target/hexagon: fix = vs. == mishap
[qemu/kevin.git] / block / nvme.c
blob5b744c2bdad4786a396c8591c294cdfd7f33dfc6
1 /*
2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/memalign.h"
25 #include "qemu/vfio-helpers.h"
26 #include "block/block-io.h"
27 #include "block/block_int.h"
28 #include "sysemu/replay.h"
29 #include "trace.h"
31 #include "block/nvme.h"
33 #define NVME_SQ_ENTRY_BYTES 64
34 #define NVME_CQ_ENTRY_BYTES 16
35 #define NVME_QUEUE_SIZE 128
36 #define NVME_DOORBELL_SIZE 4096
39 * We have to leave one slot empty as that is the full queue case where
40 * head == tail + 1.
42 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
44 typedef struct BDRVNVMeState BDRVNVMeState;
46 /* Same index is used for queues and IRQs */
47 #define INDEX_ADMIN 0
48 #define INDEX_IO(n) (1 + n)
50 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
51 enum {
52 MSIX_SHARED_IRQ_IDX = 0,
53 MSIX_IRQ_COUNT = 1
56 typedef struct {
57 int32_t head, tail;
58 uint8_t *queue;
59 uint64_t iova;
60 /* Hardware MMIO register */
61 volatile uint32_t *doorbell;
62 } NVMeQueue;
64 typedef struct {
65 BlockCompletionFunc *cb;
66 void *opaque;
67 int cid;
68 void *prp_list_page;
69 uint64_t prp_list_iova;
70 int free_req_next; /* q->reqs[] index of next free req */
71 } NVMeRequest;
73 typedef struct {
74 QemuMutex lock;
76 /* Read from I/O code path, initialized under BQL */
77 BDRVNVMeState *s;
78 int index;
80 /* Fields protected by BQL */
81 uint8_t *prp_list_pages;
83 /* Fields protected by @lock */
84 CoQueue free_req_queue;
85 NVMeQueue sq, cq;
86 int cq_phase;
87 int free_req_head;
88 NVMeRequest reqs[NVME_NUM_REQS];
89 int need_kick;
90 int inflight;
92 /* Thread-safe, no lock necessary */
93 QEMUBH *completion_bh;
94 } NVMeQueuePair;
96 struct BDRVNVMeState {
97 AioContext *aio_context;
98 QEMUVFIOState *vfio;
99 void *bar0_wo_map;
100 /* Memory mapped registers */
101 volatile struct {
102 uint32_t sq_tail;
103 uint32_t cq_head;
104 } *doorbells;
105 /* The submission/completion queue pairs.
106 * [0]: admin queue.
107 * [1..]: io queues.
109 NVMeQueuePair **queues;
110 unsigned queue_count;
111 size_t page_size;
112 /* How many uint32_t elements does each doorbell entry take. */
113 size_t doorbell_scale;
114 bool write_cache_supported;
115 EventNotifier irq_notifier[MSIX_IRQ_COUNT];
117 uint64_t nsze; /* Namespace size reported by identify command */
118 int nsid; /* The namespace id to read/write data. */
119 int blkshift;
121 uint64_t max_transfer;
122 bool plugged;
124 bool supports_write_zeroes;
125 bool supports_discard;
127 CoMutex dma_map_lock;
128 CoQueue dma_flush_queue;
130 /* Total size of mapped qiov, accessed under dma_map_lock */
131 int dma_map_count;
133 /* PCI address (required for nvme_refresh_filename()) */
134 char *device;
136 struct {
137 uint64_t completion_errors;
138 uint64_t aligned_accesses;
139 uint64_t unaligned_accesses;
140 } stats;
143 #define NVME_BLOCK_OPT_DEVICE "device"
144 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
146 static void nvme_process_completion_bh(void *opaque);
148 static QemuOptsList runtime_opts = {
149 .name = "nvme",
150 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
151 .desc = {
153 .name = NVME_BLOCK_OPT_DEVICE,
154 .type = QEMU_OPT_STRING,
155 .help = "NVMe PCI device address",
158 .name = NVME_BLOCK_OPT_NAMESPACE,
159 .type = QEMU_OPT_NUMBER,
160 .help = "NVMe namespace",
162 { /* end of list */ }
166 /* Returns true on success, false on failure. */
167 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
168 unsigned nentries, size_t entry_bytes, Error **errp)
170 size_t bytes;
171 int r;
173 bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size());
174 q->head = q->tail = 0;
175 q->queue = qemu_try_memalign(qemu_real_host_page_size(), bytes);
176 if (!q->queue) {
177 error_setg(errp, "Cannot allocate queue");
178 return false;
180 memset(q->queue, 0, bytes);
181 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
182 if (r) {
183 error_prepend(errp, "Cannot map queue: ");
185 return r == 0;
188 static void nvme_free_queue(NVMeQueue *q)
190 qemu_vfree(q->queue);
193 static void nvme_free_queue_pair(NVMeQueuePair *q)
195 trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
196 if (q->completion_bh) {
197 qemu_bh_delete(q->completion_bh);
199 nvme_free_queue(&q->sq);
200 nvme_free_queue(&q->cq);
201 qemu_vfree(q->prp_list_pages);
202 qemu_mutex_destroy(&q->lock);
203 g_free(q);
206 static void nvme_free_req_queue_cb(void *opaque)
208 NVMeQueuePair *q = opaque;
210 qemu_mutex_lock(&q->lock);
211 while (q->free_req_head != -1 &&
212 qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
213 /* Retry waiting requests */
215 qemu_mutex_unlock(&q->lock);
218 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
