4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "exec/address-spaces.h"
46 #include "sysemu/xen-mapcache.h"
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "qemu/main-loop.h"
52 #include "translate-all.h"
53 #include "sysemu/replay.h"
55 #include "exec/memory-internal.h"
56 #include "exec/ram_addr.h"
59 #include "migration/vmstate.h"
61 #include "qemu/range.h"
63 #include "qemu/mmap-alloc.h"
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
70 * are protected by the ramlist lock.
72 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
74 static MemoryRegion
*system_memory
;
75 static MemoryRegion
*system_io
;
77 AddressSpace address_space_io
;
78 AddressSpace address_space_memory
;
80 MemoryRegion io_mem_rom
, io_mem_notdirty
;
81 static MemoryRegion io_mem_unassigned
;
83 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
84 #define RAM_PREALLOC (1 << 0)
86 /* RAM is mmap-ed with MAP_SHARED */
87 #define RAM_SHARED (1 << 1)
89 /* Only a portion of RAM (used_length) is actually used, and migrated.
90 * This used_length size can change across reboots.
92 #define RAM_RESIZEABLE (1 << 2)
96 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
97 /* current CPU in the current thread. It is only valid inside
99 __thread CPUState
*current_cpu
;
100 /* 0 = Do not count executed instructions.
101 1 = Precise instruction counting.
102 2 = Adaptive rate instruction counting. */
105 #if !defined(CONFIG_USER_ONLY)
107 typedef struct PhysPageEntry PhysPageEntry
;
109 struct PhysPageEntry
{
110 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
112 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
116 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
118 /* Size of the L2 (and L3, etc) page tables. */
119 #define ADDR_SPACE_BITS 64
122 #define P_L2_SIZE (1 << P_L2_BITS)
124 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
126 typedef PhysPageEntry Node
[P_L2_SIZE
];
128 typedef struct PhysPageMap
{
131 unsigned sections_nb
;
132 unsigned sections_nb_alloc
;
134 unsigned nodes_nb_alloc
;
136 MemoryRegionSection
*sections
;
139 struct AddressSpaceDispatch
{
142 MemoryRegionSection
*mru_section
;
143 /* This is a multi-level map on the physical address space.
144 * The bottom level has pointers to MemoryRegionSections.
146 PhysPageEntry phys_map
;
151 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
152 typedef struct subpage_t
{
156 uint16_t sub_section
[TARGET_PAGE_SIZE
];
159 #define PHYS_SECTION_UNASSIGNED 0
160 #define PHYS_SECTION_NOTDIRTY 1
161 #define PHYS_SECTION_ROM 2
162 #define PHYS_SECTION_WATCH 3
164 static void io_mem_init(void);
165 static void memory_map_init(void);
166 static void tcg_commit(MemoryListener
*listener
);
168 static MemoryRegion io_mem_watch
;
171 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
172 * @cpu: the CPU whose AddressSpace this is
173 * @as: the AddressSpace itself
174 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
175 * @tcg_as_listener: listener for tracking changes to the AddressSpace
177 struct CPUAddressSpace
{
180 struct AddressSpaceDispatch
*memory_dispatch
;
181 MemoryListener tcg_as_listener
;
186 #if !defined(CONFIG_USER_ONLY)
188 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
190 static unsigned alloc_hint
= 16;
191 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
192 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
193 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
194 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
195 alloc_hint
= map
->nodes_nb_alloc
;
199 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
206 ret
= map
->nodes_nb
++;
208 assert(ret
!= PHYS_MAP_NODE_NIL
);
209 assert(ret
!= map
->nodes_nb_alloc
);
211 e
.skip
= leaf
? 0 : 1;
212 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
213 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
214 memcpy(&p
[i
], &e
, sizeof(e
));
219 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
220 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
224 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
226 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
227 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
229 p
= map
->nodes
[lp
->ptr
];
230 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
232 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
233 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
239 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
245 static void phys_page_set(AddressSpaceDispatch
*d
,
246 hwaddr index
, hwaddr nb
,
249 /* Wildly overreserve - it doesn't matter much. */
250 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
252 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
255 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
256 * and update our entry so we can skip it and go directly to the destination.
258 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
260 unsigned valid_ptr
= P_L2_SIZE
;
265 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
270 for (i
= 0; i
< P_L2_SIZE
; i
++) {
271 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
278 phys_page_compact(&p
[i
], nodes
, compacted
);
282 /* We can only compress if there's only one child. */
287 assert(valid_ptr
< P_L2_SIZE
);
289 /* Don't compress if it won't fit in the # of bits we have. */
290 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
294 lp
->ptr
= p
[valid_ptr
].ptr
;
295 if (!p
[valid_ptr
].skip
) {
296 /* If our only child is a leaf, make this a leaf. */
297 /* By design, we should have made this node a leaf to begin with so we
298 * should never reach here.
299 * But since it's so simple to handle this, let's do it just in case we
304 lp
->skip
+= p
[valid_ptr
].skip
;
308 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
310 DECLARE_BITMAP(compacted
, nodes_nb
);
312 if (d
->phys_map
.skip
) {
313 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
317 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
320 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
321 * the section must cover the entire address space.
323 return section
->size
.hi
||
324 range_covers_byte(section
->offset_within_address_space
,
325 section
->size
.lo
, addr
);
328 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
329 Node
*nodes
, MemoryRegionSection
*sections
)
332 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
335 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
336 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
337 return §ions
[PHYS_SECTION_UNASSIGNED
];
340 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
343 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
344 return §ions
[lp
.ptr
];
346 return §ions
[PHYS_SECTION_UNASSIGNED
];
350 bool memory_region_is_unassigned(MemoryRegion
*mr
)
352 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
353 && mr
!= &io_mem_watch
;
356 /* Called from RCU critical section */
357 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
359 bool resolve_subpage
)
361 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
365 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
366 section_covers_addr(section
, addr
)) {
369 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
,
373 if (resolve_subpage
&& section
->mr
->subpage
) {
374 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
375 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
378 atomic_set(&d
->mru_section
, section
);
383 /* Called from RCU critical section */
384 static MemoryRegionSection
*
385 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
386 hwaddr
*plen
, bool resolve_subpage
)
388 MemoryRegionSection
*section
;
392 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
393 /* Compute offset within MemoryRegionSection */
394 addr
-= section
->offset_within_address_space
;
396 /* Compute offset within MemoryRegion */
397 *xlat
= addr
+ section
->offset_within_region
;
401 /* MMIO registers can be expected to perform full-width accesses based only
402 * on their address, without considering adjacent registers that could
403 * decode to completely different MemoryRegions. When such registers
404 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
405 * regions overlap wildly. For this reason we cannot clamp the accesses
408 * If the length is small (as is the case for address_space_ldl/stl),
409 * everything works fine. If the incoming length is large, however,
410 * the caller really has to do the clamping through memory_access_size.
