ppc/ppc405: QOM'ify EBC
[qemu/kevin.git] / block / qed.c
blob40943e679b41f8c629a2c308b0956d29db97965d
1 /*
2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "qemu/memalign.h"
24 #include "trace.h"
25 #include "qed.h"
26 #include "sysemu/block-backend.h"
27 #include "qapi/qmp/qdict.h"
28 #include "qapi/qobject-input-visitor.h"
29 #include "qapi/qapi-visit-block-core.h"
31 static QemuOptsList qed_create_opts;
33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
34 const char *filename)
36 const QEDHeader *header = (const QEDHeader *)buf;
38 if (buf_size < sizeof(*header)) {
39 return 0;
41 if (le32_to_cpu(header->magic) != QED_MAGIC) {
42 return 0;
44 return 100;
47 /**
48 * Check whether an image format is raw
50 * @fmt: Backing file format, may be NULL
52 static bool qed_fmt_is_raw(const char *fmt)
54 return fmt && strcmp(fmt, "raw") == 0;
57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
59 cpu->magic = le32_to_cpu(le->magic);
60 cpu->cluster_size = le32_to_cpu(le->cluster_size);
61 cpu->table_size = le32_to_cpu(le->table_size);
62 cpu->header_size = le32_to_cpu(le->header_size);
63 cpu->features = le64_to_cpu(le->features);
64 cpu->compat_features = le64_to_cpu(le->compat_features);
65 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
66 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
67 cpu->image_size = le64_to_cpu(le->image_size);
68 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
69 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
74 le->magic = cpu_to_le32(cpu->magic);
75 le->cluster_size = cpu_to_le32(cpu->cluster_size);
76 le->table_size = cpu_to_le32(cpu->table_size);
77 le->header_size = cpu_to_le32(cpu->header_size);
78 le->features = cpu_to_le64(cpu->features);
79 le->compat_features = cpu_to_le64(cpu->compat_features);
80 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
81 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
82 le->image_size = cpu_to_le64(cpu->image_size);
83 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
84 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
87 int qed_write_header_sync(BDRVQEDState *s)
89 QEDHeader le;
91 qed_header_cpu_to_le(&s->header, &le);
92 return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
95 /**
96 * Update header in-place (does not rewrite backing filename or other strings)
98 * This function only updates known header fields in-place and does not affect
99 * extra data after the QED header.
101 * No new allocating reqs can start while this function runs.
103 static int coroutine_fn qed_write_header(BDRVQEDState *s)
105 /* We must write full sectors for O_DIRECT but cannot necessarily generate
106 * the data following the header if an unrecognized compat feature is
107 * active. Therefore, first read the sectors containing the header, update
108 * them, and write back.
111 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
112 size_t len = nsectors * BDRV_SECTOR_SIZE;
113 uint8_t *buf;
114 int ret;
116 assert(s->allocating_acb || s->allocating_write_reqs_plugged);
118 buf = qemu_blockalign(s->bs, len);
120 ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
121 if (ret < 0) {
122 goto out;
125 /* Update header */
126 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
128 ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0);
129 if (ret < 0) {
130 goto out;
133 ret = 0;
134 out:
135 qemu_vfree(buf);
136 return ret;
139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
141 uint64_t table_entries;
142 uint64_t l2_size;
144 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
145 l2_size = table_entries * cluster_size;
147 return l2_size * table_entries;
150 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
152 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
153 cluster_size > QED_MAX_CLUSTER_SIZE) {
154 return false;
156 if (cluster_size & (cluster_size - 1)) {
157 return false; /* not power of 2 */
159 return true;
162 static bool qed_is_table_size_valid(uint32_t table_size)
164 if (table_size < QED_MIN_TABLE_SIZE ||
165 table_size > QED_MAX_TABLE_SIZE) {
166 return false;
168 if (table_size & (table_size - 1)) {
169 return false; /* not power of 2 */
171 return true;
174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
175 uint32_t table_size)
177 if (image_size % BDRV_SECTOR_SIZE != 0) {
178 return false; /* not multiple of sector size */
180 if (image_size > qed_max_image_size(cluster_size, table_size)) {
181 return false; /* image is too large */
183 return true;
187 * Read a string of known length from the image file
189 * @file: Image file
190 * @offset: File offset to start of string, in bytes
191 * @n: String length in bytes
192 * @buf: Destination buffer
193 * @buflen: Destination buffer length in bytes
194 * @ret: 0 on success, -errno on failure
196 * The string is NUL-terminated.
198 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
199 char *buf, size_t buflen)
201 int ret;
202 if (n >= buflen) {
203 return -EINVAL;
205 ret = bdrv_pread(file, offset, n, buf, 0);
206 if (ret < 0) {
207 return ret;
209 buf[n] = '\0';
210 return 0;
214 * Allocate new clusters
216 * @s: QED state
217 * @n: Number of contiguous clusters to allocate
218 * @ret: Offset of first allocated cluster
220 * This function only produces the offset where the new clusters should be
221 * written. It updates BDRVQEDState but does not make any changes to the image
222 * file.
224 * Called with table_lock held.
