vfio/pci : Add pba_offset PCI quirk for Chelsio T5 devices
[qemu/kevin.git] / kvm-all.c
blobcb8318707a7f7a21b3fbfe15ded186cba57d1c55
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
29 #include "hw/hw.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
40 #include "hw/irq.h"
42 #include "hw/boards.h"
44 /* This check must be after config-host.h is included */
45 #ifdef CONFIG_EVENTFD
46 #include <sys/eventfd.h>
47 #endif
49 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
50 #define PAGE_SIZE TARGET_PAGE_SIZE
52 //#define DEBUG_KVM
54 #ifdef DEBUG_KVM
55 #define DPRINTF(fmt, ...) \
56 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF(fmt, ...) \
59 do { } while (0)
60 #endif
62 #define KVM_MSI_HASHTAB_SIZE 256
64 typedef struct KVMSlot
66 hwaddr start_addr;
67 ram_addr_t memory_size;
68 void *ram;
69 int slot;
70 int flags;
71 } KVMSlot;
73 typedef struct kvm_dirty_log KVMDirtyLog;
75 struct KVMState
77 AccelState parent_obj;
79 KVMSlot *slots;
80 int nr_slots;
81 int fd;
82 int vmfd;
83 int coalesced_mmio;
84 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
85 bool coalesced_flush_in_progress;
86 int broken_set_mem_region;
87 int vcpu_events;
88 int robust_singlestep;
89 int debugregs;
90 #ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
92 #endif
93 int pit_state2;
94 int xsave, xcrs;
95 int many_ioeventfds;
96 int intx_set_mask;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl;
101 unsigned int sigmask_len;
102 GHashTable *gsimap;
103 #ifdef KVM_CAP_IRQ_ROUTING
104 struct kvm_irq_routing *irq_routes;
105 int nr_allocated_irq_routes;
106 uint32_t *used_gsi_bitmap;
107 unsigned int gsi_count;
108 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
109 bool direct_msi;
110 #endif
113 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
115 #define KVM_STATE(obj) \
116 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
118 KVMState *kvm_state;
119 bool kvm_kernel_irqchip;
120 bool kvm_async_interrupts_allowed;
121 bool kvm_halt_in_kernel_allowed;
122 bool kvm_eventfds_allowed;
123 bool kvm_irqfds_allowed;
124 bool kvm_resamplefds_allowed;
125 bool kvm_msi_via_irqfd_allowed;
126 bool kvm_gsi_routing_allowed;
127 bool kvm_gsi_direct_mapping;
128 bool kvm_allowed;
129 bool kvm_readonly_mem_allowed;
130 bool kvm_vm_attributes_allowed;
132 static const KVMCapabilityInfo kvm_required_capabilites[] = {
133 KVM_CAP_INFO(USER_MEMORY),
134 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
135 KVM_CAP_LAST_INFO
138 static KVMSlot *kvm_get_free_slot(KVMState *s)
140 int i;
142 for (i = 0; i < s->nr_slots; i++) {
143 if (s->slots[i].memory_size == 0) {
144 return &s->slots[i];
148 return NULL;
151 bool kvm_has_free_slot(MachineState *ms)
153 return kvm_get_free_slot(KVM_STATE(ms->accelerator));
156 static KVMSlot *kvm_alloc_slot(KVMState *s)
158 KVMSlot *slot = kvm_get_free_slot(s);
160 if (slot) {
161 return slot;
164 fprintf(stderr, "%s: no free slot available\n", __func__);
165 abort();
168 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
169 hwaddr start_addr,
170 hwaddr end_addr)
172 int i;
174 for (i = 0; i < s->nr_slots; i++) {
175 KVMSlot *mem = &s->slots[i];
177 if (start_addr == mem->start_addr &&
178 end_addr == mem->start_addr + mem->memory_size) {
179 return mem;
183 return NULL;
187 * Find overlapping slot with lowest start address
189 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
190 hwaddr start_addr,
191 hwaddr end_addr)
193 KVMSlot *found = NULL;
194 int i;
196 for (i = 0; i < s->nr_slots; i++) {
197 KVMSlot *mem = &s->slots[i];
199 if (mem->memory_size == 0 ||
200 (found && found->start_addr < mem->start_addr)) {
201 continue;
204 if (end_addr > mem->start_addr &&
205 start_addr < mem->start_addr + mem->memory_size) {
206 found = mem;
210 return found;
213 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
214 hwaddr *phys_addr)
216 int i;
218 for (i = 0; i < s->nr_slots; i++) {
219 KVMSlot *mem = &s->slots[i];
221 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
222 *phys_addr = mem->start_addr + (ram - mem->ram);
223 return 1;
227 return 0;
230 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
232 struct kvm_userspace_memory_region mem;
234 mem.slot = slot->slot;
235 mem.guest_phys_addr = slot->start_addr;
236 mem.userspace_addr = (unsigned long)slot->ram;
237 mem.flags = slot->flags;
239 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
240 /* Set the slot size to 0 before setting the slot to the desired
241 * value. This is needed based on KVM commit 75d61fbc. */
242 mem.memory_size = 0;
243 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
245 mem.memory_size = slot->memory_size;
246 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
249 int kvm_init_vcpu(CPUState *cpu)
251 KVMState *s = kvm_state;
252 long mmap_size;
253 int ret;
255 DPRINTF("kvm_init_vcpu\n");
257 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
258 if (ret < 0) {
259 DPRINTF("kvm_create_vcpu failed\n");
260 goto err;
263 cpu->kvm_fd = ret;
264 cpu->kvm_state = s;
265 cpu->kvm_vcpu_dirty = true;
267 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
268 if (mmap_size < 0) {
269 ret = mmap_size;
270 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
271 goto err;
274 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
275 cpu->kvm_fd, 0);
276 if (cpu->kvm_run == MAP_FAILED) {
277 ret = -errno;
278 DPRINTF("mmap'ing vcpu state failed\n");
279 goto err;
282 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
283 s->coalesced_mmio_ring =
284 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
287 ret = kvm_arch_init_vcpu(cpu);
288 err:
289 return ret;
293 * dirty pages logging control
296 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
298 int flags = 0;
299 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
300 if (readonly && kvm_readonly_mem_allowed) {
301 flags |= KVM_MEM_READONLY;
303 return flags;
306 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
308 KVMState *s = kvm_state;
309 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
310 int old_flags;
312 old_flags = mem->flags;
314 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
315 mem->flags = flags;
317 /* If nothing changed effectively, no need to issue ioctl */
318 if (flags == old_flags) {
319 return 0;
322 return kvm_set_user_memory_region(s, mem);
325 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
326 ram_addr_t size, bool log_dirty)
328 KVMState *s = kvm_state;
329 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
331 if (mem == NULL) {
332 return 0;
333 } else {
334 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
338 static void kvm_log_start(MemoryListener *listener,
339 MemoryRegionSection *section,
340 int old, int new)
342 int r;
344 if (old != 0) {
345 return;
348 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
349 int128_get64(section->size), true);
350 if (r < 0) {
351 abort();
355 static void kvm_log_stop(MemoryListener *listener,
356 MemoryRegionSection *section,
357 int old, int new)
359 int r;
361 if (new != 0) {
362 return;
365 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
366 int128_get64(section->size), false);
367 if (r < 0) {
368 abort();
372 /* get kvm's dirty pages bitmap and update qemu's */
373 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
374 unsigned long *bitmap)
376 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
377 ram_addr_t pages = int128_get64(section->size) / getpagesize();
379 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
380 return 0;
383 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
386 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
387 * This function updates qemu's dirty bitmap using
388 * memory_region_set_dirty(). This means all bits are set
389 * to dirty.