412 if (memory_region_is_ram(mr
)) {
413 diff
= int128_sub(section
->size
, int128_make64(addr
));
414 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
419 /* Called from RCU critical section */
420 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
421 hwaddr
*xlat
, hwaddr
*plen
,
425 MemoryRegionSection
*section
;
429 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
430 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
433 if (!mr
->iommu_ops
) {
437 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
438 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
439 | (addr
& iotlb
.addr_mask
));
440 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
441 if (!(iotlb
.perm
& (1 << is_write
))) {
442 mr
= &io_mem_unassigned
;
446 as
= iotlb
.target_as
;
449 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
450 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
451 *plen
= MIN(page
, *plen
);
458 /* Called from RCU critical section */
459 MemoryRegionSection
*
460 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
461 hwaddr
*xlat
, hwaddr
*plen
)
463 MemoryRegionSection
*section
;
464 AddressSpaceDispatch
*d
= cpu
->cpu_ases
[asidx
].memory_dispatch
;
466 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
468 assert(!section
->mr
->iommu_ops
);
473 #if !defined(CONFIG_USER_ONLY)
475 static int cpu_common_post_load(void *opaque
, int version_id
)
477 CPUState
*cpu
= opaque
;
479 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
480 version_id is increased. */
481 cpu
->interrupt_request
&= ~0x01;
487 static int cpu_common_pre_load(void *opaque
)
489 CPUState
*cpu
= opaque
;
491 cpu
->exception_index
= -1;
496 static bool cpu_common_exception_index_needed(void *opaque
)
498 CPUState
*cpu
= opaque
;
500 return tcg_enabled() && cpu
->exception_index
!= -1;
503 static const VMStateDescription vmstate_cpu_common_exception_index
= {
504 .name
= "cpu_common/exception_index",
506 .minimum_version_id
= 1,
507 .needed
= cpu_common_exception_index_needed
,
508 .fields
= (VMStateField
[]) {
509 VMSTATE_INT32(exception_index
, CPUState
),
510 VMSTATE_END_OF_LIST()
514 static bool cpu_common_crash_occurred_needed(void *opaque
)
516 CPUState
*cpu
= opaque
;
518 return cpu
->crash_occurred
;
521 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
522 .name
= "cpu_common/crash_occurred",
524 .minimum_version_id
= 1,
525 .needed
= cpu_common_crash_occurred_needed
,
526 .fields
= (VMStateField
[]) {
527 VMSTATE_BOOL(crash_occurred
, CPUState
),
528 VMSTATE_END_OF_LIST()
532 const VMStateDescription vmstate_cpu_common
= {
533 .name
= "cpu_common",
535 .minimum_version_id
= 1,
536 .pre_load
= cpu_common_pre_load
,
537 .post_load
= cpu_common_post_load
,
538 .fields
= (VMStateField
[]) {
539 VMSTATE_UINT32(halted
, CPUState
),
540 VMSTATE_UINT32(interrupt_request
, CPUState
),
541 VMSTATE_END_OF_LIST()
543 .subsections
= (const VMStateDescription
*[]) {
544 &vmstate_cpu_common_exception_index
,
545 &vmstate_cpu_common_crash_occurred
,
552 CPUState
*qemu_get_cpu(int index
)
557 if (cpu
->cpu_index
== index
) {
565 #if !defined(CONFIG_USER_ONLY)
566 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
568 CPUAddressSpace
*newas
;
570 /* Target code should have set num_ases before calling us */
571 assert(asidx
< cpu
->num_ases
);
574 /* address space 0 gets the convenience alias */
578 /* KVM cannot currently support multiple address spaces. */
579 assert(asidx
== 0 || !kvm_enabled());
581 if (!cpu
->cpu_ases
) {
582 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
585 newas
= &cpu
->cpu_ases
[asidx
];
589 newas
->tcg_as_listener
.commit
= tcg_commit
;
590 memory_listener_register(&newas
->tcg_as_listener
, as
);
594 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
596 /* Return the AddressSpace corresponding to the specified index */
597 return cpu
->cpu_ases
[asidx
].as
;
601 static bool cpu_index_auto_assigned
;
603 static int cpu_get_free_index(void)
608 cpu_index_auto_assigned
= true;
609 CPU_FOREACH(some_cpu
) {
615 void cpu_exec_exit(CPUState
*cpu
)
617 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
620 if (!QTAILQ_IN_USE(cpu
, node
)) {
621 /* there is nothing to undo since cpu_exec_init() hasn't been called */
626 assert(!(cpu_index_auto_assigned
&& cpu
!= QTAILQ_LAST(&cpus
, CPUTailQ
)));
628 QTAILQ_REMOVE(&cpus
, cpu
, node
);
629 cpu
->cpu_index
= UNASSIGNED_CPU_INDEX
;
632 if (cc
->vmsd
!= NULL
) {
633 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
635 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
636 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
640 void cpu_exec_init(CPUState
*cpu
, Error
**errp
)
642 CPUClass
*cc ATTRIBUTE_UNUSED
= CPU_GET_CLASS(cpu
);
643 Error
*local_err ATTRIBUTE_UNUSED
= NULL
;
648 #ifndef CONFIG_USER_ONLY
649 cpu
->thread_id
= qemu_get_thread_id();
651 /* This is a softmmu CPU object, so create a property for it
652 * so users can wire up its memory. (This can't go in qom/cpu.c
653 * because that file is compiled only once for both user-mode
654 * and system builds.) The default if no link is set up is to use
655 * the system address space.
657 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
658 (Object
**)&cpu
->memory
,
659 qdev_prop_allow_set_link_before_realize
,
660 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
662 cpu
->memory
= system_memory
;
663 object_ref(OBJECT(cpu
->memory
));
667 if (cpu
->cpu_index
== UNASSIGNED_CPU_INDEX
) {
668 cpu
->cpu_index
= cpu_get_free_index();
669 assert(cpu
->cpu_index
!= UNASSIGNED_CPU_INDEX
);
671 assert(!cpu_index_auto_assigned
);
673 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
676 #ifndef CONFIG_USER_ONLY
677 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
678 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
680 if (cc
->vmsd
!= NULL
) {
681 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
686 #if defined(CONFIG_USER_ONLY)
687 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
689 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
692 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
695 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
696 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
698 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
699 phys
| (pc
& ~TARGET_PAGE_MASK
));
704 #if defined(CONFIG_USER_ONLY)
705 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
710 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
716 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
720 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
721 int flags
, CPUWatchpoint
**watchpoint
)
726 /* Add a watchpoint. */
727 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
728 int flags
, CPUWatchpoint
**watchpoint
)
732 /* forbid ranges which are empty or run off the end of the address space */
733 if (len
== 0 || (addr
+ len
- 1) < addr
) {
734 error_report("tried to set invalid watchpoint at %"
735 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
738 wp
= g_malloc(sizeof(*wp
));
744 /* keep all GDB-injected watchpoints in front */
745 if (flags
& BP_GDB
) {
746 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
748 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
751 tlb_flush_page(cpu
, addr
);
758 /* Remove a specific watchpoint. */
759 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
764 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
765 if (addr
== wp
->vaddr
&& len
== wp
->len
766 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
767 cpu_watchpoint_remove_by_ref(cpu
, wp
);
774 /* Remove a specific watchpoint by reference. */
775 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
777 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
779 tlb_flush_page(cpu
, watchpoint
->vaddr
);
784 /* Remove all matching watchpoints. */
785 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
787 CPUWatchpoint
*wp
, *next
;
789 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
790 if (wp
->flags
& mask
) {
791 cpu_watchpoint_remove_by_ref(cpu
, wp
);
796 /* Return true if this watchpoint address matches the specified
797 * access (ie the address range covered by the watchpoint overlaps
798 * partially or completely with the address range covered by the
801 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
805 /* We know the lengths are non-zero, but a little caution is
806 * required to avoid errors in the case where the range ends
807 * exactly at the top of the address space and so addr + len
808 * wraps round to zero.
