test/avocado/machine_aspeed.py: Add ast1030 test case
[qemu/kevin.git] / softmmu / physmem.c
blob657841eed0cf9e72af8a0f717d09466ba80e642d
1 /*
2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/madvise.h"
28 #ifdef CONFIG_TCG
29 #include "hw/core/tcg-cpu-ops.h"
30 #endif /* CONFIG_TCG */
32 #include "exec/exec-all.h"
33 #include "exec/target_page.h"
34 #include "hw/qdev-core.h"
35 #include "hw/qdev-properties.h"
36 #include "hw/boards.h"
37 #include "hw/xen/xen.h"
38 #include "sysemu/kvm.h"
39 #include "sysemu/tcg.h"
40 #include "sysemu/qtest.h"
41 #include "qemu/timer.h"
42 #include "qemu/config-file.h"
43 #include "qemu/error-report.h"
44 #include "qemu/qemu-print.h"
45 #include "qemu/log.h"
46 #include "qemu/memalign.h"
47 #include "exec/memory.h"
48 #include "exec/ioport.h"
49 #include "sysemu/dma.h"
50 #include "sysemu/hostmem.h"
51 #include "sysemu/hw_accel.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace/trace-root.h"
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
57 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "exec/translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
67 #include "qemu/pmem.h"
69 #include "migration/vmstate.h"
71 #include "qemu/range.h"
72 #ifndef _WIN32
73 #include "qemu/mmap-alloc.h"
74 #endif
76 #include "monitor/monitor.h"
78 #ifdef CONFIG_LIBDAXCTL
79 #include <daxctl/libdaxctl.h>
80 #endif
82 //#define DEBUG_SUBPAGE
84 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
85 * are protected by the ramlist lock.
87 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
89 static MemoryRegion *system_memory;
90 static MemoryRegion *system_io;
92 AddressSpace address_space_io;
93 AddressSpace address_space_memory;
95 static MemoryRegion io_mem_unassigned;
97 typedef struct PhysPageEntry PhysPageEntry;
99 struct PhysPageEntry {
100 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
101 uint32_t skip : 6;
102 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
103 uint32_t ptr : 26;
106 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108 /* Size of the L2 (and L3, etc) page tables. */
109 #define ADDR_SPACE_BITS 64
111 #define P_L2_BITS 9
112 #define P_L2_SIZE (1 << P_L2_BITS)
114 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116 typedef PhysPageEntry Node[P_L2_SIZE];
118 typedef struct PhysPageMap {
119 struct rcu_head rcu;
121 unsigned sections_nb;
122 unsigned sections_nb_alloc;
123 unsigned nodes_nb;
124 unsigned nodes_nb_alloc;
125 Node *nodes;
126 MemoryRegionSection *sections;
127 } PhysPageMap;
129 struct AddressSpaceDispatch {
130 MemoryRegionSection *mru_section;
131 /* This is a multi-level map on the physical address space.
132 * The bottom level has pointers to MemoryRegionSections.
134 PhysPageEntry phys_map;
135 PhysPageMap map;
138 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
139 typedef struct subpage_t {
140 MemoryRegion iomem;
141 FlatView *fv;
142 hwaddr base;
143 uint16_t sub_section[];
144 } subpage_t;
146 #define PHYS_SECTION_UNASSIGNED 0
148 static void io_mem_init(void);
149 static void memory_map_init(void);
150 static void tcg_log_global_after_sync(MemoryListener *listener);
151 static void tcg_commit(MemoryListener *listener);
154 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
155 * @cpu: the CPU whose AddressSpace this is
156 * @as: the AddressSpace itself
157 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
158 * @tcg_as_listener: listener for tracking changes to the AddressSpace
160 struct CPUAddressSpace {
161 CPUState *cpu;
162 AddressSpace *as;
163 struct AddressSpaceDispatch *memory_dispatch;
164 MemoryListener tcg_as_listener;
167 struct DirtyBitmapSnapshot {
168 ram_addr_t start;
169 ram_addr_t end;
170 unsigned long dirty[];
173 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
175 static unsigned alloc_hint = 16;
176 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
177 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
178 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
179 alloc_hint = map->nodes_nb_alloc;
183 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
185 unsigned i;
186 uint32_t ret;
187 PhysPageEntry e;
188 PhysPageEntry *p;
190 ret = map->nodes_nb++;
191 p = map->nodes[ret];
192 assert(ret != PHYS_MAP_NODE_NIL);
193 assert(ret != map->nodes_nb_alloc);
195 e.skip = leaf ? 0 : 1;
196 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
197 for (i = 0; i < P_L2_SIZE; ++i) {
198 memcpy(&p[i], &e, sizeof(e));
200 return ret;
203 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
204 hwaddr *index, uint64_t *nb, uint16_t leaf,
205 int level)
207 PhysPageEntry *p;
208 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
210 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
211 lp->ptr = phys_map_node_alloc(map, level == 0);
213 p = map->nodes[lp->ptr];
214 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
216 while (*nb && lp < &p[P_L2_SIZE]) {
217 if ((*index & (step - 1)) == 0 && *nb >= step) {
218 lp->skip = 0;
219 lp->ptr = leaf;
220 *index += step;
221 *nb -= step;
222 } else {
223 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
225 ++lp;
229 static void phys_page_set(AddressSpaceDispatch *d,
230 hwaddr index, uint64_t nb,
231 uint16_t leaf)
233 /* Wildly overreserve - it doesn't matter much. */
234 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
236 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
239 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
240 * and update our entry so we can skip it and go directly to the destination.
242 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
244 unsigned valid_ptr = P_L2_SIZE;
245 int valid = 0;
246 PhysPageEntry *p;
247 int i;
249 if (lp->ptr == PHYS_MAP_NODE_NIL) {
250 return;
253 p = nodes[lp->ptr];
254 for (i = 0; i < P_L2_SIZE; i++) {
255 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
256 continue;
259 valid_ptr = i;
260 valid++;
261 if (p[i].skip) {
262 phys_page_compact(&p[i], nodes);
266 /* We can only compress if there's only one child. */
267 if (valid != 1) {
268 return;
271 assert(valid_ptr < P_L2_SIZE);
273 /* Don't compress if it won't fit in the # of bits we have. */
274 if (P_L2_LEVELS >= (1 << 6) &&
275 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
276 return;
279 lp->ptr = p[valid_ptr].ptr;
280 if (!p[valid_ptr].skip) {
281 /* If our only child is a leaf, make this a leaf. */
282 /* By design, we should have made this node a leaf to begin with so we
283 * should never reach here.
284 * But since it's so simple to handle this, let's do it just in case we
285 * change this rule.
287 lp->skip = 0;
288 } else {
289 lp->skip += p[valid_ptr].skip;
293 void address_space_dispatch_compact(AddressSpaceDispatch *d)
295 if (d->phys_map.skip) {
296 phys_page_compact(&d->phys_map, d->map.nodes);
300 static inline bool section_covers_addr(const MemoryRegionSection *section,
301 hwaddr addr)
303 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
304 * the section must cover the entire address space.
306 return int128_gethi(section->size) ||
307 range_covers_byte(section->offset_within_address_space,
308 int128_getlo(section->size), addr);
311 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
313 PhysPageEntry lp = d->phys_map, *p;
314 Node *nodes = d->map.nodes;
315 MemoryRegionSection *sections = d->map.sections;
316 hwaddr index = addr >> TARGET_PAGE_BITS;
317 int i;
319 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
320 if (lp.ptr == PHYS_MAP_NODE_NIL) {
321 return &sections[PHYS_SECTION_UNASSIGNED];
323 p = nodes[lp.ptr];
324 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
327 if (section_covers_addr(&sections[lp.ptr], addr)) {
328 return &sections[lp.ptr];
329 } else {
330 return &sections[PHYS_SECTION_UNASSIGNED];
334 /* Called from RCU critical section */
335 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
336 hwaddr addr,
337 bool resolve_subpage)
339 MemoryRegionSection *section = qatomic_read(&d->mru_section);
340 subpage_t *subpage;
342 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
343 !section_covers_addr(section, addr)) {
344 section = phys_page_find(d, addr);
345 qatomic_set(&d->mru_section, section);
347 if (resolve_subpage && section->mr->subpage) {
348 subpage = container_of(section->mr, subpage_t, iomem);
349 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
351 return section;
354 /* Called from RCU critical section */
355 static MemoryRegionSection *
356 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
357 hwaddr *plen, bool resolve_subpage)
359 MemoryRegionSection *section;
360 MemoryRegion *mr;
361 Int128 diff;
363 section = address_space_lookup_region(d, addr, resolve_subpage);
364 /* Compute offset within MemoryRegionSection */
365 addr -= section->offset_within_address_space;
367 /* Compute offset within MemoryRegion */
368 *xlat = addr + section->offset_within_region;
370 mr = section->mr;
372 /* MMIO registers can be expected to perform full-width accesses based only
373 * on their address, without considering adjacent registers that could
374 * decode to completely different MemoryRegions. When such registers
375 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
376 * regions overlap wildly. For this reason we cannot clamp the accesses
377 * here.
379 * If the length is small (as is the case for address_space_ldl/stl),
380 * everything works fine. If the incoming length is large, however,
381 * the caller really has to do the clamping through memory_access_size.
383 if (memory_region_is_ram(mr)) {
384 diff = int128_sub(section->size, int128_make64(addr));
385 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
387 return section;
391 * address_space_translate_iommu - translate an address through an IOMMU
392 * memory region and then through the target address space.
394 * @iommu_mr: the IOMMU memory region that we start the translation from
395 * @addr: the address to be translated through the MMU
396 * @xlat: the translated address offset within the destination memory region.
397 * It cannot be %NULL.
398 * @plen_out: valid read/write length of the translated address. It
399 * cannot be %NULL.
400 * @page_mask_out: page mask for the translated address. This
401 * should only be meaningful for IOMMU translated
402 * addresses, since there may be huge pages that this bit
403 * would tell. It can be %NULL if we don't care about it.
404 * @is_write: whether the translation operation is for write
405 * @is_mmio: whether this can be MMIO, set true if it can
406 * @target_as: the address space targeted by the IOMMU
407 * @attrs: transaction attributes
409 * This function is called from RCU critical section. It is the common
410 * part of flatview_do_translate and address_space_translate_cached.
412 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
413 hwaddr *xlat,
414 hwaddr *plen_out,
415 hwaddr *page_mask_out,
416 bool is_write,
417 bool is_mmio,
418 AddressSpace **target_as,
419 MemTxAttrs attrs)
421 MemoryRegionSection *section;
422 hwaddr page_mask = (hwaddr)-1;
424 do {
425 hwaddr addr = *xlat;
426 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
427 int iommu_idx = 0;
428 IOMMUTLBEntry iotlb;
430 if (imrc->attrs_to_index) {
431 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
434 iotlb = imrc->translate(iommu_mr, addr, is_write ?
435 IOMMU_WO : IOMMU_RO, iommu_idx);
437 if (!(iotlb.perm & (1 << is_write))) {
438 goto unassigned;
441 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
442 | (addr & iotlb.addr_mask));
443 page_mask &= iotlb.addr_mask;
444 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
445 *target_as = iotlb.target_as;
447 section = address_space_translate_internal(
448 address_space_to_dispatch(iotlb.target_as), addr, xlat,
449 plen_out, is_mmio);
451 iommu_mr = memory_region_get_iommu(section->mr);
452 } while (unlikely(iommu_mr));
454 if (page_mask_out) {
455 *page_mask_out = page_mask;
457 return *section;
459 unassigned:
460 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
464 * flatview_do_translate - translate an address in FlatView
466 * @fv: the flat view that we want to translate on
467 * @addr: the address to be translated in above address space
468 * @xlat: the translated address offset within memory region. It
469 * cannot be @NULL.
470 * @plen_out: valid read/write length of the translated address. It
471 * can be @NULL when we don't care about it.
472 * @page_mask_out: page mask for the translated address. This
473 * should only be meaningful for IOMMU translated
474 * addresses, since there may be huge pages that this bit
475 * would tell. It can be @NULL if we don't care about it.