391 * @start_add: start of logged region.
392 * @end_addr: end of logged region.
394 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
396 KVMState *s = kvm_state;
397 unsigned long size, allocated_size = 0;
398 KVMDirtyLog d = {};
399 KVMSlot *mem;
400 int ret = 0;
401 hwaddr start_addr = section->offset_within_address_space;
402 hwaddr end_addr = start_addr + int128_get64(section->size);
404 d.dirty_bitmap = NULL;
405 while (start_addr < end_addr) {
406 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
407 if (mem == NULL) {
408 break;
411 /* XXX bad kernel interface alert
412 * For dirty bitmap, kernel allocates array of size aligned to
413 * bits-per-long. But for case when the kernel is 64bits and
414 * the userspace is 32bits, userspace can't align to the same
415 * bits-per-long, since sizeof(long) is different between kernel
416 * and user space. This way, userspace will provide buffer which
417 * may be 4 bytes less than the kernel will use, resulting in
418 * userspace memory corruption (which is not detectable by valgrind
419 * too, in most cases).
420 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
421 * a hope that sizeof(long) wont become >8 any time soon.
423 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
424 /*HOST_LONG_BITS*/ 64) / 8;
425 if (!d.dirty_bitmap) {
426 d.dirty_bitmap = g_malloc(size);
427 } else if (size > allocated_size) {
428 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
430 allocated_size = size;
431 memset(d.dirty_bitmap, 0, allocated_size);
433 d.slot = mem->slot;
435 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
436 DPRINTF("ioctl failed %d\n", errno);
437 ret = -1;
438 break;
441 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
442 start_addr = mem->start_addr + mem->memory_size;
444 g_free(d.dirty_bitmap);
446 return ret;
449 static void kvm_coalesce_mmio_region(MemoryListener *listener,
450 MemoryRegionSection *secion,
451 hwaddr start, hwaddr size)
453 KVMState *s = kvm_state;
455 if (s->coalesced_mmio) {
456 struct kvm_coalesced_mmio_zone zone;
458 zone.addr = start;
459 zone.size = size;
460 zone.pad = 0;
462 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
466 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
467 MemoryRegionSection *secion,
468 hwaddr start, hwaddr size)
470 KVMState *s = kvm_state;
472 if (s->coalesced_mmio) {
473 struct kvm_coalesced_mmio_zone zone;
475 zone.addr = start;
476 zone.size = size;
477 zone.pad = 0;
479 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
483 int kvm_check_extension(KVMState *s, unsigned int extension)
485 int ret;
487 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
488 if (ret < 0) {
489 ret = 0;
492 return ret;
495 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
497 int ret;
499 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
500 if (ret < 0) {
501 /* VM wide version not implemented, use global one instead */
502 ret = kvm_check_extension(s, extension);
505 return ret;
508 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
510 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
511 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
512 * endianness, but the memory core hands them in target endianness.
513 * For example, PPC is always treated as big-endian even if running
514 * on KVM and on PPC64LE. Correct here.
516 switch (size) {
517 case 2:
518 val = bswap16(val);
519 break;
520 case 4:
521 val = bswap32(val);
522 break;
524 #endif
525 return val;
528 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
529 bool assign, uint32_t size, bool datamatch)
531 int ret;
532 struct kvm_ioeventfd iofd = {
533 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
534 .addr = addr,
535 .len = size,
536 .flags = 0,
537 .fd = fd,
540 if (!kvm_enabled()) {
541 return -ENOSYS;
544 if (datamatch) {
545 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
547 if (!assign) {
548 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
551 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
553 if (ret < 0) {
554 return -errno;
557 return 0;
560 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
561 bool assign, uint32_t size, bool datamatch)
563 struct kvm_ioeventfd kick = {
564 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
565 .addr = addr,
566 .flags = KVM_IOEVENTFD_FLAG_PIO,
567 .len = size,
568 .fd = fd,
570 int r;
571 if (!kvm_enabled()) {
572 return -ENOSYS;
574 if (datamatch) {
575 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
577 if (!assign) {
578 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
580 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
581 if (r < 0) {
582 return r;
584 return 0;
588 static int kvm_check_many_ioeventfds(void)
590 /* Userspace can use ioeventfd for io notification. This requires a host
591 * that supports eventfd(2) and an I/O thread; since eventfd does not
592 * support SIGIO it cannot interrupt the vcpu.
594 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
595 * can avoid creating too many ioeventfds.
