r13
8750 * and r14. Otherwise, we copy the x register to the banked r13 and r14
8751 * for the mode.
8753 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8754 env->regs[13] = env->xregs[13];
8755 env->regs[14] = env->xregs[14];
8756 } else {
8757 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
8760 * HYP is an exception in that it does not have its own banked r14 but
8761 * shares the USR r14
8763 if (mode == ARM_CPU_MODE_HYP) {
8764 env->regs[14] = env->xregs[14];
8765 } else {
8766 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
8770 if (mode == ARM_CPU_MODE_HYP) {
8771 env->regs[13] = env->xregs[15];
8772 } else {
8773 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
8776 if (mode == ARM_CPU_MODE_IRQ) {
8777 env->regs[14] = env->xregs[16];
8778 env->regs[13] = env->xregs[17];
8779 } else {
8780 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
8781 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
8784 if (mode == ARM_CPU_MODE_SVC) {
8785 env->regs[14] = env->xregs[18];
8786 env->regs[13] = env->xregs[19];
8787 } else {
8788 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
8789 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
8792 if (mode == ARM_CPU_MODE_ABT) {
8793 env->regs[14] = env->xregs[20];
8794 env->regs[13] = env->xregs[21];
8795 } else {
8796 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
8797 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
8800 if (mode == ARM_CPU_MODE_UND) {
8801 env->regs[14] = env->xregs[22];
8802 env->regs[13] = env->xregs[23];
8803 } else {
8804 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
8805 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
8808 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8809 * mode, then we can copy to r8-r14. Otherwise, we copy to the
8810 * FIQ bank for r8-r14.
8812 if (mode == ARM_CPU_MODE_FIQ) {
8813 for (i = 24; i < 31; i++) {
8814 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
8816 } else {
8817 for (i = 24; i < 29; i++) {
8818 env->fiq_regs[i - 24] = env->xregs[i];
8820 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
8821 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
8824 env->regs[15] = env->pc;
8827 static void take_aarch32_exception(CPUARMState *env, int new_mode,
8828 uint32_t mask, uint32_t offset,
8829 uint32_t newpc)
8831 int new_el;
8833 /* Change the CPU state so as to actually take the exception. */
8834 switch_mode(env, new_mode);
8835 new_el = arm_current_el(env);
8838 * For exceptions taken to AArch32 we must clear the SS bit in both
8839 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8841 env->uncached_cpsr &= ~PSTATE_SS;
8842 env->spsr = cpsr_read(env);
8843 /* Clear IT bits. */
8844 env->condexec_bits = 0;
8845 /* Switch to the new mode, and to the correct instruction set. */
8846 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8847 /* Set new mode endianness */
8848 env->uncached_cpsr &= ~CPSR_E;
8849 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
8850 env->uncached_cpsr |= CPSR_E;
8852 /* J and IL must always be cleared for exception entry */
8853 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
8854 env->daif |= mask;
8856 if (new_mode == ARM_CPU_MODE_HYP) {
8857 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
8858 env->elr_el[2] = env->regs[15];
8859 } else {
8860 /* CPSR.PAN is normally preserved preserved unless... */
8861 if (cpu_isar_feature(aa64_pan, env_archcpu(env))) {
8862 switch (new_el) {
8863 case 3:
8864 if (!arm_is_secure_below_el3(env)) {
8865 /* ... the target is EL3, from non-secure state. */
8866 env->uncached_cpsr &= ~CPSR_PAN;
8867 break;
8869 /* ... the target is EL3, from secure state ... */
8870 /* fall through */
8871 case 1:
8872 /* ... the target is EL1 and SCTLR.SPAN is 0. */
8873 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
8874 env->uncached_cpsr |= CPSR_PAN;
8876 break;
8880 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8881 * and we should just guard the thumb mode on V4
8883 if (arm_feature(env, ARM_FEATURE_V4T)) {
8884 env->thumb =
8885 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8887 env->regs[14] = env->regs[15] + offset;
8889 env->regs[15] = newpc;
8890 arm_rebuild_hflags(env);
8893 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
8896 * Handle exception entry to Hyp mode; this is sufficiently
8897 * different to entry to other AArch32 modes that we handle it
8898 * separately here.
8900 * The vector table entry used is always the 0x14 Hyp mode entry point,
8901 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8902 * The offset applied to the preferred return address is always zero
8903 * (see DDI0487C.a section G1.12.3).
8904 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8906 uint32_t addr, mask;
8907 ARMCPU *cpu = ARM_CPU(cs);
8908 CPUARMState *env = &cpu->env;
8910 switch (cs->exception_index) {
8911 case EXCP_UDEF:
8912 addr = 0x04;
8913 break;
8914 case EXCP_SWI:
8915 addr = 0x14;
8916 break;
8917 case EXCP_BKPT:
8918 /* Fall through to prefetch abort. */
8919 case EXCP_PREFETCH_ABORT:
8920 env->cp15.ifar_s = env->exception.vaddress;
8921 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8922 (uint32_t)env->exception.vaddress);
8923 addr = 0x0c;
8924 break;
8925 case EXCP_DATA_ABORT:
8926 env->cp15.dfar_s = env->exception.vaddress;
8927 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
8928 (uint32_t)env->exception.vaddress);
8929 addr = 0x10;
8930 break;
8931 case EXCP_IRQ:
8932 addr = 0x18;
8933 break;
8934 case EXCP_FIQ:
8935 addr = 0x1c;
8936 break;
8937 case EXCP_HVC:
8938 addr = 0x08;
8939 break;
8940 case EXCP_HYP_TRAP:
8941 addr = 0x14;
8942 break;
8943 default:
8944 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8947 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
8948 if (!arm_feature(env, ARM_FEATURE_V8)) {
8950 * QEMU syndrome values are v8-style. v7 has the IL bit
8951 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
8952 * If this is a v7 CPU, squash the IL bit in those cases.
8954 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
8955 (cs->exception_index == EXCP_DATA_ABORT &&
8956 !(env->exception.syndrome & ARM_EL_ISV)) ||
8957 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
8958 env->exception.syndrome &= ~ARM_EL_IL;
8961 env->cp15.esr_el[2] = env->exception.syndrome;
8964 if (arm_current_el(env) != 2 && addr < 0x14) {
8965 addr = 0x14;
8968 mask = 0;
8969 if (!(env->cp15.scr_el3 & SCR_EA)) {
8970 mask |= CPSR_A;
8972 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
8973 mask |= CPSR_I;
8975 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
8976 mask |= CPSR_F;
8979 addr += env->cp15.hvbar;
8981 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
8984 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
8986 ARMCPU *cpu = ARM_CPU(cs);
8987 CPUARMState *env = &cpu->env;
8988 uint32_t addr;
8989 uint32_t mask;
8990 int new_mode;
8991 uint32_t offset;
8992 uint32_t moe;
8994 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8995 switch (syn_get_ec(env->exception.syndrome)) {
8996 case EC_BREAKPOINT:
8997 case EC_BREAKPOINT_SAME_EL:
8998 moe = 1;
8999 break;
9000 case EC_WATCHPOINT:
9001 case EC_WATCHPOINT_SAME_EL:
9002 moe = 10;
9003 break;
9004 case EC_AA32_BKPT:
9005 moe = 3;
9006 break;
9007 case EC_VECTORCATCH:
9008 moe = 5;
9009 break;
9010 default:
9011 moe = 0;
9012 break;
9015 if (moe) {
9016 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9019 if (env->exception.target_el == 2) {
9020 arm_cpu_do_interrupt_aarch32_hyp(cs);
9021 return;
9024 switch (cs->exception_index) {
9025 case EXCP_UDEF:
9026 new_mode = ARM_CPU_MODE_UND;
9027 addr = 0x04;
9028 mask = CPSR_I;
9029 if (env->thumb)
9030 offset = 2;
9031 else
9032 offset = 4;
9033 break;
9034 case EXCP_SWI:
9035 new_mode = ARM_CPU_MODE_SVC;
9036 addr = 0x08;
9037 mask = CPSR_I;
9038 /* The PC already points to the next instruction. */
9039 offset = 0;
9040 break;
9041 case EXCP_BKPT:
9042 /* Fall through to prefetch abort. */
9043 case EXCP_PREFETCH_ABORT:
9044 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9045 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9046 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9047 env->exception.fsr, (uint32_t)env->exception.vaddress);
9048 new_mode = ARM_CPU_MODE_ABT;
9049 addr = 0x0c;
9050 mask = CPSR_A | CPSR_I;
9051 offset = 4;
9052 break;
9053 case EXCP_DATA_ABORT:
9054 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9055 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9056 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9057 env->exception.fsr,
9058 (uint32_t)env->exception.vaddress);
9059 new_mode = ARM_CPU_MODE_ABT;
9060 addr = 0x10;
9061 mask = CPSR_A | CPSR_I;
9062 offset = 8;
9063 break;
9064 case EXCP_IRQ:
9065 new_mode = ARM_CPU_MODE_IRQ;
9066 addr = 0x18;
9067 /* Disable IRQ and imprecise data aborts. */
9068 mask = CPSR_A | CPSR_I;
9069 offset = 4;
9070 if (env->cp15.scr_el3 & SCR_IRQ) {
9071 /* IRQ routed to monitor mode */
9072 new_mode = ARM_CPU_MODE_MON;
9073 mask |= CPSR_F;
9075 break;
9076 case EXCP_FIQ:
9077 new_mode = ARM_CPU_MODE_FIQ;
9078 addr = 0x1c;
9079 /* Disable FIQ, IRQ and imprecise data aborts. */
9080 mask = CPSR_A | CPSR_I | CPSR_F;
9081 if (env->cp15.scr_el3 & SCR_FIQ) {
9082 /* FIQ routed to monitor mode */
9083 new_mode = ARM_CPU_MODE_MON;
9085 offset = 4;
9086 break;
9087 case EXCP_VIRQ:
9088 new_mode = ARM_CPU_MODE_IRQ;
9089 addr = 0x18;
9090 /* Disable IRQ and imprecise data aborts. */
9091 mask = CPSR_A | CPSR_I;
9092 offset = 4;
9093 break;
9094 case EXCP_VFIQ:
9095 new_mode = ARM_CPU_MODE_FIQ;
9096 addr = 0x1c;
9097 /* Disable FIQ, IRQ and imprecise data aborts. */
9098 mask = CPSR_A | CPSR_I | CPSR_F;
9099 offset = 4;
9100 break;
9101 case EXCP_SMC:
9102 new_mode = ARM_CPU_MODE_MON;
9103 addr = 0x08;
9104 mask = CPSR_A | CPSR_I | CPSR_F;
9105 offset = 0;
9106 break;
9107 default:
9108 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9109 return; /* Never happens. Keep compiler happy. */
9112 if (new_mode == ARM_CPU_MODE_MON) {
9113 addr += env->cp15.mvbar;
9114 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9115 /* High vectors. When enabled, base address cannot be remapped. */
9116 addr += 0xffff0000;
9117 } else {
9118 /* ARM v7 architectures provide a vector base address register to remap
9119 * the interrupt vector table.
9120 * This register is only followed in non-monitor mode, and is banked.
9121 * Note: only bits 31:5 are valid.
9123 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9126 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9127 env->cp15.scr_el3 &= ~SCR_NS;
9130 take_aarch32_exception(env, new_mode, mask, offset, addr);
9133 /* Handle exception entry to a target EL which is using AArch64 */
9134 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9136 ARMCPU *cpu = ARM_CPU(cs);
9137 CPUARMState *env = &cpu->env;
9138 unsigned int new_el = env->exception.target_el;
9139 target_ulong addr = env->cp15.vbar_el[new_el];
9140 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9141 unsigned int old_mode;
9142 unsigned int cur_el = arm_current_el(env);
9145 * Note that new_el can never be 0. If cur_el is 0, then
9146 * el0_a64 is is_a64(), else el0_a64 is ignored.
9148 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9150 if (cur_el < new_el) {
9151 /* Entry vector offset depends on whether the implemented EL
9152 * immediately lower than the target level is using AArch32 or AArch64
9154 bool is_aa64;
9155 uint64_t hcr;
9157 switch (new_el) {
9158 case 3:
9159 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9160 break;
9161 case 2:
9162 hcr = arm_hcr_el2_eff(env);
9163 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9164 is_aa64 = (hcr & HCR_RW) != 0;
9165 break;
9167 /* fall through */
9168 case 1:
9169 is_aa64 = is_a64(env);
9170 break;
9171 default:
9172 g_assert_not_reached();
9175 if (is_aa64) {
9176 addr += 0x400;
9177 } else {
9178 addr += 0x600;
9180 } else if (pstate_read(env) & PSTATE_SP) {
9181 addr += 0x200;
9184 switch (cs->exception_index) {
9185 case EXCP_PREFETCH_ABORT:
9186 case EXCP_DATA_ABORT:
9187 env->cp15.far_el[new_el] = env->exception.vaddress;
9188 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9189 env->cp15.far_el[new_el]);
9190 /* fall through */
9191 case EXCP_BKPT:
9192 case EXCP_UDEF:
9193 case EXCP_SWI:
9194 case EXCP_HVC:
9195 case EXCP_HYP_TRAP:
9196 case EXCP_SMC:
9197 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9199 * QEMU internal FP/SIMD syndromes from AArch32 include the
9200 * TA and coproc fields which are only exposed if the exception
9201 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9202 * AArch64 format syndrome.
