qdev: avoid type casts between signed and unsigned
[qemu/kevin.git] / hw / arm / omap1.c
blob54582bd14876b2235dd22bc7f7c50181f2e924b0
1 /*
2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "qemu-common.h"
23 #include "cpu.h"
24 #include "hw/boards.h"
25 #include "hw/hw.h"
26 #include "hw/arm/arm.h"
27 #include "hw/arm/omap.h"
28 #include "sysemu/sysemu.h"
29 #include "hw/arm/soc_dma.h"
30 #include "sysemu/block-backend.h"
31 #include "sysemu/blockdev.h"
32 #include "qemu/range.h"
33 #include "hw/sysbus.h"
34 #include "qemu/cutils.h"
35 #include "qemu/bcd.h"
37 /* Should signal the TCMI/GPMC */
38 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
40 uint8_t ret;
42 OMAP_8B_REG(addr);
43 cpu_physical_memory_read(addr, &ret, 1);
44 return ret;
47 void omap_badwidth_write8(void *opaque, hwaddr addr,
48 uint32_t value)
50 uint8_t val8 = value;
52 OMAP_8B_REG(addr);
53 cpu_physical_memory_write(addr, &val8, 1);
56 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
58 uint16_t ret;
60 OMAP_16B_REG(addr);
61 cpu_physical_memory_read(addr, &ret, 2);
62 return ret;
65 void omap_badwidth_write16(void *opaque, hwaddr addr,
66 uint32_t value)
68 uint16_t val16 = value;
70 OMAP_16B_REG(addr);
71 cpu_physical_memory_write(addr, &val16, 2);
74 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
76 uint32_t ret;
78 OMAP_32B_REG(addr);
79 cpu_physical_memory_read(addr, &ret, 4);
80 return ret;
83 void omap_badwidth_write32(void *opaque, hwaddr addr,
84 uint32_t value)
86 OMAP_32B_REG(addr);
87 cpu_physical_memory_write(addr, &value, 4);
90 /* MPU OS timers */
91 struct omap_mpu_timer_s {
92 MemoryRegion iomem;
93 qemu_irq irq;
94 omap_clk clk;
95 uint32_t val;
96 int64_t time;
97 QEMUTimer *timer;
98 QEMUBH *tick;
99 int64_t rate;
100 int it_ena;
102 int enable;
103 int ptv;
104 int ar;
105 int st;
106 uint32_t reset_val;
109 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
111 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
113 if (timer->st && timer->enable && timer->rate)
114 return timer->val - muldiv64(distance >> (timer->ptv + 1),
115 timer->rate, NANOSECONDS_PER_SECOND);
116 else
117 return timer->val;
120 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
122 timer->val = omap_timer_read(timer);
123 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
126 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
128 int64_t expires;
130 if (timer->enable && timer->st && timer->rate) {
131 timer->val = timer->reset_val; /* Should skip this on clk enable */
132 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
133 NANOSECONDS_PER_SECOND, timer->rate);
135 /* If timer expiry would be sooner than in about 1 ms and
136 * auto-reload isn't set, then fire immediately. This is a hack
137 * to make systems like PalmOS run in acceptable time. PalmOS
138 * sets the interval to a very low value and polls the status bit
139 * in a busy loop when it wants to sleep just a couple of CPU
140 * ticks. */
141 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
142 timer_mod(timer->timer, timer->time + expires);
143 } else {
144 qemu_bh_schedule(timer->tick);
146 } else
147 timer_del(timer->timer);
150 static void omap_timer_fire(void *opaque)
152 struct omap_mpu_timer_s *timer = opaque;
154 if (!timer->ar) {
155 timer->val = 0;
156 timer->st = 0;
159 if (timer->it_ena)
160 /* Edge-triggered irq */
161 qemu_irq_pulse(timer->irq);
164 static void omap_timer_tick(void *opaque)
166 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
168 omap_timer_sync(timer);
169 omap_timer_fire(timer);
170 omap_timer_update(timer);
173 static void omap_timer_clk_update(void *opaque, int line, int on)
175 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
177 omap_timer_sync(timer);
178 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
179 omap_timer_update(timer);
182 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
184 omap_clk_adduser(timer->clk,
185 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
186 timer->rate = omap_clk_getrate(timer->clk);
189 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
190 unsigned size)
192 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
194 if (size != 4) {
195 return omap_badwidth_read32(opaque, addr);
198 switch (addr) {
199 case 0x00: /* CNTL_TIMER */
200 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
202 case 0x04: /* LOAD_TIM */
203 break;
205 case 0x08: /* READ_TIM */
206 return omap_timer_read(s);
209 OMAP_BAD_REG(addr);
210 return 0;
213 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
214 uint64_t value, unsigned size)
216 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
218 if (size != 4) {
219 omap_badwidth_write32(opaque, addr, value);