597 #if defined(CONFIG_EVENTFD)
598 int ioeventfds[7];
599 int i, ret = 0;
600 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
601 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
602 if (ioeventfds[i] < 0) {
603 break;
605 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
606 if (ret < 0) {
607 close(ioeventfds[i]);
608 break;
612 /* Decide whether many devices are supported or not */
613 ret = i == ARRAY_SIZE(ioeventfds);
615 while (i-- > 0) {
616 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
617 close(ioeventfds[i]);
619 return ret;
620 #else
621 return 0;
622 #endif
625 static const KVMCapabilityInfo *
626 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
628 while (list->name) {
629 if (!kvm_check_extension(s, list->value)) {
630 return list;
632 list++;
634 return NULL;
637 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
639 KVMState *s = kvm_state;
640 KVMSlot *mem, old;
641 int err;
642 MemoryRegion *mr = section->mr;
643 bool log_dirty = memory_region_get_dirty_log_mask(mr) != 0;
644 bool writeable = !mr->readonly && !mr->rom_device;
645 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
646 hwaddr start_addr = section->offset_within_address_space;
647 ram_addr_t size = int128_get64(section->size);
648 void *ram = NULL;
649 unsigned delta;
651 /* kvm works in page size chunks, but the function may be called
652 with sub-page size and unaligned start address. Pad the start
653 address to next and truncate size to previous page boundary. */
654 delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK));
655 delta &= ~TARGET_PAGE_MASK;
656 if (delta > size) {
657 return;
659 start_addr += delta;
660 size -= delta;
661 size &= TARGET_PAGE_MASK;
662 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
663 return;
666 if (!memory_region_is_ram(mr)) {
667 if (writeable || !kvm_readonly_mem_allowed) {
668 return;
669 } else if (!mr->romd_mode) {
670 /* If the memory device is not in romd_mode, then we actually want
671 * to remove the kvm memory slot so all accesses will trap. */
672 add = false;
676 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
678 while (1) {
679 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
680 if (!mem) {
681 break;
684 if (add && start_addr >= mem->start_addr &&
685 (start_addr + size <= mem->start_addr + mem->memory_size) &&
686 (ram - start_addr == mem->ram - mem->start_addr)) {
687 /* The new slot fits into the existing one and comes with
688 * identical parameters - update flags and done. */
689 kvm_slot_dirty_pages_log_change(mem, log_dirty);
690 return;
693 old = *mem;
695 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
696 kvm_physical_sync_dirty_bitmap(section);
699 /* unregister the overlapping slot */
700 mem->memory_size = 0;
701 err = kvm_set_user_memory_region(s, mem);
702 if (err) {
703 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
704 __func__, strerror(-err));
705 abort();
708 /* Workaround for older KVM versions: we can't join slots, even not by
709 * unregistering the previous ones and then registering the larger
710 * slot. We have to maintain the existing fragmentation. Sigh.
712 * This workaround assumes that the new slot starts at the same
713 * address as the first existing one. If not or if some overlapping
714 * slot comes around later, we will fail (not seen in practice so far)
715 * - and actually require a recent KVM version. */
716 if (s->broken_set_mem_region &&
717 old.start_addr == start_addr && old.memory_size < size && add) {
718 mem = kvm_alloc_slot(s);
719 mem->memory_size = old.memory_size;
720 mem->start_addr = old.start_addr;
721 mem->ram = old.ram;
722 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
724 err = kvm_set_user_memory_region(s, mem);
725 if (err) {
726 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
727 strerror(-err));
728 abort();
731 start_addr += old.memory_size;
732 ram += old.memory_size;
733 size -= old.memory_size;
734 continue;
737 /* register prefix slot */
738 if (old.start_addr < start_addr) {
739 mem = kvm_alloc_slot(s);
740 mem->memory_size = start_addr - old.start_addr;
741 mem->start_addr = old.start_addr;
742 mem->ram = old.ram;
743 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
745 err = kvm_set_user_memory_region(s, mem);
746 if (err) {
747 fprintf(stderr, "%s: error registering prefix slot: %s\n",
748 __func__, strerror(-err));
749 #ifdef TARGET_PPC
750 fprintf(stderr, "%s: This is probably because your kernel's " \
751 "PAGE_SIZE is too big. Please try to use 4k " \
752 "PAGE_SIZE!\n", __func__);
753 #endif
754 abort();
758 /* register suffix slot */
759 if (old.start_addr + old.memory_size > start_addr + size) {
760 ram_addr_t size_delta;
762 mem = kvm_alloc_slot(s);
763 mem->start_addr = start_addr + size;
764 size_delta = mem->start_addr - old.start_addr;
765 mem->memory_size = old.memory_size - size_delta;
766 mem->ram = old.ram + size_delta;
767 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
769 err = kvm_set_user_memory_region(s, mem);
770 if (err) {
771 fprintf(stderr, "%s: error registering suffix slot: %s\n",
772 __func__, strerror(-err));
773 abort();
778 /* in case the KVM bug workaround already "consumed" the new slot */
779 if (!size) {
780 return;
782 if (!add) {
783 return;
785 mem = kvm_alloc_slot(s);
786 mem->memory_size = size;
787 mem->start_addr = start_addr;
788 mem->ram = ram;
789 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
791 err = kvm_set_user_memory_region(s, mem);
792 if (err) {
793 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
794 strerror(-err));
795 abort();
799 static void kvm_region_add(MemoryListener *listener,
800 MemoryRegionSection *section)
802 memory_region_ref(section->mr);
803 kvm_set_phys_mem(section, true);
806 static void kvm_region_del(MemoryListener *listener,
807 MemoryRegionSection *section)
809 kvm_set_phys_mem(section, false);
810 memory_region_unref(section->mr);
813 static void kvm_log_sync(MemoryListener *listener,
814 MemoryRegionSection *section)
816 int r;
818 r = kvm_physical_sync_dirty_bitmap(section);
819 if (r < 0) {
820 abort();
824 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
825 MemoryRegionSection *section,
826 bool match_data, uint64_t data,
827 EventNotifier *e)
829 int fd = event_notifier_get_fd(e);
830 int r;
832 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