9204 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9206 env->cp15.esr_el[new_el] = env->exception.syndrome;
9207 break;
9208 case EXCP_IRQ:
9209 case EXCP_VIRQ:
9210 addr += 0x80;
9211 break;
9212 case EXCP_FIQ:
9213 case EXCP_VFIQ:
9214 addr += 0x100;
9215 break;
9216 default:
9217 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9220 if (is_a64(env)) {
9221 old_mode = pstate_read(env);
9222 aarch64_save_sp(env, arm_current_el(env));
9223 env->elr_el[new_el] = env->pc;
9224 } else {
9225 old_mode = cpsr_read(env);
9226 env->elr_el[new_el] = env->regs[15];
9228 aarch64_sync_32_to_64(env);
9230 env->condexec_bits = 0;
9232 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9234 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9235 env->elr_el[new_el]);
9237 if (cpu_isar_feature(aa64_pan, cpu)) {
9238 /* The value of PSTATE.PAN is normally preserved, except when ... */
9239 new_mode |= old_mode & PSTATE_PAN;
9240 switch (new_el) {
9241 case 2:
9242 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
9243 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9244 != (HCR_E2H | HCR_TGE)) {
9245 break;
9247 /* fall through */
9248 case 1:
9249 /* ... the target is EL1 ... */
9250 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
9251 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9252 new_mode |= PSTATE_PAN;
9254 break;
9258 pstate_write(env, PSTATE_DAIF | new_mode);
9259 env->aarch64 = 1;
9260 aarch64_restore_sp(env, new_el);
9261 helper_rebuild_hflags_a64(env, new_el);
9263 env->pc = addr;
9265 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9266 new_el, env->pc, pstate_read(env));
9270 * Do semihosting call and set the appropriate return value. All the
9271 * permission and validity checks have been done at translate time.
9273 * We only see semihosting exceptions in TCG only as they are not
9274 * trapped to the hypervisor in KVM.
9276 #ifdef CONFIG_TCG
9277 static void handle_semihosting(CPUState *cs)
9279 ARMCPU *cpu = ARM_CPU(cs);
9280 CPUARMState *env = &cpu->env;
9282 if (is_a64(env)) {
9283 qemu_log_mask(CPU_LOG_INT,
9284 "...handling as semihosting call 0x%" PRIx64 "\n",
9285 env->xregs[0]);
9286 env->xregs[0] = do_arm_semihosting(env);
9287 env->pc += 4;
9288 } else {
9289 qemu_log_mask(CPU_LOG_INT,
9290 "...handling as semihosting call 0x%x\n",
9291 env->regs[0]);
9292 env->regs[0] = do_arm_semihosting(env);
9293 env->regs[15] += env->thumb ? 2 : 4;
9296 #endif
9298 /* Handle a CPU exception for A and R profile CPUs.
9299 * Do any appropriate logging, handle PSCI calls, and then hand off
9300 * to the AArch64-entry or AArch32-entry function depending on the
9301 * target exception level's register width.
9303 void arm_cpu_do_interrupt(CPUState *cs)
9305 ARMCPU *cpu = ARM_CPU(cs);
9306 CPUARMState *env = &cpu->env;
9307 unsigned int new_el = env->exception.target_el;
9309 assert(!arm_feature(env, ARM_FEATURE_M));
9311 arm_log_exception(cs->exception_index);
9312 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9313 new_el);
9314 if (qemu_loglevel_mask(CPU_LOG_INT)
9315 && !excp_is_internal(cs->exception_index)) {
9316 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9317 syn_get_ec(env->exception.syndrome),
9318 env->exception.syndrome);
9321 if (arm_is_psci_call(cpu, cs->exception_index)) {
9322 arm_handle_psci_call(cpu);
9323 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9324 return;
9328 * Semihosting semantics depend on the register width of the code
9329 * that caused the exception, not the target exception level, so
9330 * must be handled here.
9332 #ifdef CONFIG_TCG
9333 if (cs->exception_index == EXCP_SEMIHOST) {
9334 handle_semihosting(cs);
9335 return;
9337 #endif
9339 /* Hooks may change global state so BQL should be held, also the
9340 * BQL needs to be held for any modification of
9341 * cs->interrupt_request.
9343 g_assert(qemu_mutex_iothread_locked());
9345 arm_call_pre_el_change_hook(cpu);
9347 assert(!excp_is_internal(cs->exception_index));
9348 if (arm_el_is_aa64(env, new_el)) {
9349 arm_cpu_do_interrupt_aarch64(cs);
9350 } else {
9351 arm_cpu_do_interrupt_aarch32(cs);
9354 arm_call_el_change_hook(cpu);
9356 if (!kvm_enabled()) {
9357 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9360 #endif /* !CONFIG_USER_ONLY */
9362 /* Return the exception level which controls this address translation regime */
9363 static uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9365 switch (mmu_idx) {
9366 case ARMMMUIdx_E20_0:
9367 case ARMMMUIdx_E20_2:
9368 case ARMMMUIdx_E20_2_PAN:
9369 case ARMMMUIdx_Stage2:
9370 case ARMMMUIdx_E2:
9371 return 2;
9372 case ARMMMUIdx_SE3:
9373 return 3;
9374 case ARMMMUIdx_SE10_0:
9375 return arm_el_is_aa64(env, 3) ? 1 : 3;
9376 case ARMMMUIdx_SE10_1:
9377 case ARMMMUIdx_SE10_1_PAN:
9378 case ARMMMUIdx_Stage1_E0:
9379 case ARMMMUIdx_Stage1_E1:
9380 case ARMMMUIdx_Stage1_E1_PAN:
9381 case ARMMMUIdx_E10_0:
9382 case ARMMMUIdx_E10_1:
9383 case ARMMMUIdx_E10_1_PAN:
9384 case ARMMMUIdx_MPrivNegPri:
9385 case ARMMMUIdx_MUserNegPri:
9386 case ARMMMUIdx_MPriv:
9387 case ARMMMUIdx_MUser:
9388 case ARMMMUIdx_MSPrivNegPri:
9389 case ARMMMUIdx_MSUserNegPri:
9390 case ARMMMUIdx_MSPriv:
9391 case ARMMMUIdx_MSUser:
9392 return 1;
9393 default:
9394 g_assert_not_reached();
9398 uint64_t arm_sctlr(CPUARMState *env, int el)
9400 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
9401 if (el == 0) {
9402 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
9403 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1);
9405 return env->cp15.sctlr_el[el];
9408 /* Return the SCTLR value which controls this address translation regime */
9409 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9411 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9414 #ifndef CONFIG_USER_ONLY
9416 /* Return true if the specified stage of address translation is disabled */
9417 static inline bool regime_translation_disabled(CPUARMState *env,
9418 ARMMMUIdx mmu_idx)
9420 if (arm_feature(env, ARM_FEATURE_M)) {
9421 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9422 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9423 case R_V7M_MPU_CTRL_ENABLE_MASK:
9424 /* Enabled, but not for HardFault and NMI */
9425 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9426 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9427 /* Enabled for all cases */
9428 return false;
9429 case 0:
9430 default:
9431 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9432 * we warned about that in armv7m_nvic.c when the guest set it.
9434 return true;
9438 if (mmu_idx == ARMMMUIdx_Stage2) {
9439 /* HCR.DC means HCR.VM behaves as 1 */
9440 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9443 if (env->cp15.hcr_el2 & HCR_TGE) {
9444 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9445 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9446 return true;
9450 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
9451 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9452 return true;
9455 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9458 static inline bool regime_translation_big_endian(CPUARMState *env,
9459 ARMMMUIdx mmu_idx)
9461 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9464 /* Return the TTBR associated with this translation regime */
9465 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9466 int ttbrn)
9468 if (mmu_idx == ARMMMUIdx_Stage2) {
9469 return env->cp15.vttbr_el2;
9471 if (ttbrn == 0) {
9472 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9473 } else {
9474 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9478 #endif /* !CONFIG_USER_ONLY */
9480 /* Return the TCR controlling this translation regime */
9481 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
9483 if (mmu_idx == ARMMMUIdx_Stage2) {
9484 return &env->cp15.vtcr_el2;
9486 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
9489 /* Convert a possible stage1+2 MMU index into the appropriate
9490 * stage 1 MMU index
9492 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9494 switch (mmu_idx) {
9495 case ARMMMUIdx_E10_0:
9496 return ARMMMUIdx_Stage1_E0;
9497 case ARMMMUIdx_E10_1:
9498 return ARMMMUIdx_Stage1_E1;
9499 case ARMMMUIdx_E10_1_PAN:
9500 return ARMMMUIdx_Stage1_E1_PAN;
9501 default:
9502 return mmu_idx;
9506 /* Return true if the translation regime is using LPAE format page tables */
9507 static inline bool regime_using_lpae_format(CPUARMState *env,
9508 ARMMMUIdx mmu_idx)
9510 int el = regime_el(env, mmu_idx);
9511 if (el == 2 || arm_el_is_aa64(env, el)) {
9512 return true;
9514 if (arm_feature(env, ARM_FEATURE_LPAE)
9515 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9516 return true;
9518 return false;
9521 /* Returns true if the stage 1 translation regime is using LPAE format page
9522 * tables. Used when raising alignment exceptions, whose FSR changes depending
9523 * on whether the long or short descriptor format is in use. */
9524 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
9526 mmu_idx = stage_1_mmu_idx(mmu_idx);
9528 return regime_using_lpae_format(env, mmu_idx);
9531 #ifndef CONFIG_USER_ONLY
9532 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9534 switch (mmu_idx) {
9535 case ARMMMUIdx_SE10_0:
9536 case ARMMMUIdx_E20_0:
9537 case ARMMMUIdx_Stage1_E0:
9538 case ARMMMUIdx_MUser:
9539 case ARMMMUIdx_MSUser:
9540 case ARMMMUIdx_MUserNegPri:
9541 case ARMMMUIdx_MSUserNegPri:
9542 return true;
9543 default:
9544 return false;
9545 case ARMMMUIdx_E10_0:
9546 case ARMMMUIdx_E10_1:
9547 case ARMMMUIdx_E10_1_PAN:
9548 g_assert_not_reached();
9552 /* Translate section/page access permissions to page
9553 * R/W protection flags
9555 * @env: CPUARMState
9556 * @mmu_idx: MMU index indicating required translation regime
9557 * @ap: The 3-bit access permissions (AP[2:0])
9558 * @domain_prot: The 2-bit domain access permissions
9560 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9561 int ap, int domain_prot)
9563 bool is_user = regime_is_user(env, mmu_idx);
9565 if (domain_prot == 3) {
9566 return PAGE_READ | PAGE_WRITE;
9569 switch (ap) {
9570 case 0:
9571 if (arm_feature(env, ARM_FEATURE_V7)) {
9572 return 0;
9574 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9575 case SCTLR_S:
9576 return is_user ? 0 : PAGE_READ;
9577 case SCTLR_R:
9578 return PAGE_READ;
9579 default:
9580 return 0;
9582 case 1:
9583 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9584 case 2:
9585 if (is_user) {
9586 return PAGE_READ;
9587 } else {
9588 return PAGE_READ | PAGE_WRITE;
9590 case 3:
9591 return PAGE_READ | PAGE_WRITE;
9592 case 4: /* Reserved. */
9593 return 0;
9594 case 5:
9595 return is_user ? 0 : PAGE_READ;
9596 case 6:
9597 return PAGE_READ;
9598 case 7:
9599 if (!arm_feature(env, ARM_FEATURE_V6K)) {
9600 return 0;
9602 return PAGE_READ;
9603 default:
9604 g_assert_not_reached();
9608 /* Translate section/page access permissions to page
9609 * R/W protection flags.