220 return;
223 switch (addr) {
224 case 0x00: /* CNTL_TIMER */
225 omap_timer_sync(s);
226 s->enable = (value >> 5) & 1;
227 s->ptv = (value >> 2) & 7;
228 s->ar = (value >> 1) & 1;
229 s->st = value & 1;
230 omap_timer_update(s);
231 return;
233 case 0x04: /* LOAD_TIM */
234 s->reset_val = value;
235 return;
237 case 0x08: /* READ_TIM */
238 OMAP_RO_REG(addr);
239 break;
241 default:
242 OMAP_BAD_REG(addr);
246 static const MemoryRegionOps omap_mpu_timer_ops = {
247 .read = omap_mpu_timer_read,
248 .write = omap_mpu_timer_write,
249 .endianness = DEVICE_LITTLE_ENDIAN,
252 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
254 timer_del(s->timer);
255 s->enable = 0;
256 s->reset_val = 31337;
257 s->val = 0;
258 s->ptv = 0;
259 s->ar = 0;
260 s->st = 0;
261 s->it_ena = 1;
264 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
265 hwaddr base,
266 qemu_irq irq, omap_clk clk)
268 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
270 s->irq = irq;
271 s->clk = clk;
272 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
273 s->tick = qemu_bh_new(omap_timer_fire, s);
274 omap_mpu_timer_reset(s);
275 omap_timer_clk_setup(s);
277 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
278 "omap-mpu-timer", 0x100);
280 memory_region_add_subregion(system_memory, base, &s->iomem);
282 return s;
285 /* Watchdog timer */
286 struct omap_watchdog_timer_s {
287 struct omap_mpu_timer_s timer;
288 MemoryRegion iomem;
289 uint8_t last_wr;
290 int mode;
291 int free;
292 int reset;
295 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
296 unsigned size)
298 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
300 if (size != 2) {
301 return omap_badwidth_read16(opaque, addr);
304 switch (addr) {
305 case 0x00: /* CNTL_TIMER */
306 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
307 (s->timer.st << 7) | (s->free << 1);
309 case 0x04: /* READ_TIMER */
310 return omap_timer_read(&s->timer);
312 case 0x08: /* TIMER_MODE */
313 return s->mode << 15;
316 OMAP_BAD_REG(addr);
317 return 0;
320 static void omap_wd_timer_write(void *opaque, hwaddr addr,
321 uint64_t value, unsigned size)
323 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
325 if (size != 2) {
326 omap_badwidth_write16(opaque, addr, value);
327 return;
330 switch (addr) {
331 case 0x00: /* CNTL_TIMER */
332 omap_timer_sync(&s->timer);
333 s->timer.ptv = (value >> 9) & 7;
334 s->timer.ar = (value >> 8) & 1;
335 s->timer.st = (value >> 7) & 1;
336 s->free = (value >> 1) & 1;
337 omap_timer_update(&s->timer);
338 break;
340 case 0x04: /* LOAD_TIMER */
341 s->timer.reset_val = value & 0xffff;
342 break;
344 case 0x08: /* TIMER_MODE */
345 if (!s->mode && ((value >> 15) & 1))
346 omap_clk_get(s->timer.clk);
347 s->mode |= (value >> 15) & 1;
348 if (s->last_wr == 0xf5) {
349 if ((value & 0xff) == 0xa0) {
350 if (s->mode) {
351 s->mode = 0;
352 omap_clk_put(s->timer.clk);
354 } else {
355 /* XXX: on T|E hardware somehow this has no effect,
356 * on Zire 71 it works as specified. */
357 s->reset = 1;
358 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
361 s->last_wr = value & 0xff;
362 break;
364 default:
365 OMAP_BAD_REG(addr);
369 static const MemoryRegionOps omap_wd_timer_ops = {
370 .read = omap_wd_timer_read,
371 .write = omap_wd_timer_write,
372 .endianness = DEVICE_NATIVE_ENDIAN,
375 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
377 timer_del(s->timer.timer);
378 if (!s->mode)
379 omap_clk_get(s->timer.clk);
380 s->mode = 1;
381 s->free = 1;
382 s->reset = 0;
383 s->timer.enable = 1;
384 s->timer.it_ena = 1;
385 s->timer.reset_val = 0xffff;
386 s->timer.val = 0;
387 s->timer.st = 0;
388 s->timer.ptv = 0;
389 s->timer.ar = 0;
390 omap_timer_update(&s->timer);
393 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
394 hwaddr base,
395 qemu_irq irq, omap_clk clk)
397 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
399 s->timer.irq = irq;
400 s->timer.clk = clk;
401 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
402 omap_wd_timer_reset(s);
403 omap_timer_clk_setup(&s->timer);
405 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
406 "omap-wd-timer", 0x100);
407 memory_region_add_subregion(memory, base, &s->iomem);
409 return s;
412 /* 32-kHz timer */
413 struct omap_32khz_timer_s {
414 struct omap_mpu_timer_s timer;
415 MemoryRegion iomem;
418 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
419 unsigned size)
421 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
422 int offset = addr & OMAP_MPUI_REG_MASK;
424 if (size != 4) {
425 return omap_badwidth_read32(opaque, addr);
428 switch (offset) {
429 case 0x00: /* TVR */
430 return s->timer.reset_val;
432 case 0x04: /* TCR */
433 return omap_timer_read(&s->timer);