226 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
228 uint64_t offset = s->file_size;
229 s->file_size += n * s->header.cluster_size;
230 return offset;
233 QEDTable *qed_alloc_table(BDRVQEDState *s)
235 /* Honor O_DIRECT memory alignment requirements */
236 return qemu_blockalign(s->bs,
237 s->header.cluster_size * s->header.table_size);
241 * Allocate a new zeroed L2 table
243 * Called with table_lock held.
245 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
247 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
249 l2_table->table = qed_alloc_table(s);
250 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
252 memset(l2_table->table->offsets, 0,
253 s->header.cluster_size * s->header.table_size);
254 return l2_table;
257 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
259 qemu_co_mutex_lock(&s->table_lock);
261 /* No reentrancy is allowed. */
262 assert(!s->allocating_write_reqs_plugged);
263 if (s->allocating_acb != NULL) {
264 /* Another allocating write came concurrently. This cannot happen
265 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
267 qemu_co_mutex_unlock(&s->table_lock);
268 return false;
271 s->allocating_write_reqs_plugged = true;
272 qemu_co_mutex_unlock(&s->table_lock);
273 return true;
276 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
278 qemu_co_mutex_lock(&s->table_lock);
279 assert(s->allocating_write_reqs_plugged);
280 s->allocating_write_reqs_plugged = false;
281 qemu_co_queue_next(&s->allocating_write_reqs);
282 qemu_co_mutex_unlock(&s->table_lock);
285 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
287 BDRVQEDState *s = opaque;
288 int ret;
290 trace_qed_need_check_timer_cb(s);
292 if (!qed_plug_allocating_write_reqs(s)) {
293 return;
296 /* Ensure writes are on disk before clearing flag */
297 ret = bdrv_co_flush(s->bs->file->bs);
298 if (ret < 0) {
299 qed_unplug_allocating_write_reqs(s);
300 return;
303 s->header.features &= ~QED_F_NEED_CHECK;
304 ret = qed_write_header(s);
305 (void) ret;
307 qed_unplug_allocating_write_reqs(s);
309 ret = bdrv_co_flush(s->bs);
310 (void) ret;
313 static void qed_need_check_timer_cb(void *opaque)
315 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
316 qemu_coroutine_enter(co);
319 static void qed_start_need_check_timer(BDRVQEDState *s)
321 trace_qed_start_need_check_timer(s);
323 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
324 * migration.
326 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
327 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
330 /* It's okay to call this multiple times or when no timer is started */
331 static void qed_cancel_need_check_timer(BDRVQEDState *s)
333 trace_qed_cancel_need_check_timer(s);
334 timer_del(s->need_check_timer);
337 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
339 BDRVQEDState *s = bs->opaque;
341 qed_cancel_need_check_timer(s);
342 timer_free(s->need_check_timer);
345 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
346 AioContext *new_context)
348 BDRVQEDState *s = bs->opaque;
350 s->need_check_timer = aio_timer_new(new_context,
351 QEMU_CLOCK_VIRTUAL, SCALE_NS,
352 qed_need_check_timer_cb, s);
353 if (s->header.features & QED_F_NEED_CHECK) {
354 qed_start_need_check_timer(s);
358 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
360 BDRVQEDState *s = bs->opaque;
362 /* Fire the timer immediately in order to start doing I/O as soon as the
363 * header is flushed.
365 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
366 qed_cancel_need_check_timer(s);
367 qed_need_check_timer_entry(s);
371 static void bdrv_qed_init_state(BlockDriverState *bs)
373 BDRVQEDState *s = bs->opaque;
375 memset(s, 0, sizeof(BDRVQEDState));
376 s->bs = bs;
377 qemu_co_mutex_init(&s->table_lock);
378 qemu_co_queue_init(&s->allocating_write_reqs);
381 /* Called with table_lock held. */
382 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
383 int flags, Error **errp)
385 BDRVQEDState *s = bs->opaque;
386 QEDHeader le_header;
387 int64_t file_size;
388 int ret;
390 ret = bdrv_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
391 if (ret < 0) {
392 error_setg(errp, "Failed to read QED header");
393 return ret;
395 qed_header_le_to_cpu(&le_header, &s->header);
397 if (s->header.magic != QED_MAGIC) {
398 error_setg(errp, "Image not in QED format");
399 return -EINVAL;
401 if (s->header.features & ~QED_FEATURE_MASK) {
402 /* image uses unsupported feature bits */
403 error_setg(errp, "Unsupported QED features: %" PRIx64,
404 s->header.features & ~QED_FEATURE_MASK);
405 return -ENOTSUP;
407 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
408 error_setg(errp, "QED cluster size is invalid");
409 return -EINVAL;
412 /* Round down file size to the last cluster */
413 file_size = bdrv_getlength(bs->file->bs);
414 if (file_size < 0) {
415 error_setg(errp, "Failed to get file length");
416 return file_size;
418 s->file_size = qed_start_of_cluster(s, file_size);
420 if (!qed_is_table_size_valid(s->header.table_size)) {
421 error_setg(errp, "QED table size is invalid");
422 return -EINVAL;
424 if (!qed_is_image_size_valid(s->header.image_size,
425 s->header.cluster_size,
426 s->header.table_size)) {
427 error_setg(errp, "QED image size is invalid");
428 return -EINVAL;
430 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
431 error_setg(errp, "QED table offset is invalid");
432 return -EINVAL;
435 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
436 sizeof(uint64_t);
437 s->l2_shift = ctz32(s->header.cluster_size);
438 s->l2_mask = s->table_nelems - 1;
439 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
441 /* Header size calculation must not overflow uint32_t */
442 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
443 error_setg(errp, "QED header size is too large");
444 return -EINVAL;
447 if ((s->header.features & QED_F_BACKING_FILE)) {
448 if ((uint64_t)s->header.backing_filename_offset +
449 s->header.backing_filename_size >
450 s->header.cluster_size * s->header.header_size) {
451 error_setg(errp, "QED backing filename offset is invalid");
452 return -EINVAL;
455 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
456 s->header.backing_filename_size,
457 bs->auto_backing_file,
458 sizeof(bs->auto_backing_file));
459 if (ret < 0) {
460 error_setg(errp, "Failed to read backing filename");
461 return ret;
463 pstrcpy(bs->backing_file, sizeof(bs->backing_file),
464 bs->auto_backing_file);
466 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
467 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
471 /* Reset unknown autoclear feature bits. This is a backwards
472 * compatibility mechanism that allows images to be opened by older
473 * programs, which "knock out" unknown feature bits. When an image is
474 * opened by a newer program again it can detect that the autoclear
475 * feature is no longer valid.
