4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
47 #include "exec/cpu-all.h"
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
52 #include "exec/memory-internal.h"
54 //#define DEBUG_SUBPAGE
56 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration
;
59 RAMList ram_list
= { .blocks
= QTAILQ_HEAD_INITIALIZER(ram_list
.blocks
) };
61 static MemoryRegion
*system_memory
;
62 static MemoryRegion
*system_io
;
64 AddressSpace address_space_io
;
65 AddressSpace address_space_memory
;
67 MemoryRegion io_mem_rom
, io_mem_notdirty
;
68 static MemoryRegion io_mem_unassigned
;
73 /* current CPU in the current thread. It is only valid inside
75 DEFINE_TLS(CPUState
*, current_cpu
);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
81 #if !defined(CONFIG_USER_ONLY)
83 typedef struct PhysPageEntry PhysPageEntry
;
85 struct PhysPageEntry
{
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
91 typedef PhysPageEntry Node
[L2_SIZE
];
93 struct AddressSpaceDispatch
{
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
97 PhysPageEntry phys_map
;
99 MemoryRegionSection
*sections
;
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t
{
108 uint16_t sub_section
[TARGET_PAGE_SIZE
];
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
116 typedef struct PhysPageMap
{
117 unsigned sections_nb
;
118 unsigned sections_nb_alloc
;
120 unsigned nodes_nb_alloc
;
122 MemoryRegionSection
*sections
;
125 static PhysPageMap
*prev_map
;
126 static PhysPageMap next_map
;
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr
);
134 static MemoryRegion io_mem_watch
;
137 #if !defined(CONFIG_USER_ONLY)
139 static void phys_map_node_reserve(unsigned nodes
)
141 if (next_map
.nodes_nb
+ nodes
> next_map
.nodes_nb_alloc
) {
142 next_map
.nodes_nb_alloc
= MAX(next_map
.nodes_nb_alloc
* 2,
144 next_map
.nodes_nb_alloc
= MAX(next_map
.nodes_nb_alloc
,
145 next_map
.nodes_nb
+ nodes
);
146 next_map
.nodes
= g_renew(Node
, next_map
.nodes
,
147 next_map
.nodes_nb_alloc
);
151 static uint16_t phys_map_node_alloc(void)
156 ret
= next_map
.nodes_nb
++;
157 assert(ret
!= PHYS_MAP_NODE_NIL
);
158 assert(ret
!= next_map
.nodes_nb_alloc
);
159 for (i
= 0; i
< L2_SIZE
; ++i
) {
160 next_map
.nodes
[ret
][i
].is_leaf
= 0;
161 next_map
.nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
166 static void phys_page_set_level(PhysPageEntry
*lp
, hwaddr
*index
,
167 hwaddr
*nb
, uint16_t leaf
,
172 hwaddr step
= (hwaddr
)1 << (level
* L2_BITS
);
174 if (!lp
->is_leaf
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
175 lp
->ptr
= phys_map_node_alloc();
176 p
= next_map
.nodes
[lp
->ptr
];
178 for (i
= 0; i
< L2_SIZE
; i
++) {
180 p
[i
].ptr
= PHYS_SECTION_UNASSIGNED
;
184 p
= next_map
.nodes
[lp
->ptr
];
186 lp
= &p
[(*index
>> (level
* L2_BITS
)) & (L2_SIZE
- 1)];
188 while (*nb
&& lp
< &p
[L2_SIZE
]) {
189 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
195 phys_page_set_level(lp
, index
, nb
, leaf
, level
- 1);
201 static void phys_page_set(AddressSpaceDispatch
*d
,
202 hwaddr index
, hwaddr nb
,
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS
);
208 phys_page_set_level(&d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
211 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr index
,
212 Node
*nodes
, MemoryRegionSection
*sections
)
217 for (i
= P_L2_LEVELS
- 1; i
>= 0 && !lp
.is_leaf
; i
--) {
218 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
219 return §ions
[PHYS_SECTION_UNASSIGNED
];
222 lp
= p
[(index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1)];
224 return §ions
[lp
.ptr
];
227 bool memory_region_is_unassigned(MemoryRegion
*mr
)
229 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
230 && mr
!= &io_mem_watch
;
233 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
235 bool resolve_subpage
)
237 MemoryRegionSection
*section
;
240 section
= phys_page_find(d
->phys_map
, addr
>> TARGET_PAGE_BITS
,
241 d
->nodes
, d
->sections
);
242 if (resolve_subpage
&& section
->mr
->subpage
) {
243 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
244 section
= &d
->sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
249 static MemoryRegionSection
*
250 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
251 hwaddr
*plen
, bool resolve_subpage
)
253 MemoryRegionSection
*section
;
256 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
257 /* Compute offset within MemoryRegionSection */
258 addr
-= section
->offset_within_address_space
;
260 /* Compute offset within MemoryRegion */
261 *xlat
= addr
+ section
->offset_within_region
;
263 diff
= int128_sub(section
->mr
->size
, int128_make64(addr
));
264 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
268 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
269 hwaddr
*xlat
, hwaddr
*plen
,
273 MemoryRegionSection
*section
;
278 section
= address_space_translate_internal(as
->dispatch
, addr
, &addr
, plen
, true);
281 if (!mr
->iommu_ops
) {
285 iotlb
= mr
->iommu_ops
->translate(mr
, addr
);
286 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
287 | (addr
& iotlb
.addr_mask
));
288 len
= MIN(len
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
289 if (!(iotlb
.perm
& (1 << is_write
))) {
290 mr
= &io_mem_unassigned
;
294 as
= iotlb
.target_as
;
302 MemoryRegionSection
*
303 address_space_translate_for_iotlb(AddressSpace
*as
, hwaddr addr
, hwaddr
*xlat
,
306 MemoryRegionSection
*section
;
307 section
= address_space_translate_internal(as
->dispatch
, addr
, xlat
, plen
, false);
309 assert(!section
->mr
->iommu_ops
);
314 void cpu_exec_init_all(void)
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list
.mutex
);
323 #if !defined(CONFIG_USER_ONLY)
325 static int cpu_common_post_load(void *opaque
, int version_id
)
327 CPUState
*cpu
= opaque
;
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu
->interrupt_request
&= ~0x01;
332 tlb_flush(cpu
->env_ptr
, 1);
337 const VMStateDescription vmstate_cpu_common
= {
338 .name
= "cpu_common",
340 .minimum_version_id
= 1,
341 .minimum_version_id_old
= 1,
342 .post_load
= cpu_common_post_load
,
343 .fields
= (VMStateField
[]) {
344 VMSTATE_UINT32(halted
, CPUState
),