219 AioContext *aio_context,
220 unsigned idx, size_t size,
221 Error **errp)
223 int i, r;
224 NVMeQueuePair *q;
225 uint64_t prp_list_iova;
226 size_t bytes;
228 q = g_try_new0(NVMeQueuePair, 1);
229 if (!q) {
230 error_setg(errp, "Cannot allocate queue pair");
231 return NULL;
233 trace_nvme_create_queue_pair(idx, q, size, aio_context,
234 event_notifier_get_fd(s->irq_notifier));
235 bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
236 qemu_real_host_page_size());
237 q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size(), bytes);
238 if (!q->prp_list_pages) {
239 error_setg(errp, "Cannot allocate PRP page list");
240 goto fail;
242 memset(q->prp_list_pages, 0, bytes);
243 qemu_mutex_init(&q->lock);
244 q->s = s;
245 q->index = idx;
246 qemu_co_queue_init(&q->free_req_queue);
247 q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
248 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
249 false, &prp_list_iova, errp);
250 if (r) {
251 error_prepend(errp, "Cannot map buffer for DMA: ");
252 goto fail;
254 q->free_req_head = -1;
255 for (i = 0; i < NVME_NUM_REQS; i++) {
256 NVMeRequest *req = &q->reqs[i];
257 req->cid = i + 1;
258 req->free_req_next = q->free_req_head;
259 q->free_req_head = i;
260 req->prp_list_page = q->prp_list_pages + i * s->page_size;
261 req->prp_list_iova = prp_list_iova + i * s->page_size;
264 if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
265 goto fail;
267 q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
269 if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
270 goto fail;
272 q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
274 return q;
275 fail:
276 nvme_free_queue_pair(q);
277 return NULL;
280 /* With q->lock */
281 static void nvme_kick(NVMeQueuePair *q)
283 BDRVNVMeState *s = q->s;
285 if (s->plugged || !q->need_kick) {
286 return;
288 trace_nvme_kick(s, q->index);
289 assert(!(q->sq.tail & 0xFF00));
290 /* Fence the write to submission queue entry before notifying the device. */
291 smp_wmb();
292 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
293 q->inflight += q->need_kick;
294 q->need_kick = 0;
297 static NVMeRequest *nvme_get_free_req_nofail_locked(NVMeQueuePair *q)
299 NVMeRequest *req;
301 req = &q->reqs[q->free_req_head];
302 q->free_req_head = req->free_req_next;
303 req->free_req_next = -1;
304 return req;
307 /* Return a free request element if any, otherwise return NULL. */
308 static NVMeRequest *nvme_get_free_req_nowait(NVMeQueuePair *q)
310 QEMU_LOCK_GUARD(&q->lock);
311 if (q->free_req_head == -1) {
312 return NULL;
314 return nvme_get_free_req_nofail_locked(q);
318 * Wait for a free request to become available if necessary, then
319 * return it.
321 static coroutine_fn NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
323 QEMU_LOCK_GUARD(&q->lock);
325 while (q->free_req_head == -1) {
326 trace_nvme_free_req_queue_wait(q->s, q->index);
327 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
330 return nvme_get_free_req_nofail_locked(q);
333 /* With q->lock */
334 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
336 req->free_req_next = q->free_req_head;
337 q->free_req_head = req - q->reqs;
340 /* With q->lock */
341 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
343 if (!qemu_co_queue_empty(&q->free_req_queue)) {
344 replay_bh_schedule_oneshot_event(q->s->aio_context,
345 nvme_free_req_queue_cb, q);
349 /* Insert a request in the freelist and wake waiters */
350 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
352 qemu_mutex_lock(&q->lock);
353 nvme_put_free_req_locked(q, req);
354 nvme_wake_free_req_locked(q);
355 qemu_mutex_unlock(&q->lock);
358 static inline int nvme_translate_error(const NvmeCqe *c)
360 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
361 if (status) {
362 trace_nvme_error(le32_to_cpu(c->result),
363 le16_to_cpu(c->sq_head),
364 le16_to_cpu(c->sq_id),
365 le16_to_cpu(c->cid),
366 le16_to_cpu(status));
368 switch (status) {
369 case 0:
370 return 0;
371 case 1:
372 return -ENOSYS;
373 case 2:
374 return -EINVAL;
375 default:
376 return -EIO;
380 /* With q->lock */
381 static bool nvme_process_completion(NVMeQueuePair *q)
383 BDRVNVMeState *s = q->s;
384 bool progress = false;
385 NVMeRequest *preq;
386 NVMeRequest req;
387 NvmeCqe *c;
389 trace_nvme_process_completion(s, q->index, q->inflight);
390 if (s->plugged) {
391 trace_nvme_process_completion_queue_plugged(s, q->index);
392 return false;
396 * Support re-entrancy when a request cb() function invokes aio_poll().
397 * Pending completions must be visible to aio_poll() so that a cb()
398 * function can wait for the completion of another request.
400 * The aio_poll() loop will execute our BH and we'll resume completion
401 * processing there.