435 case 0x08: /* CR */
436 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
438 default:
439 break;
441 OMAP_BAD_REG(addr);
442 return 0;
445 static void omap_os_timer_write(void *opaque, hwaddr addr,
446 uint64_t value, unsigned size)
448 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
449 int offset = addr & OMAP_MPUI_REG_MASK;
451 if (size != 4) {
452 omap_badwidth_write32(opaque, addr, value);
453 return;
456 switch (offset) {
457 case 0x00: /* TVR */
458 s->timer.reset_val = value & 0x00ffffff;
459 break;
461 case 0x04: /* TCR */
462 OMAP_RO_REG(addr);
463 break;
465 case 0x08: /* CR */
466 s->timer.ar = (value >> 3) & 1;
467 s->timer.it_ena = (value >> 2) & 1;
468 if (s->timer.st != (value & 1) || (value & 2)) {
469 omap_timer_sync(&s->timer);
470 s->timer.enable = value & 1;
471 s->timer.st = value & 1;
472 omap_timer_update(&s->timer);
474 break;
476 default:
477 OMAP_BAD_REG(addr);
481 static const MemoryRegionOps omap_os_timer_ops = {
482 .read = omap_os_timer_read,
483 .write = omap_os_timer_write,
484 .endianness = DEVICE_NATIVE_ENDIAN,
487 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
489 timer_del(s->timer.timer);
490 s->timer.enable = 0;
491 s->timer.it_ena = 0;
492 s->timer.reset_val = 0x00ffffff;
493 s->timer.val = 0;
494 s->timer.st = 0;
495 s->timer.ptv = 0;
496 s->timer.ar = 1;
499 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
500 hwaddr base,
501 qemu_irq irq, omap_clk clk)
503 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
505 s->timer.irq = irq;
506 s->timer.clk = clk;
507 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
508 omap_os_timer_reset(s);
509 omap_timer_clk_setup(&s->timer);
511 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
512 "omap-os-timer", 0x800);
513 memory_region_add_subregion(memory, base, &s->iomem);
515 return s;
518 /* Ultra Low-Power Device Module */
519 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
520 unsigned size)
522 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
523 uint16_t ret;
525 if (size != 2) {
526 return omap_badwidth_read16(opaque, addr);
529 switch (addr) {
530 case 0x14: /* IT_STATUS */
531 ret = s->ulpd_pm_regs[addr >> 2];
532 s->ulpd_pm_regs[addr >> 2] = 0;
533 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
534 return ret;
536 case 0x18: /* Reserved */
537 case 0x1c: /* Reserved */
538 case 0x20: /* Reserved */
539 case 0x28: /* Reserved */
540 case 0x2c: /* Reserved */
541 OMAP_BAD_REG(addr);
542 /* fall through */
543 case 0x00: /* COUNTER_32_LSB */
544 case 0x04: /* COUNTER_32_MSB */
545 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
546 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
547 case 0x10: /* GAUGING_CTRL */
548 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
549 case 0x30: /* CLOCK_CTRL */
550 case 0x34: /* SOFT_REQ */
551 case 0x38: /* COUNTER_32_FIQ */
552 case 0x3c: /* DPLL_CTRL */
553 case 0x40: /* STATUS_REQ */
554 /* XXX: check clk::usecount state for every clock */
555 case 0x48: /* LOCL_TIME */
556 case 0x4c: /* APLL_CTRL */
557 case 0x50: /* POWER_CTRL */
558 return s->ulpd_pm_regs[addr >> 2];
561 OMAP_BAD_REG(addr);
562 return 0;
565 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
566 uint16_t diff, uint16_t value)
568 if (diff & (1 << 4)) /* USB_MCLK_EN */
569 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
570 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
571 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
574 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
575 uint16_t diff, uint16_t value)
577 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
578 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
579 if (diff & (1 << 1)) /* SOFT_COM_REQ */
580 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
581 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
582 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
583 if (diff & (1 << 3)) /* SOFT_USB_REQ */
584 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
587 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
588 uint64_t value, unsigned size)
590 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
591 int64_t now, ticks;
592 int div, mult;
593 static const int bypass_div[4] = { 1, 2, 4, 4 };
594 uint16_t diff;
596 if (size != 2) {
597 omap_badwidth_write16(opaque, addr, value);
598 return;
601 switch (addr) {
602 case 0x00: /* COUNTER_32_LSB */
603 case 0x04: /* COUNTER_32_MSB */
604 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
605 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
606 case 0x14: /* IT_STATUS */
607 case 0x40: /* STATUS_REQ */
608 OMAP_RO_REG(addr);
609 break;
611 case 0x10: /* GAUGING_CTRL */