345 VMSTATE_UINT32(interrupt_request
, CPUState
),
346 VMSTATE_END_OF_LIST()
352 CPUState
*qemu_get_cpu(int index
)
354 CPUState
*cpu
= first_cpu
;
357 if (cpu
->cpu_index
== index
) {
366 void qemu_for_each_cpu(void (*func
)(CPUState
*cpu
, void *data
), void *data
)
377 void cpu_exec_init(CPUArchState
*env
)
379 CPUState
*cpu
= ENV_GET_CPU(env
);
380 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
384 #if defined(CONFIG_USER_ONLY)
387 cpu
->next_cpu
= NULL
;
390 while (*pcpu
!= NULL
) {
391 pcpu
= &(*pcpu
)->next_cpu
;
394 cpu
->cpu_index
= cpu_index
;
396 QTAILQ_INIT(&env
->breakpoints
);
397 QTAILQ_INIT(&env
->watchpoints
);
398 #ifndef CONFIG_USER_ONLY
399 cpu
->thread_id
= qemu_get_thread_id();
402 #if defined(CONFIG_USER_ONLY)
405 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
406 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
408 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
409 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
410 cpu_save
, cpu_load
, env
);
411 assert(cc
->vmsd
== NULL
);
412 assert(qdev_get_vmsd(DEVICE(cpu
)) == NULL
);
414 if (cc
->vmsd
!= NULL
) {
415 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
419 #if defined(TARGET_HAS_ICE)
420 #if defined(CONFIG_USER_ONLY)
421 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
423 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
426 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
428 tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu
, pc
) |
429 (pc
& ~TARGET_PAGE_MASK
));
432 #endif /* TARGET_HAS_ICE */
434 #if defined(CONFIG_USER_ONLY)
435 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
440 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
441 int flags
, CPUWatchpoint
**watchpoint
)
446 /* Add a watchpoint. */
447 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
448 int flags
, CPUWatchpoint
**watchpoint
)
450 target_ulong len_mask
= ~(len
- 1);
453 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
454 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
455 len
== 0 || len
> TARGET_PAGE_SIZE
) {
456 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
457 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
460 wp
= g_malloc(sizeof(*wp
));
463 wp
->len_mask
= len_mask
;
466 /* keep all GDB-injected watchpoints in front */
468 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
470 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
472 tlb_flush_page(env
, addr
);
479 /* Remove a specific watchpoint. */
480 int cpu_watchpoint_remove(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
483 target_ulong len_mask
= ~(len
- 1);
486 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
487 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
488 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
489 cpu_watchpoint_remove_by_ref(env
, wp
);
496 /* Remove a specific watchpoint by reference. */
497 void cpu_watchpoint_remove_by_ref(CPUArchState
*env
, CPUWatchpoint
*watchpoint
)
499 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
501 tlb_flush_page(env
, watchpoint
->vaddr
);
506 /* Remove all matching watchpoints. */
507 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
509 CPUWatchpoint
*wp
, *next
;
511 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
512 if (wp
->flags
& mask
)
513 cpu_watchpoint_remove_by_ref(env
, wp
);
518 /* Add a breakpoint. */
519 int cpu_breakpoint_insert(CPUArchState
*env
, target_ulong pc
, int flags
,
520 CPUBreakpoint
**breakpoint
)
522 #if defined(TARGET_HAS_ICE)
525 bp
= g_malloc(sizeof(*bp
));
530 /* keep all GDB-injected breakpoints in front */
531 if (flags
& BP_GDB
) {
532 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
534 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
537 breakpoint_invalidate(ENV_GET_CPU(env
), pc
);
548 /* Remove a specific breakpoint. */
549 int cpu_breakpoint_remove(CPUArchState
*env
, target_ulong pc
, int flags
)
551 #if defined(TARGET_HAS_ICE)
554 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
555 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
556 cpu_breakpoint_remove_by_ref(env
, bp
);
566 /* Remove a specific breakpoint by reference. */
567 void cpu_breakpoint_remove_by_ref(CPUArchState
*env
, CPUBreakpoint
*breakpoint
)
569 #if defined(TARGET_HAS_ICE)
570 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
572 breakpoint_invalidate(ENV_GET_CPU(env
), breakpoint
->pc
);
578 /* Remove all matching breakpoints. */
579 void cpu_breakpoint_remove_all(CPUArchState
*env
, int mask
)
581 #if defined(TARGET_HAS_ICE)
582 CPUBreakpoint
*bp
, *next
;
584 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
585 if (bp
->flags
& mask
)
586 cpu_breakpoint_remove_by_ref(env
, bp
);
591 /* enable or disable single step mode. EXCP_DEBUG is returned by the
592 CPU loop after each instruction */
593 void cpu_single_step(CPUState
*cpu
, int enabled
)
595 #if defined(TARGET_HAS_ICE)
596 if (cpu
->singlestep_enabled
!= enabled
) {
597 cpu
->singlestep_enabled
= enabled
;
599 kvm_update_guest_debug(cpu
, 0);
601 /* must flush all the translated code to avoid inconsistencies */
602 /* XXX: only flush what is necessary */
603 CPUArchState
*env
= cpu
->env_ptr
;
610 void cpu_abort(CPUArchState
*env
, const char *fmt
, ...)
612 CPUState
*cpu
= ENV_GET_CPU(env
);
618 fprintf(stderr
, "qemu: fatal: ");
619 vfprintf(stderr
, fmt
, ap
);
620 fprintf(stderr
, "\n");
621 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
622 if (qemu_log_enabled()) {
623 qemu_log("qemu: fatal: ");
624 qemu_log_vprintf(fmt
, ap2
);
626 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
632 #if defined(CONFIG_USER_ONLY)
634 struct sigaction act
;
635 sigfillset(&act
.sa_mask
);
636 act
.sa_handler
= SIG_DFL
;
637 sigaction(SIGABRT
, &act
, NULL
);
643 CPUArchState
*cpu_copy(CPUArchState
*env
)
645 CPUArchState
*new_env
= cpu_init(env
->cpu_model_str
);
646 #if defined(TARGET_HAS_ICE)
651 /* Reset non arch specific state */
652 cpu_reset(ENV_GET_CPU(new_env
));
654 /* Copy arch specific state into the new CPU */
655 memcpy(new_env
, env
, sizeof(CPUArchState
));
657 /* Clone all break/watchpoints.