810 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
811 vaddr addrend
= addr
+ len
- 1;
813 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
818 /* Add a breakpoint. */
819 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
820 CPUBreakpoint
**breakpoint
)
824 bp
= g_malloc(sizeof(*bp
));
829 /* keep all GDB-injected breakpoints in front */
830 if (flags
& BP_GDB
) {
831 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
833 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
836 breakpoint_invalidate(cpu
, pc
);
844 /* Remove a specific breakpoint. */
845 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
849 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
850 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
851 cpu_breakpoint_remove_by_ref(cpu
, bp
);
858 /* Remove a specific breakpoint by reference. */
859 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
861 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
863 breakpoint_invalidate(cpu
, breakpoint
->pc
);
868 /* Remove all matching breakpoints. */
869 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
871 CPUBreakpoint
*bp
, *next
;
873 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
874 if (bp
->flags
& mask
) {
875 cpu_breakpoint_remove_by_ref(cpu
, bp
);
880 /* enable or disable single step mode. EXCP_DEBUG is returned by the
881 CPU loop after each instruction */
882 void cpu_single_step(CPUState
*cpu
, int enabled
)
884 if (cpu
->singlestep_enabled
!= enabled
) {
885 cpu
->singlestep_enabled
= enabled
;
887 kvm_update_guest_debug(cpu
, 0);
889 /* must flush all the translated code to avoid inconsistencies */
890 /* XXX: only flush what is necessary */
896 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
903 fprintf(stderr
, "qemu: fatal: ");
904 vfprintf(stderr
, fmt
, ap
);
905 fprintf(stderr
, "\n");
906 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
907 if (qemu_log_separate()) {
908 qemu_log("qemu: fatal: ");
909 qemu_log_vprintf(fmt
, ap2
);
911 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
918 #if defined(CONFIG_USER_ONLY)
920 struct sigaction act
;
921 sigfillset(&act
.sa_mask
);
922 act
.sa_handler
= SIG_DFL
;
923 sigaction(SIGABRT
, &act
, NULL
);
929 #if !defined(CONFIG_USER_ONLY)
930 /* Called from RCU critical section */
931 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
935 block
= atomic_rcu_read(&ram_list
.mru_block
);
936 if (block
&& addr
- block
->offset
< block
->max_length
) {
939 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
940 if (addr
- block
->offset
< block
->max_length
) {
945 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
949 /* It is safe to write mru_block outside the iothread lock. This
954 * xxx removed from list
958 * call_rcu(reclaim_ramblock, xxx);
961 * atomic_rcu_set is not needed here. The block was already published
962 * when it was placed into the list. Here we're just making an extra
963 * copy of the pointer.
965 ram_list
.mru_block
= block
;
969 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
976 end
= TARGET_PAGE_ALIGN(start
+ length
);
977 start
&= TARGET_PAGE_MASK
;
980 block
= qemu_get_ram_block(start
);
981 assert(block
== qemu_get_ram_block(end
- 1));
982 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
984 tlb_reset_dirty(cpu
, start1
, length
);
989 /* Note: start and end must be within the same ram block. */
990 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
994 DirtyMemoryBlocks
*blocks
;
995 unsigned long end
, page
;
1002 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1003 page
= start
>> TARGET_PAGE_BITS
;
1007 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1009 while (page
< end
) {
1010 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1011 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1012 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1014 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1021 if (dirty
&& tcg_enabled()) {
1022 tlb_reset_dirty_range_all(start
, length
);
1028 /* Called from RCU critical section */
1029 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1030 MemoryRegionSection
*section
,
1032 hwaddr paddr
, hwaddr xlat
,
1034 target_ulong
*address
)
1039 if (memory_region_is_ram(section
->mr
)) {
1041 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1042 if (!section
->readonly
) {
1043 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1045 iotlb
|= PHYS_SECTION_ROM
;
1048 AddressSpaceDispatch
*d
;
1050 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1051 iotlb
= section
- d
->map
.sections
;
1055 /* Make accesses to pages with watchpoints go via the
1056 watchpoint trap routines. */
1057 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1058 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1059 /* Avoid trapping reads of pages with a write breakpoint. */
1060 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1061 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1062 *address
|= TLB_MMIO
;
1070 #endif /* defined(CONFIG_USER_ONLY) */
1072 #if !defined(CONFIG_USER_ONLY)
1074 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1076 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1078 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1079 qemu_anon_ram_alloc
;
1082 * Set a custom physical guest memory alloator.
1083 * Accelerators with unusual needs may need this. Hopefully, we can
1084 * get rid of it eventually.
1086 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1088 phys_mem_alloc
= alloc
;
1091 static uint16_t phys_section_add(PhysPageMap
*map
,
1092 MemoryRegionSection
*section
)
1094 /* The physical section number is ORed with a page-aligned
1095 * pointer to produce the iotlb entries. Thus it should
1096 * never overflow into the page-aligned value.
1098 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1100 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1101 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1102 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1103 map
->sections_nb_alloc
);
1105 map
->sections
[map
->sections_nb
] = *section
;
1106 memory_region_ref(section
->mr
);
1107 return map
->sections_nb
++;
1110 static void phys_section_destroy(MemoryRegion
*mr
)
1112 bool have_sub_page
= mr
->subpage
;
1114 memory_region_unref(mr
);
1116 if (have_sub_page
) {
1117 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1118 object_unref(OBJECT(&subpage
->iomem
));
1123 static void phys_sections_free(PhysPageMap
*map
)
1125 while (map
->sections_nb
> 0) {
1126 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1127 phys_section_destroy(section
->mr
);
1129 g_free(map
->sections
);
1133 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1136 hwaddr base
= section
->offset_within_address_space
1138 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1139 d
->map
.nodes
, d
->map
.sections
);
1140 MemoryRegionSection subsection
= {
1141 .offset_within_address_space
= base
,
1142 .size
= int128_make64(TARGET_PAGE_SIZE
),
1146 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1148 if (!(existing
->mr
->subpage
)) {
1149 subpage
= subpage_init(d
->as
, base
);
1150 subsection
.address_space
= d
->as
;
1151 subsection
.mr
= &subpage
->iomem
;
1152 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1153 phys_section_add(&d
->map
, &subsection
));
1155 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1157 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1158 end
= start
+ int128_get64(section
->size
) - 1;
1159 subpage_register(subpage
, start
, end
,
1160 phys_section_add(&d
->map
, section
));
1164 static void register_multipage(AddressSpaceDispatch
*d
,
1165 MemoryRegionSection
*section
)
1167 hwaddr start_addr
= section
->offset_within_address_space
;
1168 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1169 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1173 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1176 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1178 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1179 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1180 MemoryRegionSection now
= *section
, remain
= *section
;
1181 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1183 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1184 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1185 - now
.offset_within_address_space
;
1187 now
.size
= int128_min(int128_make64(left
), now
.size
);
1188 register_subpage(d
, &now
);
1190 now
.size
= int128_zero();
1192 while (int128_ne(remain
.size
, now
.size
)) {
1193 remain
.size
= int128_sub(remain
.size
, now
.size
);
1194 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1195 remain
.offset_within_region
+= int128_get64(now
.size
);
1197 if (int128_lt(remain
.size
, page_size
)) {
1198 register_subpage(d
, &now
);
1199 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1200 now
.size
= page_size
;
1201 register_subpage(d
, &now
);
1203 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1204 register_multipage(d
, &now
);
1209 void qemu_flush_coalesced_mmio_buffer(void)
1212 kvm_flush_coalesced_mmio_buffer();
1215 void qemu_mutex_lock_ramlist(void)
1217 qemu_mutex_lock(&ram_list
.mutex
);
1220 void qemu_mutex_unlock_ramlist(void)
1222 qemu_mutex_unlock(&ram_list
.mutex
);
1226 static void *file_ram_alloc(RAMBlock
*block
,
1231 bool unlink_on_error
= false;
1233 char *sanitized_name
;
1235 void *area
= MAP_FAILED
;
1239 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1241 "host lacks kvm mmu notifiers, -mem-path unsupported");
1246 fd
= open(path
, O_RDWR
);
1248 /* @path names an existing file, use it */
1251 if (errno
== ENOENT
) {
1252 /* @path names a file that doesn't exist, create it */
1253 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1255 unlink_on_error
= true;
1258 } else if (errno
== EISDIR
) {
1259 /* @path names a directory, create a file there */
1260 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1261 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1262 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1268 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1270 g_free(sanitized_name
);
1272 fd
= mkstemp(filename
);
1280 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1281 error_setg_errno(errp
, errno
,
1282 "can't open backing store %s for guest RAM",
1287 * Try again on EINTR and EEXIST. The latter happens when
1288 * something else creates the file between our two open().
1292 page_size
= qemu_fd_getpagesize(fd
);
1293 block
->mr
->align
= MAX(page_size
, QEMU_VMALLOC_ALIGN
);
1295 if (memory
< page_size
) {
1296 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1297 "or larger than page size 0x%" PRIx64
,
1302 memory
= ROUND_UP(memory
, page_size
);
1305 * ftruncate is not supported by hugetlbfs in older
1306 * hosts, so don't bother bailing out on errors.