403 qemu_bh_schedule(q->completion_bh);
405 assert(q->inflight >= 0);
406 while (q->inflight) {
407 int ret;
408 int16_t cid;
410 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
411 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
412 break;
414 ret = nvme_translate_error(c);
415 if (ret) {
416 s->stats.completion_errors++;
418 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
419 if (!q->cq.head) {
420 q->cq_phase = !q->cq_phase;
422 cid = le16_to_cpu(c->cid);
423 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
424 warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
425 "queue size: %u", cid, NVME_QUEUE_SIZE);
426 continue;
428 trace_nvme_complete_command(s, q->index, cid);
429 preq = &q->reqs[cid - 1];
430 req = *preq;
431 assert(req.cid == cid);
432 assert(req.cb);
433 nvme_put_free_req_locked(q, preq);
434 preq->cb = preq->opaque = NULL;
435 q->inflight--;
436 qemu_mutex_unlock(&q->lock);
437 req.cb(req.opaque, ret);
438 qemu_mutex_lock(&q->lock);
439 progress = true;
441 if (progress) {
442 /* Notify the device so it can post more completions. */
443 smp_mb_release();
444 *q->cq.doorbell = cpu_to_le32(q->cq.head);
445 nvme_wake_free_req_locked(q);
448 qemu_bh_cancel(q->completion_bh);
450 return progress;
453 static void nvme_process_completion_bh(void *opaque)
455 NVMeQueuePair *q = opaque;
458 * We're being invoked because a nvme_process_completion() cb() function
459 * called aio_poll(). The callback may be waiting for further completions
460 * so notify the device that it has space to fill in more completions now.
462 smp_mb_release();
463 *q->cq.doorbell = cpu_to_le32(q->cq.head);
464 nvme_wake_free_req_locked(q);
466 nvme_process_completion(q);
469 static void nvme_trace_command(const NvmeCmd *cmd)
471 int i;
473 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
474 return;
476 for (i = 0; i < 8; ++i) {
477 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
478 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
479 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
483 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
484 NvmeCmd *cmd, BlockCompletionFunc cb,
485 void *opaque)
487 assert(!req->cb);
488 req->cb = cb;
489 req->opaque = opaque;
490 cmd->cid = cpu_to_le16(req->cid);
492 trace_nvme_submit_command(q->s, q->index, req->cid);
493 nvme_trace_command(cmd);
494 qemu_mutex_lock(&q->lock);
495 memcpy((uint8_t *)q->sq.queue +
496 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
497 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
498 q->need_kick++;
499 nvme_kick(q);
500 nvme_process_completion(q);
501 qemu_mutex_unlock(&q->lock);
504 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
506 int *pret = opaque;
507 *pret = ret;
508 aio_wait_kick();
511 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
513 BDRVNVMeState *s = bs->opaque;
514 NVMeQueuePair *q = s->queues[INDEX_ADMIN];
515 AioContext *aio_context = bdrv_get_aio_context(bs);
516 NVMeRequest *req;
517 int ret = -EINPROGRESS;
518 req = nvme_get_free_req_nowait(q);
519 if (!req) {
520 return -EBUSY;
522 nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
524 AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
525 return ret;
528 /* Returns true on success, false on failure. */
529 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
531 BDRVNVMeState *s = bs->opaque;
532 bool ret = false;
533 QEMU_AUTO_VFREE union {
534 NvmeIdCtrl ctrl;
535 NvmeIdNs ns;
536 } *id = NULL;
537 NvmeLBAF *lbaf;
538 uint16_t oncs;
539 int r;
540 uint64_t iova;
541 NvmeCmd cmd = {
542 .opcode = NVME_ADM_CMD_IDENTIFY,
543 .cdw10 = cpu_to_le32(0x1),
545 size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size());
547 id = qemu_try_memalign(qemu_real_host_page_size(), id_size);
548 if (!id) {
549 error_setg(errp, "Cannot allocate buffer for identify response");
550 goto out;
552 r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
553 if (r) {
554 error_prepend(errp, "Cannot map buffer for DMA: ");
555 goto out;
558 memset(id, 0, id_size);
559 cmd.dptr.prp1 = cpu_to_le64(iova);
560 if (nvme_admin_cmd_sync(bs, &cmd)) {
561 error_setg(errp, "Failed to identify controller");
562 goto out;
565 if (le32_to_cpu(id->ctrl.nn) < namespace) {
566 error_setg(errp, "Invalid namespace");
567 goto out;
569 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
570 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
571 /* For now the page list buffer per command is one page, to hold at most
572 * s->page_size / sizeof(uint64_t) entries. */
573 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
574 s->page_size / sizeof(uint64_t) * s->page_size);
576 oncs = le16_to_cpu(id->ctrl.oncs);
577 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
578 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
580 memset(id, 0, id_size);
581 cmd.cdw10 = 0;
582 cmd.nsid = cpu_to_le32(namespace);
583 if (nvme_admin_cmd_sync(bs, &cmd)) {
584 error_setg(errp, "Failed to identify namespace");
585 goto out;
588 s->nsze = le64_to_cpu(id->ns.nsze);
589 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
591 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
592 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
593 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
594 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
597 if (lbaf->ms) {
598 error_setg(errp, "Namespaces with metadata are not yet supported");
599 goto out;
602 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
603 (1 << lbaf->ds) > s->page_size)
605 error_setg(errp, "Namespace has unsupported block size (2^%d)",
606 lbaf->ds);
607 goto out;
610 ret = true;
611 s->blkshift = lbaf->ds;
612 out:
613 qemu_vfio_dma_unmap(s->vfio, id);
615 return ret;
618 static void nvme_poll_queue(NVMeQueuePair *q)
620 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
621 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
623 trace_nvme_poll_queue(q->s, q->index);
625 * Do an early check for completions. q->lock isn't needed because
626 * nvme_process_completion() only runs in the event loop thread and
627 * cannot race with itself.