476 * @is_write: whether the translation operation is for write
477 * @is_mmio: whether this can be MMIO, set true if it can
478 * @target_as: the address space targeted by the IOMMU
479 * @attrs: memory transaction attributes
481 * This function is called from RCU critical section
483 static MemoryRegionSection flatview_do_translate(FlatView *fv,
484 hwaddr addr,
485 hwaddr *xlat,
486 hwaddr *plen_out,
487 hwaddr *page_mask_out,
488 bool is_write,
489 bool is_mmio,
490 AddressSpace **target_as,
491 MemTxAttrs attrs)
493 MemoryRegionSection *section;
494 IOMMUMemoryRegion *iommu_mr;
495 hwaddr plen = (hwaddr)(-1);
497 if (!plen_out) {
498 plen_out = &plen;
501 section = address_space_translate_internal(
502 flatview_to_dispatch(fv), addr, xlat,
503 plen_out, is_mmio);
505 iommu_mr = memory_region_get_iommu(section->mr);
506 if (unlikely(iommu_mr)) {
507 return address_space_translate_iommu(iommu_mr, xlat,
508 plen_out, page_mask_out,
509 is_write, is_mmio,
510 target_as, attrs);
512 if (page_mask_out) {
513 /* Not behind an IOMMU, use default page size. */
514 *page_mask_out = ~TARGET_PAGE_MASK;
517 return *section;
520 /* Called from RCU critical section */
521 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
522 bool is_write, MemTxAttrs attrs)
524 MemoryRegionSection section;
525 hwaddr xlat, page_mask;
528 * This can never be MMIO, and we don't really care about plen,
529 * but page mask.
531 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
532 NULL, &page_mask, is_write, false, &as,
533 attrs);
535 /* Illegal translation */
536 if (section.mr == &io_mem_unassigned) {
537 goto iotlb_fail;
540 /* Convert memory region offset into address space offset */
541 xlat += section.offset_within_address_space -
542 section.offset_within_region;
544 return (IOMMUTLBEntry) {
545 .target_as = as,
546 .iova = addr & ~page_mask,
547 .translated_addr = xlat & ~page_mask,
548 .addr_mask = page_mask,
549 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
550 .perm = IOMMU_RW,
553 iotlb_fail:
554 return (IOMMUTLBEntry) {0};
557 /* Called from RCU critical section */
558 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
559 hwaddr *plen, bool is_write,
560 MemTxAttrs attrs)
562 MemoryRegion *mr;
563 MemoryRegionSection section;
564 AddressSpace *as = NULL;
566 /* This can be MMIO, so setup MMIO bit. */
567 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
568 is_write, true, &as, attrs);
569 mr = section.mr;
571 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
572 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
573 *plen = MIN(page, *plen);
576 return mr;
579 typedef struct TCGIOMMUNotifier {
580 IOMMUNotifier n;
581 MemoryRegion *mr;
582 CPUState *cpu;
583 int iommu_idx;
584 bool active;
585 } TCGIOMMUNotifier;
587 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
589 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
591 if (!notifier->active) {
592 return;
594 tlb_flush(notifier->cpu);
595 notifier->active = false;
596 /* We leave the notifier struct on the list to avoid reallocating it later.
597 * Generally the number of IOMMUs a CPU deals with will be small.
598 * In any case we can't unregister the iommu notifier from a notify
599 * callback.
603 static void tcg_register_iommu_notifier(CPUState *cpu,
604 IOMMUMemoryRegion *iommu_mr,
605 int iommu_idx)
607 /* Make sure this CPU has an IOMMU notifier registered for this
608 * IOMMU/IOMMU index combination, so that we can flush its TLB
609 * when the IOMMU tells us the mappings we've cached have changed.
611 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
612 TCGIOMMUNotifier *notifier = NULL;
613 int i;
615 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
616 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
617 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
618 break;
621 if (i == cpu->iommu_notifiers->len) {
622 /* Not found, add a new entry at the end of the array */
623 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
624 notifier = g_new0(TCGIOMMUNotifier, 1);
625 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
627 notifier->mr = mr;
628 notifier->iommu_idx = iommu_idx;
629 notifier->cpu = cpu;
630 /* Rather than trying to register interest in the specific part
631 * of the iommu's address space that we've accessed and then
632 * expand it later as subsequent accesses touch more of it, we
633 * just register interest in the whole thing, on the assumption
634 * that iommu reconfiguration will be rare.
636 iommu_notifier_init(&notifier->n,
637 tcg_iommu_unmap_notify,
638 IOMMU_NOTIFIER_UNMAP,
640 HWADDR_MAX,
641 iommu_idx);
642 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
643 &error_fatal);
646 if (!notifier->active) {
647 notifier->active = true;
651 void tcg_iommu_free_notifier_list(CPUState *cpu)
653 /* Destroy the CPU's notifier list */
654 int i;
655 TCGIOMMUNotifier *notifier;
657 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
658 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
659 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
660 g_free(notifier);
662 g_array_free(cpu->iommu_notifiers, true);
665 void tcg_iommu_init_notifier_list(CPUState *cpu)
667 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
670 /* Called from RCU critical section */
671 MemoryRegionSection *
672 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
673 hwaddr *xlat, hwaddr *plen,
674 MemTxAttrs attrs, int *prot)
676 MemoryRegionSection *section;
677 IOMMUMemoryRegion *iommu_mr;
678 IOMMUMemoryRegionClass *imrc;
679 IOMMUTLBEntry iotlb;
680 int iommu_idx;
681 AddressSpaceDispatch *d =
682 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
684 for (;;) {
685 section = address_space_translate_internal(d, addr, &addr, plen, false);
687 iommu_mr = memory_region_get_iommu(section->mr);
688 if (!iommu_mr) {
689 break;
692 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
694 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
695 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
696 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
697 * doesn't short-cut its translation table walk.
699 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
700 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
701 | (addr & iotlb.addr_mask));
702 /* Update the caller's prot bits to remove permissions the IOMMU
703 * is giving us a failure response for. If we get down to no
704 * permissions left at all we can give up now.
706 if (!(iotlb.perm & IOMMU_RO)) {
707 *prot &= ~(PAGE_READ | PAGE_EXEC);
709 if (!(iotlb.perm & IOMMU_WO)) {
710 *prot &= ~PAGE_WRITE;
713 if (!*prot) {
714 goto translate_fail;
717 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
720 assert(!memory_region_is_iommu(section->mr));
721 *xlat = addr;
722 return section;
724 translate_fail:
725 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
728 void cpu_address_space_init(CPUState *cpu, int asidx,
729 const char *prefix, MemoryRegion *mr)
731 CPUAddressSpace *newas;
732 AddressSpace *as = g_new0(AddressSpace, 1);
733 char *as_name;
735 assert(mr);
736 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
737 address_space_init(as, mr, as_name);
738 g_free(as_name);
740 /* Target code should have set num_ases before calling us */
741 assert(asidx < cpu->num_ases);
743 if (asidx == 0) {
744 /* address space 0 gets the convenience alias */
745 cpu->as = as;
748 /* KVM cannot currently support multiple address spaces. */
749 assert(asidx == 0 || !kvm_enabled());
751 if (!cpu->cpu_ases) {
752 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
755 newas = &cpu->cpu_ases[asidx];
756 newas->cpu = cpu;
757 newas->as = as;
758 if (tcg_enabled()) {
759 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
760 newas->tcg_as_listener.commit = tcg_commit;
761 newas->tcg_as_listener.name = "tcg";
762 memory_listener_register(&newas->tcg_as_listener, as);
766 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
768 /* Return the AddressSpace corresponding to the specified index */
769 return cpu->cpu_ases[asidx].as;
772 /* Add a watchpoint. */
773 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
774 int flags, CPUWatchpoint **watchpoint)
776 CPUWatchpoint *wp;
777 vaddr in_page;
779 /* forbid ranges which are empty or run off the end of the address space */
780 if (len == 0 || (addr + len - 1) < addr) {
781 error_report("tried to set invalid watchpoint at %"
782 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
783 return -EINVAL;
785 wp = g_malloc(sizeof(*wp));
787 wp->vaddr = addr;
788 wp->len = len;
789 wp->flags = flags;
791 /* keep all GDB-injected watchpoints in front */
792 if (flags & BP_GDB) {
793 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
794 } else {
795 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
798 in_page = -(addr | TARGET_PAGE_MASK);
799 if (len <= in_page) {
800 tlb_flush_page(cpu, addr);
801 } else {
802 tlb_flush(cpu);
805 if (watchpoint)
806 *watchpoint = wp;
807 return 0;
810 /* Remove a specific watchpoint. */
811 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
812 int flags)
814 CPUWatchpoint *wp;
816 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
817 if (addr == wp->vaddr && len == wp->len
818 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
819 cpu_watchpoint_remove_by_ref(cpu, wp);
820 return 0;
823 return -ENOENT;
826 /* Remove a specific watchpoint by reference. */
827 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
829 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
831 tlb_flush_page(cpu, watchpoint->vaddr);
833 g_free(watchpoint);
836 /* Remove all matching watchpoints. */
837 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
839 CPUWatchpoint *wp, *next;
841 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
842 if (wp->flags & mask) {
843 cpu_watchpoint_remove_by_ref(cpu, wp);
848 #ifdef CONFIG_TCG
849 /* Return true if this watchpoint address matches the specified
850 * access (ie the address range covered by the watchpoint overlaps
851 * partially or completely with the address range covered by the
852 * access).
854 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
855 vaddr addr, vaddr len)
857 /* We know the lengths are non-zero, but a little caution is
858 * required to avoid errors in the case where the range ends
859 * exactly at the top of the address space and so addr + len
860 * wraps round to zero.
862 vaddr wpend = wp->vaddr + wp->len - 1;
863 vaddr addrend = addr + len - 1;
865 return !(addr > wpend || wp->vaddr > addrend);
868 /* Return flags for watchpoints that match addr + prot. */
869 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
871 CPUWatchpoint *wp;
872 int ret = 0;
874 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
875 if (watchpoint_address_matches(wp, addr, len)) {
876 ret |= wp->flags;
879 return ret;
882 /* Generate a debug exception if a watchpoint has been hit. */
883 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
884 MemTxAttrs attrs, int flags, uintptr_t ra)
886 CPUClass *cc = CPU_GET_CLASS(cpu);
887 CPUWatchpoint *wp;
889 assert(tcg_enabled());
890 if (cpu->watchpoint_hit) {
892 * We re-entered the check after replacing the TB.
893 * Now raise the debug interrupt so that it will
894 * trigger after the current instruction.
896 qemu_mutex_lock_iothread();
897 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
898 qemu_mutex_unlock_iothread();
899 return;
902 if (cc->tcg_ops->adjust_watchpoint_address) {
903 /* this is currently used only by ARM BE32 */
904 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
906 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
907 if (watchpoint_address_matches(wp, addr, len)
908 && (wp->flags & flags)) {
909 if (replay_running_debug()) {
911 * replay_breakpoint reads icount.
912 * Force recompile to succeed, because icount may
913 * be read only at the end of the block.
915 if (!cpu->can_do_io) {
916 /* Force execution of one insn next time. */
917 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
918 cpu_loop_exit_restore(cpu, ra);
921 * Don't process the watchpoints when we are
922 * in a reverse debugging operation.
924 replay_breakpoint();
925 return;
927 if (flags == BP_MEM_READ) {
928 wp->flags |= BP_WATCHPOINT_HIT_READ;
929 } else {
930 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
932 wp->hitaddr = MAX(addr, wp->vaddr);
933 wp->hitattrs = attrs;
935 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
936 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
937 wp->flags &= ~BP_WATCHPOINT_HIT;
938 continue;
940 cpu->watchpoint_hit = wp;
942 mmap_lock();
943 /* This call also restores vCPU state */
944 tb_check_watchpoint(cpu, ra);
945 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
946 cpu->exception_index = EXCP_DEBUG;
947 mmap_unlock();
948 cpu_loop_exit(cpu);
949 } else {
950 /* Force execution of one insn next time. */
951 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
952 mmap_unlock();
953 cpu_loop_exit_noexc(cpu);
955 } else {
956 wp->flags &= ~BP_WATCHPOINT_HIT;
961 #endif /* CONFIG_TCG */
963 /* Called from RCU critical section */
964 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
966 RAMBlock *block;
968 block = qatomic_rcu_read(&ram_list.mru_block);
969 if (block && addr - block->offset < block->max_length) {
970 return block;
972 RAMBLOCK_FOREACH(block) {
973 if (addr - block->offset < block->max_length) {
974 goto found;
978 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
979 abort();
981 found:
982 /* It is safe to write mru_block outside the iothread lock. This
983 * is what happens:
985 * mru_block = xxx
986 * rcu_read_unlock()
987 * xxx removed from list
988 * rcu_read_lock()
989 * read mru_block
990 * mru_block = NULL;
991 * call_rcu(reclaim_ramblock, xxx);
992 * rcu_read_unlock()
994 * qatomic_rcu_set is not needed here. The block was already published
995 * when it was placed into the list. Here we're just making an extra
996 * copy of the pointer.