1307 * If anything goes wrong with it under other filesystems,
1310 if (ftruncate(fd
, memory
)) {
1311 perror("ftruncate");
1314 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1315 block
->flags
& RAM_SHARED
);
1316 if (area
== MAP_FAILED
) {
1317 error_setg_errno(errp
, errno
,
1318 "unable to map backing store for guest RAM");
1323 os_mem_prealloc(fd
, area
, memory
, errp
);
1324 if (errp
&& *errp
) {
1333 if (area
!= MAP_FAILED
) {
1334 qemu_ram_munmap(area
, memory
);
1336 if (unlink_on_error
) {
1346 /* Called with the ramlist lock held. */
1347 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1349 RAMBlock
*block
, *next_block
;
1350 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1352 assert(size
!= 0); /* it would hand out same offset multiple times */
1354 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1358 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1359 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1361 end
= block
->offset
+ block
->max_length
;
1363 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1364 if (next_block
->offset
>= end
) {
1365 next
= MIN(next
, next_block
->offset
);
1368 if (next
- end
>= size
&& next
- end
< mingap
) {
1370 mingap
= next
- end
;
1374 if (offset
== RAM_ADDR_MAX
) {
1375 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1383 ram_addr_t
last_ram_offset(void)
1386 ram_addr_t last
= 0;
1389 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1390 last
= MAX(last
, block
->offset
+ block
->max_length
);
1396 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1400 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1401 if (!machine_dump_guest_core(current_machine
)) {
1402 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1404 perror("qemu_madvise");
1405 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1406 "but dump_guest_core=off specified\n");
1411 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1416 /* Called with iothread lock held. */
1417 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1422 assert(!new_block
->idstr
[0]);
1425 char *id
= qdev_get_dev_path(dev
);
1427 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1431 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1434 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1435 if (block
!= new_block
&&
1436 !strcmp(block
->idstr
, new_block
->idstr
)) {
1437 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1445 /* Called with iothread lock held. */
1446 void qemu_ram_unset_idstr(RAMBlock
*block
)
1448 /* FIXME: arch_init.c assumes that this is not called throughout
1449 * migration. Ignore the problem since hot-unplug during migration
1450 * does not work anyway.
1453 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1457 static int memory_try_enable_merging(void *addr
, size_t len
)
1459 if (!machine_mem_merge(current_machine
)) {
1460 /* disabled by the user */
1464 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1467 /* Only legal before guest might have detected the memory size: e.g. on
1468 * incoming migration, or right after reset.
1470 * As memory core doesn't know how is memory accessed, it is up to
1471 * resize callback to update device state and/or add assertions to detect
1472 * misuse, if necessary.
1474 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1478 newsize
= HOST_PAGE_ALIGN(newsize
);
1480 if (block
->used_length
== newsize
) {
1484 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1485 error_setg_errno(errp
, EINVAL
,
1486 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1487 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1488 newsize
, block
->used_length
);
1492 if (block
->max_length
< newsize
) {
1493 error_setg_errno(errp
, EINVAL
,
1494 "Length too large: %s: 0x" RAM_ADDR_FMT
1495 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1496 newsize
, block
->max_length
);
1500 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1501 block
->used_length
= newsize
;
1502 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1504 memory_region_set_size(block
->mr
, newsize
);
1505 if (block
->resized
) {
1506 block
->resized(block
->idstr
, newsize
, block
->host
);
1511 /* Called with ram_list.mutex held */
1512 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1513 ram_addr_t new_ram_size
)
1515 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1516 DIRTY_MEMORY_BLOCK_SIZE
);
1517 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1518 DIRTY_MEMORY_BLOCK_SIZE
);
1521 /* Only need to extend if block count increased */
1522 if (new_num_blocks
<= old_num_blocks
) {
1526 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1527 DirtyMemoryBlocks
*old_blocks
;
1528 DirtyMemoryBlocks
*new_blocks
;
1531 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1532 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1533 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1535 if (old_num_blocks
) {
1536 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1537 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1540 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1541 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1544 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1547 g_free_rcu(old_blocks
, rcu
);
1552 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1555 RAMBlock
*last_block
= NULL
;
1556 ram_addr_t old_ram_size
, new_ram_size
;
1559 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1561 qemu_mutex_lock_ramlist();
1562 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1564 if (!new_block
->host
) {
1565 if (xen_enabled()) {
1566 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1567 new_block
->mr
, &err
);
1569 error_propagate(errp
, err
);
1570 qemu_mutex_unlock_ramlist();
1574 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1575 &new_block
->mr
->align
);
1576 if (!new_block
->host
) {
1577 error_setg_errno(errp
, errno
,
1578 "cannot set up guest memory '%s'",
1579 memory_region_name(new_block
->mr
));
1580 qemu_mutex_unlock_ramlist();
1583 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1587 new_ram_size
= MAX(old_ram_size
,
1588 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1589 if (new_ram_size
> old_ram_size
) {
1590 migration_bitmap_extend(old_ram_size
, new_ram_size
);
1591 dirty_memory_extend(old_ram_size
, new_ram_size
);
1593 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1594 * QLIST (which has an RCU-friendly variant) does not have insertion at
1595 * tail, so save the last element in last_block.
1597 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1599 if (block
->max_length
< new_block
->max_length
) {
1604 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1605 } else if (last_block
) {
1606 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1607 } else { /* list is empty */
1608 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1610 ram_list
.mru_block
= NULL
;
1612 /* Write list before version */
1615 qemu_mutex_unlock_ramlist();
1617 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1618 new_block
->used_length
,
1621 if (new_block
->host
) {
1622 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1623 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1624 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1625 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1630 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1631 bool share
, const char *mem_path
,
1634 RAMBlock
*new_block
;
1635 Error
*local_err
= NULL
;
1637 if (xen_enabled()) {
1638 error_setg(errp
, "-mem-path not supported with Xen");
1642 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1644 * file_ram_alloc() needs to allocate just like
1645 * phys_mem_alloc, but we haven't bothered to provide
1649 "-mem-path not supported with this accelerator");
1653 size
= HOST_PAGE_ALIGN(size
);
1654 new_block
= g_malloc0(sizeof(*new_block
));
1656 new_block
->used_length
= size
;
1657 new_block
->max_length
= size
;
1658 new_block
->flags
= share
? RAM_SHARED
: 0;
1659 new_block
->host
= file_ram_alloc(new_block
, size
,
1661 if (!new_block
->host
) {
1666 ram_block_add(new_block
, &local_err
);
1669 error_propagate(errp
, local_err
);
1677 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1678 void (*resized
)(const char*,
1681 void *host
, bool resizeable
,
1682 MemoryRegion
*mr
, Error
**errp
)
1684 RAMBlock
*new_block
;
1685 Error
*local_err
= NULL
;
1687 size
= HOST_PAGE_ALIGN(size
);
1688 max_size
= HOST_PAGE_ALIGN(max_size
);
1689 new_block
= g_malloc0(sizeof(*new_block
));
1691 new_block
->resized
= resized
;
1692 new_block
->used_length
= size
;
1693 new_block
->max_length
= max_size
;
1694 assert(max_size
>= size
);
1696 new_block
->host
= host
;
1698 new_block
->flags
|= RAM_PREALLOC
;
1701 new_block
->flags
|= RAM_RESIZEABLE
;
1703 ram_block_add(new_block
, &local_err
);
1706 error_propagate(errp
, local_err
);
1712 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1713 MemoryRegion
*mr
, Error
**errp
)
1715 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1718 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1720 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1723 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1724 void (*resized
)(const char*,
1727 MemoryRegion
*mr
, Error
**errp
)
1729 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1732 static void reclaim_ramblock(RAMBlock
*block
)
1734 if (block
->flags
& RAM_PREALLOC
) {
1736 } else if (xen_enabled()) {
1737 xen_invalidate_map_cache_entry(block
->host
);
1739 } else if (block
->fd
>= 0) {
1740 qemu_ram_munmap(block
->host
, block
->max_length
);
1744 qemu_anon_ram_free(block
->host
, block
->max_length
);
1749 void qemu_ram_free(RAMBlock
*block
)
1755 qemu_mutex_lock_ramlist();
1756 QLIST_REMOVE_RCU(block
, next
);
1757 ram_list
.mru_block
= NULL
;
1758 /* Write list before version */
1761 call_rcu(block
, reclaim_ramblock
, rcu
);
1762 qemu_mutex_unlock_ramlist();
1766 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1773 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1774 offset
= addr
- block
->offset
;
1775 if (offset
< block
->max_length
) {
1776 vaddr
= ramblock_ptr(block
, offset
);
1777 if (block
->flags
& RAM_PREALLOC
) {
1779 } else if (xen_enabled()) {
1783 if (block
->fd
>= 0) {
1784 flags
|= (block
->flags
& RAM_SHARED
?