833 data, true, int128_get64(section->size),
834 match_data);
835 if (r < 0) {
836 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
837 __func__, strerror(-r));
838 abort();
842 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
843 MemoryRegionSection *section,
844 bool match_data, uint64_t data,
845 EventNotifier *e)
847 int fd = event_notifier_get_fd(e);
848 int r;
850 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
851 data, false, int128_get64(section->size),
852 match_data);
853 if (r < 0) {
854 abort();
858 static void kvm_io_ioeventfd_add(MemoryListener *listener,
859 MemoryRegionSection *section,
860 bool match_data, uint64_t data,
861 EventNotifier *e)
863 int fd = event_notifier_get_fd(e);
864 int r;
866 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
867 data, true, int128_get64(section->size),
868 match_data);
869 if (r < 0) {
870 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
871 __func__, strerror(-r));
872 abort();
876 static void kvm_io_ioeventfd_del(MemoryListener *listener,
877 MemoryRegionSection *section,
878 bool match_data, uint64_t data,
879 EventNotifier *e)
882 int fd = event_notifier_get_fd(e);
883 int r;
885 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
886 data, false, int128_get64(section->size),
887 match_data);
888 if (r < 0) {
889 abort();
893 static MemoryListener kvm_memory_listener = {
894 .region_add = kvm_region_add,
895 .region_del = kvm_region_del,
896 .log_start = kvm_log_start,
897 .log_stop = kvm_log_stop,
898 .log_sync = kvm_log_sync,
899 .eventfd_add = kvm_mem_ioeventfd_add,
900 .eventfd_del = kvm_mem_ioeventfd_del,
901 .coalesced_mmio_add = kvm_coalesce_mmio_region,
902 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
903 .priority = 10,
906 static MemoryListener kvm_io_listener = {
907 .eventfd_add = kvm_io_ioeventfd_add,
908 .eventfd_del = kvm_io_ioeventfd_del,
909 .priority = 10,
912 static void kvm_handle_interrupt(CPUState *cpu, int mask)
914 cpu->interrupt_request |= mask;
916 if (!qemu_cpu_is_self(cpu)) {
917 qemu_cpu_kick(cpu);
921 int kvm_set_irq(KVMState *s, int irq, int level)
923 struct kvm_irq_level event;
924 int ret;
926 assert(kvm_async_interrupts_enabled());
928 event.level = level;
929 event.irq = irq;
930 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
931 if (ret < 0) {
932 perror("kvm_set_irq");
933 abort();
936 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
939 #ifdef KVM_CAP_IRQ_ROUTING
940 typedef struct KVMMSIRoute {
941 struct kvm_irq_routing_entry kroute;
942 QTAILQ_ENTRY(KVMMSIRoute) entry;
943 } KVMMSIRoute;
945 static void set_gsi(KVMState *s, unsigned int gsi)
947 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
950 static void clear_gsi(KVMState *s, unsigned int gsi)
952 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
955 void kvm_init_irq_routing(KVMState *s)
957 int gsi_count, i;
959 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
960 if (gsi_count > 0) {
961 unsigned int gsi_bits, i;
963 /* Round up so we can search ints using ffs */
964 gsi_bits = ALIGN(gsi_count, 32);
965 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
966 s->gsi_count = gsi_count;
968 /* Mark any over-allocated bits as already in use */
969 for (i = gsi_count; i < gsi_bits; i++) {
970 set_gsi(s, i);
974 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
975 s->nr_allocated_irq_routes = 0;
977 if (!s->direct_msi) {
978 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
979 QTAILQ_INIT(&s->msi_hashtab[i]);
983 kvm_arch_init_irq_routing(s);
986 void kvm_irqchip_commit_routes(KVMState *s)
988 int ret;
990 s->irq_routes->flags = 0;
991 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
992 assert(ret == 0);
995 static void kvm_add_routing_entry(KVMState *s,
996 struct kvm_irq_routing_entry *entry)
998 struct kvm_irq_routing_entry *new;
999 int n, size;
1001 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1002 n = s->nr_allocated_irq_routes * 2;
1003 if (n < 64) {
1004 n = 64;
1006 size = sizeof(struct kvm_irq_routing);
1007 size += n * sizeof(*new);
1008 s->irq_routes = g_realloc(s->irq_routes, size);
1009 s->nr_allocated_irq_routes = n;
1011 n = s->irq_routes->nr++;
1012 new = &s->irq_routes->entries[n];
1014 *new = *entry;
1016 set_gsi(s, entry->gsi);
1019 static int kvm_update_routing_entry(KVMState *s,
1020 struct kvm_irq_routing_entry *new_entry)
1022 struct kvm_irq_routing_entry *entry;
1023 int n;
1025 for (n = 0; n < s->irq_routes->nr; n++) {
1026 entry = &s->irq_routes->entries[n];
1027 if (entry->gsi != new_entry->gsi) {
1028 continue;
1031 if(!memcmp(entry, new_entry, sizeof *entry)) {
1032 return 0;
1035 *entry = *new_entry;
1037 kvm_irqchip_commit_routes(s);
1039 return 0;
1042 return -ESRCH;
1045 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1047 struct kvm_irq_routing_entry e = {};
1049 assert(pin < s->gsi_count);
1051 e.gsi = irq;
1052 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1053 e.flags = 0;
1054 e.u.irqchip.irqchip = irqchip;
1055 e.u.irqchip.pin = pin;
1056 kvm_add_routing_entry(s, &e);
1059 void kvm_irqchip_release_virq(KVMState *s, int virq)
1061 struct kvm_irq_routing_entry *e;
1062 int i;
1064 if (kvm_gsi_direct_mapping()) {
1065 return;
1068 for (i = 0; i < s->irq_routes->nr; i++) {
1069 e = &s->irq_routes->entries[i];
1070 if (e->gsi == virq) {
1071 s->irq_routes->nr--;
1072 *e = s->irq_routes->entries[s->irq_routes->nr];
1075 clear_gsi(s, virq);
1078 static unsigned int kvm_hash_msi(uint32_t data)
1080 /* This is optimized for IA32 MSI layout. However, no other arch shall
1081 * repeat the mistake of not providing a direct MSI injection API. */
1082 return data & 0xff;
1085 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1087 KVMMSIRoute *route, *next;
1088 unsigned int hash;
1090 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1091 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1092 kvm_irqchip_release_virq(s, route->kroute.gsi);
1093 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1094 g_free(route);
1099 static int kvm_irqchip_get_virq(KVMState *s)
1101 uint32_t *word = s->used_gsi_bitmap;
1102 int max_words = ALIGN(s->gsi_count, 32) / 32;
1103 int i, zeroes;
1106 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1107 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1108 * number can succeed even though a new route entry cannot be added.