998 ram_list.mru_block = block;
999 return block;
1002 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1004 CPUState *cpu;
1005 ram_addr_t start1;
1006 RAMBlock *block;
1007 ram_addr_t end;
1009 assert(tcg_enabled());
1010 end = TARGET_PAGE_ALIGN(start + length);
1011 start &= TARGET_PAGE_MASK;
1013 RCU_READ_LOCK_GUARD();
1014 block = qemu_get_ram_block(start);
1015 assert(block == qemu_get_ram_block(end - 1));
1016 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1017 CPU_FOREACH(cpu) {
1018 tlb_reset_dirty(cpu, start1, length);
1022 /* Note: start and end must be within the same ram block. */
1023 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1024 ram_addr_t length,
1025 unsigned client)
1027 DirtyMemoryBlocks *blocks;
1028 unsigned long end, page, start_page;
1029 bool dirty = false;
1030 RAMBlock *ramblock;
1031 uint64_t mr_offset, mr_size;
1033 if (length == 0) {
1034 return false;
1037 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1038 start_page = start >> TARGET_PAGE_BITS;
1039 page = start_page;
1041 WITH_RCU_READ_LOCK_GUARD() {
1042 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1043 ramblock = qemu_get_ram_block(start);
1044 /* Range sanity check on the ramblock */
1045 assert(start >= ramblock->offset &&
1046 start + length <= ramblock->offset + ramblock->used_length);
1048 while (page < end) {
1049 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1050 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1051 unsigned long num = MIN(end - page,
1052 DIRTY_MEMORY_BLOCK_SIZE - offset);
1054 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1055 offset, num);
1056 page += num;
1059 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1060 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1061 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1064 if (dirty && tcg_enabled()) {
1065 tlb_reset_dirty_range_all(start, length);
1068 return dirty;
1071 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1072 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1074 DirtyMemoryBlocks *blocks;
1075 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1076 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1077 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1078 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1079 DirtyBitmapSnapshot *snap;
1080 unsigned long page, end, dest;
1082 snap = g_malloc0(sizeof(*snap) +
1083 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1084 snap->start = first;
1085 snap->end = last;
1087 page = first >> TARGET_PAGE_BITS;
1088 end = last >> TARGET_PAGE_BITS;
1089 dest = 0;
1091 WITH_RCU_READ_LOCK_GUARD() {
1092 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1094 while (page < end) {
1095 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1096 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1097 unsigned long num = MIN(end - page,
1098 DIRTY_MEMORY_BLOCK_SIZE - offset);
1100 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1101 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1102 offset >>= BITS_PER_LEVEL;
1104 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1105 blocks->blocks[idx] + offset,
1106 num);
1107 page += num;
1108 dest += num >> BITS_PER_LEVEL;
1112 if (tcg_enabled()) {
1113 tlb_reset_dirty_range_all(start, length);
1116 memory_region_clear_dirty_bitmap(mr, offset, length);
1118 return snap;
1121 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1122 ram_addr_t start,
1123 ram_addr_t length)
1125 unsigned long page, end;
1127 assert(start >= snap->start);
1128 assert(start + length <= snap->end);
1130 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1131 page = (start - snap->start) >> TARGET_PAGE_BITS;
1133 while (page < end) {
1134 if (test_bit(page, snap->dirty)) {
1135 return true;
1137 page++;
1139 return false;
1142 /* Called from RCU critical section */
1143 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1144 MemoryRegionSection *section)
1146 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1147 return section - d->map.sections;
1150 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1151 uint16_t section);
1152 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1154 static uint16_t phys_section_add(PhysPageMap *map,
1155 MemoryRegionSection *section)
1157 /* The physical section number is ORed with a page-aligned
1158 * pointer to produce the iotlb entries. Thus it should
1159 * never overflow into the page-aligned value.
1161 assert(map->sections_nb < TARGET_PAGE_SIZE);
1163 if (map->sections_nb == map->sections_nb_alloc) {
1164 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1165 map->sections = g_renew(MemoryRegionSection, map->sections,
1166 map->sections_nb_alloc);
1168 map->sections[map->sections_nb] = *section;
1169 memory_region_ref(section->mr);
1170 return map->sections_nb++;
1173 static void phys_section_destroy(MemoryRegion *mr)
1175 bool have_sub_page = mr->subpage;
1177 memory_region_unref(mr);
1179 if (have_sub_page) {
1180 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1181 object_unref(OBJECT(&subpage->iomem));
1182 g_free(subpage);
1186 static void phys_sections_free(PhysPageMap *map)
1188 while (map->sections_nb > 0) {
1189 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1190 phys_section_destroy(section->mr);
1192 g_free(map->sections);
1193 g_free(map->nodes);
1196 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1198 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1199 subpage_t *subpage;
1200 hwaddr base = section->offset_within_address_space
1201 & TARGET_PAGE_MASK;
1202 MemoryRegionSection *existing = phys_page_find(d, base);
1203 MemoryRegionSection subsection = {
1204 .offset_within_address_space = base,
1205 .size = int128_make64(TARGET_PAGE_SIZE),
1207 hwaddr start, end;
1209 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1211 if (!(existing->mr->subpage)) {
1212 subpage = subpage_init(fv, base);
1213 subsection.fv = fv;
1214 subsection.mr = &subpage->iomem;
1215 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1216 phys_section_add(&d->map, &subsection));
1217 } else {
1218 subpage = container_of(existing->mr, subpage_t, iomem);
1220 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1221 end = start + int128_get64(section->size) - 1;
1222 subpage_register(subpage, start, end,
1223 phys_section_add(&d->map, section));
1227 static void register_multipage(FlatView *fv,
1228 MemoryRegionSection *section)
1230 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1231 hwaddr start_addr = section->offset_within_address_space;
1232 uint16_t section_index = phys_section_add(&d->map, section);
1233 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1234 TARGET_PAGE_BITS));
1236 assert(num_pages);
1237 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1241 * The range in *section* may look like this:
1243 * |s|PPPPPPP|s|
1245 * where s stands for subpage and P for page.
1247 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1249 MemoryRegionSection remain = *section;
1250 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1252 /* register first subpage */
1253 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1254 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1255 - remain.offset_within_address_space;
1257 MemoryRegionSection now = remain;
1258 now.size = int128_min(int128_make64(left), now.size);
1259 register_subpage(fv, &now);
1260 if (int128_eq(remain.size, now.size)) {
1261 return;
1263 remain.size = int128_sub(remain.size, now.size);
1264 remain.offset_within_address_space += int128_get64(now.size);
1265 remain.offset_within_region += int128_get64(now.size);
1268 /* register whole pages */
1269 if (int128_ge(remain.size, page_size)) {
1270 MemoryRegionSection now = remain;
1271 now.size = int128_and(now.size, int128_neg(page_size));
1272 register_multipage(fv, &now);
1273 if (int128_eq(remain.size, now.size)) {
1274 return;
1276 remain.size = int128_sub(remain.size, now.size);
1277 remain.offset_within_address_space += int128_get64(now.size);
1278 remain.offset_within_region += int128_get64(now.size);
1281 /* register last subpage */
1282 register_subpage(fv, &remain);
1285 void qemu_flush_coalesced_mmio_buffer(void)
1287 if (kvm_enabled())
1288 kvm_flush_coalesced_mmio_buffer();
1291 void qemu_mutex_lock_ramlist(void)
1293 qemu_mutex_lock(&ram_list.mutex);
1296 void qemu_mutex_unlock_ramlist(void)
1298 qemu_mutex_unlock(&ram_list.mutex);
1301 GString *ram_block_format(void)
1303 RAMBlock *block;
1304 char *psize;
1305 GString *buf = g_string_new("");
1307 RCU_READ_LOCK_GUARD();
1308 g_string_append_printf(buf, "%24s %8s %18s %18s %18s\n",
1309 "Block Name", "PSize", "Offset", "Used", "Total");
1310 RAMBLOCK_FOREACH(block) {
1311 psize = size_to_str(block->page_size);
1312 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1313 " 0x%016" PRIx64 "\n", block->idstr, psize,
1314 (uint64_t)block->offset,
1315 (uint64_t)block->used_length,
1316 (uint64_t)block->max_length);
1317 g_free(psize);
1320 return buf;
1323 #ifdef __linux__
1325 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1326 * may or may not name the same files / on the same filesystem now as
1327 * when we actually open and map them. Iterate over the file
1328 * descriptors instead, and use qemu_fd_getpagesize().
1330 static int find_min_backend_pagesize(Object *obj, void *opaque)
1332 long *hpsize_min = opaque;
1334 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1335 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1336 long hpsize = host_memory_backend_pagesize(backend);
1338 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1339 *hpsize_min = hpsize;
1343 return 0;
1346 static int find_max_backend_pagesize(Object *obj, void *opaque)
1348 long *hpsize_max = opaque;
1350 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1351 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1352 long hpsize = host_memory_backend_pagesize(backend);
1354 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1355 *hpsize_max = hpsize;
1359 return 0;
1363 * TODO: We assume right now that all mapped host memory backends are
1364 * used as RAM, however some might be used for different purposes.
1366 long qemu_minrampagesize(void)
1368 long hpsize = LONG_MAX;
1369 Object *memdev_root = object_resolve_path("/objects", NULL);
1371 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1372 return hpsize;
1375 long qemu_maxrampagesize(void)
1377 long pagesize = 0;
1378 Object *memdev_root = object_resolve_path("/objects", NULL);
1380 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1381 return pagesize;
1383 #else
1384 long qemu_minrampagesize(void)
1386 return qemu_real_host_page_size();
1388 long qemu_maxrampagesize(void)
1390 return qemu_real_host_page_size();
1392 #endif
1394 #ifdef CONFIG_POSIX
1395 static int64_t get_file_size(int fd)
1397 int64_t size;
1398 #if defined(__linux__)
1399 struct stat st;
1401 if (fstat(fd, &st) < 0) {
1402 return -errno;
1405 /* Special handling for devdax character devices */
1406 if (S_ISCHR(st.st_mode)) {
1407 g_autofree char *subsystem_path = NULL;
1408 g_autofree char *subsystem = NULL;
1410 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1411 major(st.st_rdev), minor(st.st_rdev));
1412 subsystem = g_file_read_link(subsystem_path, NULL);
1414 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1415 g_autofree char *size_path = NULL;
1416 g_autofree char *size_str = NULL;
1418 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1419 major(st.st_rdev), minor(st.st_rdev));
1421 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1422 return g_ascii_strtoll(size_str, NULL, 0);
1426 #endif /* defined(__linux__) */
1428 /* st.st_size may be zero for special files yet lseek(2) works */
1429 size = lseek(fd, 0, SEEK_END);
1430 if (size < 0) {
1431 return -errno;
1433 return size;
1436 static int64_t get_file_align(int fd)
1438 int64_t align = -1;
1439 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1440 struct stat st;
1442 if (fstat(fd, &st) < 0) {
1443 return -errno;
1446 /* Special handling for devdax character devices */
1447 if (S_ISCHR(st.st_mode)) {
1448 g_autofree char *path = NULL;
1449 g_autofree char *rpath = NULL;
1450 struct daxctl_ctx *ctx;
1451 struct daxctl_region *region;
1452 int rc = 0;
1454 path = g_strdup_printf("/sys/dev/char/%d:%d",
1455 major(st.st_rdev), minor(st.st_rdev));
1456 rpath = realpath(path, NULL);
1457 if (!rpath) {
1458 return -errno;
1461 rc = daxctl_new(&ctx);
1462 if (rc) {
1463 return -1;
1466 daxctl_region_foreach(ctx, region) {
1467 if (strstr(rpath, daxctl_region_get_path(region))) {
1468 align = daxctl_region_get_align(region);
1469 break;
1472 daxctl_unref(ctx);
1474 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1476 return align;
1479 static int file_ram_open(const char *path,
1480 const char *region_name,
1481 bool readonly,
1482 bool *created,
1483 Error **errp)
1485 char *filename;
1486 char *sanitized_name;
1487 char *c;
1488 int fd = -1;
1490 *created = false;
1491 for (;;) {
1492 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1493 if (fd >= 0) {
1494 /* @path names an existing file, use it */
1495 break;
1497 if (errno == ENOENT) {
1498 /* @path names a file that doesn't exist, create it */
1499 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1500 if (fd >= 0) {
1501 *created = true;
1502 break;
1504 } else if (errno == EISDIR) {
1505 /* @path names a directory, create a file there */
1506 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1507 sanitized_name = g_strdup(region_name);
1508 for (c = sanitized_name; *c != '\0'; c++) {
1509 if (*c == '/') {
1510 *c = '_';
1514 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1515 sanitized_name);
1516 g_free(sanitized_name);
1518 fd = mkstemp(filename);
1519 if (fd >= 0) {
1520 unlink(filename);
1521 g_free(filename);
1522 break;
1524 g_free(filename);
1526 if (errno != EEXIST && errno != EINTR) {
1527 error_setg_errno(errp, errno,
1528 "can't open backing store %s for guest RAM",
1529 path);
1530 return -1;
1533 * Try again on EINTR and EEXIST. The latter happens when
1534 * something else creates the file between our two open().