9611 * @ap: The 2-bit simple AP (AP[2:1])
9612 * @is_user: TRUE if accessing from PL0
9614 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9616 switch (ap) {
9617 case 0:
9618 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9619 case 1:
9620 return PAGE_READ | PAGE_WRITE;
9621 case 2:
9622 return is_user ? 0 : PAGE_READ;
9623 case 3:
9624 return PAGE_READ;
9625 default:
9626 g_assert_not_reached();
9630 static inline int
9631 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9633 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9636 /* Translate S2 section/page access permissions to protection flags
9638 * @env: CPUARMState
9639 * @s2ap: The 2-bit stage2 access permissions (S2AP)
9640 * @xn: XN (execute-never) bit
9642 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
9644 int prot = 0;
9646 if (s2ap & 1) {
9647 prot |= PAGE_READ;
9649 if (s2ap & 2) {
9650 prot |= PAGE_WRITE;
9652 if (!xn) {
9653 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9654 prot |= PAGE_EXEC;
9657 return prot;
9660 /* Translate section/page access permissions to protection flags
9662 * @env: CPUARMState
9663 * @mmu_idx: MMU index indicating required translation regime
9664 * @is_aa64: TRUE if AArch64
9665 * @ap: The 2-bit simple AP (AP[2:1])
9666 * @ns: NS (non-secure) bit
9667 * @xn: XN (execute-never) bit
9668 * @pxn: PXN (privileged execute-never) bit
9670 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
9671 int ap, int ns, int xn, int pxn)
9673 bool is_user = regime_is_user(env, mmu_idx);
9674 int prot_rw, user_rw;
9675 bool have_wxn;
9676 int wxn = 0;
9678 assert(mmu_idx != ARMMMUIdx_Stage2);
9680 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9681 if (is_user) {
9682 prot_rw = user_rw;
9683 } else {
9684 if (user_rw && regime_is_pan(env, mmu_idx)) {
9685 return 0;
9687 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9690 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9691 return prot_rw;
9694 /* TODO have_wxn should be replaced with
9695 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9696 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9697 * compatible processors have EL2, which is required for [U]WXN.
9699 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
9701 if (have_wxn) {
9702 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
9705 if (is_aa64) {
9706 if (regime_has_2_ranges(mmu_idx) && !is_user) {
9707 xn = pxn || (user_rw & PAGE_WRITE);
9709 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9710 switch (regime_el(env, mmu_idx)) {
9711 case 1:
9712 case 3:
9713 if (is_user) {
9714 xn = xn || !(user_rw & PAGE_READ);
9715 } else {
9716 int uwxn = 0;
9717 if (have_wxn) {
9718 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
9720 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
9721 (uwxn && (user_rw & PAGE_WRITE));
9723 break;
9724 case 2:
9725 break;
9727 } else {
9728 xn = wxn = 0;
9731 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
9732 return prot_rw;
9734 return prot_rw | PAGE_EXEC;
9737 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
9738 uint32_t *table, uint32_t address)
9740 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
9741 TCR *tcr = regime_tcr(env, mmu_idx);
9743 if (address & tcr->mask) {
9744 if (tcr->raw_tcr & TTBCR_PD1) {
9745 /* Translation table walk disabled for TTBR1 */
9746 return false;
9748 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
9749 } else {
9750 if (tcr->raw_tcr & TTBCR_PD0) {
9751 /* Translation table walk disabled for TTBR0 */
9752 return false;
9754 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
9756 *table |= (address >> 18) & 0x3ffc;
9757 return true;
9760 /* Translate a S1 pagetable walk through S2 if needed. */
9761 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
9762 hwaddr addr, MemTxAttrs txattrs,
9763 ARMMMUFaultInfo *fi)
9765 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
9766 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
9767 target_ulong s2size;
9768 hwaddr s2pa;
9769 int s2prot;
9770 int ret;
9771 ARMCacheAttrs cacheattrs = {};
9772 ARMCacheAttrs *pcacheattrs = NULL;
9774 if (env->cp15.hcr_el2 & HCR_PTW) {
9776 * PTW means we must fault if this S1 walk touches S2 Device
9777 * memory; otherwise we don't care about the attributes and can
9778 * save the S2 translation the effort of computing them.
9780 pcacheattrs = &cacheattrs;
9783 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_Stage2, &s2pa,
9784 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
9785 if (ret) {
9786 assert(fi->type != ARMFault_None);
9787 fi->s2addr = addr;
9788 fi->stage2 = true;
9789 fi->s1ptw = true;
9790 return ~0;
9792 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
9793 /* Access was to Device memory: generate Permission fault */
9794 fi->type = ARMFault_Permission;
9795 fi->s2addr = addr;
9796 fi->stage2 = true;
9797 fi->s1ptw = true;
9798 return ~0;
9800 addr = s2pa;
9802 return addr;
9805 /* All loads done in the course of a page table walk go through here. */
9806 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9807 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9809 ARMCPU *cpu = ARM_CPU(cs);
9810 CPUARMState *env = &cpu->env;
9811 MemTxAttrs attrs = {};
9812 MemTxResult result = MEMTX_OK;
9813 AddressSpace *as;
9814 uint32_t data;
9816 attrs.secure = is_secure;
9817 as = arm_addressspace(cs, attrs);
9818 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9819 if (fi->s1ptw) {
9820 return 0;
9822 if (regime_translation_big_endian(env, mmu_idx)) {
9823 data = address_space_ldl_be(as, addr, attrs, &result);
9824 } else {
9825 data = address_space_ldl_le(as, addr, attrs, &result);
9827 if (result == MEMTX_OK) {
9828 return data;
9830 fi->type = ARMFault_SyncExternalOnWalk;
9831 fi->ea = arm_extabort_type(result);
9832 return 0;
9835 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9836 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9838 ARMCPU *cpu = ARM_CPU(cs);
9839 CPUARMState *env = &cpu->env;
9840 MemTxAttrs attrs = {};
9841 MemTxResult result = MEMTX_OK;
9842 AddressSpace *as;
9843 uint64_t data;
9845 attrs.secure = is_secure;
9846 as = arm_addressspace(cs, attrs);
9847 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9848 if (fi->s1ptw) {
9849 return 0;
9851 if (regime_translation_big_endian(env, mmu_idx)) {
9852 data = address_space_ldq_be(as, addr, attrs, &result);
9853 } else {
9854 data = address_space_ldq_le(as, addr, attrs, &result);
9856 if (result == MEMTX_OK) {
9857 return data;
9859 fi->type = ARMFault_SyncExternalOnWalk;
9860 fi->ea = arm_extabort_type(result);
9861 return 0;
9864 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
9865 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9866 hwaddr *phys_ptr, int *prot,
9867 target_ulong *page_size,
9868 ARMMMUFaultInfo *fi)
9870 CPUState *cs = env_cpu(env);
9871 int level = 1;
9872 uint32_t table;
9873 uint32_t desc;
9874 int type;
9875 int ap;
9876 int domain = 0;
9877 int domain_prot;
9878 hwaddr phys_addr;
9879 uint32_t dacr;
9881 /* Pagetable walk. */
9882 /* Lookup l1 descriptor. */
9883 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9884 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9885 fi->type = ARMFault_Translation;
9886 goto do_fault;
9888 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9889 mmu_idx, fi);
9890 if (fi->type != ARMFault_None) {
9891 goto do_fault;
9893 type = (desc & 3);
9894 domain = (desc >> 5) & 0x0f;
9895 if (regime_el(env, mmu_idx) == 1) {
9896 dacr = env->cp15.dacr_ns;
9897 } else {
9898 dacr = env->cp15.dacr_s;
9900 domain_prot = (dacr >> (domain * 2)) & 3;
9901 if (type == 0) {
9902 /* Section translation fault. */
9903 fi->type = ARMFault_Translation;
9904 goto do_fault;
9906 if (type != 2) {
9907 level = 2;
9909 if (domain_prot == 0 || domain_prot == 2) {
9910 fi->type = ARMFault_Domain;
9911 goto do_fault;
9913 if (type == 2) {
9914 /* 1Mb section. */
9915 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9916 ap = (desc >> 10) & 3;
9917 *page_size = 1024 * 1024;
9918 } else {
9919 /* Lookup l2 entry. */
9920 if (type == 1) {
9921 /* Coarse pagetable. */
9922 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9923 } else {
9924 /* Fine pagetable. */
9925 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
9927 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9928 mmu_idx, fi);
9929 if (fi->type != ARMFault_None) {
9930 goto do_fault;
9932 switch (desc & 3) {
9933 case 0: /* Page translation fault. */
9934 fi->type = ARMFault_Translation;
9935 goto do_fault;
9936 case 1: /* 64k page. */
9937 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9938 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
9939 *page_size = 0x10000;
9940 break;
9941 case 2: /* 4k page. */
9942 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9943 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
9944 *page_size = 0x1000;
9945 break;
9946 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
9947 if (type == 1) {
9948 /* ARMv6/XScale extended small page format */
9949 if (arm_feature(env, ARM_FEATURE_XSCALE)
9950 || arm_feature(env, ARM_FEATURE_V6)) {
9951 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9952 *page_size = 0x1000;
9953 } else {
9954 /* UNPREDICTABLE in ARMv5; we choose to take a
9955 * page translation fault.
9957 fi->type = ARMFault_Translation;
9958 goto do_fault;
9960 } else {
9961 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
9962 *page_size = 0x400;
9964 ap = (desc >> 4) & 3;
9965 break;
9966 default:
9967 /* Never happens, but compiler isn't smart enough to tell. */
9968 abort();
9971 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9972 *prot |= *prot ? PAGE_EXEC : 0;
9973 if (!(*prot & (1 << access_type))) {
9974 /* Access permission fault. */
9975 fi->type = ARMFault_Permission;
9976 goto do_fault;
9978 *phys_ptr = phys_addr;
9979 return false;
9980 do_fault:
9981 fi->domain = domain;
9982 fi->level = level;
9983 return true;
9986 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
9987 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9988 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9989 target_ulong *page_size, ARMMMUFaultInfo *fi)
9991 CPUState *cs = env_cpu(env);
9992 int level = 1;
9993 uint32_t table;
9994 uint32_t desc;
9995 uint32_t xn;
9996 uint32_t pxn = 0;
9997 int type;
9998 int ap;
9999 int domain = 0;
10000 int domain_prot;
10001 hwaddr phys_addr;
10002 uint32_t dacr;
10003 bool ns;
10005 /* Pagetable walk. */
10006 /* Lookup l1 descriptor. */
10007 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10008 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10009 fi->type = ARMFault_Translation;
10010 goto do_fault;
10012 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10013 mmu_idx, fi);
10014 if (fi->type != ARMFault_None) {
10015 goto do_fault;
10017 type = (desc & 3);
10018 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10019 /* Section translation fault, or attempt to use the encoding
10020 * which is Reserved on implementations without PXN.
10022 fi->type = ARMFault_Translation;
10023 goto do_fault;
10025 if ((type == 1) || !(desc & (1 << 18))) {
10026 /* Page or Section. */
10027 domain = (desc >> 5) & 0x0f;
10029 if (regime_el(env, mmu_idx) == 1) {
10030 dacr = env->cp15.dacr_ns;
10031 } else {
10032 dacr = env->cp15.dacr_s;
10034 if (type == 1) {
10035 level = 2;
10037 domain_prot = (dacr >> (domain * 2)) & 3;
10038 if (domain_prot == 0 || domain_prot == 2) {
10039 /* Section or Page domain fault */
10040 fi->type = ARMFault_Domain;
10041 goto do_fault;
10043 if (type != 1) {
10044 if (desc & (1 << 18)) {
10045 /* Supersection. */
10046 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10047 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10048 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10049 *page_size = 0x1000000;
10050 } else {
10051 /* Section. */
10052 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10053 *page_size = 0x100000;
10055 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10056 xn = desc & (1 << 4);
10057 pxn = desc & 1;
10058 ns = extract32(desc, 19, 1);
10059 } else {
10060 if (arm_feature(env, ARM_FEATURE_PXN)) {
10061 pxn = (desc >> 2) & 1;
10063 ns = extract32(desc, 3, 1);
10064 /* Lookup l2 entry. */
10065 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10066 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10067 mmu_idx, fi);
10068 if (fi->type != ARMFault_None) {
10069 goto do_fault;
10071 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10072 switch (desc & 3) {
10073 case 0: /* Page translation fault. */
10074 fi->type = ARMFault_Translation;
10075 goto do_fault;
10076 case 1: /* 64k page. */
10077 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10078 xn = desc & (1 << 15);
10079 *page_size = 0x10000;
10080 break;
10081 case 2: case 3: /* 4k page. */
10082 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10083 xn = desc & 1;
10084 *page_size = 0x1000;
10085 break;
10086 default:
10087 /* Never happens, but compiler isn't smart enough to tell. */
10088 abort();
10091 if (domain_prot == 3) {
10092 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10093 } else {
10094 if (pxn && !regime_is_user(env, mmu_idx)) {
10095 xn = 1;
10097 if (xn && access_type == MMU_INST_FETCH) {
10098 fi->type = ARMFault_Permission;
10099 goto do_fault;
10102 if (arm_feature(env, ARM_FEATURE_V6K) &&
10103 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10104 /* The simplified model uses AP[0] as an access control bit. */
10105 if ((ap & 1) == 0) {
10106 /* Access flag fault. */
10107 fi->type = ARMFault_AccessFlag;
10108 goto do_fault;
10110 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10111 } else {
10112 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10114 if (*prot && !xn) {
10115 *prot |= PAGE_EXEC;
10117 if (!(*prot & (1 << access_type))) {
10118 /* Access permission fault. */
10119 fi->type = ARMFault_Permission;
10120 goto do_fault;
10123 if (ns) {
10124 /* The NS bit will (as required by the architecture) have no effect if
10125 * the CPU doesn't support TZ or this is a non-secure translation
10126 * regime, because the attribute will already be non-secure.