658 Note: Once we support ptrace with hw-debug register access, make sure
659 BP_CPU break/watchpoints are handled correctly on clone. */
660 QTAILQ_INIT(&env
->breakpoints
);
661 QTAILQ_INIT(&env
->watchpoints
);
662 #if defined(TARGET_HAS_ICE)
663 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
664 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
666 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
667 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
675 #if !defined(CONFIG_USER_ONLY)
676 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t end
,
681 /* we modify the TLB cache so that the dirty bit will be set again
682 when accessing the range */
683 start1
= (uintptr_t)qemu_safe_ram_ptr(start
);
684 /* Check that we don't span multiple blocks - this breaks the
685 address comparisons below. */
686 if ((uintptr_t)qemu_safe_ram_ptr(end
- 1) - start1
687 != (end
- 1) - start
) {
690 cpu_tlb_reset_dirty_all(start1
, length
);
694 /* Note: start and end must be within the same ram block. */
695 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
700 start
&= TARGET_PAGE_MASK
;
701 end
= TARGET_PAGE_ALIGN(end
);
703 length
= end
- start
;
706 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
709 tlb_reset_dirty_range_all(start
, end
, length
);
713 static int cpu_physical_memory_set_dirty_tracking(int enable
)
716 in_migration
= enable
;
720 hwaddr
memory_region_section_get_iotlb(CPUArchState
*env
,
721 MemoryRegionSection
*section
,
723 hwaddr paddr
, hwaddr xlat
,
725 target_ulong
*address
)
730 if (memory_region_is_ram(section
->mr
)) {
732 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
734 if (!section
->readonly
) {
735 iotlb
|= PHYS_SECTION_NOTDIRTY
;
737 iotlb
|= PHYS_SECTION_ROM
;
740 iotlb
= section
- address_space_memory
.dispatch
->sections
;
744 /* Make accesses to pages with watchpoints go via the
745 watchpoint trap routines. */
746 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
747 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
748 /* Avoid trapping reads of pages with a write breakpoint. */
749 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
750 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
751 *address
|= TLB_MMIO
;
759 #endif /* defined(CONFIG_USER_ONLY) */
761 #if !defined(CONFIG_USER_ONLY)
763 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
765 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
767 static uint16_t phys_section_add(MemoryRegionSection
*section
)
769 /* The physical section number is ORed with a page-aligned
770 * pointer to produce the iotlb entries. Thus it should
771 * never overflow into the page-aligned value.
773 assert(next_map
.sections_nb
< TARGET_PAGE_SIZE
);
775 if (next_map
.sections_nb
== next_map
.sections_nb_alloc
) {
776 next_map
.sections_nb_alloc
= MAX(next_map
.sections_nb_alloc
* 2,
778 next_map
.sections
= g_renew(MemoryRegionSection
, next_map
.sections
,
779 next_map
.sections_nb_alloc
);
781 next_map
.sections
[next_map
.sections_nb
] = *section
;
782 memory_region_ref(section
->mr
);
783 return next_map
.sections_nb
++;
786 static void phys_section_destroy(MemoryRegion
*mr
)
788 memory_region_unref(mr
);
791 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
792 memory_region_destroy(&subpage
->iomem
);
797 static void phys_sections_free(PhysPageMap
*map
)
799 while (map
->sections_nb
> 0) {
800 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
801 phys_section_destroy(section
->mr
);
803 g_free(map
->sections
);
808 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
811 hwaddr base
= section
->offset_within_address_space
813 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
>> TARGET_PAGE_BITS
,
814 next_map
.nodes
, next_map
.sections
);
815 MemoryRegionSection subsection
= {
816 .offset_within_address_space
= base
,
817 .size
= int128_make64(TARGET_PAGE_SIZE
),
821 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
823 if (!(existing
->mr
->subpage
)) {
824 subpage
= subpage_init(d
->as
, base
);
825 subsection
.mr
= &subpage
->iomem
;
826 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
827 phys_section_add(&subsection
));
829 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
831 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
832 end
= start
+ int128_get64(section
->size
) - 1;
833 subpage_register(subpage
, start
, end
, phys_section_add(section
));
837 static void register_multipage(AddressSpaceDispatch
*d
,
838 MemoryRegionSection
*section
)
840 hwaddr start_addr
= section
->offset_within_address_space
;
841 uint16_t section_index
= phys_section_add(section
);
842 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
846 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
849 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
851 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
852 AddressSpaceDispatch
*d
= as
->next_dispatch
;
853 MemoryRegionSection now
= *section
, remain
= *section
;
854 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
856 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
857 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
858 - now
.offset_within_address_space
;
860 now
.size
= int128_min(int128_make64(left
), now
.size
);
861 register_subpage(d
, &now
);
863 now
.size
= int128_zero();
865 while (int128_ne(remain
.size
, now
.size
)) {
866 remain
.size
= int128_sub(remain
.size
, now
.size
);
867 remain
.offset_within_address_space
+= int128_get64(now
.size
);
868 remain
.offset_within_region
+= int128_get64(now
.size
);
870 if (int128_lt(remain
.size
, page_size
)) {
871 register_subpage(d
, &now
);
872 } else if (remain
.offset_within_region
& ~TARGET_PAGE_MASK
) {
873 now
.size
= page_size
;
874 register_subpage(d
, &now
);
876 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
877 register_multipage(d
, &now
);
882 void qemu_flush_coalesced_mmio_buffer(void)
885 kvm_flush_coalesced_mmio_buffer();
888 void qemu_mutex_lock_ramlist(void)
890 qemu_mutex_lock(&ram_list
.mutex
);
893 void qemu_mutex_unlock_ramlist(void)
895 qemu_mutex_unlock(&ram_list
.mutex
);
898 #if defined(__linux__) && !defined(TARGET_S390X)
902 #define HUGETLBFS_MAGIC 0x958458f6
904 static long gethugepagesize(const char *path
)
910 ret
= statfs(path
, &fs
);
911 } while (ret
!= 0 && errno
== EINTR
);
918 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
919 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
924 static void *file_ram_alloc(RAMBlock
*block
,
929 char *sanitized_name
;
936 unsigned long hpagesize
;
938 hpagesize
= gethugepagesize(path
);
943 if (memory
< hpagesize
) {
947 if (kvm_enabled() && !kvm_has_sync_mmu()) {
948 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
952 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
953 sanitized_name
= g_strdup(block
->mr
->name
);
954 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
959 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
961 g_free(sanitized_name
);
963 fd
= mkstemp(filename
);
965 perror("unable to create backing store for hugepages");
972 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
975 * ftruncate is not supported by hugetlbfs in older
976 * hosts, so don't bother bailing out on errors.
977 * If anything goes wrong with it under other filesystems,
980 if (ftruncate(fd
, memory
))
984 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
985 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
986 * to sidestep this quirk.