629 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
630 return;
633 qemu_mutex_lock(&q->lock);
634 while (nvme_process_completion(q)) {
635 /* Keep polling */
637 qemu_mutex_unlock(&q->lock);
640 static void nvme_poll_queues(BDRVNVMeState *s)
642 int i;
644 for (i = 0; i < s->queue_count; i++) {
645 nvme_poll_queue(s->queues[i]);
649 static void nvme_handle_event(EventNotifier *n)
651 BDRVNVMeState *s = container_of(n, BDRVNVMeState,
652 irq_notifier[MSIX_SHARED_IRQ_IDX]);
654 trace_nvme_handle_event(s);
655 event_notifier_test_and_clear(n);
656 nvme_poll_queues(s);
659 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
661 BDRVNVMeState *s = bs->opaque;
662 unsigned n = s->queue_count;
663 NVMeQueuePair *q;
664 NvmeCmd cmd;
665 unsigned queue_size = NVME_QUEUE_SIZE;
667 assert(n <= UINT16_MAX);
668 q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
669 n, queue_size, errp);
670 if (!q) {
671 return false;
673 cmd = (NvmeCmd) {
674 .opcode = NVME_ADM_CMD_CREATE_CQ,
675 .dptr.prp1 = cpu_to_le64(q->cq.iova),
676 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
677 .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
679 if (nvme_admin_cmd_sync(bs, &cmd)) {
680 error_setg(errp, "Failed to create CQ io queue [%u]", n);
681 goto out_error;
683 cmd = (NvmeCmd) {
684 .opcode = NVME_ADM_CMD_CREATE_SQ,
685 .dptr.prp1 = cpu_to_le64(q->sq.iova),
686 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
687 .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
689 if (nvme_admin_cmd_sync(bs, &cmd)) {
690 error_setg(errp, "Failed to create SQ io queue [%u]", n);
691 goto out_error;
693 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
694 s->queues[n] = q;
695 s->queue_count++;
696 return true;
697 out_error:
698 nvme_free_queue_pair(q);
699 return false;
702 static bool nvme_poll_cb(void *opaque)
704 EventNotifier *e = opaque;
705 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
706 irq_notifier[MSIX_SHARED_IRQ_IDX]);
707 int i;
709 for (i = 0; i < s->queue_count; i++) {
710 NVMeQueuePair *q = s->queues[i];
711 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
712 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
715 * q->lock isn't needed because nvme_process_completion() only runs in
716 * the event loop thread and cannot race with itself.
718 if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) {
719 return true;
722 return false;
725 static void nvme_poll_ready(EventNotifier *e)
727 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
728 irq_notifier[MSIX_SHARED_IRQ_IDX]);
730 nvme_poll_queues(s);
733 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
734 Error **errp)
736 BDRVNVMeState *s = bs->opaque;
737 NVMeQueuePair *q;
738 AioContext *aio_context = bdrv_get_aio_context(bs);
739 int ret;
740 uint64_t cap;
741 uint32_t ver;
742 uint64_t timeout_ms;
743 uint64_t deadline, now;
744 volatile NvmeBar *regs = NULL;
746 qemu_co_mutex_init(&s->dma_map_lock);
747 qemu_co_queue_init(&s->dma_flush_queue);
748 s->device = g_strdup(device);
749 s->nsid = namespace;
750 s->aio_context = bdrv_get_aio_context(bs);
751 ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
752 if (ret) {
753 error_setg(errp, "Failed to init event notifier");
754 return ret;
757 s->vfio = qemu_vfio_open_pci(device, errp);
758 if (!s->vfio) {
759 ret = -EINVAL;
760 goto out;
763 regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
764 PROT_READ | PROT_WRITE, errp);
765 if (!regs) {
766 ret = -EINVAL;
767 goto out;
769 /* Perform initialize sequence as described in NVMe spec "7.6.1
770 * Initialization". */
772 cap = le64_to_cpu(regs->cap);
773 trace_nvme_controller_capability_raw(cap);
774 trace_nvme_controller_capability("Maximum Queue Entries Supported",
775 1 + NVME_CAP_MQES(cap));
776 trace_nvme_controller_capability("Contiguous Queues Required",
777 NVME_CAP_CQR(cap));
778 trace_nvme_controller_capability("Doorbell Stride",
779 1 << (2 + NVME_CAP_DSTRD(cap)));
780 trace_nvme_controller_capability("Subsystem Reset Supported",
781 NVME_CAP_NSSRS(cap));
782 trace_nvme_controller_capability("Memory Page Size Minimum",
783 1 << (12 + NVME_CAP_MPSMIN(cap)));
784 trace_nvme_controller_capability("Memory Page Size Maximum",
785 1 << (12 + NVME_CAP_MPSMAX(cap)));
786 if (!NVME_CAP_CSS(cap)) {
787 error_setg(errp, "Device doesn't support NVMe command set");
788 ret = -EINVAL;
789 goto out;
792 s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
793 s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
794 bs->bl.opt_mem_alignment = s->page_size;
795 bs->bl.request_alignment = s->page_size;
796 timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
798 ver = le32_to_cpu(regs->vs);
799 trace_nvme_controller_spec_version(extract32(ver, 16, 16),
800 extract32(ver, 8, 8),
801 extract32(ver, 0, 8));
803 /* Reset device to get a clean state. */
804 regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
805 /* Wait for CSTS.RDY = 0. */
806 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
807 while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
808 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
809 error_setg(errp, "Timeout while waiting for device to reset (%"
810 PRId64 " ms)",
811 timeout_ms);
812 ret = -ETIMEDOUT;
813 goto out;
817 s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
818 sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
819 PROT_WRITE, errp);
820 s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
821 if (!s->doorbells) {
822 ret = -EINVAL;
823 goto out;
826 /* Set up admin queue. */
827 s->queues = g_new(NVMeQueuePair *, 1);
828 q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
829 if (!q) {
830 ret = -EINVAL;
831 goto out;
833 s->queues[INDEX_ADMIN] = q;
834 s->queue_count = 1;
835 QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
836 regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
837 ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
838 regs->asq = cpu_to_le64(q->sq.iova);
839 regs->acq = cpu_to_le64(q->cq.iova);
841 /* After setting up all control registers we can enable device now. */
842 regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
843 (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