10128 attrs->secure = false;
10130 *phys_ptr = phys_addr;
10131 return false;
10132 do_fault:
10133 fi->domain = domain;
10134 fi->level = level;
10135 return true;
10139 * check_s2_mmu_setup
10140 * @cpu: ARMCPU
10141 * @is_aa64: True if the translation regime is in AArch64 state
10142 * @startlevel: Suggested starting level
10143 * @inputsize: Bitsize of IPAs
10144 * @stride: Page-table stride (See the ARM ARM)
10146 * Returns true if the suggested S2 translation parameters are OK and
10147 * false otherwise.
10149 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10150 int inputsize, int stride)
10152 const int grainsize = stride + 3;
10153 int startsizecheck;
10155 /* Negative levels are never allowed. */
10156 if (level < 0) {
10157 return false;
10160 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10161 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10162 return false;
10165 if (is_aa64) {
10166 CPUARMState *env = &cpu->env;
10167 unsigned int pamax = arm_pamax(cpu);
10169 switch (stride) {
10170 case 13: /* 64KB Pages. */
10171 if (level == 0 || (level == 1 && pamax <= 42)) {
10172 return false;
10174 break;
10175 case 11: /* 16KB Pages. */
10176 if (level == 0 || (level == 1 && pamax <= 40)) {
10177 return false;
10179 break;
10180 case 9: /* 4KB Pages. */
10181 if (level == 0 && pamax <= 42) {
10182 return false;
10184 break;
10185 default:
10186 g_assert_not_reached();
10189 /* Inputsize checks. */
10190 if (inputsize > pamax &&
10191 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10192 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10193 return false;
10195 } else {
10196 /* AArch32 only supports 4KB pages. Assert on that. */
10197 assert(stride == 9);
10199 if (level == 0) {
10200 return false;
10203 return true;
10206 /* Translate from the 4-bit stage 2 representation of
10207 * memory attributes (without cache-allocation hints) to
10208 * the 8-bit representation of the stage 1 MAIR registers
10209 * (which includes allocation hints).
10211 * ref: shared/translation/attrs/S2AttrDecode()
10212 * .../S2ConvertAttrsHints()
10214 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10216 uint8_t hiattr = extract32(s2attrs, 2, 2);
10217 uint8_t loattr = extract32(s2attrs, 0, 2);
10218 uint8_t hihint = 0, lohint = 0;
10220 if (hiattr != 0) { /* normal memory */
10221 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10222 hiattr = loattr = 1; /* non-cacheable */
10223 } else {
10224 if (hiattr != 1) { /* Write-through or write-back */
10225 hihint = 3; /* RW allocate */
10227 if (loattr != 1) { /* Write-through or write-back */
10228 lohint = 3; /* RW allocate */
10233 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10235 #endif /* !CONFIG_USER_ONLY */
10237 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
10238 ARMMMUIdx mmu_idx)
10240 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10241 bool tbi, tbid, epd, hpd, using16k, using64k;
10242 int select, tsz;
10245 * Bit 55 is always between the two regions, and is canonical for
10246 * determining if address tagging is enabled.
10248 select = extract64(va, 55, 1);
10250 if (!regime_has_2_ranges(mmu_idx)) {
10251 tsz = extract32(tcr, 0, 6);
10252 using64k = extract32(tcr, 14, 1);
10253 using16k = extract32(tcr, 15, 1);
10254 if (mmu_idx == ARMMMUIdx_Stage2) {
10255 /* VTCR_EL2 */
10256 tbi = tbid = hpd = false;
10257 } else {
10258 tbi = extract32(tcr, 20, 1);
10259 hpd = extract32(tcr, 24, 1);
10260 tbid = extract32(tcr, 29, 1);
10262 epd = false;
10263 } else if (!select) {
10264 tsz = extract32(tcr, 0, 6);
10265 epd = extract32(tcr, 7, 1);
10266 using64k = extract32(tcr, 14, 1);
10267 using16k = extract32(tcr, 15, 1);
10268 tbi = extract64(tcr, 37, 1);
10269 hpd = extract64(tcr, 41, 1);
10270 tbid = extract64(tcr, 51, 1);
10271 } else {
10272 int tg = extract32(tcr, 30, 2);
10273 using16k = tg == 1;
10274 using64k = tg == 3;
10275 tsz = extract32(tcr, 16, 6);
10276 epd = extract32(tcr, 23, 1);
10277 tbi = extract64(tcr, 38, 1);
10278 hpd = extract64(tcr, 42, 1);
10279 tbid = extract64(tcr, 52, 1);
10281 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
10282 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
10284 return (ARMVAParameters) {
10285 .tsz = tsz,
10286 .select = select,
10287 .tbi = tbi,
10288 .tbid = tbid,
10289 .epd = epd,
10290 .hpd = hpd,
10291 .using16k = using16k,
10292 .using64k = using64k,
10296 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10297 ARMMMUIdx mmu_idx, bool data)
10299 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
10301 /* Present TBI as a composite with TBID. */
10302 ret.tbi &= (data || !ret.tbid);
10303 return ret;
10306 #ifndef CONFIG_USER_ONLY
10307 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10308 ARMMMUIdx mmu_idx)
10310 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10311 uint32_t el = regime_el(env, mmu_idx);
10312 int select, tsz;
10313 bool epd, hpd;
10315 if (mmu_idx == ARMMMUIdx_Stage2) {
10316 /* VTCR */
10317 bool sext = extract32(tcr, 4, 1);
10318 bool sign = extract32(tcr, 3, 1);
10321 * If the sign-extend bit is not the same as t0sz[3], the result
10322 * is unpredictable. Flag this as a guest error.
10324 if (sign != sext) {
10325 qemu_log_mask(LOG_GUEST_ERROR,
10326 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10328 tsz = sextract32(tcr, 0, 4) + 8;
10329 select = 0;
10330 hpd = false;
10331 epd = false;
10332 } else if (el == 2) {
10333 /* HTCR */
10334 tsz = extract32(tcr, 0, 3);
10335 select = 0;
10336 hpd = extract64(tcr, 24, 1);
10337 epd = false;
10338 } else {
10339 int t0sz = extract32(tcr, 0, 3);
10340 int t1sz = extract32(tcr, 16, 3);
10342 if (t1sz == 0) {
10343 select = va > (0xffffffffu >> t0sz);
10344 } else {
10345 /* Note that we will detect errors later. */
10346 select = va >= ~(0xffffffffu >> t1sz);
10348 if (!select) {
10349 tsz = t0sz;
10350 epd = extract32(tcr, 7, 1);
10351 hpd = extract64(tcr, 41, 1);
10352 } else {
10353 tsz = t1sz;
10354 epd = extract32(tcr, 23, 1);
10355 hpd = extract64(tcr, 42, 1);
10357 /* For aarch32, hpd0 is not enabled without t2e as well. */
10358 hpd &= extract32(tcr, 6, 1);
10361 return (ARMVAParameters) {
10362 .tsz = tsz,
10363 .select = select,
10364 .epd = epd,
10365 .hpd = hpd,
10369 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10370 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10371 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10372 target_ulong *page_size_ptr,
10373 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10375 ARMCPU *cpu = env_archcpu(env);
10376 CPUState *cs = CPU(cpu);
10377 /* Read an LPAE long-descriptor translation table. */
10378 ARMFaultType fault_type = ARMFault_Translation;
10379 uint32_t level;
10380 ARMVAParameters param;
10381 uint64_t ttbr;
10382 hwaddr descaddr, indexmask, indexmask_grainsize;
10383 uint32_t tableattrs;
10384 target_ulong page_size;
10385 uint32_t attrs;
10386 int32_t stride;
10387 int addrsize, inputsize;
10388 TCR *tcr = regime_tcr(env, mmu_idx);
10389 int ap, ns, xn, pxn;
10390 uint32_t el = regime_el(env, mmu_idx);
10391 bool ttbr1_valid;
10392 uint64_t descaddrmask;
10393 bool aarch64 = arm_el_is_aa64(env, el);
10394 bool guarded = false;
10396 /* TODO:
10397 * This code does not handle the different format TCR for VTCR_EL2.
10398 * This code also does not support shareability levels.
10399 * Attribute and permission bit handling should also be checked when adding
10400 * support for those page table walks.
10402 if (aarch64) {
10403 param = aa64_va_parameters(env, address, mmu_idx,
10404 access_type != MMU_INST_FETCH);
10405 level = 0;
10406 ttbr1_valid = regime_has_2_ranges(mmu_idx);
10407 addrsize = 64 - 8 * param.tbi;
10408 inputsize = 64 - param.tsz;
10409 } else {
10410 param = aa32_va_parameters(env, address, mmu_idx);
10411 level = 1;
10412 /* There is no TTBR1 for EL2 */
10413 ttbr1_valid = (el != 2);
10414 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
10415 inputsize = addrsize - param.tsz;
10419 * We determined the region when collecting the parameters, but we
10420 * have not yet validated that the address is valid for the region.
10421 * Extract the top bits and verify that they all match select.
10423 * For aa32, if inputsize == addrsize, then we have selected the
10424 * region by exclusion in aa32_va_parameters and there is no more
10425 * validation to do here.
10427 if (inputsize < addrsize) {
10428 target_ulong top_bits = sextract64(address, inputsize,
10429 addrsize - inputsize);
10430 if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
10431 /* The gap between the two regions is a Translation fault */
10432 fault_type = ARMFault_Translation;
10433 goto do_fault;
10437 if (param.using64k) {
10438 stride = 13;
10439 } else if (param.using16k) {
10440 stride = 11;
10441 } else {
10442 stride = 9;
10445 /* Note that QEMU ignores shareability and cacheability attributes,
10446 * so we don't need to do anything with the SH, ORGN, IRGN fields
10447 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
10448 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10449 * implement any ASID-like capability so we can ignore it (instead
10450 * we will always flush the TLB any time the ASID is changed).
10452 ttbr = regime_ttbr(env, mmu_idx, param.select);
10454 /* Here we should have set up all the parameters for the translation:
10455 * inputsize, ttbr, epd, stride, tbi
10458 if (param.epd) {
10459 /* Translation table walk disabled => Translation fault on TLB miss
10460 * Note: This is always 0 on 64-bit EL2 and EL3.
10462 goto do_fault;
10465 if (mmu_idx != ARMMMUIdx_Stage2) {
10466 /* The starting level depends on the virtual address size (which can
10467 * be up to 48 bits) and the translation granule size. It indicates
10468 * the number of strides (stride bits at a time) needed to
10469 * consume the bits of the input address. In the pseudocode this is:
10470 * level = 4 - RoundUp((inputsize - grainsize) / stride)
10471 * where their 'inputsize' is our 'inputsize', 'grainsize' is
10472 * our 'stride + 3' and 'stride' is our 'stride'.
10473 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10474 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10475 * = 4 - (inputsize - 4) / stride;
10477 level = 4 - (inputsize - 4) / stride;
10478 } else {
10479 /* For stage 2 translations the starting level is specified by the
10480 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10482 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
10483 uint32_t startlevel;
10484 bool ok;
10486 if (!aarch64 || stride == 9) {
10487 /* AArch32 or 4KB pages */
10488 startlevel = 2 - sl0;
10489 } else {
10490 /* 16KB or 64KB pages */
10491 startlevel = 3 - sl0;
10494 /* Check that the starting level is valid. */
10495 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
10496 inputsize, stride);
10497 if (!ok) {
10498 fault_type = ARMFault_Translation;
10499 goto do_fault;
10501 level = startlevel;
10504 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
10505 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
10507 /* Now we can extract the actual base address from the TTBR */
10508 descaddr = extract64(ttbr, 0, 48);
10509 descaddr &= ~indexmask;
10511 /* The address field in the descriptor goes up to bit 39 for ARMv7
10512 * but up to bit 47 for ARMv8, but we use the descaddrmask
10513 * up to bit 39 for AArch32, because we don't need other bits in that case
10514 * to construct next descriptor address (anyway they should be all zeroes).
10516 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
10517 ~indexmask_grainsize;
10519 /* Secure accesses start with the page table in secure memory and
10520 * can be downgraded to non-secure at any step. Non-secure accesses
10521 * remain non-secure. We implement this by just ORing in the NSTable/NS
10522 * bits at each step.