988 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
989 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
991 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
993 if (area
== MAP_FAILED
) {
994 perror("file_ram_alloc: can't mmap RAM pages");
1003 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1005 RAMBlock
*block
, *next_block
;
1006 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1008 assert(size
!= 0); /* it would hand out same offset multiple times */
1010 if (QTAILQ_EMPTY(&ram_list
.blocks
))
1013 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1014 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1016 end
= block
->offset
+ block
->length
;
1018 QTAILQ_FOREACH(next_block
, &ram_list
.blocks
, next
) {
1019 if (next_block
->offset
>= end
) {
1020 next
= MIN(next
, next_block
->offset
);
1023 if (next
- end
>= size
&& next
- end
< mingap
) {
1025 mingap
= next
- end
;
1029 if (offset
== RAM_ADDR_MAX
) {
1030 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1038 ram_addr_t
last_ram_offset(void)
1041 ram_addr_t last
= 0;
1043 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
)
1044 last
= MAX(last
, block
->offset
+ block
->length
);
1049 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1053 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1054 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1055 "dump-guest-core", true)) {
1056 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1058 perror("qemu_madvise");
1059 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1060 "but dump_guest_core=off specified\n");
1065 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1067 RAMBlock
*new_block
, *block
;
1070 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1071 if (block
->offset
== addr
) {
1077 assert(!new_block
->idstr
[0]);
1080 char *id
= qdev_get_dev_path(dev
);
1082 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1086 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1088 /* This assumes the iothread lock is taken here too. */
1089 qemu_mutex_lock_ramlist();
1090 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1091 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1092 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1097 qemu_mutex_unlock_ramlist();
1100 static int memory_try_enable_merging(void *addr
, size_t len
)
1102 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1103 /* disabled by the user */
1107 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1110 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1113 RAMBlock
*block
, *new_block
;
1115 size
= TARGET_PAGE_ALIGN(size
);
1116 new_block
= g_malloc0(sizeof(*new_block
));
1118 /* This assumes the iothread lock is taken here too. */
1119 qemu_mutex_lock_ramlist();
1121 new_block
->offset
= find_ram_offset(size
);
1123 new_block
->host
= host
;
1124 new_block
->flags
|= RAM_PREALLOC_MASK
;
1127 #if defined (__linux__) && !defined(TARGET_S390X)
1128 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
1129 if (!new_block
->host
) {
1130 new_block
->host
= qemu_anon_ram_alloc(size
);
1131 memory_try_enable_merging(new_block
->host
, size
);
1134 fprintf(stderr
, "-mem-path option unsupported\n");
1138 if (xen_enabled()) {
1139 xen_ram_alloc(new_block
->offset
, size
, mr
);
1140 } else if (kvm_enabled()) {
1141 /* some s390/kvm configurations have special constraints */
1142 new_block
->host
= kvm_ram_alloc(size
);
1144 new_block
->host
= qemu_anon_ram_alloc(size
);
1146 memory_try_enable_merging(new_block
->host
, size
);
1149 new_block
->length
= size
;
1151 /* Keep the list sorted from biggest to smallest block. */
1152 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1153 if (block
->length
< new_block
->length
) {
1158 QTAILQ_INSERT_BEFORE(block
, new_block
, next
);
1160 QTAILQ_INSERT_TAIL(&ram_list
.blocks
, new_block
, next
);
1162 ram_list
.mru_block
= NULL
;
1165 qemu_mutex_unlock_ramlist();
1167 ram_list
.phys_dirty
= g_realloc(ram_list
.phys_dirty
,
1168 last_ram_offset() >> TARGET_PAGE_BITS
);
1169 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
1170 0, size
>> TARGET_PAGE_BITS
);
1171 cpu_physical_memory_set_dirty_range(new_block
->offset
, size
, 0xff);
1173 qemu_ram_setup_dump(new_block
->host
, size
);
1174 qemu_madvise(new_block
->host
, size
, QEMU_MADV_HUGEPAGE
);
1177 kvm_setup_guest_memory(new_block
->host
, size
);
1179 return new_block
->offset
;
1182 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
1184 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
1187 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1191 /* This assumes the iothread lock is taken here too. */
1192 qemu_mutex_lock_ramlist();
1193 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1194 if (addr
== block
->offset
) {
1195 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1196 ram_list
.mru_block
= NULL
;
1202 qemu_mutex_unlock_ramlist();
1205 void qemu_ram_free(ram_addr_t addr
)
1209 /* This assumes the iothread lock is taken here too. */
1210 qemu_mutex_lock_ramlist();
1211 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1212 if (addr
== block
->offset
) {
1213 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1214 ram_list
.mru_block
= NULL
;
1216 if (block
->flags
& RAM_PREALLOC_MASK
) {
1218 } else if (mem_path
) {
1219 #if defined (__linux__) && !defined(TARGET_S390X)
1221 munmap(block
->host
, block
->length
);
1224 qemu_anon_ram_free(block
->host
, block
->length
);
1230 if (xen_enabled()) {
1231 xen_invalidate_map_cache_entry(block
->host
);
1233 qemu_anon_ram_free(block
->host
, block
->length
);
1240 qemu_mutex_unlock_ramlist();
1245 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1252 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1253 offset
= addr
- block
->offset
;
1254 if (offset
< block
->length
) {
1255 vaddr
= block
->host
+ offset
;
1256 if (block
->flags
& RAM_PREALLOC_MASK
) {
1260 munmap(vaddr
, length
);
1262 #if defined(__linux__) && !defined(TARGET_S390X)
1265 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
1268 flags
|= MAP_PRIVATE
;
1270 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1271 flags
, block
->fd
, offset
);
1273 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1274 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1281 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1282 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
1283 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
1286 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1287 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1291 if (area
!= vaddr
) {
1292 fprintf(stderr
, "Could not remap addr: "
1293 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1297 memory_try_enable_merging(vaddr
, length
);
1298 qemu_ram_setup_dump(vaddr
, length
);
1304 #endif /* !_WIN32 */
1306 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1310 /* The list is protected by the iothread lock here. */
1311 block
= ram_list
.mru_block
;
1312 if (block
&& addr
- block
->offset
< block
->length
) {
1315 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1316 if (addr
- block
->offset
< block
->length
) {
1321 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1325 ram_list
.mru_block
= block
;
1329 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1330 With the exception of the softmmu code in this file, this should
1331 only be used for local memory (e.g. video ram) that the device owns,
1332 and knows it isn't going to access beyond the end of the block.
1334 It should not be used for general purpose DMA.
1335 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1337 void *qemu_get_ram_ptr(ram_addr_t addr
)
1339 RAMBlock
*block
= qemu_get_ram_block(addr
);
1341 if (xen_enabled()) {
1342 /* We need to check if the requested address is in the RAM
1343 * because we don't want to map the entire memory in QEMU.