1109 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1111 if (!s->direct_msi && s->irq_routes->nr == s->gsi_count) {
1112 kvm_flush_dynamic_msi_routes(s);
1115 /* Return the lowest unused GSI in the bitmap */
1116 for (i = 0; i < max_words; i++) {
1117 zeroes = ctz32(~word[i]);
1118 if (zeroes == 32) {
1119 continue;
1122 return zeroes + i * 32;
1124 return -ENOSPC;
1128 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1130 unsigned int hash = kvm_hash_msi(msg.data);
1131 KVMMSIRoute *route;
1133 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1134 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1135 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1136 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1137 return route;
1140 return NULL;
1143 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1145 struct kvm_msi msi;
1146 KVMMSIRoute *route;
1148 if (s->direct_msi) {
1149 msi.address_lo = (uint32_t)msg.address;
1150 msi.address_hi = msg.address >> 32;
1151 msi.data = le32_to_cpu(msg.data);
1152 msi.flags = 0;
1153 memset(msi.pad, 0, sizeof(msi.pad));
1155 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1158 route = kvm_lookup_msi_route(s, msg);
1159 if (!route) {
1160 int virq;
1162 virq = kvm_irqchip_get_virq(s);
1163 if (virq < 0) {
1164 return virq;
1167 route = g_malloc0(sizeof(KVMMSIRoute));
1168 route->kroute.gsi = virq;
1169 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1170 route->kroute.flags = 0;
1171 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1172 route->kroute.u.msi.address_hi = msg.address >> 32;
1173 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1175 kvm_add_routing_entry(s, &route->kroute);
1176 kvm_irqchip_commit_routes(s);
1178 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1179 entry);
1182 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1184 return kvm_set_irq(s, route->kroute.gsi, 1);
1187 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1189 struct kvm_irq_routing_entry kroute = {};
1190 int virq;
1192 if (kvm_gsi_direct_mapping()) {
1193 return kvm_arch_msi_data_to_gsi(msg.data);
1196 if (!kvm_gsi_routing_enabled()) {
1197 return -ENOSYS;
1200 virq = kvm_irqchip_get_virq(s);
1201 if (virq < 0) {
1202 return virq;
1205 kroute.gsi = virq;
1206 kroute.type = KVM_IRQ_ROUTING_MSI;
1207 kroute.flags = 0;
1208 kroute.u.msi.address_lo = (uint32_t)msg.address;
1209 kroute.u.msi.address_hi = msg.address >> 32;
1210 kroute.u.msi.data = le32_to_cpu(msg.data);
1211 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1212 kvm_irqchip_release_virq(s, virq);
1213 return -EINVAL;
1216 kvm_add_routing_entry(s, &kroute);
1217 kvm_irqchip_commit_routes(s);
1219 return virq;
1222 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1224 struct kvm_irq_routing_entry kroute = {};
1226 if (kvm_gsi_direct_mapping()) {
1227 return 0;
1230 if (!kvm_irqchip_in_kernel()) {
1231 return -ENOSYS;
1234 kroute.gsi = virq;
1235 kroute.type = KVM_IRQ_ROUTING_MSI;
1236 kroute.flags = 0;
1237 kroute.u.msi.address_lo = (uint32_t)msg.address;
1238 kroute.u.msi.address_hi = msg.address >> 32;
1239 kroute.u.msi.data = le32_to_cpu(msg.data);
1240 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1241 return -EINVAL;
1244 return kvm_update_routing_entry(s, &kroute);
1247 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1248 bool assign)
1250 struct kvm_irqfd irqfd = {
1251 .fd = fd,
1252 .gsi = virq,
1253 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1256 if (rfd != -1) {
1257 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1258 irqfd.resamplefd = rfd;
1261 if (!kvm_irqfds_enabled()) {
1262 return -ENOSYS;
1265 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1268 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1270 struct kvm_irq_routing_entry kroute = {};
1271 int virq;
1273 if (!kvm_gsi_routing_enabled()) {
1274 return -ENOSYS;
1277 virq = kvm_irqchip_get_virq(s);
1278 if (virq < 0) {
1279 return virq;
1282 kroute.gsi = virq;
1283 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1284 kroute.flags = 0;
1285 kroute.u.adapter.summary_addr = adapter->summary_addr;
1286 kroute.u.adapter.ind_addr = adapter->ind_addr;
1287 kroute.u.adapter.summary_offset = adapter->summary_offset;
1288 kroute.u.adapter.ind_offset = adapter->ind_offset;
1289 kroute.u.adapter.adapter_id = adapter->adapter_id;
1291 kvm_add_routing_entry(s, &kroute);
1292 kvm_irqchip_commit_routes(s);
1294 return virq;
1297 #else /* !KVM_CAP_IRQ_ROUTING */
1299 void kvm_init_irq_routing(KVMState *s)
1303 void kvm_irqchip_release_virq(KVMState *s, int virq)
1307 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1309 abort();
1312 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1314 return -ENOSYS;
1317 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1319 return -ENOSYS;
1322 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1324 abort();
1327 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1329 return -ENOSYS;
1331 #endif /* !KVM_CAP_IRQ_ROUTING */
1333 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1334 EventNotifier *rn, int virq)
1336 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1337 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1340 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1341 int virq)
1343 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1344 false);
1347 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1348 EventNotifier *rn, qemu_irq irq)
1350 gpointer key, gsi;
1351 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1353 if (!found) {
1354 return -ENXIO;
1356 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1359 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1360 qemu_irq irq)
1362 gpointer key, gsi;
1363 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1365 if (!found) {
1366 return -ENXIO;
1368 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1371 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1373 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1376 static int kvm_irqchip_create(MachineState *machine, KVMState *s)
1378 int ret;
1380 if (!machine_kernel_irqchip_allowed(machine) ||
1381 (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
1382 (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
1383 return 0;
1386 /* First probe and see if there's a arch-specific hook to create the
1387 * in-kernel irqchip for us */
1388 ret = kvm_arch_irqchip_create(s);
1389 if (ret < 0) {
1390 return ret;
1391 } else if (ret == 0) {
1392 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1393 if (ret < 0) {
1394 fprintf(stderr, "Create kernel irqchip failed\n");
1395 return ret;
1399 kvm_kernel_irqchip = true;
1400 /* If we have an in-kernel IRQ chip then we must have asynchronous
1401 * interrupt delivery (though the reverse is not necessarily true)
1403 kvm_async_interrupts_allowed = true;
1404 kvm_halt_in_kernel_allowed = true;
1406 kvm_init_irq_routing(s);
1408 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1410 return 0;
1413 /* Find number of supported CPUs using the recommended
1414 * procedure from the kernel API documentation to cope with
1415 * older kernels that may be missing capabilities.
1417 static int kvm_recommended_vcpus(KVMState *s)
1419 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1420 return (ret) ? ret : 4;
1423 static int kvm_max_vcpus(KVMState *s)
1425 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1426 return (ret) ? ret : kvm_recommended_vcpus(s);
1429 static int kvm_init(MachineState *ms)
1431 MachineClass *mc = MACHINE_GET_CLASS(ms);
1432 static const char upgrade_note[] =
1433 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1434 "(see http://sourceforge.net/projects/kvm).\n";
1435 struct {
1436 const char *name;
1437 int num;
1438 } num_cpus[] = {
1439 { "SMP", smp_cpus },
1440 { "hotpluggable", max_cpus },
1441 { NULL, }
1442 }, *nc = num_cpus;
1443 int soft_vcpus_limit, hard_vcpus_limit;
1444 KVMState *s;
1445 const KVMCapabilityInfo *missing_cap;
1446 int ret;
1447 int i, type = 0;
1448 const char *kvm_type;
1450 s = KVM_STATE(ms->accelerator);
1453 * On systems where the kernel can support different base page
1454 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1455 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1456 * page size for the system though.