10524 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
10525 for (;;) {
10526 uint64_t descriptor;
10527 bool nstable;
10529 descaddr |= (address >> (stride * (4 - level))) & indexmask;
10530 descaddr &= ~7ULL;
10531 nstable = extract32(tableattrs, 4, 1);
10532 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
10533 if (fi->type != ARMFault_None) {
10534 goto do_fault;
10537 if (!(descriptor & 1) ||
10538 (!(descriptor & 2) && (level == 3))) {
10539 /* Invalid, or the Reserved level 3 encoding */
10540 goto do_fault;
10542 descaddr = descriptor & descaddrmask;
10544 if ((descriptor & 2) && (level < 3)) {
10545 /* Table entry. The top five bits are attributes which may
10546 * propagate down through lower levels of the table (and
10547 * which are all arranged so that 0 means "no effect", so
10548 * we can gather them up by ORing in the bits at each level).
10550 tableattrs |= extract64(descriptor, 59, 5);
10551 level++;
10552 indexmask = indexmask_grainsize;
10553 continue;
10555 /* Block entry at level 1 or 2, or page entry at level 3.
10556 * These are basically the same thing, although the number
10557 * of bits we pull in from the vaddr varies.
10559 page_size = (1ULL << ((stride * (4 - level)) + 3));
10560 descaddr |= (address & (page_size - 1));
10561 /* Extract attributes from the descriptor */
10562 attrs = extract64(descriptor, 2, 10)
10563 | (extract64(descriptor, 52, 12) << 10);
10565 if (mmu_idx == ARMMMUIdx_Stage2) {
10566 /* Stage 2 table descriptors do not include any attribute fields */
10567 break;
10569 /* Merge in attributes from table descriptors */
10570 attrs |= nstable << 3; /* NS */
10571 guarded = extract64(descriptor, 50, 1); /* GP */
10572 if (param.hpd) {
10573 /* HPD disables all the table attributes except NSTable. */
10574 break;
10576 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
10577 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10578 * means "force PL1 access only", which means forcing AP[1] to 0.
10580 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
10581 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
10582 break;
10584 /* Here descaddr is the final physical address, and attributes
10585 * are all in attrs.
10587 fault_type = ARMFault_AccessFlag;
10588 if ((attrs & (1 << 8)) == 0) {
10589 /* Access flag */
10590 goto do_fault;
10593 ap = extract32(attrs, 4, 2);
10594 xn = extract32(attrs, 12, 1);
10596 if (mmu_idx == ARMMMUIdx_Stage2) {
10597 ns = true;
10598 *prot = get_S2prot(env, ap, xn);
10599 } else {
10600 ns = extract32(attrs, 3, 1);
10601 pxn = extract32(attrs, 11, 1);
10602 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
10605 fault_type = ARMFault_Permission;
10606 if (!(*prot & (1 << access_type))) {
10607 goto do_fault;
10610 if (ns) {
10611 /* The NS bit will (as required by the architecture) have no effect if
10612 * the CPU doesn't support TZ or this is a non-secure translation
10613 * regime, because the attribute will already be non-secure.
10615 txattrs->secure = false;
10617 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
10618 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
10619 txattrs->target_tlb_bit0 = true;
10622 if (cacheattrs != NULL) {
10623 if (mmu_idx == ARMMMUIdx_Stage2) {
10624 cacheattrs->attrs = convert_stage2_attrs(env,
10625 extract32(attrs, 0, 4));
10626 } else {
10627 /* Index into MAIR registers for cache attributes */
10628 uint8_t attrindx = extract32(attrs, 0, 3);
10629 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10630 assert(attrindx <= 7);
10631 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10633 cacheattrs->shareability = extract32(attrs, 6, 2);
10636 *phys_ptr = descaddr;
10637 *page_size_ptr = page_size;
10638 return false;
10640 do_fault:
10641 fi->type = fault_type;
10642 fi->level = level;
10643 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
10644 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2);
10645 return true;
10648 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
10649 ARMMMUIdx mmu_idx,
10650 int32_t address, int *prot)
10652 if (!arm_feature(env, ARM_FEATURE_M)) {
10653 *prot = PAGE_READ | PAGE_WRITE;
10654 switch (address) {
10655 case 0xF0000000 ... 0xFFFFFFFF:
10656 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
10657 /* hivecs execing is ok */
10658 *prot |= PAGE_EXEC;
10660 break;
10661 case 0x00000000 ... 0x7FFFFFFF:
10662 *prot |= PAGE_EXEC;
10663 break;
10665 } else {
10666 /* Default system address map for M profile cores.
10667 * The architecture specifies which regions are execute-never;
10668 * at the MPU level no other checks are defined.
10670 switch (address) {
10671 case 0x00000000 ... 0x1fffffff: /* ROM */
10672 case 0x20000000 ... 0x3fffffff: /* SRAM */
10673 case 0x60000000 ... 0x7fffffff: /* RAM */
10674 case 0x80000000 ... 0x9fffffff: /* RAM */
10675 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10676 break;
10677 case 0x40000000 ... 0x5fffffff: /* Peripheral */
10678 case 0xa0000000 ... 0xbfffffff: /* Device */
10679 case 0xc0000000 ... 0xdfffffff: /* Device */
10680 case 0xe0000000 ... 0xffffffff: /* System */
10681 *prot = PAGE_READ | PAGE_WRITE;
10682 break;
10683 default:
10684 g_assert_not_reached();
10689 static bool pmsav7_use_background_region(ARMCPU *cpu,
10690 ARMMMUIdx mmu_idx, bool is_user)
10692 /* Return true if we should use the default memory map as a
10693 * "background" region if there are no hits against any MPU regions.
10695 CPUARMState *env = &cpu->env;
10697 if (is_user) {
10698 return false;
10701 if (arm_feature(env, ARM_FEATURE_M)) {
10702 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
10703 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
10704 } else {
10705 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
10709 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
10711 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
10712 return arm_feature(env, ARM_FEATURE_M) &&
10713 extract32(address, 20, 12) == 0xe00;
10716 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
10718 /* True if address is in the M profile system region
10719 * 0xe0000000 - 0xffffffff
10721 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
10724 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
10725 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10726 hwaddr *phys_ptr, int *prot,
10727 target_ulong *page_size,
10728 ARMMMUFaultInfo *fi)
10730 ARMCPU *cpu = env_archcpu(env);
10731 int n;
10732 bool is_user = regime_is_user(env, mmu_idx);
10734 *phys_ptr = address;
10735 *page_size = TARGET_PAGE_SIZE;
10736 *prot = 0;
10738 if (regime_translation_disabled(env, mmu_idx) ||
10739 m_is_ppb_region(env, address)) {
10740 /* MPU disabled or M profile PPB access: use default memory map.
10741 * The other case which uses the default memory map in the
10742 * v7M ARM ARM pseudocode is exception vector reads from the vector
10743 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
10744 * which always does a direct read using address_space_ldl(), rather
10745 * than going via this function, so we don't need to check that here.
10747 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10748 } else { /* MPU enabled */
10749 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10750 /* region search */
10751 uint32_t base = env->pmsav7.drbar[n];
10752 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
10753 uint32_t rmask;
10754 bool srdis = false;
10756 if (!(env->pmsav7.drsr[n] & 0x1)) {
10757 continue;
10760 if (!rsize) {
10761 qemu_log_mask(LOG_GUEST_ERROR,
10762 "DRSR[%d]: Rsize field cannot be 0\n", n);
10763 continue;
10765 rsize++;
10766 rmask = (1ull << rsize) - 1;
10768 if (base & rmask) {
10769 qemu_log_mask(LOG_GUEST_ERROR,
10770 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
10771 "to DRSR region size, mask = 0x%" PRIx32 "\n",
10772 n, base, rmask);
10773 continue;
10776 if (address < base || address > base + rmask) {
10778 * Address not in this region. We must check whether the
10779 * region covers addresses in the same page as our address.
10780 * In that case we must not report a size that covers the
10781 * whole page for a subsequent hit against a different MPU
10782 * region or the background region, because it would result in
10783 * incorrect TLB hits for subsequent accesses to addresses that
10784 * are in this MPU region.
10786 if (ranges_overlap(base, rmask,
10787 address & TARGET_PAGE_MASK,
10788 TARGET_PAGE_SIZE)) {
10789 *page_size = 1;
10791 continue;
10794 /* Region matched */
10796 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
10797 int i, snd;
10798 uint32_t srdis_mask;
10800 rsize -= 3; /* sub region size (power of 2) */
10801 snd = ((address - base) >> rsize) & 0x7;
10802 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
10804 srdis_mask = srdis ? 0x3 : 0x0;
10805 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
10806 /* This will check in groups of 2, 4 and then 8, whether
10807 * the subregion bits are consistent. rsize is incremented
10808 * back up to give the region size, considering consistent
10809 * adjacent subregions as one region. Stop testing if rsize
10810 * is already big enough for an entire QEMU page.
10812 int snd_rounded = snd & ~(i - 1);
10813 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
10814 snd_rounded + 8, i);
10815 if (srdis_mask ^ srdis_multi) {
10816 break;
10818 srdis_mask = (srdis_mask << i) | srdis_mask;
10819 rsize++;
10822 if (srdis) {
10823 continue;
10825 if (rsize < TARGET_PAGE_BITS) {
10826 *page_size = 1 << rsize;
10828 break;
10831 if (n == -1) { /* no hits */
10832 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10833 /* background fault */
10834 fi->type = ARMFault_Background;
10835 return true;
10837 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10838 } else { /* a MPU hit! */
10839 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
10840 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
10842 if (m_is_system_region(env, address)) {
10843 /* System space is always execute never */
10844 xn = 1;
10847 if (is_user) { /* User mode AP bit decoding */
10848 switch (ap) {
10849 case 0:
10850 case 1:
10851 case 5:
10852 break; /* no access */
10853 case 3:
10854 *prot |= PAGE_WRITE;
10855 /* fall through */
10856 case 2:
10857 case 6:
10858 *prot |= PAGE_READ | PAGE_EXEC;
10859 break;
10860 case 7:
10861 /* for v7M, same as 6; for R profile a reserved value */
10862 if (arm_feature(env, ARM_FEATURE_M)) {
10863 *prot |= PAGE_READ | PAGE_EXEC;
10864 break;
10866 /* fall through */
10867 default:
10868 qemu_log_mask(LOG_GUEST_ERROR,
10869 "DRACR[%d]: Bad value for AP bits: 0x%"
10870 PRIx32 "\n", n, ap);
10872 } else { /* Priv. mode AP bits decoding */
10873 switch (ap) {
10874 case 0:
10875 break; /* no access */
10876 case 1:
10877 case 2:
10878 case 3:
10879 *prot |= PAGE_WRITE;
10880 /* fall through */
10881 case 5:
10882 case 6:
10883 *prot |= PAGE_READ | PAGE_EXEC;
10884 break;
10885 case 7:
10886 /* for v7M, same as 6; for R profile a reserved value */
10887 if (arm_feature(env, ARM_FEATURE_M)) {
10888 *prot |= PAGE_READ | PAGE_EXEC;
10889 break;
10891 /* fall through */
10892 default:
10893 qemu_log_mask(LOG_GUEST_ERROR,
10894 "DRACR[%d]: Bad value for AP bits: 0x%"
10895 PRIx32 "\n", n, ap);
10899 /* execute never */
10900 if (xn) {
10901 *prot &= ~PAGE_EXEC;
10906 fi->type = ARMFault_Permission;
10907 fi->level = 1;
10908 return !(*prot & (1 << access_type));
10911 static bool v8m_is_sau_exempt(CPUARMState *env,
10912 uint32_t address, MMUAccessType access_type)
10914 /* The architecture specifies that certain address ranges are
10915 * exempt from v8M SAU/IDAU checks.
10917 return
10918 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
10919 (address >= 0xe0000000 && address <= 0xe0002fff) ||
10920 (address >= 0xe000e000 && address <= 0xe000efff) ||
10921 (address >= 0xe002e000 && address <= 0xe002efff) ||
10922 (address >= 0xe0040000 && address <= 0xe0041fff) ||
10923 (address >= 0xe00ff000 && address <= 0xe00fffff);
10926 void v8m_security_lookup(CPUARMState *env, uint32_t address,
10927 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10928 V8M_SAttributes *sattrs)
10930 /* Look up the security attributes for this address. Compare the
10931 * pseudocode SecurityCheck() function.
10932 * We assume the caller has zero-initialized *sattrs.