1785 MAP_SHARED
: MAP_PRIVATE
);
1786 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1787 flags
, block
->fd
, offset
);
1790 * Remap needs to match alloc. Accelerators that
1791 * set phys_mem_alloc never remap. If they did,
1792 * we'd need a remap hook here.
1794 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1796 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1797 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1800 if (area
!= vaddr
) {
1801 fprintf(stderr
, "Could not remap addr: "
1802 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1806 memory_try_enable_merging(vaddr
, length
);
1807 qemu_ram_setup_dump(vaddr
, length
);
1812 #endif /* !_WIN32 */
1814 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1815 * This should not be used for general purpose DMA. Use address_space_map
1816 * or address_space_rw instead. For local memory (e.g. video ram) that the
1817 * device owns, use memory_region_get_ram_ptr.
1819 * Called within RCU critical section.
1821 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
1823 RAMBlock
*block
= ram_block
;
1825 if (block
== NULL
) {
1826 block
= qemu_get_ram_block(addr
);
1827 addr
-= block
->offset
;
1830 if (xen_enabled() && block
->host
== NULL
) {
1831 /* We need to check if the requested address is in the RAM
1832 * because we don't want to map the entire memory in QEMU.
1833 * In that case just map until the end of the page.
1835 if (block
->offset
== 0) {
1836 return xen_map_cache(addr
, 0, 0);
1839 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1841 return ramblock_ptr(block
, addr
);
1844 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
1845 * but takes a size argument.
1847 * Called within RCU critical section.
1849 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
1852 RAMBlock
*block
= ram_block
;
1857 if (block
== NULL
) {
1858 block
= qemu_get_ram_block(addr
);
1859 addr
-= block
->offset
;
1861 *size
= MIN(*size
, block
->max_length
- addr
);
1863 if (xen_enabled() && block
->host
== NULL
) {
1864 /* We need to check if the requested address is in the RAM
1865 * because we don't want to map the entire memory in QEMU.
1866 * In that case just map the requested area.
1868 if (block
->offset
== 0) {
1869 return xen_map_cache(addr
, *size
, 1);
1872 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1875 return ramblock_ptr(block
, addr
);
1879 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1882 * ptr: Host pointer to look up
1883 * round_offset: If true round the result offset down to a page boundary
1884 * *ram_addr: set to result ram_addr
1885 * *offset: set to result offset within the RAMBlock
1887 * Returns: RAMBlock (or NULL if not found)
1889 * By the time this function returns, the returned pointer is not protected
1890 * by RCU anymore. If the caller is not within an RCU critical section and
1891 * does not hold the iothread lock, it must have other means of protecting the
1892 * pointer, such as a reference to the region that includes the incoming
1895 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
1899 uint8_t *host
= ptr
;
1901 if (xen_enabled()) {
1902 ram_addr_t ram_addr
;
1904 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1905 block
= qemu_get_ram_block(ram_addr
);
1907 *offset
= ram_addr
- block
->offset
;
1914 block
= atomic_rcu_read(&ram_list
.mru_block
);
1915 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1919 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1920 /* This case append when the block is not mapped. */
1921 if (block
->host
== NULL
) {
1924 if (host
- block
->host
< block
->max_length
) {
1933 *offset
= (host
- block
->host
);
1935 *offset
&= TARGET_PAGE_MASK
;
1942 * Finds the named RAMBlock
1944 * name: The name of RAMBlock to find
1946 * Returns: RAMBlock (or NULL if not found)
1948 RAMBlock
*qemu_ram_block_by_name(const char *name
)
1952 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1953 if (!strcmp(name
, block
->idstr
)) {
1961 /* Some of the softmmu routines need to translate from a host pointer
1962 (typically a TLB entry) back to a ram offset. */
1963 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
1968 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
1970 return RAM_ADDR_INVALID
;
1973 return block
->offset
+ offset
;
1976 /* Called within RCU critical section. */
1977 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1978 uint64_t val
, unsigned size
)
1980 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
1981 tb_invalidate_phys_page_fast(ram_addr
, size
);
1985 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
1988 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
1991 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
1996 /* Set both VGA and migration bits for simplicity and to remove
1997 * the notdirty callback faster.
1999 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2000 DIRTY_CLIENTS_NOCODE
);
2001 /* we remove the notdirty callback only if the code has been
2003 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2004 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2008 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2009 unsigned size
, bool is_write
)
2014 static const MemoryRegionOps notdirty_mem_ops
= {
2015 .write
= notdirty_mem_write
,
2016 .valid
.accepts
= notdirty_mem_accepts
,
2017 .endianness
= DEVICE_NATIVE_ENDIAN
,
2020 /* Generate a debug exception if a watchpoint has been hit. */
2021 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2023 CPUState
*cpu
= current_cpu
;
2024 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2025 CPUArchState
*env
= cpu
->env_ptr
;
2026 target_ulong pc
, cs_base
;
2031 if (cpu
->watchpoint_hit
) {
2032 /* We re-entered the check after replacing the TB. Now raise
2033 * the debug interrupt so that is will trigger after the
2034 * current instruction. */
2035 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2038 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2039 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2040 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2041 && (wp
->flags
& flags
)) {
2042 if (flags
== BP_MEM_READ
) {
2043 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2045 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2047 wp
->hitaddr
= vaddr
;
2048 wp
->hitattrs
= attrs
;
2049 if (!cpu
->watchpoint_hit
) {
2050 if (wp
->flags
& BP_CPU
&&
2051 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2052 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2055 cpu
->watchpoint_hit
= wp
;
2056 tb_check_watchpoint(cpu
);
2057 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2058 cpu
->exception_index
= EXCP_DEBUG
;
2061 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2062 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2063 cpu_loop_exit_noexc(cpu
);
2067 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2072 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2073 so these check for a hit then pass through to the normal out-of-line
2075 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2076 unsigned size
, MemTxAttrs attrs
)
2080 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2081 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2083 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2086 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2089 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2092 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2100 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2101 uint64_t val
, unsigned size
,
2105 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2106 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2108 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2111 address_space_stb(as
, addr
, val
, attrs
, &res
);
2114 address_space_stw(as
, addr
, val
, attrs
, &res
);
2117 address_space_stl(as
, addr
, val
, attrs
, &res
);
2124 static const MemoryRegionOps watch_mem_ops
= {
2125 .read_with_attrs
= watch_mem_read
,
2126 .write_with_attrs
= watch_mem_write
,
2127 .endianness
= DEVICE_NATIVE_ENDIAN
,
2130 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2131 unsigned len
, MemTxAttrs attrs
)
2133 subpage_t
*subpage
= opaque
;
2137 #if defined(DEBUG_SUBPAGE)
2138 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2139 subpage
, len
, addr
);
2141 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2148 *data
= ldub_p(buf
);
2151 *data
= lduw_p(buf
);
2164 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2165 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2167 subpage_t
*subpage
= opaque
;
2170 #if defined(DEBUG_SUBPAGE)
2171 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2172 " value %"PRIx64
"\n",
2173 __func__
, subpage
, len
, addr
, value
);
2191 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2195 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2196 unsigned len
, bool is_write
)
2198 subpage_t
*subpage
= opaque
;
2199 #if defined(DEBUG_SUBPAGE)
2200 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2201 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2204 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2208 static const MemoryRegionOps subpage_ops
= {
2209 .read_with_attrs
= subpage_read
,
2210 .write_with_attrs
= subpage_write
,
2211 .impl
.min_access_size
= 1,
2212 .impl
.max_access_size
= 8,
2213 .valid
.min_access_size
= 1,
2214 .valid
.max_access_size
= 8,
2215 .valid
.accepts
= subpage_accepts
,
2216 .endianness
= DEVICE_NATIVE_ENDIAN
,
2219 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2224 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2226 idx
= SUBPAGE_IDX(start
);
2227 eidx
= SUBPAGE_IDX(end
);
2228 #if defined(DEBUG_SUBPAGE)
2229 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2230 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2232 for (; idx
<= eidx
; idx
++) {
2233 mmio
->sub_section
[idx
] = section
;
2239 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2243 mmio
= g_malloc0(sizeof(subpage_t
));
2247 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2248 NULL
, TARGET_PAGE_SIZE
);
2249 mmio
->iomem
.subpage
= true;
2250 #if defined(DEBUG_SUBPAGE)
2251 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2252 mmio
, base