1538 return fd;
1541 static void *file_ram_alloc(RAMBlock *block,
1542 ram_addr_t memory,
1543 int fd,
1544 bool readonly,
1545 bool truncate,
1546 off_t offset,
1547 Error **errp)
1549 uint32_t qemu_map_flags;
1550 void *area;
1552 block->page_size = qemu_fd_getpagesize(fd);
1553 if (block->mr->align % block->page_size) {
1554 error_setg(errp, "alignment 0x%" PRIx64
1555 " must be multiples of page size 0x%zx",
1556 block->mr->align, block->page_size);
1557 return NULL;
1558 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1559 error_setg(errp, "alignment 0x%" PRIx64
1560 " must be a power of two", block->mr->align);
1561 return NULL;
1563 block->mr->align = MAX(block->page_size, block->mr->align);
1564 #if defined(__s390x__)
1565 if (kvm_enabled()) {
1566 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1568 #endif
1570 if (memory < block->page_size) {
1571 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1572 "or larger than page size 0x%zx",
1573 memory, block->page_size);
1574 return NULL;
1577 memory = ROUND_UP(memory, block->page_size);
1580 * ftruncate is not supported by hugetlbfs in older
1581 * hosts, so don't bother bailing out on errors.
1582 * If anything goes wrong with it under other filesystems,
1583 * mmap will fail.
1585 * Do not truncate the non-empty backend file to avoid corrupting
1586 * the existing data in the file. Disabling shrinking is not
1587 * enough. For example, the current vNVDIMM implementation stores
1588 * the guest NVDIMM labels at the end of the backend file. If the
1589 * backend file is later extended, QEMU will not be able to find
1590 * those labels. Therefore, extending the non-empty backend file
1591 * is disabled as well.
1593 if (truncate && ftruncate(fd, memory)) {
1594 perror("ftruncate");
1597 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1598 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1599 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1600 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1601 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1602 if (area == MAP_FAILED) {
1603 error_setg_errno(errp, errno,
1604 "unable to map backing store for guest RAM");
1605 return NULL;
1608 block->fd = fd;
1609 return area;
1611 #endif
1613 /* Allocate space within the ram_addr_t space that governs the
1614 * dirty bitmaps.
1615 * Called with the ramlist lock held.
1617 static ram_addr_t find_ram_offset(ram_addr_t size)
1619 RAMBlock *block, *next_block;
1620 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1622 assert(size != 0); /* it would hand out same offset multiple times */
1624 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1625 return 0;
1628 RAMBLOCK_FOREACH(block) {
1629 ram_addr_t candidate, next = RAM_ADDR_MAX;
1631 /* Align blocks to start on a 'long' in the bitmap
1632 * which makes the bitmap sync'ing take the fast path.
1634 candidate = block->offset + block->max_length;
1635 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1637 /* Search for the closest following block
1638 * and find the gap.
1640 RAMBLOCK_FOREACH(next_block) {
1641 if (next_block->offset >= candidate) {
1642 next = MIN(next, next_block->offset);
1646 /* If it fits remember our place and remember the size
1647 * of gap, but keep going so that we might find a smaller
1648 * gap to fill so avoiding fragmentation.
1650 if (next - candidate >= size && next - candidate < mingap) {
1651 offset = candidate;
1652 mingap = next - candidate;
1655 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1658 if (offset == RAM_ADDR_MAX) {
1659 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1660 (uint64_t)size);
1661 abort();
1664 trace_find_ram_offset(size, offset);
1666 return offset;
1669 static unsigned long last_ram_page(void)
1671 RAMBlock *block;
1672 ram_addr_t last = 0;
1674 RCU_READ_LOCK_GUARD();
1675 RAMBLOCK_FOREACH(block) {
1676 last = MAX(last, block->offset + block->max_length);
1678 return last >> TARGET_PAGE_BITS;
1681 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1683 int ret;
1685 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1686 if (!machine_dump_guest_core(current_machine)) {
1687 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1688 if (ret) {
1689 perror("qemu_madvise");
1690 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1691 "but dump_guest_core=off specified\n");
1696 const char *qemu_ram_get_idstr(RAMBlock *rb)
1698 return rb->idstr;
1701 void *qemu_ram_get_host_addr(RAMBlock *rb)
1703 return rb->host;
1706 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1708 return rb->offset;
1711 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1713 return rb->used_length;
1716 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1718 return rb->max_length;
1721 bool qemu_ram_is_shared(RAMBlock *rb)
1723 return rb->flags & RAM_SHARED;
1726 bool qemu_ram_is_noreserve(RAMBlock *rb)
1728 return rb->flags & RAM_NORESERVE;
1731 /* Note: Only set at the start of postcopy */
1732 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1734 return rb->flags & RAM_UF_ZEROPAGE;
1737 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1739 rb->flags |= RAM_UF_ZEROPAGE;
1742 bool qemu_ram_is_migratable(RAMBlock *rb)
1744 return rb->flags & RAM_MIGRATABLE;
1747 void qemu_ram_set_migratable(RAMBlock *rb)
1749 rb->flags |= RAM_MIGRATABLE;
1752 void qemu_ram_unset_migratable(RAMBlock *rb)
1754 rb->flags &= ~RAM_MIGRATABLE;
1757 /* Called with iothread lock held. */
1758 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1760 RAMBlock *block;
1762 assert(new_block);
1763 assert(!new_block->idstr[0]);
1765 if (dev) {
1766 char *id = qdev_get_dev_path(dev);
1767 if (id) {
1768 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1769 g_free(id);
1772 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1774 RCU_READ_LOCK_GUARD();
1775 RAMBLOCK_FOREACH(block) {
1776 if (block != new_block &&
1777 !strcmp(block->idstr, new_block->idstr)) {
1778 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1779 new_block->idstr);
1780 abort();
1785 /* Called with iothread lock held. */
1786 void qemu_ram_unset_idstr(RAMBlock *block)
1788 /* FIXME: arch_init.c assumes that this is not called throughout
1789 * migration. Ignore the problem since hot-unplug during migration
1790 * does not work anyway.
1792 if (block) {
1793 memset(block->idstr, 0, sizeof(block->idstr));
1797 size_t qemu_ram_pagesize(RAMBlock *rb)
1799 return rb->page_size;
1802 /* Returns the largest size of page in use */
1803 size_t qemu_ram_pagesize_largest(void)
1805 RAMBlock *block;
1806 size_t largest = 0;
1808 RAMBLOCK_FOREACH(block) {
1809 largest = MAX(largest, qemu_ram_pagesize(block));
1812 return largest;
1815 static int memory_try_enable_merging(void *addr, size_t len)
1817 if (!machine_mem_merge(current_machine)) {
1818 /* disabled by the user */
1819 return 0;
1822 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1826 * Resizing RAM while migrating can result in the migration being canceled.
1827 * Care has to be taken if the guest might have already detected the memory.
1829 * As memory core doesn't know how is memory accessed, it is up to
1830 * resize callback to update device state and/or add assertions to detect
1831 * misuse, if necessary.
1833 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1835 const ram_addr_t oldsize = block->used_length;
1836 const ram_addr_t unaligned_size = newsize;
1838 assert(block);
1840 newsize = HOST_PAGE_ALIGN(newsize);
1842 if (block->used_length == newsize) {
1844 * We don't have to resize the ram block (which only knows aligned
1845 * sizes), however, we have to notify if the unaligned size changed.
1847 if (unaligned_size != memory_region_size(block->mr)) {
1848 memory_region_set_size(block->mr, unaligned_size);
1849 if (block->resized) {
1850 block->resized(block->idstr, unaligned_size, block->host);
1853 return 0;
1856 if (!(block->flags & RAM_RESIZEABLE)) {
1857 error_setg_errno(errp, EINVAL,
1858 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1859 " != 0x" RAM_ADDR_FMT, block->idstr,
1860 newsize, block->used_length);
1861 return -EINVAL;
1864 if (block->max_length < newsize) {
1865 error_setg_errno(errp, EINVAL,
1866 "Size too large: %s: 0x" RAM_ADDR_FMT
1867 " > 0x" RAM_ADDR_FMT, block->idstr,
1868 newsize, block->max_length);
1869 return -EINVAL;
1872 /* Notify before modifying the ram block and touching the bitmaps. */
1873 if (block->host) {
1874 ram_block_notify_resize(block->host, oldsize, newsize);
1877 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1878 block->used_length = newsize;
1879 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1880 DIRTY_CLIENTS_ALL);
1881 memory_region_set_size(block->mr, unaligned_size);
1882 if (block->resized) {
1883 block->resized(block->idstr, unaligned_size, block->host);
1885 return 0;
1889 * Trigger sync on the given ram block for range [start, start + length]
1890 * with the backing store if one is available.
1891 * Otherwise no-op.
1892 * @Note: this is supposed to be a synchronous op.
1894 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1896 /* The requested range should fit in within the block range */
1897 g_assert((start + length) <= block->used_length);
1899 #ifdef CONFIG_LIBPMEM
1900 /* The lack of support for pmem should not block the sync */
1901 if (ramblock_is_pmem(block)) {
1902 void *addr = ramblock_ptr(block, start);
1903 pmem_persist(addr, length);
1904 return;
1906 #endif
1907 if (block->fd >= 0) {
1909 * Case there is no support for PMEM or the memory has not been
1910 * specified as persistent (or is not one) - use the msync.
1911 * Less optimal but still achieves the same goal
1913 void *addr = ramblock_ptr(block, start);
1914 if (qemu_msync(addr, length, block->fd)) {
1915 warn_report("%s: failed to sync memory range: start: "
1916 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1917 __func__, start, length);
1922 /* Called with ram_list.mutex held */
1923 static void dirty_memory_extend(ram_addr_t old_ram_size,
1924 ram_addr_t new_ram_size)
1926 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1927 DIRTY_MEMORY_BLOCK_SIZE);
1928 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1929 DIRTY_MEMORY_BLOCK_SIZE);
1930 int i;
1932 /* Only need to extend if block count increased */
1933 if (new_num_blocks <= old_num_blocks) {
1934 return;
1937 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1938 DirtyMemoryBlocks *old_blocks;
1939 DirtyMemoryBlocks *new_blocks;
1940 int j;
1942 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1943 new_blocks = g_malloc(sizeof(*new_blocks) +
1944 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1946 if (old_num_blocks) {
1947 memcpy(new_blocks->blocks, old_blocks->blocks,
1948 old_num_blocks * sizeof(old_blocks->blocks[0]));
1951 for (j = old_num_blocks; j < new_num_blocks; j++) {
1952 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1955 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1957 if (old_blocks) {
1958 g_free_rcu(old_blocks, rcu);
1963 static void ram_block_add(RAMBlock *new_block, Error **errp)
1965 const bool noreserve = qemu_ram_is_noreserve(new_block);
1966 const bool shared = qemu_ram_is_shared(new_block);
1967 RAMBlock *block;
1968 RAMBlock *last_block = NULL;
1969 ram_addr_t old_ram_size, new_ram_size;
1970 Error *err = NULL;
1972 old_ram_size = last_ram_page();
1974 qemu_mutex_lock_ramlist();
1975 new_block->offset = find_ram_offset(new_block->max_length);
1977 if (!new_block->host) {
1978 if (xen_enabled()) {
1979 xen_ram_alloc(new_block->offset, new_block->max_length,
1980 new_block->mr, &err);
1981 if (err) {
1982 error_propagate(errp, err);
1983 qemu_mutex_unlock_ramlist();
1984 return;
1986 } else {
1987 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1988 &new_block->mr->align,
1989 shared, noreserve);
1990 if (!new_block->host) {
1991 error_setg_errno(errp, errno,
1992 "cannot set up guest memory '%s'",
1993 memory_region_name(new_block->mr));
1994 qemu_mutex_unlock_ramlist();
1995 return;
1997 memory_try_enable_merging(new_block->host, new_block->max_length);
2001 new_ram_size = MAX(old_ram_size,
2002 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2003 if (new_ram_size > old_ram_size) {
2004 dirty_memory_extend(old_ram_size, new_ram_size);
2006 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2007 * QLIST (which has an RCU-friendly variant) does not have insertion at
2008 * tail, so save the last element in last_block.