477 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
478 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
479 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
481 ret = qed_write_header_sync(s);
482 if (ret) {
483 error_setg(errp, "Failed to update header");
484 return ret;
487 /* From here on only known autoclear feature bits are valid */
488 bdrv_flush(bs->file->bs);
491 s->l1_table = qed_alloc_table(s);
492 qed_init_l2_cache(&s->l2_cache);
494 ret = qed_read_l1_table_sync(s);
495 if (ret) {
496 error_setg(errp, "Failed to read L1 table");
497 goto out;
500 /* If image was not closed cleanly, check consistency */
501 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
502 /* Read-only images cannot be fixed. There is no risk of corruption
503 * since write operations are not possible. Therefore, allow
504 * potentially inconsistent images to be opened read-only. This can
505 * aid data recovery from an otherwise inconsistent image.
507 if (!bdrv_is_read_only(bs->file->bs) &&
508 !(flags & BDRV_O_INACTIVE)) {
509 BdrvCheckResult result = {0};
511 ret = qed_check(s, &result, true);
512 if (ret) {
513 error_setg(errp, "Image corrupted");
514 goto out;
519 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
521 out:
522 if (ret) {
523 qed_free_l2_cache(&s->l2_cache);
524 qemu_vfree(s->l1_table);
526 return ret;
529 typedef struct QEDOpenCo {
530 BlockDriverState *bs;
531 QDict *options;
532 int flags;
533 Error **errp;
534 int ret;
535 } QEDOpenCo;
537 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
539 QEDOpenCo *qoc = opaque;
540 BDRVQEDState *s = qoc->bs->opaque;
542 qemu_co_mutex_lock(&s->table_lock);
543 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
544 qemu_co_mutex_unlock(&s->table_lock);
547 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
548 Error **errp)
550 QEDOpenCo qoc = {
551 .bs = bs,
552 .options = options,
553 .flags = flags,
554 .errp = errp,
555 .ret = -EINPROGRESS
558 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_of_bds,
559 BDRV_CHILD_IMAGE, false, errp);
560 if (!bs->file) {
561 return -EINVAL;
564 bdrv_qed_init_state(bs);
565 if (qemu_in_coroutine()) {
566 bdrv_qed_open_entry(&qoc);
567 } else {
568 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
569 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
570 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
572 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
573 return qoc.ret;
576 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
578 BDRVQEDState *s = bs->opaque;
580 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
581 bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
584 /* We have nothing to do for QED reopen, stubs just return
585 * success */
586 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
587 BlockReopenQueue *queue, Error **errp)
589 return 0;
592 static void bdrv_qed_close(BlockDriverState *bs)
594 BDRVQEDState *s = bs->opaque;
596 bdrv_qed_detach_aio_context(bs);
598 /* Ensure writes reach stable storage */
599 bdrv_flush(bs->file->bs);
601 /* Clean shutdown, no check required on next open */
602 if (s->header.features & QED_F_NEED_CHECK) {
603 s->header.features &= ~QED_F_NEED_CHECK;
604 qed_write_header_sync(s);
607 qed_free_l2_cache(&s->l2_cache);
608 qemu_vfree(s->l1_table);
611 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
612 Error **errp)
614 BlockdevCreateOptionsQed *qed_opts;
615 BlockBackend *blk = NULL;
616 BlockDriverState *bs = NULL;
618 QEDHeader header;
619 QEDHeader le_header;
620 uint8_t *l1_table = NULL;
621 size_t l1_size;
622 int ret = 0;
624 assert(opts->driver == BLOCKDEV_DRIVER_QED);
625 qed_opts = &opts->u.qed;
627 /* Validate options and set default values */
628 if (!qed_opts->has_cluster_size) {
629 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
631 if (!qed_opts->has_table_size) {
632 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
635 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
636 error_setg(errp, "QED cluster size must be within range [%u, %u] "
637 "and power of 2",
638 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
639 return -EINVAL;
641 if (!qed_is_table_size_valid(qed_opts->table_size)) {
642 error_setg(errp, "QED table size must be within range [%u, %u] "
643 "and power of 2",
644 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
645 return -EINVAL;
647 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
648 qed_opts->table_size))
650 error_setg(errp, "QED image size must be a non-zero multiple of "
651 "cluster size and less than %" PRIu64 " bytes",
652 qed_max_image_size(qed_opts->cluster_size,
653 qed_opts->table_size));
654 return -EINVAL;
657 /* Create BlockBackend to write to the image */
658 bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
659 if (bs == NULL) {
660 return -EIO;
663 blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
664 errp);
665 if (!blk) {
666 ret = -EPERM;
667 goto out;
669 blk_set_allow_write_beyond_eof(blk, true);
671 /* Prepare image format */
672 header = (QEDHeader) {
673 .magic = QED_MAGIC,
674 .cluster_size = qed_opts->cluster_size,
675 .table_size = qed_opts->table_size,
676 .header_size = 1,
677 .features = 0,
678 .compat_features = 0,
679 .l1_table_offset = qed_opts->cluster_size,
680 .image_size = qed_opts->size,
683 l1_size = header.cluster_size * header.table_size;
686 * The QED format associates file length with allocation status,
687 * so a new file (which is empty) must have a length of 0.