844 CC_EN_MASK);
845 /* Wait for CSTS.RDY = 1. */
846 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
847 deadline = now + timeout_ms * SCALE_MS;
848 while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
849 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
850 error_setg(errp, "Timeout while waiting for device to start (%"
851 PRId64 " ms)",
852 timeout_ms);
853 ret = -ETIMEDOUT;
854 goto out;
858 ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
859 VFIO_PCI_MSIX_IRQ_INDEX, errp);
860 if (ret) {
861 goto out;
863 aio_set_event_notifier(bdrv_get_aio_context(bs),
864 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
865 false, nvme_handle_event, nvme_poll_cb,
866 nvme_poll_ready);
868 if (!nvme_identify(bs, namespace, errp)) {
869 ret = -EIO;
870 goto out;
873 /* Set up command queues. */
874 if (!nvme_add_io_queue(bs, errp)) {
875 ret = -EIO;
877 out:
878 if (regs) {
879 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
882 /* Cleaning up is done in nvme_file_open() upon error. */
883 return ret;
886 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
888 * nvme://0000:44:00.0/1
890 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
891 * is the PCI address, and the last part is the namespace number starting from
892 * 1 according to the NVMe spec. */
893 static void nvme_parse_filename(const char *filename, QDict *options,
894 Error **errp)
896 int pref = strlen("nvme://");
898 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
899 const char *tmp = filename + pref;
900 char *device;
901 const char *namespace;
902 unsigned long ns;
903 const char *slash = strchr(tmp, '/');
904 if (!slash) {
905 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
906 return;
908 device = g_strndup(tmp, slash - tmp);
909 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
910 g_free(device);
911 namespace = slash + 1;
912 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
913 error_setg(errp, "Invalid namespace '%s', positive number expected",
914 namespace);
915 return;
917 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
918 *namespace ? namespace : "1");
922 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
923 Error **errp)
925 int ret;
926 BDRVNVMeState *s = bs->opaque;
927 NvmeCmd cmd = {
928 .opcode = NVME_ADM_CMD_SET_FEATURES,
929 .nsid = cpu_to_le32(s->nsid),
930 .cdw10 = cpu_to_le32(0x06),
931 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
934 ret = nvme_admin_cmd_sync(bs, &cmd);
935 if (ret) {
936 error_setg(errp, "Failed to configure NVMe write cache");
938 return ret;
941 static void nvme_close(BlockDriverState *bs)
943 BDRVNVMeState *s = bs->opaque;
945 for (unsigned i = 0; i < s->queue_count; ++i) {
946 nvme_free_queue_pair(s->queues[i]);
948 g_free(s->queues);
949 aio_set_event_notifier(bdrv_get_aio_context(bs),
950 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
951 false, NULL, NULL, NULL);
952 event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
953 qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
954 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
955 qemu_vfio_close(s->vfio);
957 g_free(s->device);
960 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
961 Error **errp)
963 const char *device;
964 QemuOpts *opts;
965 int namespace;
966 int ret;
967 BDRVNVMeState *s = bs->opaque;
969 bs->supported_write_flags = BDRV_REQ_FUA;
971 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
972 qemu_opts_absorb_qdict(opts, options, &error_abort);
973 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
974 if (!device) {
975 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
976 qemu_opts_del(opts);
977 return -EINVAL;
980 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
981 ret = nvme_init(bs, device, namespace, errp);
982 qemu_opts_del(opts);
983 if (ret) {
984 goto fail;
986 if (flags & BDRV_O_NOCACHE) {
987 if (!s->write_cache_supported) {
988 error_setg(errp,
989 "NVMe controller doesn't support write cache configuration");
990 ret = -EINVAL;
991 } else {
992 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
993 errp);
995 if (ret) {
996 goto fail;
999 return 0;
1000 fail:
1001 nvme_close(bs);
1002 return ret;
1005 static int64_t coroutine_fn nvme_co_getlength(BlockDriverState *bs)
1007 BDRVNVMeState *s = bs->opaque;
1008 return s->nsze << s->blkshift;
1011 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
1013 BDRVNVMeState *s = bs->opaque;
1014 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
1015 return UINT32_C(1) << s->blkshift;
1018 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
1020 uint32_t blocksize = nvme_get_blocksize(bs);
1021 bsz->phys = blocksize;
1022 bsz->log = blocksize;
1023 return 0;
1026 /* Called with s->dma_map_lock */
1027 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1028 QEMUIOVector *qiov)
1030 int r = 0;
1031 BDRVNVMeState *s = bs->opaque;
1033 s->dma_map_count -= qiov->size;
1034 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1035 r = qemu_vfio_dma_reset_temporary(s->vfio);
1036 if (!r) {
1037 qemu_co_queue_restart_all(&s->dma_flush_queue);
1040 return r;
1043 /* Called with s->dma_map_lock */
1044 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1045 NVMeRequest *req, QEMUIOVector *qiov)
1047 BDRVNVMeState *s = bs->opaque;
1048 uint64_t *pagelist = req->prp_list_page;
1049 int i, j, r;
1050 int entries = 0;
1051 Error *local_err = NULL, **errp = NULL;
1053 assert(qiov->size);
1054 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1055 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1056 for (i = 0; i < qiov->niov; ++i) {
1057 bool retry = true;
1058 uint64_t iova;
1059 size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1060 qemu_real_host_page_size());
1061 try_map:
1062 r = qemu_vfio_dma_map(s->vfio,
1063 qiov->iov[i].iov_base,
1064 len, true, &iova, errp);
1065 if (r == -ENOSPC) {
1067 * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1068 * ioctl returns -ENOSPC to signal the user exhausted the DMA
1069 * mappings available for a container since Linux kernel commit
1070 * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1071 * April 2019, see CVE-2019-3882).