10934 ARMCPU *cpu = env_archcpu(env);
10935 int r;
10936 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
10937 int idau_region = IREGION_NOTVALID;
10938 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10939 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10941 if (cpu->idau) {
10942 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
10943 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
10945 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
10946 &idau_nsc);
10949 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
10950 /* 0xf0000000..0xffffffff is always S for insn fetches */
10951 return;
10954 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
10955 sattrs->ns = !regime_is_secure(env, mmu_idx);
10956 return;
10959 if (idau_region != IREGION_NOTVALID) {
10960 sattrs->irvalid = true;
10961 sattrs->iregion = idau_region;
10964 switch (env->sau.ctrl & 3) {
10965 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
10966 break;
10967 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
10968 sattrs->ns = true;
10969 break;
10970 default: /* SAU.ENABLE == 1 */
10971 for (r = 0; r < cpu->sau_sregion; r++) {
10972 if (env->sau.rlar[r] & 1) {
10973 uint32_t base = env->sau.rbar[r] & ~0x1f;
10974 uint32_t limit = env->sau.rlar[r] | 0x1f;
10976 if (base <= address && limit >= address) {
10977 if (base > addr_page_base || limit < addr_page_limit) {
10978 sattrs->subpage = true;
10980 if (sattrs->srvalid) {
10981 /* If we hit in more than one region then we must report
10982 * as Secure, not NS-Callable, with no valid region
10983 * number info.
10985 sattrs->ns = false;
10986 sattrs->nsc = false;
10987 sattrs->sregion = 0;
10988 sattrs->srvalid = false;
10989 break;
10990 } else {
10991 if (env->sau.rlar[r] & 2) {
10992 sattrs->nsc = true;
10993 } else {
10994 sattrs->ns = true;
10996 sattrs->srvalid = true;
10997 sattrs->sregion = r;
10999 } else {
11001 * Address not in this region. We must check whether the
11002 * region covers addresses in the same page as our address.
11003 * In that case we must not report a size that covers the
11004 * whole page for a subsequent hit against a different MPU
11005 * region or the background region, because it would result
11006 * in incorrect TLB hits for subsequent accesses to
11007 * addresses that are in this MPU region.
11009 if (limit >= base &&
11010 ranges_overlap(base, limit - base + 1,
11011 addr_page_base,
11012 TARGET_PAGE_SIZE)) {
11013 sattrs->subpage = true;
11018 break;
11022 * The IDAU will override the SAU lookup results if it specifies
11023 * higher security than the SAU does.
11025 if (!idau_ns) {
11026 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11027 sattrs->ns = false;
11028 sattrs->nsc = idau_nsc;
11033 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11034 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11035 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11036 int *prot, bool *is_subpage,
11037 ARMMMUFaultInfo *fi, uint32_t *mregion)
11039 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11040 * that a full phys-to-virt translation does).
11041 * mregion is (if not NULL) set to the region number which matched,
11042 * or -1 if no region number is returned (MPU off, address did not
11043 * hit a region, address hit in multiple regions).
11044 * We set is_subpage to true if the region hit doesn't cover the
11045 * entire TARGET_PAGE the address is within.
11047 ARMCPU *cpu = env_archcpu(env);
11048 bool is_user = regime_is_user(env, mmu_idx);
11049 uint32_t secure = regime_is_secure(env, mmu_idx);
11050 int n;
11051 int matchregion = -1;
11052 bool hit = false;
11053 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11054 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11056 *is_subpage = false;
11057 *phys_ptr = address;
11058 *prot = 0;
11059 if (mregion) {
11060 *mregion = -1;
11063 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11064 * was an exception vector read from the vector table (which is always
11065 * done using the default system address map), because those accesses
11066 * are done in arm_v7m_load_vector(), which always does a direct
11067 * read using address_space_ldl(), rather than going via this function.
11069 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11070 hit = true;
11071 } else if (m_is_ppb_region(env, address)) {
11072 hit = true;
11073 } else {
11074 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11075 hit = true;
11078 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11079 /* region search */
11080 /* Note that the base address is bits [31:5] from the register
11081 * with bits [4:0] all zeroes, but the limit address is bits
11082 * [31:5] from the register with bits [4:0] all ones.
11084 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11085 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11087 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11088 /* Region disabled */
11089 continue;
11092 if (address < base || address > limit) {
11094 * Address not in this region. We must check whether the
11095 * region covers addresses in the same page as our address.
11096 * In that case we must not report a size that covers the
11097 * whole page for a subsequent hit against a different MPU
11098 * region or the background region, because it would result in
11099 * incorrect TLB hits for subsequent accesses to addresses that
11100 * are in this MPU region.
11102 if (limit >= base &&
11103 ranges_overlap(base, limit - base + 1,
11104 addr_page_base,
11105 TARGET_PAGE_SIZE)) {
11106 *is_subpage = true;
11108 continue;
11111 if (base > addr_page_base || limit < addr_page_limit) {
11112 *is_subpage = true;
11115 if (matchregion != -1) {
11116 /* Multiple regions match -- always a failure (unlike
11117 * PMSAv7 where highest-numbered-region wins)
11119 fi->type = ARMFault_Permission;
11120 fi->level = 1;
11121 return true;
11124 matchregion = n;
11125 hit = true;
11129 if (!hit) {
11130 /* background fault */
11131 fi->type = ARMFault_Background;
11132 return true;
11135 if (matchregion == -1) {
11136 /* hit using the background region */
11137 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11138 } else {
11139 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11140 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11142 if (m_is_system_region(env, address)) {
11143 /* System space is always execute never */
11144 xn = 1;
11147 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11148 if (*prot && !xn) {
11149 *prot |= PAGE_EXEC;
11151 /* We don't need to look the attribute up in the MAIR0/MAIR1
11152 * registers because that only tells us about cacheability.
11154 if (mregion) {
11155 *mregion = matchregion;
11159 fi->type = ARMFault_Permission;
11160 fi->level = 1;
11161 return !(*prot & (1 << access_type));
11165 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11166 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11167 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11168 int *prot, target_ulong *page_size,
11169 ARMMMUFaultInfo *fi)
11171 uint32_t secure = regime_is_secure(env, mmu_idx);
11172 V8M_SAttributes sattrs = {};
11173 bool ret;
11174 bool mpu_is_subpage;
11176 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11177 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11178 if (access_type == MMU_INST_FETCH) {
11179 /* Instruction fetches always use the MMU bank and the
11180 * transaction attribute determined by the fetch address,
11181 * regardless of CPU state. This is painful for QEMU
11182 * to handle, because it would mean we need to encode
11183 * into the mmu_idx not just the (user, negpri) information
11184 * for the current security state but also that for the
11185 * other security state, which would balloon the number
11186 * of mmu_idx values needed alarmingly.
11187 * Fortunately we can avoid this because it's not actually
11188 * possible to arbitrarily execute code from memory with
11189 * the wrong security attribute: it will always generate
11190 * an exception of some kind or another, apart from the
11191 * special case of an NS CPU executing an SG instruction
11192 * in S&NSC memory. So we always just fail the translation
11193 * here and sort things out in the exception handler
11194 * (including possibly emulating an SG instruction).
11196 if (sattrs.ns != !secure) {
11197 if (sattrs.nsc) {
11198 fi->type = ARMFault_QEMU_NSCExec;
11199 } else {
11200 fi->type = ARMFault_QEMU_SFault;
11202 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11203 *phys_ptr = address;
11204 *prot = 0;
11205 return true;
11207 } else {
11208 /* For data accesses we always use the MMU bank indicated
11209 * by the current CPU state, but the security attributes
11210 * might downgrade a secure access to nonsecure.
11212 if (sattrs.ns) {
11213 txattrs->secure = false;
11214 } else if (!secure) {
11215 /* NS access to S memory must fault.
11216 * Architecturally we should first check whether the
11217 * MPU information for this address indicates that we
11218 * are doing an unaligned access to Device memory, which
11219 * should generate a UsageFault instead. QEMU does not
11220 * currently check for that kind of unaligned access though.
11221 * If we added it we would need to do so as a special case
11222 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11224 fi->type = ARMFault_QEMU_SFault;
11225 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11226 *phys_ptr = address;
11227 *prot = 0;
11228 return true;
11233 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11234 txattrs, prot, &mpu_is_subpage, fi, NULL);
11235 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11236 return ret;
11239 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11240 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11241 hwaddr *phys_ptr, int *prot,
11242 ARMMMUFaultInfo *fi)
11244 int n;
11245 uint32_t mask;
11246 uint32_t base;
11247 bool is_user = regime_is_user(env, mmu_idx);
11249 if (regime_translation_disabled(env, mmu_idx)) {
11250 /* MPU disabled. */
11251 *phys_ptr = address;
11252 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11253 return false;
11256 *phys_ptr = address;
11257 for (n = 7; n >= 0; n--) {
11258 base = env->cp15.c6_region[n];
11259 if ((base & 1) == 0) {
11260 continue;
11262 mask = 1 << ((base >> 1) & 0x1f);
11263 /* Keep this shift separate from the above to avoid an
11264 (undefined) << 32. */
11265 mask = (mask << 1) - 1;
11266 if (((base ^ address) & ~mask) == 0) {
11267 break;
11270 if (n < 0) {
11271 fi->type = ARMFault_Background;
11272 return true;
11275 if (access_type == MMU_INST_FETCH) {
11276 mask = env->cp15.pmsav5_insn_ap;
11277 } else {
11278 mask = env->cp15.pmsav5_data_ap;
11280 mask = (mask >> (n * 4)) & 0xf;
11281 switch (mask) {
11282 case 0:
11283 fi->type = ARMFault_Permission;
11284 fi->level = 1;
11285 return true;
11286 case 1:
11287 if (is_user) {
11288 fi->type = ARMFault_Permission;
11289 fi->level = 1;
11290 return true;
11292 *prot = PAGE_READ | PAGE_WRITE;
11293 break;
11294 case 2:
11295 *prot = PAGE_READ;
11296 if (!is_user) {
11297 *prot |= PAGE_WRITE;
11299 break;
11300 case 3:
11301 *prot = PAGE_READ | PAGE_WRITE;
11302 break;
11303 case 5:
11304 if (is_user) {
11305 fi->type = ARMFault_Permission;
11306 fi->level = 1;
11307 return true;
11309 *prot = PAGE_READ;
11310 break;
11311 case 6:
11312 *prot = PAGE_READ;
11313 break;
11314 default:
11315 /* Bad permission. */
11316 fi->type = ARMFault_Permission;
11317 fi->level = 1;
11318 return true;
11320 *prot |= PAGE_EXEC;
11321 return false;
11324 /* Combine either inner or outer cacheability attributes for normal
11325 * memory, according to table D4-42 and pseudocode procedure
11326 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11328 * NB: only stage 1 includes allocation hints (RW bits), leading to
11329 * some asymmetry.
11331 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11333 if (s1 == 4 || s2 == 4) {
11334 /* non-cacheable has precedence */
11335 return 4;
11336 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11337 /* stage 1 write-through takes precedence */
11338 return s1;
11339 } else if (extract32(s2, 2, 2) == 2) {
11340 /* stage 2 write-through takes precedence, but the allocation hint
11341 * is still taken from stage 1
11343 return (2 << 2) | extract32(s1, 0, 2);
11344 } else { /* write-back */
11345 return s1;
11349 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11350 * and CombineS1S2Desc()
11352 * @s1: Attributes from stage 1 walk
11353 * @s2: Attributes from stage 2 walk
11355 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11357 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11358 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11359 ARMCacheAttrs ret;
11361 /* Combine shareability attributes (table D4-43) */
11362 if (s1.shareability == 2 || s2.shareability == 2) {
11363 /* if either are outer-shareable, the result is outer-shareable */
11364 ret.shareability = 2;
11365 } else if (s1.shareability == 3 || s2.shareability == 3) {
11366 /* if either are inner-shareable, the result is inner-shareable */
11367 ret.shareability = 3;
11368 } else {
11369 /* both non-shareable */
11370 ret.shareability = 0;
11373 /* Combine memory type and cacheability attributes */
11374 if (s1hi == 0 || s2hi == 0) {
11375 /* Device has precedence over normal */
11376 if (s1lo == 0 || s2lo == 0) {
11377 /* nGnRnE has precedence over anything */
11378 ret.attrs = 0;
11379 } else if (s1lo == 4 || s2lo == 4) {
11380 /* non-Reordering has precedence over Reordering */
11381 ret.attrs = 4; /* nGnRE */
11382 } else if (s1lo == 8 || s2lo == 8) {
11383 /* non-Gathering has precedence over Gathering */
11384 ret.attrs = 8; /* nGRE */
11385 } else {
11386 ret.attrs = 0xc; /* GRE */
11389 /* Any location for which the resultant memory type is any
11390 * type of Device memory is always treated as Outer Shareable.
11392 ret.shareability = 2;
11393 } else { /* Normal memory */
11394 /* Outer/inner cacheability combine independently */
11395 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11396 | combine_cacheattr_nibble(s1lo, s2lo);
11398 if (ret.attrs == 0x44) {
11399 /* Any location for which the resultant memory type is Normal
11400 * Inner Non-cacheable, Outer Non-cacheable is always treated
11401 * as Outer Shareable.