1344 * In that case just map until the end of the page.
1346 if (block
->offset
== 0) {
1347 return xen_map_cache(addr
, 0, 0);
1348 } else if (block
->host
== NULL
) {
1350 xen_map_cache(block
->offset
, block
->length
, 1);
1353 return block
->host
+ (addr
- block
->offset
);
1356 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1357 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1359 * ??? Is this still necessary?
1361 static void *qemu_safe_ram_ptr(ram_addr_t addr
)
1365 /* The list is protected by the iothread lock here. */
1366 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1367 if (addr
- block
->offset
< block
->length
) {
1368 if (xen_enabled()) {
1369 /* We need to check if the requested address is in the RAM
1370 * because we don't want to map the entire memory in QEMU.
1371 * In that case just map until the end of the page.
1373 if (block
->offset
== 0) {
1374 return xen_map_cache(addr
, 0, 0);
1375 } else if (block
->host
== NULL
) {
1377 xen_map_cache(block
->offset
, block
->length
, 1);
1380 return block
->host
+ (addr
- block
->offset
);
1384 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1390 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1391 * but takes a size argument */
1392 static void *qemu_ram_ptr_length(ram_addr_t addr
, hwaddr
*size
)
1397 if (xen_enabled()) {
1398 return xen_map_cache(addr
, *size
, 1);
1402 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1403 if (addr
- block
->offset
< block
->length
) {
1404 if (addr
- block
->offset
+ *size
> block
->length
)
1405 *size
= block
->length
- addr
+ block
->offset
;
1406 return block
->host
+ (addr
- block
->offset
);
1410 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1415 /* Some of the softmmu routines need to translate from a host pointer
1416 (typically a TLB entry) back to a ram offset. */
1417 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1420 uint8_t *host
= ptr
;
1422 if (xen_enabled()) {
1423 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1424 return qemu_get_ram_block(*ram_addr
)->mr
;
1427 block
= ram_list
.mru_block
;
1428 if (block
&& block
->host
&& host
- block
->host
< block
->length
) {
1432 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1433 /* This case append when the block is not mapped. */
1434 if (block
->host
== NULL
) {
1437 if (host
- block
->host
< block
->length
) {
1445 *ram_addr
= block
->offset
+ (host
- block
->host
);
1449 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1450 uint64_t val
, unsigned size
)
1453 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1454 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
1455 tb_invalidate_phys_page_fast(ram_addr
, size
);
1456 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1460 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1463 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1466 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1471 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
1472 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
1473 /* we remove the notdirty callback only if the code has been
1475 if (dirty_flags
== 0xff) {
1476 CPUArchState
*env
= current_cpu
->env_ptr
;
1477 tlb_set_dirty(env
, env
->mem_io_vaddr
);
1481 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
1482 unsigned size
, bool is_write
)
1487 static const MemoryRegionOps notdirty_mem_ops
= {
1488 .write
= notdirty_mem_write
,
1489 .valid
.accepts
= notdirty_mem_accepts
,
1490 .endianness
= DEVICE_NATIVE_ENDIAN
,
1493 /* Generate a debug exception if a watchpoint has been hit. */
1494 static void check_watchpoint(int offset
, int len_mask
, int flags
)
1496 CPUArchState
*env
= current_cpu
->env_ptr
;
1497 target_ulong pc
, cs_base
;
1502 if (env
->watchpoint_hit
) {
1503 /* We re-entered the check after replacing the TB. Now raise
1504 * the debug interrupt so that is will trigger after the
1505 * current instruction. */
1506 cpu_interrupt(ENV_GET_CPU(env
), CPU_INTERRUPT_DEBUG
);
1509 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1510 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1511 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
1512 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
1513 wp
->flags
|= BP_WATCHPOINT_HIT
;
1514 if (!env
->watchpoint_hit
) {
1515 env
->watchpoint_hit
= wp
;
1516 tb_check_watchpoint(env
);
1517 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
1518 env
->exception_index
= EXCP_DEBUG
;
1521 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
1522 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
1523 cpu_resume_from_signal(env
, NULL
);
1527 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
1532 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1533 so these check for a hit then pass through to the normal out-of-line
1535 static uint64_t watch_mem_read(void *opaque
, hwaddr addr
,
1538 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
1540 case 1: return ldub_phys(addr
);
1541 case 2: return lduw_phys(addr
);
1542 case 4: return ldl_phys(addr
);
1547 static void watch_mem_write(void *opaque
, hwaddr addr
,
1548 uint64_t val
, unsigned size
)
1550 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
1553 stb_phys(addr
, val
);
1556 stw_phys(addr
, val
);
1559 stl_phys(addr
, val
);
1565 static const MemoryRegionOps watch_mem_ops
= {
1566 .read
= watch_mem_read
,
1567 .write
= watch_mem_write
,
1568 .endianness
= DEVICE_NATIVE_ENDIAN
,
1571 static uint64_t subpage_read(void *opaque
, hwaddr addr
,
1574 subpage_t
*subpage
= opaque
;
1577 #if defined(DEBUG_SUBPAGE)
1578 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
"\n", __func__
,
1579 subpage
, len
, addr
);
1581 address_space_read(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1594 static void subpage_write(void *opaque
, hwaddr addr
,
1595 uint64_t value
, unsigned len
)
1597 subpage_t
*subpage
= opaque
;
1600 #if defined(DEBUG_SUBPAGE)
1601 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1602 " value %"PRIx64
"\n",
1603 __func__
, subpage
, len
, addr
, value
);