2010 RAMBLOCK_FOREACH(block) {
2011 last_block = block;
2012 if (block->max_length < new_block->max_length) {
2013 break;
2016 if (block) {
2017 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2018 } else if (last_block) {
2019 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2020 } else { /* list is empty */
2021 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2023 ram_list.mru_block = NULL;
2025 /* Write list before version */
2026 smp_wmb();
2027 ram_list.version++;
2028 qemu_mutex_unlock_ramlist();
2030 cpu_physical_memory_set_dirty_range(new_block->offset,
2031 new_block->used_length,
2032 DIRTY_CLIENTS_ALL);
2034 if (new_block->host) {
2035 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2036 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2038 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2039 * Configure it unless the machine is a qtest server, in which case
2040 * KVM is not used and it may be forked (eg for fuzzing purposes).
2042 if (!qtest_enabled()) {
2043 qemu_madvise(new_block->host, new_block->max_length,
2044 QEMU_MADV_DONTFORK);
2046 ram_block_notify_add(new_block->host, new_block->used_length,
2047 new_block->max_length);
2051 #ifdef CONFIG_POSIX
2052 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2053 uint32_t ram_flags, int fd, off_t offset,
2054 bool readonly, Error **errp)
2056 RAMBlock *new_block;
2057 Error *local_err = NULL;
2058 int64_t file_size, file_align;
2060 /* Just support these ram flags by now. */
2061 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
2062 RAM_PROTECTED)) == 0);
2064 if (xen_enabled()) {
2065 error_setg(errp, "-mem-path not supported with Xen");
2066 return NULL;
2069 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2070 error_setg(errp,
2071 "host lacks kvm mmu notifiers, -mem-path unsupported");
2072 return NULL;
2075 size = HOST_PAGE_ALIGN(size);
2076 file_size = get_file_size(fd);
2077 if (file_size > 0 && file_size < size) {
2078 error_setg(errp, "backing store size 0x%" PRIx64
2079 " does not match 'size' option 0x" RAM_ADDR_FMT,
2080 file_size, size);
2081 return NULL;
2084 file_align = get_file_align(fd);
2085 if (file_align > 0 && file_align > mr->align) {
2086 error_setg(errp, "backing store align 0x%" PRIx64
2087 " is larger than 'align' option 0x%" PRIx64,
2088 file_align, mr->align);
2089 return NULL;
2092 new_block = g_malloc0(sizeof(*new_block));
2093 new_block->mr = mr;
2094 new_block->used_length = size;
2095 new_block->max_length = size;
2096 new_block->flags = ram_flags;
2097 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2098 !file_size, offset, errp);
2099 if (!new_block->host) {
2100 g_free(new_block);
2101 return NULL;
2104 ram_block_add(new_block, &local_err);
2105 if (local_err) {
2106 g_free(new_block);
2107 error_propagate(errp, local_err);
2108 return NULL;
2110 return new_block;
2115 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2116 uint32_t ram_flags, const char *mem_path,
2117 bool readonly, Error **errp)
2119 int fd;
2120 bool created;
2121 RAMBlock *block;
2123 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2124 errp);
2125 if (fd < 0) {
2126 return NULL;
2129 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2130 if (!block) {
2131 if (created) {
2132 unlink(mem_path);
2134 close(fd);
2135 return NULL;
2138 return block;
2140 #endif
2142 static
2143 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2144 void (*resized)(const char*,
2145 uint64_t length,
2146 void *host),
2147 void *host, uint32_t ram_flags,
2148 MemoryRegion *mr, Error **errp)
2150 RAMBlock *new_block;
2151 Error *local_err = NULL;
2153 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2154 RAM_NORESERVE)) == 0);
2155 assert(!host ^ (ram_flags & RAM_PREALLOC));
2157 size = HOST_PAGE_ALIGN(size);
2158 max_size = HOST_PAGE_ALIGN(max_size);
2159 new_block = g_malloc0(sizeof(*new_block));
2160 new_block->mr = mr;
2161 new_block->resized = resized;
2162 new_block->used_length = size;
2163 new_block->max_length = max_size;
2164 assert(max_size >= size);
2165 new_block->fd = -1;
2166 new_block->page_size = qemu_real_host_page_size();
2167 new_block->host = host;
2168 new_block->flags = ram_flags;
2169 ram_block_add(new_block, &local_err);
2170 if (local_err) {
2171 g_free(new_block);
2172 error_propagate(errp, local_err);
2173 return NULL;
2175 return new_block;
2178 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2179 MemoryRegion *mr, Error **errp)
2181 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2182 errp);
2185 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2186 MemoryRegion *mr, Error **errp)
2188 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2189 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2192 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2193 void (*resized)(const char*,
2194 uint64_t length,
2195 void *host),
2196 MemoryRegion *mr, Error **errp)
2198 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2199 RAM_RESIZEABLE, mr, errp);
2202 static void reclaim_ramblock(RAMBlock *block)
2204 if (block->flags & RAM_PREALLOC) {
2206 } else if (xen_enabled()) {
2207 xen_invalidate_map_cache_entry(block->host);
2208 #ifndef _WIN32
2209 } else if (block->fd >= 0) {
2210 qemu_ram_munmap(block->fd, block->host, block->max_length);
2211 close(block->fd);
2212 #endif
2213 } else {
2214 qemu_anon_ram_free(block->host, block->max_length);
2216 g_free(block);
2219 void qemu_ram_free(RAMBlock *block)
2221 if (!block) {
2222 return;
2225 if (block->host) {
2226 ram_block_notify_remove(block->host, block->used_length,
2227 block->max_length);
2230 qemu_mutex_lock_ramlist();
2231 QLIST_REMOVE_RCU(block, next);
2232 ram_list.mru_block = NULL;
2233 /* Write list before version */
2234 smp_wmb();
2235 ram_list.version++;
2236 call_rcu(block, reclaim_ramblock, rcu);
2237 qemu_mutex_unlock_ramlist();
2240 #ifndef _WIN32
2241 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2243 RAMBlock *block;
2244 ram_addr_t offset;
2245 int flags;
2246 void *area, *vaddr;
2248 RAMBLOCK_FOREACH(block) {
2249 offset = addr - block->offset;
2250 if (offset < block->max_length) {
2251 vaddr = ramblock_ptr(block, offset);
2252 if (block->flags & RAM_PREALLOC) {
2254 } else if (xen_enabled()) {
2255 abort();
2256 } else {
2257 flags = MAP_FIXED;
2258 flags |= block->flags & RAM_SHARED ?
2259 MAP_SHARED : MAP_PRIVATE;
2260 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2261 if (block->fd >= 0) {
2262 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2263 flags, block->fd, offset);
2264 } else {
2265 flags |= MAP_ANONYMOUS;
2266 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2267 flags, -1, 0);
2269 if (area != vaddr) {
2270 error_report("Could not remap addr: "
2271 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2272 length, addr);
2273 exit(1);
2275 memory_try_enable_merging(vaddr, length);
2276 qemu_ram_setup_dump(vaddr, length);
2281 #endif /* !_WIN32 */
2283 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2284 * This should not be used for general purpose DMA. Use address_space_map
2285 * or address_space_rw instead. For local memory (e.g. video ram) that the
2286 * device owns, use memory_region_get_ram_ptr.
2288 * Called within RCU critical section.
2290 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2292 RAMBlock *block = ram_block;
2294 if (block == NULL) {
2295 block = qemu_get_ram_block(addr);
2296 addr -= block->offset;
2299 if (xen_enabled() && block->host == NULL) {
2300 /* We need to check if the requested address is in the RAM
2301 * because we don't want to map the entire memory in QEMU.
2302 * In that case just map until the end of the page.
2304 if (block->offset == 0) {
2305 return xen_map_cache(addr, 0, 0, false);
2308 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2310 return ramblock_ptr(block, addr);
2313 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2314 * but takes a size argument.
2316 * Called within RCU critical section.
2318 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2319 hwaddr *size, bool lock)
2321 RAMBlock *block = ram_block;
2322 if (*size == 0) {
2323 return NULL;
2326 if (block == NULL) {
2327 block = qemu_get_ram_block(addr);
2328 addr -= block->offset;
2330 *size = MIN(*size, block->max_length - addr);
2332 if (xen_enabled() && block->host == NULL) {
2333 /* We need to check if the requested address is in the RAM
2334 * because we don't want to map the entire memory in QEMU.
2335 * In that case just map the requested area.
2337 if (block->offset == 0) {
2338 return xen_map_cache(addr, *size, lock, lock);
2341 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2344 return ramblock_ptr(block, addr);
2347 /* Return the offset of a hostpointer within a ramblock */
2348 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2350 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2351 assert((uintptr_t)host >= (uintptr_t)rb->host);
2352 assert(res < rb->max_length);
2354 return res;
2358 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2359 * in that RAMBlock.
2361 * ptr: Host pointer to look up
2362 * round_offset: If true round the result offset down to a page boundary
2363 * *ram_addr: set to result ram_addr
2364 * *offset: set to result offset within the RAMBlock
2366 * Returns: RAMBlock (or NULL if not found)
2368 * By the time this function returns, the returned pointer is not protected
2369 * by RCU anymore. If the caller is not within an RCU critical section and
2370 * does not hold the iothread lock, it must have other means of protecting the
2371 * pointer, such as a reference to the region that includes the incoming
2372 * ram_addr_t.