11403 ret.shareability = 2;
11407 return ret;
11411 /* get_phys_addr - get the physical address for this virtual address
11413 * Find the physical address corresponding to the given virtual address,
11414 * by doing a translation table walk on MMU based systems or using the
11415 * MPU state on MPU based systems.
11417 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11418 * prot and page_size may not be filled in, and the populated fsr value provides
11419 * information on why the translation aborted, in the format of a
11420 * DFSR/IFSR fault register, with the following caveats:
11421 * * we honour the short vs long DFSR format differences.
11422 * * the WnR bit is never set (the caller must do this).
11423 * * for PSMAv5 based systems we don't bother to return a full FSR format
11424 * value.
11426 * @env: CPUARMState
11427 * @address: virtual address to get physical address for
11428 * @access_type: 0 for read, 1 for write, 2 for execute
11429 * @mmu_idx: MMU index indicating required translation regime
11430 * @phys_ptr: set to the physical address corresponding to the virtual address
11431 * @attrs: set to the memory transaction attributes to use
11432 * @prot: set to the permissions for the page containing phys_ptr
11433 * @page_size: set to the size of the page containing phys_ptr
11434 * @fi: set to fault info if the translation fails
11435 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11437 bool get_phys_addr(CPUARMState *env, target_ulong address,
11438 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11439 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11440 target_ulong *page_size,
11441 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11443 if (mmu_idx == ARMMMUIdx_E10_0 ||
11444 mmu_idx == ARMMMUIdx_E10_1 ||
11445 mmu_idx == ARMMMUIdx_E10_1_PAN) {
11446 /* Call ourselves recursively to do the stage 1 and then stage 2
11447 * translations.
11449 if (arm_feature(env, ARM_FEATURE_EL2)) {
11450 hwaddr ipa;
11451 int s2_prot;
11452 int ret;
11453 ARMCacheAttrs cacheattrs2 = {};
11455 ret = get_phys_addr(env, address, access_type,
11456 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
11457 prot, page_size, fi, cacheattrs);
11459 /* If S1 fails or S2 is disabled, return early. */
11460 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
11461 *phys_ptr = ipa;
11462 return ret;
11465 /* S1 is done. Now do S2 translation. */
11466 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2,
11467 phys_ptr, attrs, &s2_prot,
11468 page_size, fi,
11469 cacheattrs != NULL ? &cacheattrs2 : NULL);
11470 fi->s2addr = ipa;
11471 /* Combine the S1 and S2 perms. */
11472 *prot &= s2_prot;
11474 /* Combine the S1 and S2 cache attributes, if needed */
11475 if (!ret && cacheattrs != NULL) {
11476 if (env->cp15.hcr_el2 & HCR_DC) {
11478 * HCR.DC forces the first stage attributes to
11479 * Normal Non-Shareable,
11480 * Inner Write-Back Read-Allocate Write-Allocate,
11481 * Outer Write-Back Read-Allocate Write-Allocate.
11483 cacheattrs->attrs = 0xff;
11484 cacheattrs->shareability = 0;
11486 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
11489 return ret;
11490 } else {
11492 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11494 mmu_idx = stage_1_mmu_idx(mmu_idx);
11498 /* The page table entries may downgrade secure to non-secure, but
11499 * cannot upgrade an non-secure translation regime's attributes
11500 * to secure.
11502 attrs->secure = regime_is_secure(env, mmu_idx);
11503 attrs->user = regime_is_user(env, mmu_idx);
11505 /* Fast Context Switch Extension. This doesn't exist at all in v8.
11506 * In v7 and earlier it affects all stage 1 translations.
11508 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
11509 && !arm_feature(env, ARM_FEATURE_V8)) {
11510 if (regime_el(env, mmu_idx) == 3) {
11511 address += env->cp15.fcseidr_s;
11512 } else {
11513 address += env->cp15.fcseidr_ns;
11517 if (arm_feature(env, ARM_FEATURE_PMSA)) {
11518 bool ret;
11519 *page_size = TARGET_PAGE_SIZE;
11521 if (arm_feature(env, ARM_FEATURE_V8)) {
11522 /* PMSAv8 */
11523 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
11524 phys_ptr, attrs, prot, page_size, fi);
11525 } else if (arm_feature(env, ARM_FEATURE_V7)) {
11526 /* PMSAv7 */
11527 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
11528 phys_ptr, prot, page_size, fi);
11529 } else {
11530 /* Pre-v7 MPU */
11531 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
11532 phys_ptr, prot, fi);
11534 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
11535 " mmu_idx %u -> %s (prot %c%c%c)\n",
11536 access_type == MMU_DATA_LOAD ? "reading" :
11537 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
11538 (uint32_t)address, mmu_idx,
11539 ret ? "Miss" : "Hit",
11540 *prot & PAGE_READ ? 'r' : '-',
11541 *prot & PAGE_WRITE ? 'w' : '-',
11542 *prot & PAGE_EXEC ? 'x' : '-');
11544 return ret;
11547 /* Definitely a real MMU, not an MPU */
11549 if (regime_translation_disabled(env, mmu_idx)) {
11550 /* MMU disabled. */
11551 *phys_ptr = address;
11552 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11553 *page_size = TARGET_PAGE_SIZE;
11554 return 0;
11557 if (regime_using_lpae_format(env, mmu_idx)) {
11558 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
11559 phys_ptr, attrs, prot, page_size,
11560 fi, cacheattrs);
11561 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
11562 return get_phys_addr_v6(env, address, access_type, mmu_idx,
11563 phys_ptr, attrs, prot, page_size, fi);
11564 } else {
11565 return get_phys_addr_v5(env, address, access_type, mmu_idx,
11566 phys_ptr, prot, page_size, fi);
11570 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11571 MemTxAttrs *attrs)
11573 ARMCPU *cpu = ARM_CPU(cs);
11574 CPUARMState *env = &cpu->env;
11575 hwaddr phys_addr;
11576 target_ulong page_size;
11577 int prot;
11578 bool ret;
11579 ARMMMUFaultInfo fi = {};
11580 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11582 *attrs = (MemTxAttrs) {};
11584 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
11585 attrs, &prot, &page_size, &fi, NULL);
11587 if (ret) {
11588 return -1;
11590 return phys_addr;
11593 #endif
11595 /* Note that signed overflow is undefined in C. The following routines are
11596 careful to use unsigned types where modulo arithmetic is required.
11597 Failure to do so _will_ break on newer gcc. */
11599 /* Signed saturating arithmetic. */
11601 /* Perform 16-bit signed saturating addition. */
11602 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11604 uint16_t res;
11606 res = a + b;
11607 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11608 if (a & 0x8000)
11609 res = 0x8000;
11610 else
11611 res = 0x7fff;
11613 return res;
11616 /* Perform 8-bit signed saturating addition. */
11617 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11619 uint8_t res;
11621 res = a + b;
11622 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11623 if (a & 0x80)
11624 res = 0x80;
11625 else
11626 res = 0x7f;
11628 return res;
11631 /* Perform 16-bit signed saturating subtraction. */
11632 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11634 uint16_t res;
11636 res = a - b;
11637 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11638 if (a & 0x8000)
11639 res = 0x8000;
11640 else
11641 res = 0x7fff;
11643 return res;
11646 /* Perform 8-bit signed saturating subtraction. */
11647 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11649 uint8_t res;
11651 res = a - b;
11652 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11653 if (a & 0x80)
11654 res = 0x80;
11655 else
11656 res = 0x7f;
11658 return res;
11661 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11662 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11663 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11664 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11665 #define PFX q
11667 #include "op_addsub.h"
11669 /* Unsigned saturating arithmetic. */
11670 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11672 uint16_t res;
11673 res = a + b;
11674 if (res < a)
11675 res = 0xffff;
11676 return res;
11679 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11681 if (a > b)
11682 return a - b;
11683 else
11684 return 0;
11687 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11689 uint8_t res;
11690 res = a + b;
11691 if (res < a)
11692 res = 0xff;
11693 return res;
11696 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11698 if (a > b)
11699 return a - b;
11700 else
11701 return 0;
11704 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11705 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11706 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11707 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11708 #define PFX uq
11710 #include "op_addsub.h"
11712 /* Signed modulo arithmetic. */
11713 #define SARITH16(a, b, n, op) do { \
11714 int32_t sum; \
11715 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11716 RESULT(sum, n, 16); \
11717 if (sum >= 0) \
11718 ge |= 3 << (n * 2); \
11719 } while(0)
11721 #define SARITH8(a, b, n, op) do { \
11722 int32_t sum; \
11723 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11724 RESULT(sum, n, 8); \
11725 if (sum >= 0) \
11726 ge |= 1 << n; \
11727 } while(0)
11730 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11731 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11732 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11733 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11734 #define PFX s
11735 #define ARITH_GE
11737 #include "op_addsub.h"
11739 /* Unsigned modulo arithmetic. */
11740 #define ADD16(a, b, n) do { \
11741 uint32_t sum; \
11742 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11743 RESULT(sum, n, 16); \
11744 if ((sum >> 16) == 1) \
11745 ge |= 3 << (n * 2); \
11746 } while(0)
11748 #define ADD8(a, b, n) do { \
11749 uint32_t sum; \
11750 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11751 RESULT(sum, n, 8); \
11752 if ((sum >> 8) == 1) \
11753 ge |= 1 << n; \
11754 } while(0)
11756 #define SUB16(a, b, n) do { \
11757 uint32_t sum; \
11758 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11759 RESULT(sum, n, 16); \
11760 if ((sum >> 16) == 0) \
11761 ge |= 3 << (n * 2); \
11762 } while(0)
11764 #define SUB8(a, b, n) do { \
11765 uint32_t sum; \
11766 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11767 RESULT(sum, n, 8); \
11768 if ((sum >> 8) == 0) \
11769 ge |= 1 << n; \
11770 } while(0)
11772 #define PFX u
11773 #define ARITH_GE
11775 #include "op_addsub.h"
11777 /* Halved signed arithmetic. */
11778 #define ADD16(a, b, n) \
11779 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11780 #define SUB16(a, b, n) \
11781 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11782 #define ADD8(a, b, n) \
11783 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11784 #define SUB8(a, b, n) \
11785 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11786 #define PFX sh
11788 #include "op_addsub.h"
11790 /* Halved unsigned arithmetic. */
11791 #define ADD16(a, b, n) \
11792 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11793 #define SUB16(a, b, n) \
11794 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11795 #define ADD8(a, b, n) \
11796 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11797 #define SUB8(a, b, n) \
11798 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11799 #define PFX uh
11801 #include "op_addsub.h"
11803 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11805 if (a > b)
11806 return a - b;
11807 else
11808 return b - a;
11811 /* Unsigned sum of absolute byte differences. */
11812 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11814 uint32_t sum;
11815 sum = do_usad(a, b);
11816 sum += do_usad(a >> 8, b >> 8);
11817 sum += do_usad(a >> 16, b >>16);
11818 sum += do_usad(a >> 24, b >> 24);
11819 return sum;
11822 /* For ARMv6 SEL instruction. */
11823 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11825 uint32_t mask;
11827 mask = 0;
11828 if (flags & 1)
11829 mask |= 0xff;
11830 if (flags & 2)
11831 mask |= 0xff00;
11832 if (flags & 4)
11833 mask |= 0xff0000;
11834 if (flags & 8)
11835 mask |= 0xff000000;
11836 return (a & mask) | (b & ~mask);
11839 /* CRC helpers.
11840 * The upper bytes of val (above the number specified by 'bytes') must have
11841 * been zeroed out by the caller.
11843 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11845 uint8_t buf[4];
11847 stl_le_p(buf, val);
11849 /* zlib crc32 converts the accumulator and output to one's complement. */
11850 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11853 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11855 uint8_t buf[4];
11857 stl_le_p(buf, val);
11859 /* Linux crc32c converts the output to one's complement. */
11860 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11863 /* Return the exception level to which FP-disabled exceptions should
11864 * be taken, or 0 if FP is enabled.
11866 int fp_exception_el(CPUARMState *env, int cur_el)
11868 #ifndef CONFIG_USER_ONLY
11869 /* CPACR and the CPTR registers don't exist before v6, so FP is
11870 * always accessible
11872 if (!arm_feature(env, ARM_FEATURE_V6)) {
11873 return 0;
11876 if (arm_feature(env, ARM_FEATURE_M)) {
11877 /* CPACR can cause a NOCP UsageFault taken to current security state */
11878 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11879 return 1;
11882 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11883 if (!extract32(env->v7m.nsacr, 10, 1)) {
11884 /* FP insns cause a NOCP UsageFault taken to Secure */
11885 return 3;
11889 return 0;
11892 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11893 * 0, 2 : trap EL0 and EL1/PL1 accesses
11894 * 1 : trap only EL0 accesses
11895 * 3 : trap no accesses
11896 * This register is ignored if E2H+TGE are both set.