1618 address_space_write(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1621 static bool subpage_accepts(void *opaque
, hwaddr addr
,
1622 unsigned size
, bool is_write
)
1624 subpage_t
*subpage
= opaque
;
1625 #if defined(DEBUG_SUBPAGE)
1626 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx
"\n",
1627 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
1630 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
1634 static const MemoryRegionOps subpage_ops
= {
1635 .read
= subpage_read
,
1636 .write
= subpage_write
,
1637 .valid
.accepts
= subpage_accepts
,
1638 .endianness
= DEVICE_NATIVE_ENDIAN
,
1641 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1646 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
1648 idx
= SUBPAGE_IDX(start
);
1649 eidx
= SUBPAGE_IDX(end
);
1650 #if defined(DEBUG_SUBPAGE)
1651 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
1652 mmio
, start
, end
, idx
, eidx
, memory
);
1654 for (; idx
<= eidx
; idx
++) {
1655 mmio
->sub_section
[idx
] = section
;
1661 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
1665 mmio
= g_malloc0(sizeof(subpage_t
));
1669 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
1670 "subpage", TARGET_PAGE_SIZE
);
1671 mmio
->iomem
.subpage
= true;
1672 #if defined(DEBUG_SUBPAGE)
1673 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
1674 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
1676 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
1681 static uint16_t dummy_section(MemoryRegion
*mr
)
1683 MemoryRegionSection section
= {
1685 .offset_within_address_space
= 0,
1686 .offset_within_region
= 0,
1687 .size
= int128_2_64(),
1690 return phys_section_add(§ion
);
1693 MemoryRegion
*iotlb_to_region(hwaddr index
)
1695 return address_space_memory
.dispatch
->sections
[index
& ~TARGET_PAGE_MASK
].mr
;
1698 static void io_mem_init(void)
1700 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, "rom", UINT64_MAX
);
1701 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
1702 "unassigned", UINT64_MAX
);
1703 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
1704 "notdirty", UINT64_MAX
);
1705 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
1706 "watch", UINT64_MAX
);
1709 static void mem_begin(MemoryListener
*listener
)
1711 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1712 AddressSpaceDispatch
*d
= g_new(AddressSpaceDispatch
, 1);
1714 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .is_leaf
= 0 };
1716 as
->next_dispatch
= d
;
1719 static void mem_commit(MemoryListener
*listener
)
1721 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1722 AddressSpaceDispatch
*cur
= as
->dispatch
;
1723 AddressSpaceDispatch
*next
= as
->next_dispatch
;
1725 next
->nodes
= next_map
.nodes
;
1726 next
->sections
= next_map
.sections
;
1728 as
->dispatch
= next
;
1732 static void core_begin(MemoryListener
*listener
)
1736 prev_map
= g_new(PhysPageMap
, 1);
1737 *prev_map
= next_map
;
1739 memset(&next_map
, 0, sizeof(next_map
));
1740 n
= dummy_section(&io_mem_unassigned
);
1741 assert(n
== PHYS_SECTION_UNASSIGNED
);
1742 n
= dummy_section(&io_mem_notdirty
);
1743 assert(n
== PHYS_SECTION_NOTDIRTY
);
1744 n
= dummy_section(&io_mem_rom
);
1745 assert(n
== PHYS_SECTION_ROM
);
1746 n
= dummy_section(&io_mem_watch
);
1747 assert(n
== PHYS_SECTION_WATCH
);
1750 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1751 * All AddressSpaceDispatch instances have switched to the next map.
1753 static void core_commit(MemoryListener
*listener
)
1755 phys_sections_free(prev_map
);
1758 static void tcg_commit(MemoryListener
*listener
)
1762 /* since each CPU stores ram addresses in its TLB cache, we must
1763 reset the modified entries */
1765 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
1766 CPUArchState
*env
= cpu
->env_ptr
;
1772 static void core_log_global_start(MemoryListener
*listener
)
1774 cpu_physical_memory_set_dirty_tracking(1);
1777 static void core_log_global_stop(MemoryListener
*listener
)
1779 cpu_physical_memory_set_dirty_tracking(0);
1782 static MemoryListener core_memory_listener
= {
1783 .begin
= core_begin
,
1784 .commit
= core_commit
,
1785 .log_global_start
= core_log_global_start
,
1786 .log_global_stop
= core_log_global_stop
,
1790 static MemoryListener tcg_memory_listener
= {
1791 .commit
= tcg_commit
,
1794 void address_space_init_dispatch(AddressSpace
*as
)
1796 as
->dispatch
= NULL
;
1797 as
->dispatch_listener
= (MemoryListener
) {
1799 .commit
= mem_commit
,
1800 .region_add
= mem_add
,
1801 .region_nop
= mem_add
,
1804 memory_listener_register(&as
->dispatch_listener
, as
);
1807 void address_space_destroy_dispatch(AddressSpace
*as
)
1809 AddressSpaceDispatch
*d
= as
->dispatch
;
1811 memory_listener_unregister(&as
->dispatch_listener
);
1813 as
->dispatch
= NULL
;
1816 static void memory_map_init(void)
1818 system_memory
= g_malloc(sizeof(*system_memory
));
1819 memory_region_init(system_memory
, NULL
, "system", INT64_MAX
);
1820 address_space_init(&address_space_memory
, system_memory
, "memory");
1822 system_io
= g_malloc(sizeof(*system_io
));
1823 memory_region_init(system_io
, NULL
, "io", 65536);
1824 address_space_init(&address_space_io
, system_io
, "I/O");
1826 memory_listener_register(&core_memory_listener
, &address_space_memory
);
1827 memory_listener_register(&tcg_memory_listener
, &address_space_memory
);
1830 MemoryRegion
*get_system_memory(void)
1832 return system_memory
;
1835 MemoryRegion
*get_system_io(void)
1840 #endif /* !defined(CONFIG_USER_ONLY) */
1842 /* physical memory access (slow version, mainly for debug) */
1843 #if defined(CONFIG_USER_ONLY)
1844 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
1845 uint8_t *buf
, int len
, int is_write
)
1852 page
= addr
& TARGET_PAGE_MASK
;
1853 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1856 flags
= page_get_flags(page
);
1857 if (!(flags
& PAGE_VALID
))
1860 if (!(flags
& PAGE_WRITE
))
1862 /* XXX: this code should not depend on lock_user */
1863 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
1866 unlock_user(p
, addr
, l