1458 assert(TARGET_PAGE_SIZE <= getpagesize());
1459 page_size_init();
1461 s->sigmask_len = 8;
1463 #ifdef KVM_CAP_SET_GUEST_DEBUG
1464 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1465 #endif
1466 s->vmfd = -1;
1467 s->fd = qemu_open("/dev/kvm", O_RDWR);
1468 if (s->fd == -1) {
1469 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1470 ret = -errno;
1471 goto err;
1474 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1475 if (ret < KVM_API_VERSION) {
1476 if (ret >= 0) {
1477 ret = -EINVAL;
1479 fprintf(stderr, "kvm version too old\n");
1480 goto err;
1483 if (ret > KVM_API_VERSION) {
1484 ret = -EINVAL;
1485 fprintf(stderr, "kvm version not supported\n");
1486 goto err;
1489 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1491 /* If unspecified, use the default value */
1492 if (!s->nr_slots) {
1493 s->nr_slots = 32;
1496 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1498 for (i = 0; i < s->nr_slots; i++) {
1499 s->slots[i].slot = i;
1502 /* check the vcpu limits */
1503 soft_vcpus_limit = kvm_recommended_vcpus(s);
1504 hard_vcpus_limit = kvm_max_vcpus(s);
1506 while (nc->name) {
1507 if (nc->num > soft_vcpus_limit) {
1508 fprintf(stderr,
1509 "Warning: Number of %s cpus requested (%d) exceeds "
1510 "the recommended cpus supported by KVM (%d)\n",
1511 nc->name, nc->num, soft_vcpus_limit);
1513 if (nc->num > hard_vcpus_limit) {
1514 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1515 "the maximum cpus supported by KVM (%d)\n",
1516 nc->name, nc->num, hard_vcpus_limit);
1517 exit(1);
1520 nc++;
1523 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1524 if (mc->kvm_type) {
1525 type = mc->kvm_type(kvm_type);
1526 } else if (kvm_type) {
1527 ret = -EINVAL;
1528 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1529 goto err;
1532 do {
1533 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1534 } while (ret == -EINTR);
1536 if (ret < 0) {
1537 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1538 strerror(-ret));
1540 #ifdef TARGET_S390X
1541 if (ret == -EINVAL) {
1542 fprintf(stderr,
1543 "Host kernel setup problem detected. Please verify:\n");
1544 fprintf(stderr, "- for kernels supporting the switch_amode or"
1545 " user_mode parameters, whether\n");
1546 fprintf(stderr,
1547 " user space is running in primary address space\n");
1548 fprintf(stderr,
1549 "- for kernels supporting the vm.allocate_pgste sysctl, "
1550 "whether it is enabled\n");
1552 #endif
1553 goto err;
1556 s->vmfd = ret;
1557 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1558 if (!missing_cap) {
1559 missing_cap =
1560 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1562 if (missing_cap) {
1563 ret = -EINVAL;
1564 fprintf(stderr, "kvm does not support %s\n%s",
1565 missing_cap->name, upgrade_note);
1566 goto err;
1569 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1571 s->broken_set_mem_region = 1;
1572 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1573 if (ret > 0) {
1574 s->broken_set_mem_region = 0;
1577 #ifdef KVM_CAP_VCPU_EVENTS
1578 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1579 #endif
1581 s->robust_singlestep =
1582 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1584 #ifdef KVM_CAP_DEBUGREGS
1585 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1586 #endif
1588 #ifdef KVM_CAP_XSAVE
1589 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1590 #endif
1592 #ifdef KVM_CAP_XCRS
1593 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1594 #endif
1596 #ifdef KVM_CAP_PIT_STATE2
1597 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1598 #endif
1600 #ifdef KVM_CAP_IRQ_ROUTING
1601 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1602 #endif
1604 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1606 s->irq_set_ioctl = KVM_IRQ_LINE;
1607 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1608 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1611 #ifdef KVM_CAP_READONLY_MEM
1612 kvm_readonly_mem_allowed =
1613 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1614 #endif
1616 kvm_eventfds_allowed =
1617 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1619 kvm_irqfds_allowed =
1620 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1622 kvm_resamplefds_allowed =
1623 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1625 kvm_vm_attributes_allowed =
1626 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1628 ret = kvm_arch_init(ms, s);
1629 if (ret < 0) {
1630 goto err;
1633 ret = kvm_irqchip_create(ms, s);
1634 if (ret < 0) {
1635 goto err;
1638 kvm_state = s;
1639 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1640 memory_listener_register(&kvm_io_listener, &address_space_io);
1642 s->many_ioeventfds = kvm_check_many_ioeventfds();
1644 cpu_interrupt_handler = kvm_handle_interrupt;
1646 return 0;
1648 err:
1649 assert(ret < 0);
1650 if (s->vmfd >= 0) {
1651 close(s->vmfd);
1653 if (s->fd != -1) {
1654 close(s->fd);
1656 g_free(s->slots);
1658 return ret;
1661 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1663 s->sigmask_len = sigmask_len;
1666 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1667 int size, uint32_t count)
1669 int i;
1670 uint8_t *ptr = data;
1672 for (i = 0; i < count; i++) {
1673 address_space_rw(&address_space_io, port, attrs,
1674 ptr, size,
1675 direction == KVM_EXIT_IO_OUT);
1676 ptr += size;
1680 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1682 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1683 run->internal.suberror);
1685 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1686 int i;
1688 for (i = 0; i < run->internal.ndata; ++i) {
1689 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1690 i, (uint64_t)run->internal.data[i]);
1693 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1694 fprintf(stderr, "emulation failure\n");
1695 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1696 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1697 return EXCP_INTERRUPT;
1700 /* FIXME: Should trigger a qmp message to let management know
1701 * something went wrong.