689 ret = blk_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
690 if (ret < 0) {
691 goto out;
694 if (qed_opts->has_backing_file) {
695 header.features |= QED_F_BACKING_FILE;
696 header.backing_filename_offset = sizeof(le_header);
697 header.backing_filename_size = strlen(qed_opts->backing_file);
699 if (qed_opts->has_backing_fmt) {
700 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
701 if (qed_fmt_is_raw(backing_fmt)) {
702 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
707 qed_header_cpu_to_le(&header, &le_header);
708 ret = blk_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
709 if (ret < 0) {
710 goto out;
712 ret = blk_pwrite(blk, sizeof(le_header), header.backing_filename_size,
713 qed_opts->backing_file, 0);
714 if (ret < 0) {
715 goto out;
718 l1_table = g_malloc0(l1_size);
719 ret = blk_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
720 if (ret < 0) {
721 goto out;
724 ret = 0; /* success */
725 out:
726 g_free(l1_table);
727 blk_unref(blk);
728 bdrv_unref(bs);
729 return ret;
732 static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv,
733 const char *filename,
734 QemuOpts *opts,
735 Error **errp)
737 BlockdevCreateOptions *create_options = NULL;
738 QDict *qdict;
739 Visitor *v;
740 BlockDriverState *bs = NULL;
741 int ret;
743 static const QDictRenames opt_renames[] = {
744 { BLOCK_OPT_BACKING_FILE, "backing-file" },
745 { BLOCK_OPT_BACKING_FMT, "backing-fmt" },
746 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" },
747 { BLOCK_OPT_TABLE_SIZE, "table-size" },
748 { NULL, NULL },
751 /* Parse options and convert legacy syntax */
752 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
754 if (!qdict_rename_keys(qdict, opt_renames, errp)) {
755 ret = -EINVAL;
756 goto fail;
759 /* Create and open the file (protocol layer) */
760 ret = bdrv_create_file(filename, opts, errp);
761 if (ret < 0) {
762 goto fail;
765 bs = bdrv_open(filename, NULL, NULL,
766 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
767 if (bs == NULL) {
768 ret = -EIO;
769 goto fail;
772 /* Now get the QAPI type BlockdevCreateOptions */
773 qdict_put_str(qdict, "driver", "qed");
774 qdict_put_str(qdict, "file", bs->node_name);
776 v = qobject_input_visitor_new_flat_confused(qdict, errp);
777 if (!v) {
778 ret = -EINVAL;
779 goto fail;
782 visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
783 visit_free(v);
784 if (!create_options) {
785 ret = -EINVAL;
786 goto fail;
789 /* Silently round up size */
790 assert(create_options->driver == BLOCKDEV_DRIVER_QED);
791 create_options->u.qed.size =
792 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
794 /* Create the qed image (format layer) */
795 ret = bdrv_qed_co_create(create_options, errp);
797 fail:
798 qobject_unref(qdict);
799 bdrv_unref(bs);
800 qapi_free_BlockdevCreateOptions(create_options);
801 return ret;
804 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
805 bool want_zero,
806 int64_t pos, int64_t bytes,
807 int64_t *pnum, int64_t *map,
808 BlockDriverState **file)
810 BDRVQEDState *s = bs->opaque;
811 size_t len = MIN(bytes, SIZE_MAX);
812 int status;
813 QEDRequest request = { .l2_table = NULL };
814 uint64_t offset;
815 int ret;
817 qemu_co_mutex_lock(&s->table_lock);
818 ret = qed_find_cluster(s, &request, pos, &len, &offset);
820 *pnum = len;
821 switch (ret) {
822 case QED_CLUSTER_FOUND:
823 *map = offset | qed_offset_into_cluster(s, pos);
824 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
825 *file = bs->file->bs;
826 break;
827 case QED_CLUSTER_ZERO:
828 status = BDRV_BLOCK_ZERO;
829 break;
830 case QED_CLUSTER_L2:
831 case QED_CLUSTER_L1:
832 status = 0;
833 break;
834 default:
835 assert(ret < 0);
836 status = ret;
837 break;
840 qed_unref_l2_cache_entry(request.l2_table);
841 qemu_co_mutex_unlock(&s->table_lock);
843 return status;
846 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
848 return acb->bs->opaque;
852 * Read from the backing file or zero-fill if no backing file
854 * @s: QED state
855 * @pos: Byte position in device
856 * @qiov: Destination I/O vector
858 * This function reads qiov->size bytes starting at pos from the backing file.