612 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
613 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
614 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
616 if (value & 1)
617 s->ulpd_gauge_start = now;
618 else {
619 now -= s->ulpd_gauge_start;
621 /* 32-kHz ticks */
622 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
623 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
624 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
625 if (ticks >> 32) /* OVERFLOW_32K */
626 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
628 /* High frequency ticks */
629 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
630 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
631 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
632 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
633 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
635 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
636 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
639 s->ulpd_pm_regs[addr >> 2] = value;
640 break;
642 case 0x18: /* Reserved */
643 case 0x1c: /* Reserved */
644 case 0x20: /* Reserved */
645 case 0x28: /* Reserved */
646 case 0x2c: /* Reserved */
647 OMAP_BAD_REG(addr);
648 /* fall through */
649 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
650 case 0x38: /* COUNTER_32_FIQ */
651 case 0x48: /* LOCL_TIME */
652 case 0x50: /* POWER_CTRL */
653 s->ulpd_pm_regs[addr >> 2] = value;
654 break;
656 case 0x30: /* CLOCK_CTRL */
657 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
658 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
659 omap_ulpd_clk_update(s, diff, value);
660 break;
662 case 0x34: /* SOFT_REQ */
663 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
664 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
665 omap_ulpd_req_update(s, diff, value);
666 break;
668 case 0x3c: /* DPLL_CTRL */
669 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
670 * omitted altogether, probably a typo. */
671 /* This register has identical semantics with DPLL(1:3) control
672 * registers, see omap_dpll_write() */
673 diff = s->ulpd_pm_regs[addr >> 2] & value;
674 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
675 if (diff & (0x3ff << 2)) {
676 if (value & (1 << 4)) { /* PLL_ENABLE */
677 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
678 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
679 } else {
680 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
681 mult = 1;
683 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
686 /* Enter the desired mode. */
687 s->ulpd_pm_regs[addr >> 2] =
688 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
689 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
691 /* Act as if the lock is restored. */
692 s->ulpd_pm_regs[addr >> 2] |= 2;
693 break;
695 case 0x4c: /* APLL_CTRL */
696 diff = s->ulpd_pm_regs[addr >> 2] & value;
697 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
698 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
699 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
700 (value & (1 << 0)) ? "apll" : "dpll4"));
701 break;
703 default:
704 OMAP_BAD_REG(addr);
708 static const MemoryRegionOps omap_ulpd_pm_ops = {
709 .read = omap_ulpd_pm_read,
710 .write = omap_ulpd_pm_write,
711 .endianness = DEVICE_NATIVE_ENDIAN,
714 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
716 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
717 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
718 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
719 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
720 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
721 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
722 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
723 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
724 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
725 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
726 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
727 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
728 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
729 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
730 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
731 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
732 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
733 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
734 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
735 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
736 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
737 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
738 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