1073 * This block driver already handles this error path by checking
1074 * for the -ENOMEM error, so we directly replace -ENOSPC by
1075 * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1076 * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1077 * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1078 * to add more storage to the blockdev. Not something we can do
1079 * easily with an IOMMU :)
1081 r = -ENOMEM;
1083 if (r == -ENOMEM && retry) {
1085 * We exhausted the DMA mappings available for our container:
1086 * recycle the volatile IOVA mappings.
1088 retry = false;
1089 trace_nvme_dma_flush_queue_wait(s);
1090 if (s->dma_map_count) {
1091 trace_nvme_dma_map_flush(s);
1092 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1093 } else {
1094 r = qemu_vfio_dma_reset_temporary(s->vfio);
1095 if (r) {
1096 goto fail;
1099 errp = &local_err;
1101 goto try_map;
1103 if (r) {
1104 goto fail;
1107 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1108 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1110 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1111 qiov->iov[i].iov_len / s->page_size);
1114 s->dma_map_count += qiov->size;
1116 assert(entries <= s->page_size / sizeof(uint64_t));
1117 switch (entries) {
1118 case 0:
1119 abort();
1120 case 1:
1121 cmd->dptr.prp1 = pagelist[0];
1122 cmd->dptr.prp2 = 0;
1123 break;
1124 case 2:
1125 cmd->dptr.prp1 = pagelist[0];
1126 cmd->dptr.prp2 = pagelist[1];
1127 break;
1128 default:
1129 cmd->dptr.prp1 = pagelist[0];
1130 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1131 break;
1133 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1134 for (i = 0; i < entries; ++i) {
1135 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1137 return 0;
1138 fail:
1139 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1140 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1141 * because they are already mapped before calling this function; for
1142 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1143 * calling qemu_vfio_dma_reset_temporary when necessary. */
1144 if (local_err) {
1145 error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1147 return r;
1150 typedef struct {
1151 Coroutine *co;
1152 int ret;
1153 AioContext *ctx;
1154 } NVMeCoData;
1156 static void nvme_rw_cb_bh(void *opaque)
1158 NVMeCoData *data = opaque;
1159 qemu_coroutine_enter(data->co);
1162 static void nvme_rw_cb(void *opaque, int ret)
1164 NVMeCoData *data = opaque;
1165 data->ret = ret;
1166 if (!data->co) {
1167 /* The rw coroutine hasn't yielded, don't try to enter. */
1168 return;
1170 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1173 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1174 uint64_t offset, uint64_t bytes,
1175 QEMUIOVector *qiov,
1176 bool is_write,
1177 int flags)
1179 int r;
1180 BDRVNVMeState *s = bs->opaque;
1181 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1182 NVMeRequest *req;
1184 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1185 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1186 NvmeCmd cmd = {
1187 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1188 .nsid = cpu_to_le32(s->nsid),
1189 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1190 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1191 .cdw12 = cpu_to_le32(cdw12),
1193 NVMeCoData data = {
1194 .ctx = bdrv_get_aio_context(bs),
1195 .ret = -EINPROGRESS,
1198 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1199 assert(s->queue_count > 1);
1200 req = nvme_get_free_req(ioq);
1201 assert(req);
1203 qemu_co_mutex_lock(&s->dma_map_lock);
1204 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1205 qemu_co_mutex_unlock(&s->dma_map_lock);
1206 if (r) {
1207 nvme_put_free_req_and_wake(ioq, req);
1208 return r;
1210 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1212 data.co = qemu_coroutine_self();
1213 while (data.ret == -EINPROGRESS) {
1214 qemu_coroutine_yield();
1217 qemu_co_mutex_lock(&s->dma_map_lock);
1218 r = nvme_cmd_unmap_qiov(bs, qiov);
1219 qemu_co_mutex_unlock(&s->dma_map_lock);
1220 if (r) {
1221 return r;
1224 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1225 return data.ret;
1228 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1229 const QEMUIOVector *qiov)
1231 int i;
1232 BDRVNVMeState *s = bs->opaque;
1234 for (i = 0; i < qiov->niov; ++i) {
1235 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1236 qemu_real_host_page_size()) ||
1237 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size())) {
1238 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1239 qiov->iov[i].iov_len, s->page_size);
1240 return false;
1243 return true;
1246 static coroutine_fn int nvme_co_prw(BlockDriverState *bs,
1247 uint64_t offset, uint64_t bytes,
1248 QEMUIOVector *qiov, bool is_write,
1249 int flags)
1251 BDRVNVMeState *s = bs->opaque;
1252 int r;
1253 QEMU_AUTO_VFREE uint8_t *buf = NULL;
1254 QEMUIOVector local_qiov;
1255 size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size());
1256 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1257 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1258 assert(bytes <= s->max_transfer);
1259 if (nvme_qiov_aligned(bs, qiov)) {
1260 s->stats.aligned_accesses++;
1261 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1263 s->stats.unaligned_accesses++;