859 * If there is no backing file then zeroes are read.
861 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
862 QEMUIOVector *qiov)
864 if (s->bs->backing) {
865 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
866 return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
868 qemu_iovec_memset(qiov, 0, 0, qiov->size);
869 return 0;
873 * Copy data from backing file into the image
875 * @s: QED state
876 * @pos: Byte position in device
877 * @len: Number of bytes
878 * @offset: Byte offset in image file
880 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
881 uint64_t pos, uint64_t len,
882 uint64_t offset)
884 QEMUIOVector qiov;
885 int ret;
887 /* Skip copy entirely if there is no work to do */
888 if (len == 0) {
889 return 0;
892 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
894 ret = qed_read_backing_file(s, pos, &qiov);
896 if (ret) {
897 goto out;
900 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
901 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
902 if (ret < 0) {
903 goto out;
905 ret = 0;
906 out:
907 qemu_vfree(qemu_iovec_buf(&qiov));
908 return ret;
912 * Link one or more contiguous clusters into a table
914 * @s: QED state
915 * @table: L2 table
916 * @index: First cluster index
917 * @n: Number of contiguous clusters
918 * @cluster: First cluster offset
920 * The cluster offset may be an allocated byte offset in the image file, the
921 * zero cluster marker, or the unallocated cluster marker.
923 * Called with table_lock held.
925 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
926 int index, unsigned int n,
927 uint64_t cluster)
929 int i;
930 for (i = index; i < index + n; i++) {
931 table->offsets[i] = cluster;
932 if (!qed_offset_is_unalloc_cluster(cluster) &&
933 !qed_offset_is_zero_cluster(cluster)) {
934 cluster += s->header.cluster_size;
939 /* Called with table_lock held. */
940 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
942 BDRVQEDState *s = acb_to_s(acb);
944 /* Free resources */
945 qemu_iovec_destroy(&acb->cur_qiov);
946 qed_unref_l2_cache_entry(acb->request.l2_table);
948 /* Free the buffer we may have allocated for zero writes */
949 if (acb->flags & QED_AIOCB_ZERO) {
950 qemu_vfree(acb->qiov->iov[0].iov_base);
951 acb->qiov->iov[0].iov_base = NULL;
954 /* Start next allocating write request waiting behind this one. Note that
955 * requests enqueue themselves when they first hit an unallocated cluster
956 * but they wait until the entire request is finished before waking up the
957 * next request in the queue. This ensures that we don't cycle through
958 * requests multiple times but rather finish one at a time completely.
960 if (acb == s->allocating_acb) {
961 s->allocating_acb = NULL;
962 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
963 qemu_co_queue_next(&s->allocating_write_reqs);
964 } else if (s->header.features & QED_F_NEED_CHECK) {
965 qed_start_need_check_timer(s);
971 * Update L1 table with new L2 table offset and write it out
973 * Called with table_lock held.
975 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
977 BDRVQEDState *s = acb_to_s(acb);
978 CachedL2Table *l2_table = acb->request.l2_table;
979 uint64_t l2_offset = l2_table->offset;
980 int index, ret;
982 index = qed_l1_index(s, acb->cur_pos);
983 s->l1_table->offsets[index] = l2_table->offset;
985 ret = qed_write_l1_table(s, index, 1);
987 /* Commit the current L2 table to the cache */
988 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
990 /* This is guaranteed to succeed because we just committed the entry to the
991 * cache.
993 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
994 assert(acb->request.l2_table != NULL);
996 return ret;
1001 * Update L2 table with new cluster offsets and write them out
1003 * Called with table_lock held.
1005 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1007 BDRVQEDState *s = acb_to_s(acb);
1008 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1009 int index, ret;
1011 if (need_alloc) {
1012 qed_unref_l2_cache_entry(acb->request.l2_table);
1013 acb->request.l2_table = qed_new_l2_table(s);
1016 index = qed_l2_index(s, acb->cur_pos);
1017 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1018 offset);
1020 if (need_alloc) {
1021 /* Write out the whole new L2 table */
1022 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1023 if (ret) {
1024 return ret;
1026 return qed_aio_write_l1_update(acb);
1027 } else {
1028 /* Write out only the updated part of the L2 table */
1029 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1030 false);
1031 if (ret) {
1032 return ret;
1035 return 0;
1039 * Write data to the image file
1041 * Called with table_lock *not* held.
1043 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1045 BDRVQEDState *s = acb_to_s(acb);
1046 uint64_t offset = acb->cur_cluster +
1047 qed_offset_into_cluster(s, acb->cur_pos);
1049 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1051 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1052 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1053 &acb->cur_qiov, 0);
1057 * Populate untouched regions of new data cluster
1059 * Called with table_lock held.