2374 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2375 ram_addr_t *offset)
2377 RAMBlock *block;
2378 uint8_t *host = ptr;
2380 if (xen_enabled()) {
2381 ram_addr_t ram_addr;
2382 RCU_READ_LOCK_GUARD();
2383 ram_addr = xen_ram_addr_from_mapcache(ptr);
2384 block = qemu_get_ram_block(ram_addr);
2385 if (block) {
2386 *offset = ram_addr - block->offset;
2388 return block;
2391 RCU_READ_LOCK_GUARD();
2392 block = qatomic_rcu_read(&ram_list.mru_block);
2393 if (block && block->host && host - block->host < block->max_length) {
2394 goto found;
2397 RAMBLOCK_FOREACH(block) {
2398 /* This case append when the block is not mapped. */
2399 if (block->host == NULL) {
2400 continue;
2402 if (host - block->host < block->max_length) {
2403 goto found;
2407 return NULL;
2409 found:
2410 *offset = (host - block->host);
2411 if (round_offset) {
2412 *offset &= TARGET_PAGE_MASK;
2414 return block;
2418 * Finds the named RAMBlock
2420 * name: The name of RAMBlock to find
2422 * Returns: RAMBlock (or NULL if not found)
2424 RAMBlock *qemu_ram_block_by_name(const char *name)
2426 RAMBlock *block;
2428 RAMBLOCK_FOREACH(block) {
2429 if (!strcmp(name, block->idstr)) {
2430 return block;
2434 return NULL;
2437 /* Some of the softmmu routines need to translate from a host pointer
2438 (typically a TLB entry) back to a ram offset. */
2439 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2441 RAMBlock *block;
2442 ram_addr_t offset;
2444 block = qemu_ram_block_from_host(ptr, false, &offset);
2445 if (!block) {
2446 return RAM_ADDR_INVALID;
2449 return block->offset + offset;
2452 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2453 MemTxAttrs attrs, void *buf, hwaddr len);
2454 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2455 const void *buf, hwaddr len);
2456 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2457 bool is_write, MemTxAttrs attrs);
2459 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2460 unsigned len, MemTxAttrs attrs)
2462 subpage_t *subpage = opaque;
2463 uint8_t buf[8];
2464 MemTxResult res;
2466 #if defined(DEBUG_SUBPAGE)
2467 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2468 subpage, len, addr);
2469 #endif
2470 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2471 if (res) {
2472 return res;
2474 *data = ldn_p(buf, len);
2475 return MEMTX_OK;
2478 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2479 uint64_t value, unsigned len, MemTxAttrs attrs)
2481 subpage_t *subpage = opaque;
2482 uint8_t buf[8];
2484 #if defined(DEBUG_SUBPAGE)
2485 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2486 " value %"PRIx64"\n",
2487 __func__, subpage, len, addr, value);
2488 #endif
2489 stn_p(buf, len, value);
2490 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2493 static bool subpage_accepts(void *opaque, hwaddr addr,
2494 unsigned len, bool is_write,
2495 MemTxAttrs attrs)
2497 subpage_t *subpage = opaque;
2498 #if defined(DEBUG_SUBPAGE)
2499 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2500 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2501 #endif
2503 return flatview_access_valid(subpage->fv, addr + subpage->base,
2504 len, is_write, attrs);
2507 static const MemoryRegionOps subpage_ops = {
2508 .read_with_attrs = subpage_read,
2509 .write_with_attrs = subpage_write,
2510 .impl.min_access_size = 1,
2511 .impl.max_access_size = 8,
2512 .valid.min_access_size = 1,
2513 .valid.max_access_size = 8,
2514 .valid.accepts = subpage_accepts,
2515 .endianness = DEVICE_NATIVE_ENDIAN,
2518 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2519 uint16_t section)
2521 int idx, eidx;
2523 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2524 return -1;
2525 idx = SUBPAGE_IDX(start);
2526 eidx = SUBPAGE_IDX(end);
2527 #if defined(DEBUG_SUBPAGE)
2528 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2529 __func__, mmio, start, end, idx, eidx, section);
2530 #endif
2531 for (; idx <= eidx; idx++) {
2532 mmio->sub_section[idx] = section;
2535 return 0;
2538 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2540 subpage_t *mmio;
2542 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2543 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2544 mmio->fv = fv;
2545 mmio->base = base;
2546 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2547 NULL, TARGET_PAGE_SIZE);
2548 mmio->iomem.subpage = true;
2549 #if defined(DEBUG_SUBPAGE)
2550 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2551 mmio, base, TARGET_PAGE_SIZE);
2552 #endif
2554 return mmio;
2557 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2559 assert(fv);
2560 MemoryRegionSection section = {
2561 .fv = fv,
2562 .mr = mr,
2563 .offset_within_address_space = 0,
2564 .offset_within_region = 0,
2565 .size = int128_2_64(),
2568 return phys_section_add(map, &section);
2571 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2572 hwaddr index, MemTxAttrs attrs)
2574 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2575 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2576 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2577 MemoryRegionSection *sections = d->map.sections;
2579 return &sections[index & ~TARGET_PAGE_MASK];
2582 static void io_mem_init(void)
2584 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2585 NULL, UINT64_MAX);
2588 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2590 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2591 uint16_t n;
2593 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2594 assert(n == PHYS_SECTION_UNASSIGNED);
2596 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2598 return d;
2601 void address_space_dispatch_free(AddressSpaceDispatch *d)
2603 phys_sections_free(&d->map);
2604 g_free(d);
2607 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2611 static void tcg_log_global_after_sync(MemoryListener *listener)
2613 CPUAddressSpace *cpuas;
2615 /* Wait for the CPU to end the current TB. This avoids the following
2616 * incorrect race:
2618 * vCPU migration
2619 * ---------------------- -------------------------
2620 * TLB check -> slow path
2621 * notdirty_mem_write
2622 * write to RAM
2623 * mark dirty
2624 * clear dirty flag
2625 * TLB check -> fast path
2626 * read memory
2627 * write to RAM
2629 * by pushing the migration thread's memory read after the vCPU thread has
2630 * written the memory.
2632 if (replay_mode == REPLAY_MODE_NONE) {
2634 * VGA can make calls to this function while updating the screen.
2635 * In record/replay mode this causes a deadlock, because
2636 * run_on_cpu waits for rr mutex. Therefore no races are possible
2637 * in this case and no need for making run_on_cpu when
2638 * record/replay is enabled.
2640 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2641 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2645 static void tcg_commit(MemoryListener *listener)
2647 CPUAddressSpace *cpuas;
2648 AddressSpaceDispatch *d;
2650 assert(tcg_enabled());
2651 /* since each CPU stores ram addresses in its TLB cache, we must
2652 reset the modified entries */
2653 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2654 cpu_reloading_memory_map();
2655 /* The CPU and TLB are protected by the iothread lock.
2656 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2657 * may have split the RCU critical section.
2659 d = address_space_to_dispatch(cpuas->as);
2660 qatomic_rcu_set(&cpuas->memory_dispatch, d);
2661 tlb_flush(cpuas->cpu);
2664 static void memory_map_init(void)
2666 system_memory = g_malloc(sizeof(*system_memory));
2668 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2669 address_space_init(&address_space_memory, system_memory, "memory");
2671 system_io = g_malloc(sizeof(*system_io));
2672 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2673 65536);
2674 address_space_init(&address_space_io, system_io, "I/O");
2677 MemoryRegion *get_system_memory(void)
2679 return system_memory;
2682 MemoryRegion *get_system_io(void)
2684 return system_io;
2687 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2688 hwaddr length)
2690 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2691 addr += memory_region_get_ram_addr(mr);
2693 /* No early return if dirty_log_mask is or becomes 0, because
2694 * cpu_physical_memory_set_dirty_range will still call
2695 * xen_modified_memory.
2697 if (dirty_log_mask) {
2698 dirty_log_mask =
2699 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2701 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2702 assert(tcg_enabled());
2703 tb_invalidate_phys_range(addr, addr + length);
2704 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2706 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2709 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2712 * In principle this function would work on other memory region types too,
2713 * but the ROM device use case is the only one where this operation is
2714 * necessary. Other memory regions should use the
2715 * address_space_read/write() APIs.
2717 assert(memory_region_is_romd(mr));
2719 invalidate_and_set_dirty(mr, addr, size);
2722 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2724 unsigned access_size_max = mr->ops->valid.max_access_size;
2726 /* Regions are assumed to support 1-4 byte accesses unless
2727 otherwise specified. */
2728 if (access_size_max == 0) {
2729 access_size_max = 4;
2732 /* Bound the maximum access by the alignment of the address. */
2733 if (!mr->ops->impl.unaligned) {
2734 unsigned align_size_max = addr & -addr;
2735 if (align_size_max != 0 && align_size_max < access_size_max) {
2736 access_size_max = align_size_max;
2740 /* Don't attempt accesses larger than the maximum. */
2741 if (l > access_size_max) {
2742 l = access_size_max;
2744 l = pow2floor(l);
2746 return l;
2749 static bool prepare_mmio_access(MemoryRegion *mr)
2751 bool release_lock = false;
2753 if (!qemu_mutex_iothread_locked()) {
2754 qemu_mutex_lock_iothread();
2755 release_lock = true;
2757 if (mr->flush_coalesced_mmio) {
2758 qemu_flush_coalesced_mmio_buffer();
2761 return release_lock;
2765 * flatview_access_allowed
2766 * @mr: #MemoryRegion to be accessed
2767 * @attrs: memory transaction attributes
2768 * @addr: address within that memory region
2769 * @len: the number of bytes to access
2771 * Check if a memory transaction is allowed.
2773 * Returns: true if transaction is allowed, false if denied.
2775 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2776 hwaddr addr, hwaddr len)
2778 if (likely(!attrs.memory)) {
2779 return true;
2781 if (memory_region_is_ram(mr)) {
2782 return true;
2784 qemu_log_mask(LOG_GUEST_ERROR,
2785 "Invalid access to non-RAM device at "
2786 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2787 "region '%s'\n", addr, len, memory_region_name(mr));
2788 return false;
2791 /* Called within RCU critical section. */
2792 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2793 MemTxAttrs attrs,
2794 const void *ptr,
2795 hwaddr len, hwaddr addr1,
2796 hwaddr l, MemoryRegion *mr)
2798 uint8_t *ram_ptr;
2799 uint64_t val;
2800 MemTxResult result = MEMTX_OK;
2801 bool release_lock = false;
2802 const uint8_t *buf = ptr;
2804 for (;;) {
2805 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2806 result |= MEMTX_ACCESS_ERROR;
2807 /* Keep going. */
2808 } else if (!memory_access_is_direct(mr, true)) {
2809 release_lock |= prepare_mmio_access(mr);
2810 l = memory_access_size(mr, l, addr1);
2811 /* XXX: could force current_cpu to NULL to avoid
2812 potential bugs */
2813 val = ldn_he_p(buf, l);
2814 result |= memory_region_dispatch_write(mr, addr1, val,
2815 size_memop(l), attrs);
2816 } else {
2817 /* RAM case */
2818 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2819 memcpy(ram_ptr, buf, l);
2820 invalidate_and_set_dirty(mr, addr1, l);
2823 if (release_lock) {
2824 qemu_mutex_unlock_iothread();
2825 release_lock = false;
2828 len -= l;
2829 buf += l;
2830 addr += l;
2832 if (!len) {
2833 break;
2836 l = len;
2837 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2840 return result;
2843 /* Called from RCU critical section. */
2844 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2845 const void *buf, hwaddr len)
2847 hwaddr l;
2848 hwaddr addr1;
2849 MemoryRegion *mr;
2851 l = len;
2852 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2853 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2854 return MEMTX_ACCESS_ERROR;
2856 return flatview_write_continue(fv, addr, attrs, buf, len,
2857 addr1, l, mr);
2860 /* Called within RCU critical section. */
2861 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2862 MemTxAttrs attrs, void *ptr,
2863 hwaddr len, hwaddr addr1, hwaddr l,
2864 MemoryRegion *mr)
2866 uint8_t *ram_ptr;
2867 uint64_t val;
2868 MemTxResult result = MEMTX_OK;
2869 bool release_lock = false;
2870 uint8_t *buf = ptr;
2872 fuzz_dma_read_cb(addr, len, mr);
2873 for (;;) {
2874 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2875 result |= MEMTX_ACCESS_ERROR;
2876 /* Keep going. */
2877 } else if (!memory_access_is_direct(mr, false)) {
2878 /* I/O case */
2879 release_lock |= prepare_mmio_access(mr);
2880 l = memory_access_size(mr, l, addr1);
2881 result |= memory_region_dispatch_read(mr, addr1, &val,
2882 size_memop(l), attrs);
2883 stn_he_p(buf, l, val);
2884 } else {
2885 /* RAM case */
2886 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2887 memcpy(buf, ram_ptr, l);
2890 if (release_lock) {
2891 qemu_mutex_unlock_iothread();
2892 release_lock = false;
2895 len -= l;
2896 buf += l;
2897 addr += l;
2899 if (!len) {
2900 break;
2903 l = len;
2904 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2907 return result;
2910 /* Called from RCU critical section. */
2911 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2912 MemTxAttrs attrs, void *buf, hwaddr len)
2914 hwaddr l;
2915 hwaddr addr1;
2916 MemoryRegion *mr;
2918 l = len;
2919 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2920 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2921 return MEMTX_ACCESS_ERROR;
2923 return flatview_read_continue(fv, addr, attrs, buf, len,
2924 addr1, l, mr);
2927 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2928 MemTxAttrs attrs, void *buf, hwaddr len)
2930 MemTxResult result = MEMTX_OK;
2931 FlatView *fv;
2933 if (len > 0) {
2934 RCU_READ_LOCK_GUARD();
2935 fv = address_space_to_flatview(as);
2936 result = flatview_read(fv, addr, attrs, buf, len);
2939 return result;
2942 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2943 MemTxAttrs attrs,
2944 const void *buf, hwaddr len)
2946 MemTxResult result = MEMTX_OK;
2947 FlatView *fv;
2949 if (len > 0) {
2950 RCU_READ_LOCK_GUARD();
2951 fv = address_space_to_flatview(as);
2952 result = flatview_write(fv, addr, attrs, buf, len);
2955 return result;
2958 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2959 void *buf, hwaddr len, bool is_write)
2961 if (is_write) {
2962 return address_space_write(as, addr, attrs, buf, len);
2963 } else {
2964 return address_space_read_full(as, addr, attrs, buf, len);
2968 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2969 uint8_t c, hwaddr len, MemTxAttrs attrs)
2971 #define FILLBUF_SIZE 512
2972 uint8_t fillbuf[FILLBUF_SIZE];
2973 int l;
2974 MemTxResult error = MEMTX_OK;
2976 memset(fillbuf, c, FILLBUF_SIZE);
2977 while (len > 0) {
2978 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2979 error |= address_space_write(as, addr, attrs, fillbuf, l);
2980 len -= l;
2981 addr += l;
2984 return error;
2987 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2988 hwaddr len, bool is_write)
2990 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2991 buf, len, is_write);
2994 enum write_rom_type {
2995 WRITE_DATA,
2996 FLUSH_CACHE,
2999 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3000 hwaddr addr,
3001 MemTxAttrs attrs,
3002 const void *ptr,
3003 hwaddr len,
3004 enum write_rom_type type)
3006 hwaddr l;
3007 uint8_t *ram_ptr;
3008 hwaddr addr1;
3009 MemoryRegion *mr;
3010 const uint8_t *buf = ptr;
3012 RCU_READ_LOCK_GUARD();
3013 while (len > 0) {
3014 l = len;
3015 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3017 if (!(memory_region_is_ram(mr) ||
3018 memory_region_is_romd(mr))) {
3019 l = memory_access_size(mr, l, addr1);
3020 } else {
3021 /* ROM/RAM case */
3022 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3023 switch (type) {
3024 case WRITE_DATA:
3025 memcpy(ram_ptr, buf, l);
3026 invalidate_and_set_dirty(mr, addr1, l);
3027 break;
3028 case FLUSH_CACHE:
3029 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3030 break;
3033 len -= l;
3034 buf += l;
3035 addr += l;
3037 return MEMTX_OK;
3040 /* used for ROM loading : can write in RAM and ROM */
3041 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3042 MemTxAttrs attrs,
3043 const void *buf, hwaddr len)
3045 return address_space_write_rom_internal(as, addr, attrs,
3046 buf, len, WRITE_DATA);
3049 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3052 * This function should do the same thing as an icache flush that was
3053 * triggered from within the guest. For TCG we are always cache coherent,
3054 * so there is no need to flush anything. For KVM / Xen we need to flush
3055 * the host's instruction cache at least.