11898 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11899 int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
11901 switch (fpen) {
11902 case 0:
11903 case 2:
11904 if (cur_el == 0 || cur_el == 1) {
11905 /* Trap to PL1, which might be EL1 or EL3 */
11906 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
11907 return 3;
11909 return 1;
11911 if (cur_el == 3 && !is_a64(env)) {
11912 /* Secure PL1 running at EL3 */
11913 return 3;
11915 break;
11916 case 1:
11917 if (cur_el == 0) {
11918 return 1;
11920 break;
11921 case 3:
11922 break;
11927 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11928 * to control non-secure access to the FPU. It doesn't have any
11929 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11931 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11932 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11933 if (!extract32(env->cp15.nsacr, 10, 1)) {
11934 /* FP insns act as UNDEF */
11935 return cur_el == 2 ? 2 : 1;
11939 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
11940 * check because zero bits in the registers mean "don't trap".
11943 /* CPTR_EL2 : present in v7VE or v8 */
11944 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
11945 && !arm_is_secure_below_el3(env)) {
11946 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
11947 return 2;
11950 /* CPTR_EL3 : present in v8 */
11951 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
11952 /* Trap all FP ops to EL3 */
11953 return 3;
11955 #endif
11956 return 0;
11959 /* Return the exception level we're running at if this is our mmu_idx */
11960 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11962 if (mmu_idx & ARM_MMU_IDX_M) {
11963 return mmu_idx & ARM_MMU_IDX_M_PRIV;
11966 switch (mmu_idx) {
11967 case ARMMMUIdx_E10_0:
11968 case ARMMMUIdx_E20_0:
11969 case ARMMMUIdx_SE10_0:
11970 return 0;
11971 case ARMMMUIdx_E10_1:
11972 case ARMMMUIdx_E10_1_PAN:
11973 case ARMMMUIdx_SE10_1:
11974 case ARMMMUIdx_SE10_1_PAN:
11975 return 1;
11976 case ARMMMUIdx_E2:
11977 case ARMMMUIdx_E20_2:
11978 case ARMMMUIdx_E20_2_PAN:
11979 return 2;
11980 case ARMMMUIdx_SE3:
11981 return 3;
11982 default:
11983 g_assert_not_reached();
11987 #ifndef CONFIG_TCG
11988 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11990 g_assert_not_reached();
11992 #endif
11994 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11996 if (arm_feature(env, ARM_FEATURE_M)) {
11997 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12000 /* See ARM pseudo-function ELIsInHost. */
12001 switch (el) {
12002 case 0:
12003 if (arm_is_secure_below_el3(env)) {
12004 return ARMMMUIdx_SE10_0;
12006 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)
12007 && arm_el_is_aa64(env, 2)) {
12008 return ARMMMUIdx_E20_0;
12010 return ARMMMUIdx_E10_0;
12011 case 1:
12012 if (arm_is_secure_below_el3(env)) {
12013 if (env->pstate & PSTATE_PAN) {
12014 return ARMMMUIdx_SE10_1_PAN;
12016 return ARMMMUIdx_SE10_1;
12018 if (env->pstate & PSTATE_PAN) {
12019 return ARMMMUIdx_E10_1_PAN;
12021 return ARMMMUIdx_E10_1;
12022 case 2:
12023 /* TODO: ARMv8.4-SecEL2 */
12024 /* Note that TGE does not apply at EL2. */
12025 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) {
12026 if (env->pstate & PSTATE_PAN) {
12027 return ARMMMUIdx_E20_2_PAN;
12029 return ARMMMUIdx_E20_2;
12031 return ARMMMUIdx_E2;
12032 case 3:
12033 return ARMMMUIdx_SE3;
12034 default:
12035 g_assert_not_reached();
12039 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12041 return arm_mmu_idx_el(env, arm_current_el(env));
12044 int cpu_mmu_index(CPUARMState *env, bool ifetch)
12046 return arm_to_core_mmu_idx(arm_mmu_idx(env));
12049 #ifndef CONFIG_USER_ONLY
12050 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12052 return stage_1_mmu_idx(arm_mmu_idx(env));
12054 #endif
12056 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
12057 ARMMMUIdx mmu_idx, uint32_t flags)
12059 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12060 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
12061 arm_to_core_mmu_idx(mmu_idx));
12063 if (arm_singlestep_active(env)) {
12064 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12066 return flags;
12069 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
12070 ARMMMUIdx mmu_idx, uint32_t flags)
12072 bool sctlr_b = arm_sctlr_b(env);
12074 if (sctlr_b) {
12075 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
12077 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
12078 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12080 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12082 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12085 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
12086 ARMMMUIdx mmu_idx)
12088 uint32_t flags = 0;
12090 if (arm_v7m_is_handler_mode(env)) {
12091 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
12095 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
12096 * is suppressing them because the requested execution priority
12097 * is less than 0.
12099 if (arm_feature(env, ARM_FEATURE_V8) &&
12100 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12101 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12102 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
12105 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12108 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
12110 int flags = 0;
12112 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
12113 arm_debug_target_el(env));
12114 return flags;
12117 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
12118 ARMMMUIdx mmu_idx)
12120 uint32_t flags = rebuild_hflags_aprofile(env);
12122 if (arm_el_is_aa64(env, 1)) {
12123 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12126 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
12127 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12128 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
12131 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12134 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
12135 ARMMMUIdx mmu_idx)
12137 uint32_t flags = rebuild_hflags_aprofile(env);
12138 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12139 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
12140 uint64_t sctlr;
12141 int tbii, tbid;
12143 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12145 /* Get control bits for tagged addresses. */
12146 if (regime_has_2_ranges(mmu_idx)) {
12147 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
12148 tbid = (p1.tbi << 1) | p0.tbi;
12149 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
12150 } else {
12151 tbid = p0.tbi;
12152 tbii = tbid & !p0.tbid;
12155 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12156 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12158 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
12159 int sve_el = sve_exception_el(env, el);
12160 uint32_t zcr_len;
12163 * If SVE is disabled, but FP is enabled,
12164 * then the effective len is 0.
12166 if (sve_el != 0 && fp_el == 0) {
12167 zcr_len = 0;
12168 } else {
12169 zcr_len = sve_zcr_len_for_el(env, el);
12171 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12172 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12175 sctlr = regime_sctlr(env, stage1);
12177 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
12178 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12181 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12183 * In order to save space in flags, we record only whether
12184 * pauth is "inactive", meaning all insns are implemented as
12185 * a nop, or "active" when some action must be performed.
12186 * The decision of which action to take is left to a helper.
12188 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12189 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12193 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12194 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
12195 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12196 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12200 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
12201 if (!(env->pstate & PSTATE_UAO)) {
12202 switch (mmu_idx) {
12203 case ARMMMUIdx_E10_1:
12204 case ARMMMUIdx_E10_1_PAN:
12205 case ARMMMUIdx_SE10_1:
12206 case ARMMMUIdx_SE10_1_PAN:
12207 /* TODO: ARMv8.3-NV */
12208 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12209 break;
12210 case ARMMMUIdx_E20_2:
12211 case ARMMMUIdx_E20_2_PAN:
12212 /* TODO: ARMv8.4-SecEL2 */
12214 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
12215 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12217 if (env->cp15.hcr_el2 & HCR_TGE) {
12218 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12220 break;
12221 default:
12222 break;
12226 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12229 static uint32_t rebuild_hflags_internal(CPUARMState *env)
12231 int el = arm_current_el(env);
12232 int fp_el = fp_exception_el(env, el);
12233 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12235 if (is_a64(env)) {
12236 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12237 } else if (arm_feature(env, ARM_FEATURE_M)) {
12238 return rebuild_hflags_m32(env, fp_el, mmu_idx);
12239 } else {
12240 return rebuild_hflags_a32(env, fp_el, mmu_idx);
12244 void arm_rebuild_hflags(CPUARMState *env)
12246 env->hflags = rebuild_hflags_internal(env);
12249 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12251 int fp_el = fp_exception_el(env, el);
12252 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12254 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12258 * If we have triggered a EL state change we can't rely on the
12259 * translator having passed it too us, we need to recompute.
12261 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12263 int el = arm_current_el(env);
12264 int fp_el = fp_exception_el(env, el);
12265 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12266 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12269 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
12271 int fp_el = fp_exception_el(env, el);
12272 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12274 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12277 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
12279 int fp_el = fp_exception_el(env, el);
12280 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12282 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12285 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
12287 #ifdef CONFIG_DEBUG_TCG
12288 uint32_t env_flags_current = env->hflags;
12289 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
12291 if (unlikely(env_flags_current != env_flags_rebuilt)) {
12292 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
12293 env_flags_current, env_flags_rebuilt);
12294 abort();
12296 #endif
12299 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12300 target_ulong *cs_base, uint32_t *pflags)
12302 uint32_t flags = env->hflags;
12303 uint32_t pstate_for_ss;
12305 *cs_base = 0;
12306 assert_hflags_rebuild_correctly(env);
12308 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
12309 *pc = env->pc;
12310 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12311 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
12313 pstate_for_ss = env->pstate;
12314 } else {
12315 *pc = env->regs[15];
12317 if (arm_feature(env, ARM_FEATURE_M)) {
12318 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12319 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12320 != env->v7m.secure) {
12321 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
12324 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12325 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12326 (env->v7m.secure &&
12327 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12329 * ASPEN is set, but FPCA/SFPA indicate that there is no
12330 * active FP context; we must create a new FP context before
12331 * executing any FP insn.
12333 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
12336 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12337 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12338 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
12340 } else {
12342 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12343 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12345 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12346 flags = FIELD_DP32(flags, TBFLAG_A32,
12347 XSCALE_CPAR, env->cp15.c15_cpar);
12348 } else {
12349 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
12350 env->vfp.vec_len);
12351 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
12352 env->vfp.vec_stride);
12354 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12355 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12359 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
12360 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
12361 pstate_for_ss = env->uncached_cpsr;
12365 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12366 * states defined in the ARM ARM for software singlestep:
12367 * SS_ACTIVE PSTATE.SS State
12368 * 0 x Inactive (the TB flag for SS is always 0)
12369 * 1 0 Active-pending
12370 * 1 1 Active-not-pending
12371 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
12373 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
12374 (pstate_for_ss & PSTATE_SS)) {
12375 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
12378 *pflags = flags;
12381 #ifdef TARGET_AARCH64
12383 * The manual says that when SVE is enabled and VQ is widened the
12384 * implementation is allowed to zero the previously inaccessible
12385 * portion of the registers. The corollary to that is that when
12386 * SVE is enabled and VQ is narrowed we are also allowed to zero
12387 * the now inaccessible portion of the registers.
12389 * The intent of this is that no predicate bit beyond VQ is ever set.
12390 * Which means that some operations on predicate registers themselves
12391 * may operate on full uint64_t or even unrolled across the maximum
12392 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12393 * may well be cheaper than conditionals to restrict the operation
12394 * to the relevant portion of a uint16_t[16].
12396 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12398 int i, j;
12399 uint64_t pmask;
12401 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12402 assert(vq <= env_archcpu(env)->sve_max_vq);
12404 /* Zap the high bits of the zregs. */
12405 for (i = 0; i < 32; i++) {
12406 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12409 /* Zap the high bits of the pregs and ffr. */
12410 pmask = 0;
12411 if (vq & 3) {
12412 pmask = ~(-1ULL << (16 * (vq & 3)));
12414 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12415 for (i = 0; i < 17; ++i) {
12416 env->vfp.pregs[i].p[j] &= pmask;
12418 pmask = 0;
12423 * Notice a change in SVE vector size when changing EL.
12425 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12426 int new_el, bool el0_a64)
12428 ARMCPU *cpu = env_archcpu(env);
12429 int old_len, new_len;
12430 bool old_a64, new_a64;
12432 /* Nothing to do if no SVE. */
12433 if (!cpu_isar_feature(aa64_sve, cpu)) {
12434 return;
12437 /* Nothing to do if FP is disabled in either EL. */
12438 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12439 return;
12443 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12444 * at ELx, or not available because the EL is in AArch32 state, then
12445 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12446 * has an effective value of 0".
12448 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12449 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12450 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12451 * we already have the correct register contents when encountering the
12452 * vq0->vq0 transition between EL0->EL1.
12454 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12455 old_len = (old_a64 && !sve_exception_el(env, old_el)
12456 ? sve_zcr_len_for_el(env, old_el) : 0);
12457 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12458 new_len = (new_a64 && !sve_exception_el(env, new_el)
12459 ? sve_zcr_len_for_el(env, new_el) : 0);
12461 /* When changing vector length, clear inaccessible state. */
12462 if (new_len < old_len) {
12463 aarch64_sve_narrow_vq(env, new_len + 1);
12466 #endif