1061 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1063 BDRVQEDState *s = acb_to_s(acb);
1064 uint64_t start, len, offset;
1065 int ret;
1067 qemu_co_mutex_unlock(&s->table_lock);
1069 /* Populate front untouched region of new data cluster */
1070 start = qed_start_of_cluster(s, acb->cur_pos);
1071 len = qed_offset_into_cluster(s, acb->cur_pos);
1073 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1074 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1075 if (ret < 0) {
1076 goto out;
1079 /* Populate back untouched region of new data cluster */
1080 start = acb->cur_pos + acb->cur_qiov.size;
1081 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1082 offset = acb->cur_cluster +
1083 qed_offset_into_cluster(s, acb->cur_pos) +
1084 acb->cur_qiov.size;
1086 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1087 ret = qed_copy_from_backing_file(s, start, len, offset);
1088 if (ret < 0) {
1089 goto out;
1092 ret = qed_aio_write_main(acb);
1093 if (ret < 0) {
1094 goto out;
1097 if (s->bs->backing) {
1099 * Flush new data clusters before updating the L2 table
1101 * This flush is necessary when a backing file is in use. A crash
1102 * during an allocating write could result in empty clusters in the
1103 * image. If the write only touched a subregion of the cluster,
1104 * then backing image sectors have been lost in the untouched
1105 * region. The solution is to flush after writing a new data
1106 * cluster and before updating the L2 table.
1108 ret = bdrv_co_flush(s->bs->file->bs);
1111 out:
1112 qemu_co_mutex_lock(&s->table_lock);
1113 return ret;
1117 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1119 static bool qed_should_set_need_check(BDRVQEDState *s)
1121 /* The flush before L2 update path ensures consistency */
1122 if (s->bs->backing) {
1123 return false;
1126 return !(s->header.features & QED_F_NEED_CHECK);
1130 * Write new data cluster
1132 * @acb: Write request
1133 * @len: Length in bytes
1135 * This path is taken when writing to previously unallocated clusters.
1137 * Called with table_lock held.
1139 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1141 BDRVQEDState *s = acb_to_s(acb);
1142 int ret;
1144 /* Cancel timer when the first allocating request comes in */
1145 if (s->allocating_acb == NULL) {
1146 qed_cancel_need_check_timer(s);
1149 /* Freeze this request if another allocating write is in progress */
1150 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1151 if (s->allocating_acb != NULL) {
1152 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1153 assert(s->allocating_acb == NULL);
1155 s->allocating_acb = acb;
1156 return -EAGAIN; /* start over with looking up table entries */
1159 acb->cur_nclusters = qed_bytes_to_clusters(s,
1160 qed_offset_into_cluster(s, acb->cur_pos) + len);
1161 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1163 if (acb->flags & QED_AIOCB_ZERO) {
1164 /* Skip ahead if the clusters are already zero */
1165 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1166 return 0;
1168 acb->cur_cluster = 1;
1169 } else {
1170 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1173 if (qed_should_set_need_check(s)) {
1174 s->header.features |= QED_F_NEED_CHECK;
1175 ret = qed_write_header(s);
1176 if (ret < 0) {
1177 return ret;
1181 if (!(acb->flags & QED_AIOCB_ZERO)) {
1182 ret = qed_aio_write_cow(acb);
1183 if (ret < 0) {
1184 return ret;
1188 return qed_aio_write_l2_update(acb, acb->cur_cluster);
1192 * Write data cluster in place
1194 * @acb: Write request
1195 * @offset: Cluster offset in bytes
1196 * @len: Length in bytes
1198 * This path is taken when writing to already allocated clusters.
1200 * Called with table_lock held.
1202 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1203 size_t len)
1205 BDRVQEDState *s = acb_to_s(acb);
1206 int r;
1208 qemu_co_mutex_unlock(&s->table_lock);
1210 /* Allocate buffer for zero writes */
1211 if (acb->flags & QED_AIOCB_ZERO) {
1212 struct iovec *iov = acb->qiov->iov;
1214 if (!iov->iov_base) {
1215 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1216 if (iov->iov_base == NULL) {
1217 r = -ENOMEM;
1218 goto out;
1220 memset(iov->iov_base, 0, iov->iov_len);
1224 /* Calculate the I/O vector */
1225 acb->cur_cluster = offset;
1226 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1228 /* Do the actual write. */
1229 r = qed_aio_write_main(acb);
1230 out:
1231 qemu_co_mutex_lock(&s->table_lock);
1232 return r;
1236 * Write data cluster
1238 * @opaque: Write request
1239 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1240 * @offset: Cluster offset in bytes
1241 * @len: Length in bytes
1243 * Called with table_lock held.
1245 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1246 uint64_t offset, size_t len)
1248 QEDAIOCB *acb = opaque;
1250 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1252 acb->find_cluster_ret = ret;
1254 switch (ret) {
1255 case QED_CLUSTER_FOUND:
1256 return qed_aio_write_inplace(acb, offset, len);
1258 case QED_CLUSTER_L2:
1259 case QED_CLUSTER_L1:
1260 case QED_CLUSTER_ZERO:
1261 return qed_aio_write_alloc(acb, len);
1263 default:
1264 g_assert_not_reached();
1269 * Read data cluster
1271 * @opaque: Read request
1272 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1273 * @offset: Cluster offset in bytes
1274 * @len: Length in bytes
1276 * Called with table_lock held.