, TARGET_PAGE_SIZE
);
2254 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2259 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2263 MemoryRegionSection section
= {
2264 .address_space
= as
,
2266 .offset_within_address_space
= 0,
2267 .offset_within_region
= 0,
2268 .size
= int128_2_64(),
2271 return phys_section_add(map
, §ion
);
2274 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2276 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2277 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2278 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2279 MemoryRegionSection
*sections
= d
->map
.sections
;
2281 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2284 static void io_mem_init(void)
2286 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2287 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2289 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2291 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2295 static void mem_begin(MemoryListener
*listener
)
2297 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2298 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2301 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2302 assert(n
== PHYS_SECTION_UNASSIGNED
);
2303 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2304 assert(n
== PHYS_SECTION_NOTDIRTY
);
2305 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2306 assert(n
== PHYS_SECTION_ROM
);
2307 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2308 assert(n
== PHYS_SECTION_WATCH
);
2310 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2312 as
->next_dispatch
= d
;
2315 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2317 phys_sections_free(&d
->map
);
2321 static void mem_commit(MemoryListener
*listener
)
2323 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2324 AddressSpaceDispatch
*cur
= as
->dispatch
;
2325 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2327 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2329 atomic_rcu_set(&as
->dispatch
, next
);
2331 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2335 static void tcg_commit(MemoryListener
*listener
)
2337 CPUAddressSpace
*cpuas
;
2338 AddressSpaceDispatch
*d
;
2340 /* since each CPU stores ram addresses in its TLB cache, we must
2341 reset the modified entries */
2342 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2343 cpu_reloading_memory_map();
2344 /* The CPU and TLB are protected by the iothread lock.
2345 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2346 * may have split the RCU critical section.
2348 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2349 cpuas
->memory_dispatch
= d
;
2350 tlb_flush(cpuas
->cpu
, 1);
2353 void address_space_init_dispatch(AddressSpace
*as
)
2355 as
->dispatch
= NULL
;
2356 as
->dispatch_listener
= (MemoryListener
) {
2358 .commit
= mem_commit
,
2359 .region_add
= mem_add
,
2360 .region_nop
= mem_add
,
2363 memory_listener_register(&as
->dispatch_listener
, as
);
2366 void address_space_unregister(AddressSpace
*as
)
2368 memory_listener_unregister(&as
->dispatch_listener
);
2371 void address_space_destroy_dispatch(AddressSpace
*as
)
2373 AddressSpaceDispatch
*d
= as
->dispatch
;
2375 atomic_rcu_set(&as
->dispatch
, NULL
);
2377 call_rcu(d
, address_space_dispatch_free
, rcu
);
2381 static void memory_map_init(void)
2383 system_memory
= g_malloc(sizeof(*system_memory
));
2385 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2386 address_space_init(&address_space_memory
, system_memory
, "memory");
2388 system_io
= g_malloc(sizeof(*system_io
));
2389 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2391 address_space_init(&address_space_io
, system_io
, "I/O");
2394 MemoryRegion
*get_system_memory(void)
2396 return system_memory
;
2399 MemoryRegion
*get_system_io(void)
2404 #endif /* !defined(CONFIG_USER_ONLY) */
2406 /* physical memory access (slow version, mainly for debug) */
2407 #if defined(CONFIG_USER_ONLY)
2408 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2409 uint8_t *buf
, int len
, int is_write
)
2416 page
= addr
& TARGET_PAGE_MASK
;
2417 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2420 flags
= page_get_flags(page
);
2421 if (!(flags
& PAGE_VALID
))
2424 if (!(flags
& PAGE_WRITE
))
2426 /* XXX: this code should not depend on lock_user */
2427 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2430 unlock_user(p
, addr
, l
);
2432 if (!(flags
& PAGE_READ
))
2434 /* XXX: this code should not depend on lock_user */
2435 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2438 unlock_user(p
, addr
, 0);
2449 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2452 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2453 addr
+= memory_region_get_ram_addr(mr
);
2455 /* No early return if dirty_log_mask is or becomes 0, because
2456 * cpu_physical_memory_set_dirty_range will still call
2457 * xen_modified_memory.
2459 if (dirty_log_mask
) {
2461 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2463 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2464 tb_invalidate_phys_range(addr
, addr
+ length
);
2465 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2467 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2470 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2472 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2474 /* Regions are assumed to support 1-4 byte accesses unless
2475 otherwise specified. */
2476 if (access_size_max
== 0) {
2477 access_size_max
= 4;
2480 /* Bound the maximum access by the alignment of the address. */
2481 if (!mr
->ops
->impl
.unaligned
) {
2482 unsigned align_size_max
= addr
& -addr
;
2483 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2484 access_size_max
= align_size_max
;
2488 /* Don't attempt accesses larger than the maximum. */
2489 if (l
> access_size_max
) {
2490 l
= access_size_max
;
2497 static bool prepare_mmio_access(MemoryRegion
*mr
)
2499 bool unlocked
= !qemu_mutex_iothread_locked();
2500 bool release_lock
= false;
2502 if (unlocked
&& mr
->global_locking
) {
2503 qemu_mutex_lock_iothread();
2505 release_lock
= true;
2507 if (mr
->flush_coalesced_mmio
) {
2509 qemu_mutex_lock_iothread();
2511 qemu_flush_coalesced_mmio_buffer();
2513 qemu_mutex_unlock_iothread();
2517 return release_lock
;
2520 /* Called within RCU critical section. */
2521 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2524 int len
, hwaddr addr1
,
2525 hwaddr l
, MemoryRegion
*mr
)
2529 MemTxResult result
= MEMTX_OK
;
2530 bool release_lock
= false;
2533 if (!memory_access_is_direct(mr
, true)) {
2534 release_lock
|= prepare_mmio_access(mr
);
2535 l
= memory_access_size(mr
, l
, addr1
);
2536 /* XXX: could force current_cpu to NULL to avoid
2540 /* 64 bit write access */
2542 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2546 /* 32 bit write access */
2548 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2552 /* 16 bit write access */
2554 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2558 /* 8 bit write access */
2560 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2568 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2569 memcpy(ptr
, buf
, l
);
2570 invalidate_and_set_dirty(mr
, addr1
, l
);
2574 qemu_mutex_unlock_iothread();
2575 release_lock
= false;
2587 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2593 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2594 const uint8_t *buf
, int len
)
2599 MemTxResult result
= MEMTX_OK
;
2604 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2605 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2613 /* Called within RCU critical section. */
2614 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2615 MemTxAttrs attrs
, uint8_t *buf
,
2616 int len
, hwaddr addr1
, hwaddr l
,
2621 MemTxResult result
= MEMTX_OK
;
2622 bool release_lock
= false;
2625 if (!memory_access_is_direct(mr
, false)) {
2627 release_lock
|= prepare_mmio_access(mr
);
2628 l
= memory_access_size(mr
, l
, addr1
);
2631 /* 64 bit read access */
2632 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2637 /* 32 bit read access */
2638 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2643 /* 16 bit read access */
2644 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2649 /* 8 bit read access */
2650 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2659 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2660 memcpy(buf
, ptr
, l
);
2664 qemu_mutex_unlock_iothread();
2665 release_lock
= false;
2677 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2683 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2684 MemTxAttrs attrs
, uint8_t *buf
, int len
)
2689 MemTxResult result
= MEMTX_OK
;
2694 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2695 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
2703 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2704 uint8_t *buf
, int len
, bool is_write
)
2707 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2709 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2713 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2714 int len
, int is_write
)
2716 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2717 buf
, len
, is_write
);
2720 enum write_rom_type
{
2725 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2726 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2736 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2738 if (!(memory_region_is_ram(mr
) ||
2739 memory_region_is_romd(mr
))) {
2740 l
= memory_access_size(mr
, l
, addr1
);
2743 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2746 memcpy(ptr
, buf
, l
);
2747 invalidate_and_set_dirty(mr
, addr1
, l
);
2750 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2761 /* used for ROM loading : can write in RAM and ROM */
2762 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2763 const uint8_t *buf
, int len
)
2765 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2768 void cpu_flush_icache_range(hwaddr start
, int len
)
2771 * This function should do the same thing as an icache flush that was
2772 * triggered from within the guest. For TCG we are always cache coherent,
2773 * so there is no need to flush anything. For KVM / Xen we need to flush
2774 * the host's instruction cache at least.