3057 if (tcg_enabled()) {
3058 return;
3061 address_space_write_rom_internal(&address_space_memory,
3062 start, MEMTXATTRS_UNSPECIFIED,
3063 NULL, len, FLUSH_CACHE);
3066 typedef struct {
3067 MemoryRegion *mr;
3068 void *buffer;
3069 hwaddr addr;
3070 hwaddr len;
3071 bool in_use;
3072 } BounceBuffer;
3074 static BounceBuffer bounce;
3076 typedef struct MapClient {
3077 QEMUBH *bh;
3078 QLIST_ENTRY(MapClient) link;
3079 } MapClient;
3081 QemuMutex map_client_list_lock;
3082 static QLIST_HEAD(, MapClient) map_client_list
3083 = QLIST_HEAD_INITIALIZER(map_client_list);
3085 static void cpu_unregister_map_client_do(MapClient *client)
3087 QLIST_REMOVE(client, link);
3088 g_free(client);
3091 static void cpu_notify_map_clients_locked(void)
3093 MapClient *client;
3095 while (!QLIST_EMPTY(&map_client_list)) {
3096 client = QLIST_FIRST(&map_client_list);
3097 qemu_bh_schedule(client->bh);
3098 cpu_unregister_map_client_do(client);
3102 void cpu_register_map_client(QEMUBH *bh)
3104 MapClient *client = g_malloc(sizeof(*client));
3106 qemu_mutex_lock(&map_client_list_lock);
3107 client->bh = bh;
3108 QLIST_INSERT_HEAD(&map_client_list, client, link);
3109 if (!qatomic_read(&bounce.in_use)) {
3110 cpu_notify_map_clients_locked();
3112 qemu_mutex_unlock(&map_client_list_lock);
3115 void cpu_exec_init_all(void)
3117 qemu_mutex_init(&ram_list.mutex);
3118 /* The data structures we set up here depend on knowing the page size,
3119 * so no more changes can be made after this point.
3120 * In an ideal world, nothing we did before we had finished the
3121 * machine setup would care about the target page size, and we could
3122 * do this much later, rather than requiring board models to state
3123 * up front what their requirements are.
3125 finalize_target_page_bits();
3126 io_mem_init();
3127 memory_map_init();
3128 qemu_mutex_init(&map_client_list_lock);
3131 void cpu_unregister_map_client(QEMUBH *bh)
3133 MapClient *client;
3135 qemu_mutex_lock(&map_client_list_lock);
3136 QLIST_FOREACH(client, &map_client_list, link) {
3137 if (client->bh == bh) {
3138 cpu_unregister_map_client_do(client);
3139 break;
3142 qemu_mutex_unlock(&map_client_list_lock);
3145 static void cpu_notify_map_clients(void)
3147 qemu_mutex_lock(&map_client_list_lock);
3148 cpu_notify_map_clients_locked();
3149 qemu_mutex_unlock(&map_client_list_lock);
3152 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3153 bool is_write, MemTxAttrs attrs)
3155 MemoryRegion *mr;
3156 hwaddr l, xlat;
3158 while (len > 0) {
3159 l = len;
3160 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3161 if (!memory_access_is_direct(mr, is_write)) {
3162 l = memory_access_size(mr, l, addr);
3163 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3164 return false;
3168 len -= l;
3169 addr += l;
3171 return true;
3174 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3175 hwaddr len, bool is_write,
3176 MemTxAttrs attrs)
3178 FlatView *fv;
3180 RCU_READ_LOCK_GUARD();
3181 fv = address_space_to_flatview(as);
3182 return flatview_access_valid(fv, addr, len, is_write, attrs);
3185 static hwaddr
3186 flatview_extend_translation(FlatView *fv, hwaddr addr,
3187 hwaddr target_len,
3188 MemoryRegion *mr, hwaddr base, hwaddr len,
3189 bool is_write, MemTxAttrs attrs)
3191 hwaddr done = 0;
3192 hwaddr xlat;
3193 MemoryRegion *this_mr;
3195 for (;;) {
3196 target_len -= len;
3197 addr += len;
3198 done += len;
3199 if (target_len == 0) {
3200 return done;
3203 len = target_len;
3204 this_mr = flatview_translate(fv, addr, &xlat,
3205 &len, is_write, attrs);
3206 if (this_mr != mr || xlat != base + done) {
3207 return done;
3212 /* Map a physical memory region into a host virtual address.
3213 * May map a subset of the requested range, given by and returned in *plen.
3214 * May return NULL if resources needed to perform the mapping are exhausted.
3215 * Use only for reads OR writes - not for read-modify-write operations.
3216 * Use cpu_register_map_client() to know when retrying the map operation is
3217 * likely to succeed.
3219 void *address_space_map(AddressSpace *as,
3220 hwaddr addr,
3221 hwaddr *plen,
3222 bool is_write,
3223 MemTxAttrs attrs)
3225 hwaddr len = *plen;
3226 hwaddr l, xlat;
3227 MemoryRegion *mr;
3228 void *ptr;
3229 FlatView *fv;
3231 if (len == 0) {
3232 return NULL;
3235 l = len;
3236 RCU_READ_LOCK_GUARD();
3237 fv = address_space_to_flatview(as);
3238 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3240 if (!memory_access_is_direct(mr, is_write)) {
3241 if (qatomic_xchg(&bounce.in_use, true)) {
3242 *plen = 0;
3243 return NULL;
3245 /* Avoid unbounded allocations */
3246 l = MIN(l, TARGET_PAGE_SIZE);
3247 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3248 bounce.addr = addr;
3249 bounce.len = l;
3251 memory_region_ref(mr);
3252 bounce.mr = mr;
3253 if (!is_write) {
3254 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3255 bounce.buffer, l);
3258 *plen = l;
3259 return bounce.buffer;
3263 memory_region_ref(mr);
3264 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3265 l, is_write, attrs);
3266 fuzz_dma_read_cb(addr, *plen, mr);
3267 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3269 return ptr;
3272 /* Unmaps a memory region previously mapped by address_space_map().
3273 * Will also mark the memory as dirty if is_write is true. access_len gives
3274 * the amount of memory that was actually read or written by the caller.
3276 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3277 bool is_write, hwaddr access_len)
3279 if (buffer != bounce.buffer) {
3280 MemoryRegion *mr;
3281 ram_addr_t addr1;
3283 mr = memory_region_from_host(buffer, &addr1);
3284 assert(mr != NULL);
3285 if (is_write) {
3286 invalidate_and_set_dirty(mr, addr1, access_len);
3288 if (xen_enabled()) {
3289 xen_invalidate_map_cache_entry(buffer);
3291 memory_region_unref(mr);
3292 return;
3294 if (is_write) {
3295 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3296 bounce.buffer, access_len);
3298 qemu_vfree(bounce.buffer);
3299 bounce.buffer = NULL;
3300 memory_region_unref(bounce.mr);
3301 qatomic_mb_set(&bounce.in_use, false);
3302 cpu_notify_map_clients();
3305 void *cpu_physical_memory_map(hwaddr addr,
3306 hwaddr *plen,
3307 bool is_write)
3309 return address_space_map(&address_space_memory, addr, plen, is_write,
3310 MEMTXATTRS_UNSPECIFIED);
3313 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3314 bool is_write, hwaddr access_len)
3316 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3319 #define ARG1_DECL AddressSpace *as
3320 #define ARG1 as
3321 #define SUFFIX
3322 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3323 #define RCU_READ_LOCK(...) rcu_read_lock()
3324 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3325 #include "memory_ldst.c.inc"
3327 int64_t address_space_cache_init(MemoryRegionCache *cache,
3328 AddressSpace *as,
3329 hwaddr addr,
3330 hwaddr len,
3331 bool is_write)
3333 AddressSpaceDispatch *d;
3334 hwaddr l;
3335 MemoryRegion *mr;
3336 Int128 diff;
3338 assert(len > 0);
3340 l = len;
3341 cache->fv = address_space_get_flatview(as);
3342 d = flatview_to_dispatch(cache->fv);
3343 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3346 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3347 * Take that into account to compute how many bytes are there between
3348 * cache->xlat and the end of the section.
3350 diff = int128_sub(cache->mrs.size,
3351 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3352 l = int128_get64(int128_min(diff, int128_make64(l)));
3354 mr = cache->mrs.mr;
3355 memory_region_ref(mr);
3356 if (memory_access_is_direct(mr, is_write)) {
3357 /* We don't care about the memory attributes here as we're only
3358 * doing this if we found actual RAM, which behaves the same
3359 * regardless of attributes; so UNSPECIFIED is fine.
3361 l = flatview_extend_translation(cache->fv, addr, len, mr,
3362 cache->xlat, l, is_write,
3363 MEMTXATTRS_UNSPECIFIED);
3364 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3365 } else {
3366 cache->ptr = NULL;
3369 cache->len = l;
3370 cache->is_write = is_write;
3371 return l;
3374 void address_space_cache_invalidate(MemoryRegionCache *cache,
3375 hwaddr addr,
3376 hwaddr access_len)
3378 assert(cache->is_write);
3379 if (likely(cache->ptr)) {
3380 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3384 void address_space_cache_destroy(MemoryRegionCache *cache)
3386 if (!cache->mrs.mr) {
3387 return;
3390 if (xen_enabled()) {
3391 xen_invalidate_map_cache_entry(cache->ptr);
3393 memory_region_unref(cache->mrs.mr);
3394 flatview_unref(cache->fv);
3395 cache->mrs.mr = NULL;
3396 cache->fv = NULL;
3399 /* Called from RCU critical section. This function has the same
3400 * semantics as address_space_translate, but it only works on a
3401 * predefined range of a MemoryRegion that was mapped with
3402 * address_space_cache_init.