1278 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1279 uint64_t offset, size_t len)
1281 QEDAIOCB *acb = opaque;
1282 BDRVQEDState *s = acb_to_s(acb);
1283 BlockDriverState *bs = acb->bs;
1284 int r;
1286 qemu_co_mutex_unlock(&s->table_lock);
1288 /* Adjust offset into cluster */
1289 offset += qed_offset_into_cluster(s, acb->cur_pos);
1291 trace_qed_aio_read_data(s, acb, ret, offset, len);
1293 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1295 /* Handle zero cluster and backing file reads, otherwise read
1296 * data cluster directly.
1298 if (ret == QED_CLUSTER_ZERO) {
1299 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1300 r = 0;
1301 } else if (ret != QED_CLUSTER_FOUND) {
1302 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1303 } else {
1304 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1305 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1306 &acb->cur_qiov, 0);
1309 qemu_co_mutex_lock(&s->table_lock);
1310 return r;
1314 * Begin next I/O or complete the request
1316 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1318 BDRVQEDState *s = acb_to_s(acb);
1319 uint64_t offset;
1320 size_t len;
1321 int ret;
1323 qemu_co_mutex_lock(&s->table_lock);
1324 while (1) {
1325 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1327 acb->qiov_offset += acb->cur_qiov.size;
1328 acb->cur_pos += acb->cur_qiov.size;
1329 qemu_iovec_reset(&acb->cur_qiov);
1331 /* Complete request */
1332 if (acb->cur_pos >= acb->end_pos) {
1333 ret = 0;
1334 break;
1337 /* Find next cluster and start I/O */
1338 len = acb->end_pos - acb->cur_pos;
1339 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1340 if (ret < 0) {
1341 break;
1344 if (acb->flags & QED_AIOCB_WRITE) {
1345 ret = qed_aio_write_data(acb, ret, offset, len);
1346 } else {
1347 ret = qed_aio_read_data(acb, ret, offset, len);
1350 if (ret < 0 && ret != -EAGAIN) {
1351 break;
1355 trace_qed_aio_complete(s, acb, ret);
1356 qed_aio_complete(acb);
1357 qemu_co_mutex_unlock(&s->table_lock);
1358 return ret;
1361 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1362 QEMUIOVector *qiov, int nb_sectors,
1363 int flags)
1365 QEDAIOCB acb = {
1366 .bs = bs,
1367 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1368 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1369 .qiov = qiov,
1370 .flags = flags,
1372 qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1374 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1376 /* Start request */
1377 return qed_aio_next_io(&acb);
1380 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1381 int64_t sector_num, int nb_sectors,
1382 QEMUIOVector *qiov)
1384 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1387 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1388 int64_t sector_num, int nb_sectors,
1389 QEMUIOVector *qiov, int flags)
1391 assert(!flags);
1392 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1395 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1396 int64_t offset,
1397 int64_t bytes,
1398 BdrvRequestFlags flags)
1400 BDRVQEDState *s = bs->opaque;
1403 * Zero writes start without an I/O buffer. If a buffer becomes necessary
1404 * then it will be allocated during request processing.
1406 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1409 * QED is not prepared for 63bit write-zero requests, so rely on
1410 * max_pwrite_zeroes.
1412 assert(bytes <= INT_MAX);
1414 /* Fall back if the request is not aligned */
1415 if (qed_offset_into_cluster(s, offset) ||
1416 qed_offset_into_cluster(s, bytes)) {
1417 return -ENOTSUP;
1420 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1421 bytes >> BDRV_SECTOR_BITS,
1422 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1425 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1426 int64_t offset,
1427 bool exact,
1428 PreallocMode prealloc,
1429 BdrvRequestFlags flags,
1430 Error **errp)
1432 BDRVQEDState *s = bs->opaque;
1433 uint64_t old_image_size;
1434 int ret;
1436 if (prealloc != PREALLOC_MODE_OFF) {
1437 error_setg(errp, "Unsupported preallocation mode '%s'",
1438 PreallocMode_str(prealloc));
1439 return -ENOTSUP;
1442 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1443 s->header.table_size)) {
1444 error_setg(errp, "Invalid image size specified");
1445 return -EINVAL;
1448 if ((uint64_t)offset < s->header.image_size) {
1449 error_setg(errp, "Shrinking images is currently not supported");
1450 return -ENOTSUP;
1453 old_image_size = s->header.image_size;
1454 s->header.image_size = offset;
1455 ret = qed_write_header_sync(s);
1456 if (ret < 0) {
1457 s->header.image_size = old_image_size;
1458 error_setg_errno(errp, -ret, "Failed to update the image size");
1460 return ret;
1463 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1465 BDRVQEDState *s = bs->opaque;
1466 return s->header.image_size;
1469 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1471 BDRVQEDState *s = bs->opaque;
1473 memset(bdi, 0, sizeof(*bdi));
1474 bdi->cluster_size = s->header.cluster_size;
1475 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1476 return 0;
1479 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1480 const char *backing_file,
1481 const char *backing_fmt)
1483 BDRVQEDState *s = bs->opaque;
1484 QEDHeader new_header, le_header;
1485 void *buffer;
1486 size_t buffer_len, backing_file_len;
1487 int ret;
1489 /* Refuse to set backing filename if unknown compat feature bits are
1490 * active. If the image uses an unknown compat feature then we may not
1491 * know the layout of data following the header structure and cannot safely
1492 * add a new string.