2776 if (tcg_enabled()) {
2780 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2781 start
, NULL
, len
, FLUSH_CACHE
);
2792 static BounceBuffer bounce
;
2794 typedef struct MapClient
{
2796 QLIST_ENTRY(MapClient
) link
;
2799 QemuMutex map_client_list_lock
;
2800 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2801 = QLIST_HEAD_INITIALIZER(map_client_list
);
2803 static void cpu_unregister_map_client_do(MapClient
*client
)
2805 QLIST_REMOVE(client
, link
);
2809 static void cpu_notify_map_clients_locked(void)
2813 while (!QLIST_EMPTY(&map_client_list
)) {
2814 client
= QLIST_FIRST(&map_client_list
);
2815 qemu_bh_schedule(client
->bh
);
2816 cpu_unregister_map_client_do(client
);
2820 void cpu_register_map_client(QEMUBH
*bh
)
2822 MapClient
*client
= g_malloc(sizeof(*client
));
2824 qemu_mutex_lock(&map_client_list_lock
);
2826 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2827 if (!atomic_read(&bounce
.in_use
)) {
2828 cpu_notify_map_clients_locked();
2830 qemu_mutex_unlock(&map_client_list_lock
);
2833 void cpu_exec_init_all(void)
2835 qemu_mutex_init(&ram_list
.mutex
);
2838 qemu_mutex_init(&map_client_list_lock
);
2841 void cpu_unregister_map_client(QEMUBH
*bh
)
2845 qemu_mutex_lock(&map_client_list_lock
);
2846 QLIST_FOREACH(client
, &map_client_list
, link
) {
2847 if (client
->bh
== bh
) {
2848 cpu_unregister_map_client_do(client
);
2852 qemu_mutex_unlock(&map_client_list_lock
);
2855 static void cpu_notify_map_clients(void)
2857 qemu_mutex_lock(&map_client_list_lock
);
2858 cpu_notify_map_clients_locked();
2859 qemu_mutex_unlock(&map_client_list_lock
);
2862 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2870 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2871 if (!memory_access_is_direct(mr
, is_write
)) {
2872 l
= memory_access_size(mr
, l
, addr
);
2873 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2885 /* Map a physical memory region into a host virtual address.
2886 * May map a subset of the requested range, given by and returned in *plen.
2887 * May return NULL if resources needed to perform the mapping are exhausted.
2888 * Use only for reads OR writes - not for read-modify-write operations.
2889 * Use cpu_register_map_client() to know when retrying the map operation is
2890 * likely to succeed.
2892 void *address_space_map(AddressSpace
*as
,
2899 hwaddr l
, xlat
, base
;
2900 MemoryRegion
*mr
, *this_mr
;
2909 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2911 if (!memory_access_is_direct(mr
, is_write
)) {
2912 if (atomic_xchg(&bounce
.in_use
, true)) {
2916 /* Avoid unbounded allocations */
2917 l
= MIN(l
, TARGET_PAGE_SIZE
);
2918 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2922 memory_region_ref(mr
);
2925 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
2931 return bounce
.buffer
;
2945 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2946 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2951 memory_region_ref(mr
);
2953 ptr
= qemu_ram_ptr_length(mr
->ram_block
, base
, plen
);
2959 /* Unmaps a memory region previously mapped by address_space_map().
2960 * Will also mark the memory as dirty if is_write == 1. access_len gives
2961 * the amount of memory that was actually read or written by the caller.
2963 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2964 int is_write
, hwaddr access_len
)
2966 if (buffer
!= bounce
.buffer
) {
2970 mr
= memory_region_from_host(buffer
, &addr1
);
2973 invalidate_and_set_dirty(mr
, addr1
, access_len
);
2975 if (xen_enabled()) {
2976 xen_invalidate_map_cache_entry(buffer
);
2978 memory_region_unref(mr
);
2982 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
2983 bounce
.buffer
, access_len
);
2985 qemu_vfree(bounce
.buffer
);
2986 bounce
.buffer
= NULL
;
2987 memory_region_unref(bounce
.mr
);
2988 atomic_mb_set(&bounce
.in_use
, false);
2989 cpu_notify_map_clients();
2992 void *cpu_physical_memory_map(hwaddr addr
,
2996 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2999 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3000 int is_write
, hwaddr access_len
)
3002 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3005 /* warning: addr must be aligned */
3006 static inline uint32_t address_space_ldl_internal(AddressSpace
*as
, hwaddr addr
,
3008 MemTxResult
*result
,
3009 enum device_endian endian
)
3017 bool release_lock
= false;
3020 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3021 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
3022 release_lock
|= prepare_mmio_access(mr
);
3025 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 4, attrs
);
3026 #if defined(TARGET_WORDS_BIGENDIAN)
3027 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3031 if (endian
== DEVICE_BIG_ENDIAN
) {
3037 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3039 case DEVICE_LITTLE_ENDIAN
:
3040 val
= ldl_le_p(ptr
);
3042 case DEVICE_BIG_ENDIAN
:
3043 val
= ldl_be_p(ptr
);
3055 qemu_mutex_unlock_iothread();
3061 uint32_t address_space_ldl(AddressSpace
*as
, hwaddr addr
,
3062 MemTxAttrs attrs
, MemTxResult
*result
)
3064 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3065 DEVICE_NATIVE_ENDIAN
);
3068 uint32_t address_space_ldl_le(AddressSpace
*as
, hwaddr addr
,
3069 MemTxAttrs attrs
, MemTxResult
*result
)
3071 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3072 DEVICE_LITTLE_ENDIAN
);
3075 uint32_t address_space_ldl_be(AddressSpace
*as
, hwaddr addr
,
3076 MemTxAttrs attrs
, MemTxResult
*result
)
3078 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3082 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
3084 return address_space_ldl(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3087 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
3089 return address_space_ldl_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3092 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
3094 return address_space_ldl_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3097 /* warning: addr must be aligned */
3098 static inline uint64_t address_space_ldq_internal(AddressSpace
*as
, hwaddr addr
,
3100 MemTxResult
*result
,
3101 enum device_endian endian
)
3109 bool release_lock
= false;
3112 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3114 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
3115 release_lock
|= prepare_mmio_access(mr
);
3118 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 8, attrs
);
3119 #if defined(TARGET_WORDS_BIGENDIAN)
3120 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3124 if (endian
== DEVICE_BIG_ENDIAN
) {
3130 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3132 case DEVICE_LITTLE_ENDIAN
:
3133 val
= ldq_le_p(ptr
);
3135 case DEVICE_BIG_ENDIAN
:
3136 val
= ldq_be_p(ptr
);
3148 qemu_mutex_unlock_iothread();
3154 uint64_t address_space_ldq(AddressSpace
*as
, hwaddr addr
,
3155 MemTxAttrs attrs
, MemTxResult
*result
)
3157 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3158 DEVICE_NATIVE_ENDIAN
);
3161 uint64_t address_space_ldq_le(AddressSpace
*as
, hwaddr addr
,
3162 MemTxAttrs attrs
, MemTxResult
*result
)
3164 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3165 DEVICE_LITTLE_ENDIAN
);
3168 uint64_t address_space_ldq_be(AddressSpace
*as
, hwaddr addr
,
3169 MemTxAttrs attrs
, MemTxResult
*result
)
3171 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3175 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
3177 return address_space_ldq(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3180 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
3182 return address_space_ldq_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3185 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
3187 return address_space_ldq_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3191 uint32_t address_space_ldub(AddressSpace
*as
, hwaddr addr
,
3192 MemTxAttrs attrs
, MemTxResult
*result
)
3197 r
= address_space_rw(as
, addr
, attrs
, &val
, 1, 0);
3204 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
3206 return address_space_ldub(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3209 /* warning: addr must be aligned */
3210 static inline uint32_t address_space_lduw_internal(AddressSpace
*as
,
3213 MemTxResult
*result
,
3214 enum device_endian endian
)
3222 bool release_lock
= false;
3225 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3227 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
3228 release_lock
|= prepare_mmio_access(mr
);
3231 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 2, attrs
);
3232 #if defined(TARGET_WORDS_BIGENDIAN)
3233 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3237 if (endian
== DEVICE_BIG_ENDIAN
) {
3243 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3245 case DEVICE_LITTLE_ENDIAN