);
1868 if (!(flags
& PAGE_READ
))
1870 /* XXX: this code should not depend on lock_user */
1871 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
1874 unlock_user(p
, addr
, 0);
1885 static void invalidate_and_set_dirty(hwaddr addr
,
1888 if (!cpu_physical_memory_is_dirty(addr
)) {
1889 /* invalidate code */
1890 tb_invalidate_phys_page_range(addr
, addr
+ length
, 0);
1892 cpu_physical_memory_set_dirty_flags(addr
, (0xff & ~CODE_DIRTY_FLAG
));
1894 xen_modified_memory(addr
, length
);
1897 static inline bool memory_access_is_direct(MemoryRegion
*mr
, bool is_write
)
1899 if (memory_region_is_ram(mr
)) {
1900 return !(is_write
&& mr
->readonly
);
1902 if (memory_region_is_romd(mr
)) {
1909 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
1911 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
1913 /* Regions are assumed to support 1-4 byte accesses unless
1914 otherwise specified. */
1915 if (access_size_max
== 0) {
1916 access_size_max
= 4;
1919 /* Bound the maximum access by the alignment of the address. */
1920 if (!mr
->ops
->impl
.unaligned
) {
1921 unsigned align_size_max
= addr
& -addr
;
1922 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
1923 access_size_max
= align_size_max
;
1927 /* Don't attempt accesses larger than the maximum. */
1928 if (l
> access_size_max
) {
1929 l
= access_size_max
;
1935 bool address_space_rw(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
,
1936 int len
, bool is_write
)
1947 mr
= address_space_translate(as
, addr
, &addr1
, &l
, is_write
);
1950 if (!memory_access_is_direct(mr
, is_write
)) {
1951 l
= memory_access_size(mr
, l
, addr1
);
1952 /* XXX: could force current_cpu to NULL to avoid
1956 /* 64 bit write access */
1958 error
|= io_mem_write(mr
, addr1
, val
, 8);
1961 /* 32 bit write access */
1963 error
|= io_mem_write(mr
, addr1
, val
, 4);
1966 /* 16 bit write access */
1968 error
|= io_mem_write(mr
, addr1
, val
, 2);
1971 /* 8 bit write access */
1973 error
|= io_mem_write(mr
, addr1
, val
, 1);
1979 addr1
+= memory_region_get_ram_addr(mr
);
1981 ptr
= qemu_get_ram_ptr(addr1
);
1982 memcpy(ptr
, buf
, l
);
1983 invalidate_and_set_dirty(addr1
, l
);
1986 if (!memory_access_is_direct(mr
, is_write
)) {
1988 l
= memory_access_size(mr
, l
, addr1
);
1991 /* 64 bit read access */
1992 error
|= io_mem_read(mr
, addr1
, &val
, 8);
1996 /* 32 bit read access */
1997 error
|= io_mem_read(mr
, addr1
, &val
, 4);
2001 /* 16 bit read access */
2002 error
|= io_mem_read(mr
, addr1
, &val
, 2);
2006 /* 8 bit read access */
2007 error
|= io_mem_read(mr
, addr1
, &val
, 1);
2015 ptr
= qemu_get_ram_ptr(mr
->ram_addr
+ addr1
);
2016 memcpy(buf
, ptr
, l
);
2027 bool address_space_write(AddressSpace
*as
, hwaddr addr
,
2028 const uint8_t *buf
, int len
)
2030 return address_space_rw(as
, addr
, (uint8_t *)buf
, len
, true);
2033 bool address_space_read(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
, int len
)
2035 return address_space_rw(as
, addr
, buf
, len
, false);
2039 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2040 int len
, int is_write
)
2042 address_space_rw(&address_space_memory
, addr
, buf
, len
, is_write
);
2045 /* used for ROM loading : can write in RAM and ROM */
2046 void cpu_physical_memory_write_rom(hwaddr addr
,
2047 const uint8_t *buf
, int len
)
2056 mr
= address_space_translate(&address_space_memory
,
2057 addr
, &addr1
, &l
, true);
2059 if (!(memory_region_is_ram(mr
) ||
2060 memory_region_is_romd(mr
))) {
2063 addr1
+= memory_region_get_ram_addr(mr
);
2065 ptr
= qemu_get_ram_ptr(addr1
);
2066 memcpy(ptr
, buf
, l
);
2067 invalidate_and_set_dirty(addr1
, l
);
2082 static BounceBuffer bounce
;
2084 typedef struct MapClient
{
2086 void (*callback
)(void *opaque
);
2087 QLIST_ENTRY(MapClient
) link
;
2090 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2091 = QLIST_HEAD_INITIALIZER(map_client_list
);
2093 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
2095 MapClient
*client
= g_malloc(sizeof(*client
));
2097 client
->opaque
= opaque
;
2098 client
->callback
= callback
;
2099 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2103 static void cpu_unregister_map_client(void *_client
)
2105 MapClient
*client
= (MapClient
*)_client
;
2107 QLIST_REMOVE(client
, link
);
2111 static void cpu_notify_map_clients(void)
2115 while (!QLIST_EMPTY(&map_client_list
)) {
2116 client
= QLIST_FIRST(&map_client_list
);
2117 client
->callback(client
->opaque
);
2118 cpu_unregister_map_client(client
);
2122 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2129 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2130 if (!memory_access_is_direct(mr
, is_write
)) {
2131 l
= memory_access_size(mr
, l
, addr
);
2132 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2143 /* Map a physical memory region into a host virtual address.
2144 * May map a subset of the requested range, given by and returned in *plen.
2145 * May return NULL if resources needed to perform the mapping are exhausted.
2146 * Use only for reads OR writes - not for read-modify-write operations.
2147 * Use cpu_register_map_client() to know when retrying the map operation is
2148 * likely to succeed.
2150 void *address_space_map(AddressSpace
*as
,
2157 hwaddr l
, xlat
, base
;
2158 MemoryRegion
*mr
, *this_mr
;
2166 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2167 if (!memory_access_is_direct(mr
, is_write
)) {
2168 if (bounce
.buffer
) {
2171 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
2175 memory_region_ref(mr
);
2178 address_space_read(as
, addr
, bounce
.buffer
, l
);
2182 return bounce
.buffer
;
2186 raddr
= memory_region_get_ram_addr(mr
);
2197 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2198 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2203 memory_region_ref(mr
);
2205 return qemu_ram_ptr_length(raddr
+ base
, plen
);
2208 /* Unmaps a memory region previously mapped by address_space_map().
2209 * Will also mark the memory as dirty if is_write == 1. access_len gives
2210 * the amount of memory that was actually read or written by the caller.