3404 static inline MemoryRegion *address_space_translate_cached(
3405 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3406 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3408 MemoryRegionSection section;
3409 MemoryRegion *mr;
3410 IOMMUMemoryRegion *iommu_mr;
3411 AddressSpace *target_as;
3413 assert(!cache->ptr);
3414 *xlat = addr + cache->xlat;
3416 mr = cache->mrs.mr;
3417 iommu_mr = memory_region_get_iommu(mr);
3418 if (!iommu_mr) {
3419 /* MMIO region. */
3420 return mr;
3423 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3424 NULL, is_write, true,
3425 &target_as, attrs);
3426 return section.mr;
3429 /* Called from RCU critical section. address_space_read_cached uses this
3430 * out of line function when the target is an MMIO or IOMMU region.
3432 MemTxResult
3433 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3434 void *buf, hwaddr len)
3436 hwaddr addr1, l;
3437 MemoryRegion *mr;
3439 l = len;
3440 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3441 MEMTXATTRS_UNSPECIFIED);
3442 return flatview_read_continue(cache->fv,
3443 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3444 addr1, l, mr);
3447 /* Called from RCU critical section. address_space_write_cached uses this
3448 * out of line function when the target is an MMIO or IOMMU region.
3450 MemTxResult
3451 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3452 const void *buf, hwaddr len)
3454 hwaddr addr1, l;
3455 MemoryRegion *mr;
3457 l = len;
3458 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3459 MEMTXATTRS_UNSPECIFIED);
3460 return flatview_write_continue(cache->fv,
3461 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3462 addr1, l, mr);
3465 #define ARG1_DECL MemoryRegionCache *cache
3466 #define ARG1 cache
3467 #define SUFFIX _cached_slow
3468 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3469 #define RCU_READ_LOCK() ((void)0)
3470 #define RCU_READ_UNLOCK() ((void)0)
3471 #include "memory_ldst.c.inc"
3473 /* virtual memory access for debug (includes writing to ROM) */
3474 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3475 void *ptr, size_t len, bool is_write)
3477 hwaddr phys_addr;
3478 vaddr l, page;
3479 uint8_t *buf = ptr;
3481 cpu_synchronize_state(cpu);
3482 while (len > 0) {
3483 int asidx;
3484 MemTxAttrs attrs;
3485 MemTxResult res;
3487 page = addr & TARGET_PAGE_MASK;
3488 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3489 asidx = cpu_asidx_from_attrs(cpu, attrs);
3490 /* if no physical page mapped, return an error */
3491 if (phys_addr == -1)
3492 return -1;
3493 l = (page + TARGET_PAGE_SIZE) - addr;
3494 if (l > len)
3495 l = len;
3496 phys_addr += (addr & ~TARGET_PAGE_MASK);
3497 if (is_write) {
3498 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3499 attrs, buf, l);
3500 } else {
3501 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3502 attrs, buf, l);
3504 if (res != MEMTX_OK) {
3505 return -1;
3507 len -= l;
3508 buf += l;
3509 addr += l;
3511 return 0;
3515 * Allows code that needs to deal with migration bitmaps etc to still be built
3516 * target independent.
3518 size_t qemu_target_page_size(void)
3520 return TARGET_PAGE_SIZE;
3523 int qemu_target_page_bits(void)
3525 return TARGET_PAGE_BITS;
3528 int qemu_target_page_bits_min(void)
3530 return TARGET_PAGE_BITS_MIN;
3533 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3535 MemoryRegion*mr;
3536 hwaddr l = 1;
3537 bool res;
3539 RCU_READ_LOCK_GUARD();
3540 mr = address_space_translate(&address_space_memory,
3541 phys_addr, &phys_addr, &l, false,
3542 MEMTXATTRS_UNSPECIFIED);
3544 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3545 return res;
3548 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3550 RAMBlock *block;
3551 int ret = 0;
3553 RCU_READ_LOCK_GUARD();
3554 RAMBLOCK_FOREACH(block) {
3555 ret = func(block, opaque);
3556 if (ret) {
3557 break;
3560 return ret;
3564 * Unmap pages of memory from start to start+length such that
3565 * they a) read as 0, b) Trigger whatever fault mechanism
3566 * the OS provides for postcopy.
3567 * The pages must be unmapped by the end of the function.
3568 * Returns: 0 on success, none-0 on failure
3571 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3573 int ret = -1;
3575 uint8_t *host_startaddr = rb->host + start;
3577 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3578 error_report("ram_block_discard_range: Unaligned start address: %p",
3579 host_startaddr);
3580 goto err;
3583 if ((start + length) <= rb->max_length) {
3584 bool need_madvise, need_fallocate;
3585 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3586 error_report("ram_block_discard_range: Unaligned length: %zx",
3587 length);
3588 goto err;
3591 errno = ENOTSUP; /* If we are missing MADVISE etc */
3593 /* The logic here is messy;
3594 * madvise DONTNEED fails for hugepages
3595 * fallocate works on hugepages and shmem
3596 * shared anonymous memory requires madvise REMOVE
3598 need_madvise = (rb->page_size == qemu_host_page_size);
3599 need_fallocate = rb->fd != -1;
3600 if (need_fallocate) {
3601 /* For a file, this causes the area of the file to be zero'd
3602 * if read, and for hugetlbfs also causes it to be unmapped
3603 * so a userfault will trigger.
3605 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3606 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3607 start, length);
3608 if (ret) {
3609 ret = -errno;
3610 error_report("ram_block_discard_range: Failed to fallocate "
3611 "%s:%" PRIx64 " +%zx (%d)",
3612 rb->idstr, start, length, ret);
3613 goto err;
3615 #else
3616 ret = -ENOSYS;
3617 error_report("ram_block_discard_range: fallocate not available/file"
3618 "%s:%" PRIx64 " +%zx (%d)",
3619 rb->idstr, start, length, ret);
3620 goto err;
3621 #endif
3623 if (need_madvise) {
3624 /* For normal RAM this causes it to be unmapped,
3625 * for shared memory it causes the local mapping to disappear
3626 * and to fall back on the file contents (which we just
3627 * fallocate'd away).
3629 #if defined(CONFIG_MADVISE)
3630 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3631 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3632 } else {
3633 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3635 if (ret) {
3636 ret = -errno;
3637 error_report("ram_block_discard_range: Failed to discard range "
3638 "%s:%" PRIx64 " +%zx (%d)",
3639 rb->idstr, start, length, ret);
3640 goto err;
3642 #else
3643 ret = -ENOSYS;
3644 error_report("ram_block_discard_range: MADVISE not available"
3645 "%s:%" PRIx64 " +%zx (%d)",
3646 rb->idstr, start, length, ret);
3647 goto err;
3648 #endif
3650 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3651 need_madvise, need_fallocate, ret);
3652 } else {
3653 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3654 "/%zx/" RAM_ADDR_FMT")",
3655 rb->idstr, start, length, rb->max_length);
3658 err:
3659 return ret;
3662 bool ramblock_is_pmem(RAMBlock *rb)
3664 return rb->flags & RAM_PMEM;
3667 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3669 if (start == end - 1) {
3670 qemu_printf("\t%3d ", start);
3671 } else {
3672 qemu_printf("\t%3d..%-3d ", start, end - 1);
3674 qemu_printf(" skip=%d ", skip);
3675 if (ptr == PHYS_MAP_NODE_NIL) {
3676 qemu_printf(" ptr=NIL");
3677 } else if (!skip) {
3678 qemu_printf(" ptr=#%d", ptr);
3679 } else {
3680 qemu_printf(" ptr=[%d]", ptr);
3682 qemu_printf("\n");
3685 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3686 int128_sub((size), int128_one())) : 0)
3688 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3690 int i;
3692 qemu_printf(" Dispatch\n");
3693 qemu_printf(" Physical sections\n");
3695 for (i = 0; i < d->map.sections_nb; ++i) {
3696 MemoryRegionSection *s = d->map.sections + i;
3697 const char *names[] = { " [unassigned]", " [not dirty]",
3698 " [ROM]", " [watch]" };
3700 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3701 " %s%s%s%s%s",
3703 s->offset_within_address_space,
3704 s->offset_within_address_space + MR_SIZE(s->mr->size),
3705 s->mr->name ? s->mr->name : "(noname)",
3706 i < ARRAY_SIZE(names) ? names[i] : "",
3707 s->mr == root ? " [ROOT]" : "",
3708 s == d->mru_section ? " [MRU]" : "",
3709 s->mr->is_iommu ? " [iommu]" : "");
3711 if (s->mr->alias) {
3712 qemu_printf(" alias=%s", s->mr->alias->name ?
3713 s->mr->alias->name : "noname");
3715 qemu_printf("\n");
3718 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3719 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3720 for (i = 0; i < d->map.nodes_nb; ++i) {
3721 int j, jprev;
3722 PhysPageEntry prev;
3723 Node *n = d->map.nodes + i;
3725 qemu_printf(" [%d]\n", i);
3727 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3728 PhysPageEntry *pe = *n + j;
3730 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3731 continue;
3734 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3736 jprev = j;
3737 prev = *pe;
3740 if (jprev != ARRAY_SIZE(*n)) {
3741 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3746 /* Require any discards to work. */
3747 static unsigned int ram_block_discard_required_cnt;
3748 /* Require only coordinated discards to work. */
3749 static unsigned int ram_block_coordinated_discard_required_cnt;
3750 /* Disable any discards. */
3751 static unsigned int ram_block_discard_disabled_cnt;
3752 /* Disable only uncoordinated discards. */
3753 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3754 static QemuMutex ram_block_discard_disable_mutex;
3756 static void ram_block_discard_disable_mutex_lock(void)
3758 static gsize initialized;
3760 if (g_once_init_enter(&initialized)) {
3761 qemu_mutex_init(&ram_block_discard_disable_mutex);
3762 g_once_init_leave(&initialized, 1);
3764 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3767 static void ram_block_discard_disable_mutex_unlock(void)
3769 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3772 int ram_block_discard_disable(bool state)
3774 int ret = 0;
3776 ram_block_discard_disable_mutex_lock();
3777 if (!state) {
3778 ram_block_discard_disabled_cnt--;
3779 } else if (ram_block_discard_required_cnt ||
3780 ram_block_coordinated_discard_required_cnt) {
3781 ret = -EBUSY;
3782 } else {
3783 ram_block_discard_disabled_cnt++;
3785 ram_block_discard_disable_mutex_unlock();
3786 return ret;
3789 int ram_block_uncoordinated_discard_disable(bool state)
3791 int ret = 0;
3793 ram_block_discard_disable_mutex_lock();
3794 if (!state) {
3795 ram_block_uncoordinated_discard_disabled_cnt--;
3796 } else if (ram_block_discard_required_cnt) {
3797 ret = -EBUSY;
3798 } else {
3799 ram_block_uncoordinated_discard_disabled_cnt++;
3801 ram_block_discard_disable_mutex_unlock();
3802 return ret;
3805 int ram_block_discard_require(bool state)
3807 int ret = 0;
3809 ram_block_discard_disable_mutex_lock();
3810 if (!state) {
3811 ram_block_discard_required_cnt--;
3812 } else if (ram_block_discard_disabled_cnt ||
3813 ram_block_uncoordinated_discard_disabled_cnt) {
3814 ret = -EBUSY;
3815 } else {
3816 ram_block_discard_required_cnt++;
3818 ram_block_discard_disable_mutex_unlock();
3819 return ret;
3822 int ram_block_coordinated_discard_require(bool state)
3824 int ret = 0;
3826 ram_block_discard_disable_mutex_lock();
3827 if (!state) {
3828 ram_block_coordinated_discard_required_cnt--;
3829 } else if (ram_block_discard_disabled_cnt) {
3830 ret = -EBUSY;
3831 } else {
3832 ram_block_coordinated_discard_required_cnt++;
3834 ram_block_discard_disable_mutex_unlock();
3835 return ret;
3838 bool ram_block_discard_is_disabled(void)
3840 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3841 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3844 bool ram_block_discard_is_required(void)
3846 return qatomic_read(&ram_block_discard_required_cnt) ||
3847 qatomic_read(&ram_block_coordinated_discard_required_cnt);