:
3246 val
= lduw_le_p(ptr
);
3248 case DEVICE_BIG_ENDIAN
:
3249 val
= lduw_be_p(ptr
);
3261 qemu_mutex_unlock_iothread();
3267 uint32_t address_space_lduw(AddressSpace
*as
, hwaddr addr
,
3268 MemTxAttrs attrs
, MemTxResult
*result
)
3270 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3271 DEVICE_NATIVE_ENDIAN
);
3274 uint32_t address_space_lduw_le(AddressSpace
*as
, hwaddr addr
,
3275 MemTxAttrs attrs
, MemTxResult
*result
)
3277 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3278 DEVICE_LITTLE_ENDIAN
);
3281 uint32_t address_space_lduw_be(AddressSpace
*as
, hwaddr addr
,
3282 MemTxAttrs attrs
, MemTxResult
*result
)
3284 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3288 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
3290 return address_space_lduw(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3293 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
3295 return address_space_lduw_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3298 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
3300 return address_space_lduw_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3303 /* warning: addr must be aligned. The ram page is not masked as dirty
3304 and the code inside is not invalidated. It is useful if the dirty
3305 bits are used to track modified PTEs */
3306 void address_space_stl_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3307 MemTxAttrs attrs
, MemTxResult
*result
)
3314 uint8_t dirty_log_mask
;
3315 bool release_lock
= false;
3318 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3320 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3321 release_lock
|= prepare_mmio_access(mr
);
3323 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3325 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3328 dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3329 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3330 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
3338 qemu_mutex_unlock_iothread();
3343 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3345 address_space_stl_notdirty(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3348 /* warning: addr must be aligned */
3349 static inline void address_space_stl_internal(AddressSpace
*as
,
3350 hwaddr addr
, uint32_t val
,
3352 MemTxResult
*result
,
3353 enum device_endian endian
)
3360 bool release_lock
= false;
3363 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3365 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3366 release_lock
|= prepare_mmio_access(mr
);
3368 #if defined(TARGET_WORDS_BIGENDIAN)
3369 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3373 if (endian
== DEVICE_BIG_ENDIAN
) {
3377 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3380 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3382 case DEVICE_LITTLE_ENDIAN
:
3385 case DEVICE_BIG_ENDIAN
:
3392 invalidate_and_set_dirty(mr
, addr1
, 4);
3399 qemu_mutex_unlock_iothread();
3404 void address_space_stl(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3405 MemTxAttrs attrs
, MemTxResult
*result
)
3407 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3408 DEVICE_NATIVE_ENDIAN
);
3411 void address_space_stl_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3412 MemTxAttrs attrs
, MemTxResult
*result
)
3414 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3415 DEVICE_LITTLE_ENDIAN
);
3418 void address_space_stl_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3419 MemTxAttrs attrs
, MemTxResult
*result
)
3421 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3425 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3427 address_space_stl(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3430 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3432 address_space_stl_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3435 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3437 address_space_stl_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3441 void address_space_stb(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3442 MemTxAttrs attrs
, MemTxResult
*result
)
3447 r
= address_space_rw(as
, addr
, attrs
, &v
, 1, 1);
3453 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3455 address_space_stb(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3458 /* warning: addr must be aligned */
3459 static inline void address_space_stw_internal(AddressSpace
*as
,
3460 hwaddr addr
, uint32_t val
,
3462 MemTxResult
*result
,
3463 enum device_endian endian
)
3470 bool release_lock
= false;
3473 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3474 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
3475 release_lock
|= prepare_mmio_access(mr
);
3477 #if defined(TARGET_WORDS_BIGENDIAN)
3478 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3482 if (endian
== DEVICE_BIG_ENDIAN
) {
3486 r
= memory_region_dispatch_write(mr
, addr1
, val
, 2, attrs
);
3489 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3491 case DEVICE_LITTLE_ENDIAN
:
3494 case DEVICE_BIG_ENDIAN
:
3501 invalidate_and_set_dirty(mr
, addr1
, 2);
3508 qemu_mutex_unlock_iothread();
3513 void address_space_stw(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3514 MemTxAttrs attrs
, MemTxResult
*result
)
3516 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3517 DEVICE_NATIVE_ENDIAN
);
3520 void address_space_stw_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3521 MemTxAttrs attrs
, MemTxResult
*result
)
3523 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3524 DEVICE_LITTLE_ENDIAN
);
3527 void address_space_stw_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3528 MemTxAttrs attrs
, MemTxResult
*result
)
3530 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3534 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3536 address_space_stw(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3539 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3541 address_space_stw_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3544 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3546 address_space_stw_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3550 void address_space_stq(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3551 MemTxAttrs attrs
, MemTxResult
*result
)
3555 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3561 void address_space_stq_le(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3562 MemTxAttrs attrs
, MemTxResult
*result
)
3565 val
= cpu_to_le64(val
);
3566 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3571 void address_space_stq_be(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3572 MemTxAttrs attrs
, MemTxResult
*result
)
3575 val
= cpu_to_be64(val
);
3576 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3582 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3584 address_space_stq(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3587 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3589 address_space_stq_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3592 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3594 address_space_stq_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3597 /* virtual memory access for debug (includes writing to ROM) */
3598 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3599 uint8_t *buf
, int len
, int is_write
)
3609 page
= addr
& TARGET_PAGE_MASK
;
3610 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3611 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3612 /* if no physical page mapped, return an error */
3613 if (phys_addr
== -1)
3615 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3618 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3620 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3623 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3624 MEMTXATTRS_UNSPECIFIED
,
3635 * Allows code that needs to deal with migration bitmaps etc to still be built
3636 * target independent.
3638 size_t qemu_target_page_bits(void)
3640 return TARGET_PAGE_BITS
;
3646 * A helper function for the _utterly broken_ virtio device model to find out if
3647 * it's running on a big endian machine. Don't do this at home kids!
3649 bool target_words_bigendian(void);
3650 bool target_words_bigendian(void)
3652 #if defined(TARGET_WORDS_BIGENDIAN)
3659 #ifndef CONFIG_USER_ONLY
3660 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3667 mr
= address_space_translate(&address_space_memory
,
3668 phys_addr
, &phys_addr
, &l
, false);
3670 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3675 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3681 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3682 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3683 block
->used_length
, opaque
);