1703 return -1;
1706 void kvm_flush_coalesced_mmio_buffer(void)
1708 KVMState *s = kvm_state;
1710 if (s->coalesced_flush_in_progress) {
1711 return;
1714 s->coalesced_flush_in_progress = true;
1716 if (s->coalesced_mmio_ring) {
1717 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1718 while (ring->first != ring->last) {
1719 struct kvm_coalesced_mmio *ent;
1721 ent = &ring->coalesced_mmio[ring->first];
1723 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1724 smp_wmb();
1725 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1729 s->coalesced_flush_in_progress = false;
1732 static void do_kvm_cpu_synchronize_state(void *arg)
1734 CPUState *cpu = arg;
1736 if (!cpu->kvm_vcpu_dirty) {
1737 kvm_arch_get_registers(cpu);
1738 cpu->kvm_vcpu_dirty = true;
1742 void kvm_cpu_synchronize_state(CPUState *cpu)
1744 if (!cpu->kvm_vcpu_dirty) {
1745 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1749 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1751 CPUState *cpu = arg;
1753 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1754 cpu->kvm_vcpu_dirty = false;
1757 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1759 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1762 static void do_kvm_cpu_synchronize_post_init(void *arg)
1764 CPUState *cpu = arg;
1766 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1767 cpu->kvm_vcpu_dirty = false;
1770 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1772 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1775 void kvm_cpu_clean_state(CPUState *cpu)
1777 cpu->kvm_vcpu_dirty = false;
1780 int kvm_cpu_exec(CPUState *cpu)
1782 struct kvm_run *run = cpu->kvm_run;
1783 int ret, run_ret;
1785 DPRINTF("kvm_cpu_exec()\n");
1787 if (kvm_arch_process_async_events(cpu)) {
1788 cpu->exit_request = 0;
1789 return EXCP_HLT;
1792 qemu_mutex_unlock_iothread();
1794 do {
1795 MemTxAttrs attrs;
1797 if (cpu->kvm_vcpu_dirty) {
1798 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1799 cpu->kvm_vcpu_dirty = false;
1802 kvm_arch_pre_run(cpu, run);
1803 if (cpu->exit_request) {
1804 DPRINTF("interrupt exit requested\n");
1806 * KVM requires us to reenter the kernel after IO exits to complete
1807 * instruction emulation. This self-signal will ensure that we
1808 * leave ASAP again.
1810 qemu_cpu_kick_self();
1813 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1815 attrs = kvm_arch_post_run(cpu, run);
1817 if (run_ret < 0) {
1818 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1819 DPRINTF("io window exit\n");
1820 ret = EXCP_INTERRUPT;
1821 break;
1823 fprintf(stderr, "error: kvm run failed %s\n",
1824 strerror(-run_ret));
1825 #ifdef TARGET_PPC
1826 if (run_ret == -EBUSY) {
1827 fprintf(stderr,
1828 "This is probably because your SMT is enabled.\n"
1829 "VCPU can only run on primary threads with all "
1830 "secondary threads offline.\n");
1832 #endif
1833 ret = -1;
1834 break;
1837 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1838 switch (run->exit_reason) {
1839 case KVM_EXIT_IO:
1840 DPRINTF("handle_io\n");
1841 /* Called outside BQL */
1842 kvm_handle_io(run->io.port, attrs,
1843 (uint8_t *)run + run->io.data_offset,
1844 run->io.direction,
1845 run->io.size,
1846 run->io.count);
1847 ret = 0;
1848 break;
1849 case KVM_EXIT_MMIO:
1850 DPRINTF("handle_mmio\n");
1851 /* Called outside BQL */
1852 address_space_rw(&address_space_memory,
1853 run->mmio.phys_addr, attrs,
1854 run->mmio.data,
1855 run->mmio.len,
1856 run->mmio.is_write);
1857 ret = 0;
1858 break;
1859 case KVM_EXIT_IRQ_WINDOW_OPEN:
1860 DPRINTF("irq_window_open\n");
1861 ret = EXCP_INTERRUPT;
1862 break;
1863 case KVM_EXIT_SHUTDOWN:
1864 DPRINTF("shutdown\n");
1865 qemu_system_reset_request();
1866 ret = EXCP_INTERRUPT;
1867 break;
1868 case KVM_EXIT_UNKNOWN:
1869 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1870 (uint64_t)run->hw.hardware_exit_reason);
1871 ret = -1;
1872 break;
1873 case KVM_EXIT_INTERNAL_ERROR:
1874 ret = kvm_handle_internal_error(cpu, run);
1875 break;
1876 case KVM_EXIT_SYSTEM_EVENT:
1877 switch (run->system_event.type) {
1878 case KVM_SYSTEM_EVENT_SHUTDOWN:
1879 qemu_system_shutdown_request();
1880 ret = EXCP_INTERRUPT;
1881 break;
1882 case KVM_SYSTEM_EVENT_RESET:
1883 qemu_system_reset_request();
1884 ret = EXCP_INTERRUPT;
1885 break;
1886 default:
1887 DPRINTF("kvm_arch_handle_exit\n");
1888 ret = kvm_arch_handle_exit(cpu, run);
1889 break;
1891 break;
1892 default:
1893 DPRINTF("kvm_arch_handle_exit\n");
1894 ret = kvm_arch_handle_exit(cpu, run);
1895 break;
1897 } while (ret == 0);
1899 qemu_mutex_lock_iothread();
1901 if (ret < 0) {
1902 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1903 vm_stop(RUN_STATE_INTERNAL_ERROR);
1906 cpu->exit_request = 0;
1907 return ret;
1910 int kvm_ioctl(KVMState *s, int type, ...)
1912 int ret;
1913 void *arg;
1914 va_list ap;
1916 va_start(ap, type);
1917 arg = va_arg(ap, void *);
1918 va_end(ap);
1920 trace_kvm_ioctl(type, arg);
1921 ret = ioctl(s->fd, type, arg);
1922 if (ret == -1) {
1923 ret = -errno;
1925 return ret;
1928 int kvm_vm_ioctl(KVMState *s, int type, ...)
1930 int ret;
1931 void *arg;
1932 va_list ap;
1934 va_start(ap, type);
1935 arg = va_arg(ap, void *);
1936 va_end(ap);
1938 trace_kvm_vm_ioctl(type, arg);
1939 ret = ioctl(s->vmfd, type, arg);
1940 if (ret == -1) {
1941 ret = -errno;
1943 return ret;
1946 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1948 int ret;
1949 void *arg;
1950 va_list ap;
1952 va_start(ap, type);
1953 arg = va_arg(ap, void *);
1954 va_end(ap);
1956 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1957 ret = ioctl(cpu->kvm_fd, type, arg);
1958 if (ret == -1) {
1959 ret = -errno;
1961 return ret;
1964 int kvm_device_ioctl(int fd, int type, ...)