1264 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1265 buf = qemu_try_memalign(qemu_real_host_page_size(), len);
1267 if (!buf) {
1268 return -ENOMEM;
1270 qemu_iovec_init(&local_qiov, 1);
1271 if (is_write) {
1272 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1274 qemu_iovec_add(&local_qiov, buf, bytes);
1275 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1276 qemu_iovec_destroy(&local_qiov);
1277 if (!r && !is_write) {
1278 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1280 return r;
1283 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1284 int64_t offset, int64_t bytes,
1285 QEMUIOVector *qiov,
1286 BdrvRequestFlags flags)
1288 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1291 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1292 int64_t offset, int64_t bytes,
1293 QEMUIOVector *qiov,
1294 BdrvRequestFlags flags)
1296 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1299 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1301 BDRVNVMeState *s = bs->opaque;
1302 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1303 NVMeRequest *req;
1304 NvmeCmd cmd = {
1305 .opcode = NVME_CMD_FLUSH,
1306 .nsid = cpu_to_le32(s->nsid),
1308 NVMeCoData data = {
1309 .ctx = bdrv_get_aio_context(bs),
1310 .ret = -EINPROGRESS,
1313 assert(s->queue_count > 1);
1314 req = nvme_get_free_req(ioq);
1315 assert(req);
1316 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1318 data.co = qemu_coroutine_self();
1319 if (data.ret == -EINPROGRESS) {
1320 qemu_coroutine_yield();
1323 return data.ret;
1327 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1328 int64_t offset,
1329 int64_t bytes,
1330 BdrvRequestFlags flags)
1332 BDRVNVMeState *s = bs->opaque;
1333 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1334 NVMeRequest *req;
1335 uint32_t cdw12;
1337 if (!s->supports_write_zeroes) {
1338 return -ENOTSUP;
1341 if (bytes == 0) {
1342 return 0;
1345 cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1347 * We should not lose information. pwrite_zeroes_alignment and
1348 * max_pwrite_zeroes guarantees it.
1350 assert(((cdw12 + 1) << s->blkshift) == bytes);
1352 NvmeCmd cmd = {
1353 .opcode = NVME_CMD_WRITE_ZEROES,
1354 .nsid = cpu_to_le32(s->nsid),
1355 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1356 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1359 NVMeCoData data = {
1360 .ctx = bdrv_get_aio_context(bs),
1361 .ret = -EINPROGRESS,
1364 if (flags & BDRV_REQ_MAY_UNMAP) {
1365 cdw12 |= (1 << 25);
1368 if (flags & BDRV_REQ_FUA) {
1369 cdw12 |= (1 << 30);
1372 cmd.cdw12 = cpu_to_le32(cdw12);
1374 trace_nvme_write_zeroes(s, offset, bytes, flags);
1375 assert(s->queue_count > 1);
1376 req = nvme_get_free_req(ioq);
1377 assert(req);
1379 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1381 data.co = qemu_coroutine_self();
1382 while (data.ret == -EINPROGRESS) {
1383 qemu_coroutine_yield();
1386 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1387 return data.ret;
1391 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1392 int64_t offset,
1393 int64_t bytes)
1395 BDRVNVMeState *s = bs->opaque;
1396 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1397 NVMeRequest *req;
1398 QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1399 QEMUIOVector local_qiov;
1400 int ret;
1402 NvmeCmd cmd = {
1403 .opcode = NVME_CMD_DSM,
1404 .nsid = cpu_to_le32(s->nsid),
1405 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1406 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1409 NVMeCoData data = {
1410 .ctx = bdrv_get_aio_context(bs),
1411 .ret = -EINPROGRESS,
1414 if (!s->supports_discard) {
1415 return -ENOTSUP;
1418 assert(s->queue_count > 1);
1421 * Filling the @buf requires @offset and @bytes to satisfy restrictions
1422 * defined in nvme_refresh_limits().
1424 assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1425 assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1426 assert((bytes >> s->blkshift) <= UINT32_MAX);
1428 buf = qemu_try_memalign(s->page_size, s->page_size);
1429 if (!buf) {
1430 return -ENOMEM;
1432 memset(buf, 0, s->page_size);
1433 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1434 buf->slba = cpu_to_le64(offset >> s->blkshift);
1435 buf->cattr = 0;
1437 qemu_iovec_init(&local_qiov, 1);
1438 qemu_iovec_add(&local_qiov, buf, 4096);
1440 req = nvme_get_free_req(ioq);
1441 assert(req);
1443 qemu_co_mutex_lock(&s->dma_map_lock);
1444 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1445 qemu_co_mutex_unlock(&s->dma_map_lock);
1447 if (ret) {
1448 nvme_put_free_req_and_wake(ioq, req);
1449 goto out;
1452 trace_nvme_dsm(s, offset, bytes);
1454 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1456 data.co = qemu_coroutine_self();
1457 while (data.ret == -EINPROGRESS) {
1458 qemu_coroutine_yield();
1461 qemu_co_mutex_lock(&s->dma_map_lock);
1462 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1463 qemu_co_mutex_unlock(&s->dma_map_lock);
1465 if (ret) {
1466 goto out;
1469 ret = data.ret;
1470 trace_nvme_dsm_done(s, offset, bytes, ret);
1471 out:
1472 qemu_iovec_destroy(&local_qiov);
1473 return ret;
1477 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1478 bool exact, PreallocMode prealloc,
1479 BdrvRequestFlags flags, Error **errp)