1494 if (backing_file && (s->header.compat_features &
1495 ~QED_COMPAT_FEATURE_MASK)) {
1496 return -ENOTSUP;
1499 memcpy(&new_header, &s->header, sizeof(new_header));
1501 new_header.features &= ~(QED_F_BACKING_FILE |
1502 QED_F_BACKING_FORMAT_NO_PROBE);
1504 /* Adjust feature flags */
1505 if (backing_file) {
1506 new_header.features |= QED_F_BACKING_FILE;
1508 if (qed_fmt_is_raw(backing_fmt)) {
1509 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1513 /* Calculate new header size */
1514 backing_file_len = 0;
1516 if (backing_file) {
1517 backing_file_len = strlen(backing_file);
1520 buffer_len = sizeof(new_header);
1521 new_header.backing_filename_offset = buffer_len;
1522 new_header.backing_filename_size = backing_file_len;
1523 buffer_len += backing_file_len;
1525 /* Make sure we can rewrite header without failing */
1526 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1527 return -ENOSPC;
1530 /* Prepare new header */
1531 buffer = g_malloc(buffer_len);
1533 qed_header_cpu_to_le(&new_header, &le_header);
1534 memcpy(buffer, &le_header, sizeof(le_header));
1535 buffer_len = sizeof(le_header);
1537 if (backing_file) {
1538 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1539 buffer_len += backing_file_len;
1542 /* Write new header */
1543 ret = bdrv_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
1544 g_free(buffer);
1545 if (ret == 0) {
1546 memcpy(&s->header, &new_header, sizeof(new_header));
1548 return ret;
1551 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1552 Error **errp)
1554 BDRVQEDState *s = bs->opaque;
1555 int ret;
1557 bdrv_qed_close(bs);
1559 bdrv_qed_init_state(bs);
1560 qemu_co_mutex_lock(&s->table_lock);
1561 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1562 qemu_co_mutex_unlock(&s->table_lock);
1563 if (ret < 0) {
1564 error_prepend(errp, "Could not reopen qed layer: ");
1568 static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
1569 BdrvCheckResult *result,
1570 BdrvCheckMode fix)
1572 BDRVQEDState *s = bs->opaque;
1573 int ret;
1575 qemu_co_mutex_lock(&s->table_lock);
1576 ret = qed_check(s, result, !!fix);
1577 qemu_co_mutex_unlock(&s->table_lock);
1579 return ret;
1582 static QemuOptsList qed_create_opts = {
1583 .name = "qed-create-opts",
1584 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1585 .desc = {
1587 .name = BLOCK_OPT_SIZE,
1588 .type = QEMU_OPT_SIZE,
1589 .help = "Virtual disk size"
1592 .name = BLOCK_OPT_BACKING_FILE,
1593 .type = QEMU_OPT_STRING,
1594 .help = "File name of a base image"
1597 .name = BLOCK_OPT_BACKING_FMT,
1598 .type = QEMU_OPT_STRING,
1599 .help = "Image format of the base image"
1602 .name = BLOCK_OPT_CLUSTER_SIZE,
1603 .type = QEMU_OPT_SIZE,
1604 .help = "Cluster size (in bytes)",
1605 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1608 .name = BLOCK_OPT_TABLE_SIZE,
1609 .type = QEMU_OPT_SIZE,
1610 .help = "L1/L2 table size (in clusters)"
1612 { /* end of list */ }
1616 static BlockDriver bdrv_qed = {
1617 .format_name = "qed",
1618 .instance_size = sizeof(BDRVQEDState),
1619 .create_opts = &qed_create_opts,
1620 .is_format = true,
1621 .supports_backing = true,
1623 .bdrv_probe = bdrv_qed_probe,
1624 .bdrv_open = bdrv_qed_open,
1625 .bdrv_close = bdrv_qed_close,
1626 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1627 .bdrv_child_perm = bdrv_default_perms,
1628 .bdrv_co_create = bdrv_qed_co_create,
1629 .bdrv_co_create_opts = bdrv_qed_co_create_opts,
1630 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1631 .bdrv_co_block_status = bdrv_qed_co_block_status,
1632 .bdrv_co_readv = bdrv_qed_co_readv,
1633 .bdrv_co_writev = bdrv_qed_co_writev,
1634 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1635 .bdrv_co_truncate = bdrv_qed_co_truncate,
1636 .bdrv_getlength = bdrv_qed_getlength,
1637 .bdrv_get_info = bdrv_qed_get_info,
1638 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1639 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1640 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1641 .bdrv_co_check = bdrv_qed_co_check,
1642 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1643 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1644 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin,
1647 static void bdrv_qed_init(void)
1649 bdrv_register(&bdrv_qed);
1652 block_init(bdrv_qed_init);