1966 int ret;
1967 void *arg;
1968 va_list ap;
1970 va_start(ap, type);
1971 arg = va_arg(ap, void *);
1972 va_end(ap);
1974 trace_kvm_device_ioctl(fd, type, arg);
1975 ret = ioctl(fd, type, arg);
1976 if (ret == -1) {
1977 ret = -errno;
1979 return ret;
1982 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
1984 int ret;
1985 struct kvm_device_attr attribute = {
1986 .group = group,
1987 .attr = attr,
1990 if (!kvm_vm_attributes_allowed) {
1991 return 0;
1994 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
1995 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
1996 return ret ? 0 : 1;
1999 int kvm_has_sync_mmu(void)
2001 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2004 int kvm_has_vcpu_events(void)
2006 return kvm_state->vcpu_events;
2009 int kvm_has_robust_singlestep(void)
2011 return kvm_state->robust_singlestep;
2014 int kvm_has_debugregs(void)
2016 return kvm_state->debugregs;
2019 int kvm_has_xsave(void)
2021 return kvm_state->xsave;
2024 int kvm_has_xcrs(void)
2026 return kvm_state->xcrs;
2029 int kvm_has_pit_state2(void)
2031 return kvm_state->pit_state2;
2034 int kvm_has_many_ioeventfds(void)
2036 if (!kvm_enabled()) {
2037 return 0;
2039 return kvm_state->many_ioeventfds;
2042 int kvm_has_gsi_routing(void)
2044 #ifdef KVM_CAP_IRQ_ROUTING
2045 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2046 #else
2047 return false;
2048 #endif
2051 int kvm_has_intx_set_mask(void)
2053 return kvm_state->intx_set_mask;
2056 void kvm_setup_guest_memory(void *start, size_t size)
2058 if (!kvm_has_sync_mmu()) {
2059 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2061 if (ret) {
2062 perror("qemu_madvise");
2063 fprintf(stderr,
2064 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2065 exit(1);
2070 #ifdef KVM_CAP_SET_GUEST_DEBUG
2071 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2072 target_ulong pc)
2074 struct kvm_sw_breakpoint *bp;
2076 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2077 if (bp->pc == pc) {
2078 return bp;
2081 return NULL;
2084 int kvm_sw_breakpoints_active(CPUState *cpu)
2086 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2089 struct kvm_set_guest_debug_data {
2090 struct kvm_guest_debug dbg;
2091 CPUState *cpu;
2092 int err;
2095 static void kvm_invoke_set_guest_debug(void *data)
2097 struct kvm_set_guest_debug_data *dbg_data = data;
2099 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2100 &dbg_data->dbg);
2103 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2105 struct kvm_set_guest_debug_data data;
2107 data.dbg.control = reinject_trap;
2109 if (cpu->singlestep_enabled) {
2110 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2112 kvm_arch_update_guest_debug(cpu, &data.dbg);
2113 data.cpu = cpu;
2115 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2116 return data.err;
2119 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2120 target_ulong len, int type)
2122 struct kvm_sw_breakpoint *bp;
2123 int err;
2125 if (type == GDB_BREAKPOINT_SW) {
2126 bp = kvm_find_sw_breakpoint(cpu, addr);
2127 if (bp) {
2128 bp->use_count++;
2129 return 0;
2132 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2133 bp->pc = addr;
2134 bp->use_count = 1;
2135 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2136 if (err) {
2137 g_free(bp);
2138 return err;
2141 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2142 } else {
2143 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2144 if (err) {
2145 return err;
2149 CPU_FOREACH(cpu) {
2150 err = kvm_update_guest_debug(cpu, 0);
2151 if (err) {
2152 return err;
2155 return 0;
2158 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2159 target_ulong len, int type)
2161 struct kvm_sw_breakpoint *bp;
2162 int err;
2164 if (type == GDB_BREAKPOINT_SW) {
2165 bp = kvm_find_sw_breakpoint(cpu, addr);
2166 if (!bp) {
2167 return -ENOENT;
2170 if (bp->use_count > 1) {
2171 bp->use_count--;
2172 return 0;
2175 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2176 if (err) {
2177 return err;
2180 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2181 g_free(bp);
2182 } else {
2183 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2184 if (err) {
2185 return err;
2189 CPU_FOREACH(cpu) {
2190 err = kvm_update_guest_debug(cpu, 0);
2191 if (err) {
2192 return err;
2195 return 0;
2198 void kvm_remove_all_breakpoints(CPUState *cpu)
2200 struct kvm_sw_breakpoint *bp, *next;
2201 KVMState *s = cpu->kvm_state;
2202 CPUState *tmpcpu;
2204 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2205 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2206 /* Try harder to find a CPU that currently sees the breakpoint. */
2207 CPU_FOREACH(tmpcpu) {
2208 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2209 break;
2213 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2214 g_free(bp);
2216 kvm_arch_remove_all_hw_breakpoints();
2218 CPU_FOREACH(cpu) {
2219 kvm_update_guest_debug(cpu, 0);
2223 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2225 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2227 return -EINVAL;
2230 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2231 target_ulong len, int type)
2233 return -EINVAL;
2236 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2237 target_ulong len, int type)
2239 return -EINVAL;
2242 void kvm_remove_all_breakpoints(CPUState *cpu)
2245 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2247 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2249 KVMState *s = kvm_state;
2250 struct kvm_signal_mask *sigmask;
2251 int r;
2253 if (!sigset) {
2254 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2257 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2259 sigmask->len = s->sigmask_len;
2260 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2261 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2262 g_free(sigmask);
2264 return r;
2266 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2268 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2271 int kvm_on_sigbus(int code, void *addr)
2273 return kvm_arch_on_sigbus(code, addr);
2276 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2278 int ret;
2279 struct kvm_create_device create_dev;
2281 create_dev.type = type;
2282 create_dev.fd = -1;
2283 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2285 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2286 return -ENOTSUP;
2289 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2290 if (ret) {
2291 return ret;
2294 return test ? 0 : create_dev.fd;
2297 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2299 struct kvm_one_reg reg;
2300 int r;
2302 reg.id = id;
2303 reg.addr = (uintptr_t) source;
2304 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2305 if (r) {
2306 trace_kvm_failed_reg_set(id, strerror(r));
2308 return r;
2311 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2313 struct kvm_one_reg reg;
2314 int r;
2316 reg.id = id;
2317 reg.addr = (uintptr_t) target;
2318 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2319 if (r) {
2320 trace_kvm_failed_reg_get(id, strerror(r));
2322 return r;
2325 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2327 AccelClass *ac = ACCEL_CLASS(oc);
2328 ac->name = "KVM";
2329 ac->init_machine = kvm_init;
2330 ac->allowed = &kvm_allowed;
2333 static const TypeInfo kvm_accel_type = {
2334 .name = TYPE_KVM_ACCEL,
2335 .parent = TYPE_ACCEL,
2336 .class_init = kvm_accel_class_init,
2337 .instance_size = sizeof(KVMState),
2340 static void kvm_type_init(void)
2342 type_register_static(&kvm_accel_type);
2345 type_init(kvm_type_init);