1481 int64_t cur_length;
1483 if (prealloc != PREALLOC_MODE_OFF) {
1484 error_setg(errp, "Unsupported preallocation mode '%s'",
1485 PreallocMode_str(prealloc));
1486 return -ENOTSUP;
1489 cur_length = nvme_co_getlength(bs);
1490 if (offset != cur_length && exact) {
1491 error_setg(errp, "Cannot resize NVMe devices");
1492 return -ENOTSUP;
1493 } else if (offset > cur_length) {
1494 error_setg(errp, "Cannot grow NVMe devices");
1495 return -EINVAL;
1498 return 0;
1501 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1502 BlockReopenQueue *queue, Error **errp)
1504 return 0;
1507 static void nvme_refresh_filename(BlockDriverState *bs)
1509 BDRVNVMeState *s = bs->opaque;
1511 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1512 s->device, s->nsid);
1515 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1517 BDRVNVMeState *s = bs->opaque;
1519 bs->bl.opt_mem_alignment = s->page_size;
1520 bs->bl.request_alignment = s->page_size;
1521 bs->bl.max_transfer = s->max_transfer;
1524 * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1525 * at most 0xFFFF
1527 bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1528 bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1529 1UL << s->blkshift);
1531 bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1532 bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1533 1UL << s->blkshift);
1536 static void nvme_detach_aio_context(BlockDriverState *bs)
1538 BDRVNVMeState *s = bs->opaque;
1540 for (unsigned i = 0; i < s->queue_count; i++) {
1541 NVMeQueuePair *q = s->queues[i];
1543 qemu_bh_delete(q->completion_bh);
1544 q->completion_bh = NULL;
1547 aio_set_event_notifier(bdrv_get_aio_context(bs),
1548 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1549 false, NULL, NULL, NULL);
1552 static void nvme_attach_aio_context(BlockDriverState *bs,
1553 AioContext *new_context)
1555 BDRVNVMeState *s = bs->opaque;
1557 s->aio_context = new_context;
1558 aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1559 false, nvme_handle_event, nvme_poll_cb,
1560 nvme_poll_ready);
1562 for (unsigned i = 0; i < s->queue_count; i++) {
1563 NVMeQueuePair *q = s->queues[i];
1565 q->completion_bh =
1566 aio_bh_new(new_context, nvme_process_completion_bh, q);
1570 static void coroutine_fn nvme_co_io_plug(BlockDriverState *bs)
1572 BDRVNVMeState *s = bs->opaque;
1573 assert(!s->plugged);
1574 s->plugged = true;
1577 static void coroutine_fn nvme_co_io_unplug(BlockDriverState *bs)
1579 BDRVNVMeState *s = bs->opaque;
1580 assert(s->plugged);
1581 s->plugged = false;
1582 for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) {
1583 NVMeQueuePair *q = s->queues[i];
1584 qemu_mutex_lock(&q->lock);
1585 nvme_kick(q);
1586 nvme_process_completion(q);
1587 qemu_mutex_unlock(&q->lock);
1591 static bool nvme_register_buf(BlockDriverState *bs, void *host, size_t size,
1592 Error **errp)
1594 int ret;
1595 BDRVNVMeState *s = bs->opaque;
1598 * FIXME: we may run out of IOVA addresses after repeated
1599 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1600 * doesn't reclaim addresses for fixed mappings.
1602 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, errp);
1603 return ret == 0;
1606 static void nvme_unregister_buf(BlockDriverState *bs, void *host, size_t size)
1608 BDRVNVMeState *s = bs->opaque;
1610 qemu_vfio_dma_unmap(s->vfio, host);
1613 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1615 BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1616 BDRVNVMeState *s = bs->opaque;
1618 stats->driver = BLOCKDEV_DRIVER_NVME;
1619 stats->u.nvme = (BlockStatsSpecificNvme) {
1620 .completion_errors = s->stats.completion_errors,
1621 .aligned_accesses = s->stats.aligned_accesses,
1622 .unaligned_accesses = s->stats.unaligned_accesses,
1625 return stats;
1628 static const char *const nvme_strong_runtime_opts[] = {
1629 NVME_BLOCK_OPT_DEVICE,
1630 NVME_BLOCK_OPT_NAMESPACE,
1632 NULL
1635 static BlockDriver bdrv_nvme = {
1636 .format_name = "nvme",
1637 .protocol_name = "nvme",
1638 .instance_size = sizeof(BDRVNVMeState),
1640 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1641 .create_opts = &bdrv_create_opts_simple,
1643 .bdrv_parse_filename = nvme_parse_filename,
1644 .bdrv_file_open = nvme_file_open,
1645 .bdrv_close = nvme_close,
1646 .bdrv_co_getlength = nvme_co_getlength,
1647 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1648 .bdrv_co_truncate = nvme_co_truncate,
1650 .bdrv_co_preadv = nvme_co_preadv,
1651 .bdrv_co_pwritev = nvme_co_pwritev,
1653 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1654 .bdrv_co_pdiscard = nvme_co_pdiscard,
1656 .bdrv_co_flush_to_disk = nvme_co_flush,
1657 .bdrv_reopen_prepare = nvme_reopen_prepare,
1659 .bdrv_refresh_filename = nvme_refresh_filename,
1660 .bdrv_refresh_limits = nvme_refresh_limits,
1661 .strong_runtime_opts = nvme_strong_runtime_opts,
1662 .bdrv_get_specific_stats = nvme_get_specific_stats,
1664 .bdrv_detach_aio_context = nvme_detach_aio_context,
1665 .bdrv_attach_aio_context = nvme_attach_aio_context,
1667 .bdrv_co_io_plug = nvme_co_io_plug,
1668 .bdrv_co_io_unplug = nvme_co_io_unplug,
1670 .bdrv_register_buf = nvme_register_buf,
1671 .bdrv_unregister_buf = nvme_unregister_buf,
1674 static void bdrv_nvme_init(void)
1676 bdrv_register(&bdrv_nvme);
1679 block_init(bdrv_nvme_init);