2212 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2213 int is_write
, hwaddr access_len
)
2215 if (buffer
!= bounce
.buffer
) {
2219 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
2222 while (access_len
) {
2224 l
= TARGET_PAGE_SIZE
;
2227 invalidate_and_set_dirty(addr1
, l
);
2232 if (xen_enabled()) {
2233 xen_invalidate_map_cache_entry(buffer
);
2235 memory_region_unref(mr
);
2239 address_space_write(as
, bounce
.addr
, bounce
.buffer
, access_len
);
2241 qemu_vfree(bounce
.buffer
);
2242 bounce
.buffer
= NULL
;
2243 memory_region_unref(bounce
.mr
);
2244 cpu_notify_map_clients();
2247 void *cpu_physical_memory_map(hwaddr addr
,
2251 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2254 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2255 int is_write
, hwaddr access_len
)
2257 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2260 /* warning: addr must be aligned */
2261 static inline uint32_t ldl_phys_internal(hwaddr addr
,
2262 enum device_endian endian
)
2270 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2272 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
2274 io_mem_read(mr
, addr1
, &val
, 4);
2275 #if defined(TARGET_WORDS_BIGENDIAN)
2276 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2280 if (endian
== DEVICE_BIG_ENDIAN
) {
2286 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2290 case DEVICE_LITTLE_ENDIAN
:
2291 val
= ldl_le_p(ptr
);
2293 case DEVICE_BIG_ENDIAN
:
2294 val
= ldl_be_p(ptr
);
2304 uint32_t ldl_phys(hwaddr addr
)
2306 return ldl_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2309 uint32_t ldl_le_phys(hwaddr addr
)
2311 return ldl_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2314 uint32_t ldl_be_phys(hwaddr addr
)
2316 return ldl_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2319 /* warning: addr must be aligned */
2320 static inline uint64_t ldq_phys_internal(hwaddr addr
,
2321 enum device_endian endian
)
2329 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2331 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
2333 io_mem_read(mr
, addr1
, &val
, 8);
2334 #if defined(TARGET_WORDS_BIGENDIAN)
2335 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2339 if (endian
== DEVICE_BIG_ENDIAN
) {
2345 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2349 case DEVICE_LITTLE_ENDIAN
:
2350 val
= ldq_le_p(ptr
);
2352 case DEVICE_BIG_ENDIAN
:
2353 val
= ldq_be_p(ptr
);
2363 uint64_t ldq_phys(hwaddr addr
)
2365 return ldq_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2368 uint64_t ldq_le_phys(hwaddr addr
)
2370 return ldq_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2373 uint64_t ldq_be_phys(hwaddr addr
)
2375 return ldq_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2379 uint32_t ldub_phys(hwaddr addr
)
2382 cpu_physical_memory_read(addr
, &val
, 1);
2386 /* warning: addr must be aligned */
2387 static inline uint32_t lduw_phys_internal(hwaddr addr
,
2388 enum device_endian endian
)
2396 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2398 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
2400 io_mem_read(mr
, addr1
, &val
, 2);
2401 #if defined(TARGET_WORDS_BIGENDIAN)
2402 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2406 if (endian
== DEVICE_BIG_ENDIAN
) {
2412 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2416 case DEVICE_LITTLE_ENDIAN
:
2417 val
= lduw_le_p(ptr
);
2419 case DEVICE_BIG_ENDIAN
:
2420 val
= lduw_be_p(ptr
);
2430 uint32_t lduw_phys(hwaddr addr
)
2432 return lduw_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2435 uint32_t lduw_le_phys(hwaddr addr
)
2437 return lduw_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2440 uint32_t lduw_be_phys(hwaddr addr
)
2442 return lduw_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2445 /* warning: addr must be aligned. The ram page is not masked as dirty
2446 and the code inside is not invalidated. It is useful if the dirty
2447 bits are used to track modified PTEs */
2448 void stl_phys_notdirty(hwaddr addr
, uint32_t val
)
2455 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2457 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2458 io_mem_write(mr
, addr1
, val
, 4);
2460 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2461 ptr
= qemu_get_ram_ptr(addr1
);
2464 if (unlikely(in_migration
)) {
2465 if (!cpu_physical_memory_is_dirty(addr1
)) {
2466 /* invalidate code */
2467 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2469 cpu_physical_memory_set_dirty_flags(
2470 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
2476 /* warning: addr must be aligned */
2477 static inline void stl_phys_internal(hwaddr addr
, uint32_t val
,
2478 enum device_endian endian
)
2485 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2487 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2488 #if defined(TARGET_WORDS_BIGENDIAN)
2489 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2493 if (endian
== DEVICE_BIG_ENDIAN
) {
2497 io_mem_write(mr
, addr1
, val
, 4);
2500 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2501 ptr
= qemu_get_ram_ptr(addr1
);
2503 case DEVICE_LITTLE_ENDIAN
:
2506 case DEVICE_BIG_ENDIAN
:
2513 invalidate_and_set_dirty(addr1
, 4);
2517 void stl_phys(hwaddr addr
, uint32_t val
)
2519 stl_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2522 void stl_le_phys(hwaddr addr
, uint32_t val
)
2524 stl_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2527 void stl_be_phys(hwaddr addr
, uint32_t val
)
2529 stl_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2533 void stb_phys(hwaddr addr
, uint32_t val
)
2536 cpu_physical_memory_write(addr
, &v
, 1);
2539 /* warning: addr must be aligned */
2540 static inline void stw_phys_internal(hwaddr addr
, uint32_t val
,
2541 enum device_endian endian
)
2548 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2550 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
2551 #if defined(TARGET_WORDS_BIGENDIAN)
2552 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2556 if (endian
== DEVICE_BIG_ENDIAN
) {
2560 io_mem_write(mr
, addr1
, val
, 2);
2563 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2564 ptr
= qemu_get_ram_ptr(addr1
);
2566 case DEVICE_LITTLE_ENDIAN
:
2569 case DEVICE_BIG_ENDIAN
:
2576 invalidate_and_set_dirty(addr1
, 2);
2580 void stw_phys(hwaddr addr
, uint32_t val
)
2582 stw_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2585 void stw_le_phys(hwaddr addr
, uint32_t val
)
2587 stw_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2590 void stw_be_phys(hwaddr addr
, uint32_t val
)
2592 stw_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2596 void stq_phys(hwaddr addr
, uint64_t val
)
2599 cpu_physical_memory_write(addr
, &val
, 8);
2602 void stq_le_phys(hwaddr addr
, uint64_t val
)
2604 val
= cpu_to_le64(val
);
2605 cpu_physical_memory_write(addr
, &val
, 8);
2608 void stq_be_phys(hwaddr addr
, uint64_t val
)
2610 val
= cpu_to_be64(val
);
2611 cpu_physical_memory_write(addr
, &val
, 8);
2614 /* virtual memory access for debug (includes writing to ROM) */
2615 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2616 uint8_t *buf
, int len
, int is_write
)
2623 page
= addr
& TARGET_PAGE_MASK
;
2624 phys_addr
= cpu_get_phys_page_debug(cpu
, page
);
2625 /* if no physical page mapped, return an error */
2626 if (phys_addr
== -1)
2628 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2631 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
2633 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
2635 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
2644 #if !defined(CONFIG_USER_ONLY)
2647 * A helper function for the _utterly broken_ virtio device model to find out if
2648 * it's running on a big endian machine. Don't do this at home kids!
2650 bool virtio_is_big_endian(void);
2651 bool virtio_is_big_endian(void)
2653 #if defined(TARGET_WORDS_BIGENDIAN)
2662 #ifndef CONFIG_USER_ONLY
2663 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
2668 mr
= address_space_translate(&address_space_memory
,
2669 phys_addr
, &phys_addr
, &l
, false);
2671 return !(memory_region_is_ram(mr
) ||
2672 memory_region_is_romd(mr
));
2675 void qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
2679 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
2680 func(block
->host
, block
->offset
, block
->length
, opaque
);