741 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
742 hwaddr base,
743 struct omap_mpu_state_s *mpu)
745 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
746 "omap-ulpd-pm", 0x800);
747 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
748 omap_ulpd_pm_reset(mpu);
751 /* OMAP Pin Configuration */
752 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
753 unsigned size)
755 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
757 if (size != 4) {
758 return omap_badwidth_read32(opaque, addr);
761 switch (addr) {
762 case 0x00: /* FUNC_MUX_CTRL_0 */
763 case 0x04: /* FUNC_MUX_CTRL_1 */
764 case 0x08: /* FUNC_MUX_CTRL_2 */
765 return s->func_mux_ctrl[addr >> 2];
767 case 0x0c: /* COMP_MODE_CTRL_0 */
768 return s->comp_mode_ctrl[0];
770 case 0x10: /* FUNC_MUX_CTRL_3 */
771 case 0x14: /* FUNC_MUX_CTRL_4 */
772 case 0x18: /* FUNC_MUX_CTRL_5 */
773 case 0x1c: /* FUNC_MUX_CTRL_6 */
774 case 0x20: /* FUNC_MUX_CTRL_7 */
775 case 0x24: /* FUNC_MUX_CTRL_8 */
776 case 0x28: /* FUNC_MUX_CTRL_9 */
777 case 0x2c: /* FUNC_MUX_CTRL_A */
778 case 0x30: /* FUNC_MUX_CTRL_B */
779 case 0x34: /* FUNC_MUX_CTRL_C */
780 case 0x38: /* FUNC_MUX_CTRL_D */
781 return s->func_mux_ctrl[(addr >> 2) - 1];
783 case 0x40: /* PULL_DWN_CTRL_0 */
784 case 0x44: /* PULL_DWN_CTRL_1 */
785 case 0x48: /* PULL_DWN_CTRL_2 */
786 case 0x4c: /* PULL_DWN_CTRL_3 */
787 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
789 case 0x50: /* GATE_INH_CTRL_0 */
790 return s->gate_inh_ctrl[0];
792 case 0x60: /* VOLTAGE_CTRL_0 */
793 return s->voltage_ctrl[0];
795 case 0x70: /* TEST_DBG_CTRL_0 */
796 return s->test_dbg_ctrl[0];
798 case 0x80: /* MOD_CONF_CTRL_0 */
799 return s->mod_conf_ctrl[0];
802 OMAP_BAD_REG(addr);
803 return 0;
806 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
807 uint32_t diff, uint32_t value)
809 if (s->compat1509) {
810 if (diff & (1 << 9)) /* BLUETOOTH */
811 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
812 (~value >> 9) & 1);
813 if (diff & (1 << 7)) /* USB.CLKO */
814 omap_clk_onoff(omap_findclk(s, "usb.clko"),
815 (value >> 7) & 1);
819 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
820 uint32_t diff, uint32_t value)
822 if (s->compat1509) {
823 if (diff & (1U << 31)) {
824 /* MCBSP3_CLK_HIZ_DI */
825 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
827 if (diff & (1 << 1)) {
828 /* CLK32K */
829 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
834 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
835 uint32_t diff, uint32_t value)
837 if (diff & (1U << 31)) {
838 /* CONF_MOD_UART3_CLK_MODE_R */
839 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
840 omap_findclk(s, ((value >> 31) & 1) ?
841 "ck_48m" : "armper_ck"));
843 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
844 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
845 omap_findclk(s, ((value >> 30) & 1) ?
846 "ck_48m" : "armper_ck"));
847 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
848 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
849 omap_findclk(s, ((value >> 29) & 1) ?
850 "ck_48m" : "armper_ck"));
851 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
852 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
853 omap_findclk(s, ((value >> 23) & 1) ?
854 "ck_48m" : "armper_ck"));
855 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
856 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
857 omap_findclk(s, ((value >> 12) & 1) ?
858 "ck_48m" : "armper_ck"));
859 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
860 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
863 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
864 uint64_t value, unsigned size)
866 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
867 uint32_t diff;
869 if (size != 4) {
870 omap_badwidth_write32(opaque, addr, value);
871 return;
874 switch (addr) {
875 case 0x00: /* FUNC_MUX_CTRL_0 */
876 diff = s->func_mux_ctrl[addr >> 2] ^ value;
877 s->func_mux_ctrl[addr >> 2] = value;
878 omap_pin_funcmux0_update(s, diff, value);
879 return;
881 case 0x04: /* FUNC_MUX_CTRL_1 */
882 diff = s->func_mux_ctrl[addr >> 2] ^ value;
883 s->func_mux_ctrl[addr >> 2] = value;
884 omap_pin_funcmux1_update(s, diff, value);
885 return;
887 case 0x08: /* FUNC_MUX_CTRL_2 */
888 s->func_mux_ctrl[addr >> 2] = value;
889 return;
891 case 0x0c: /* COMP_MODE_CTRL_0 */
892 s->comp_mode_ctrl[0] = value;
893 s->compat1509 = (value != 0x0000eaef);
894 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
895 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
896 return;
898 case 0x10: /* FUNC_MUX_CTRL_3 */
899 case 0x14: /* FUNC_MUX_CTRL_4 */
900 case 0x18: /* FUNC_MUX_CTRL_5 */
901 case 0x1c: /* FUNC_MUX_CTRL_6 */
902 case 0x20: /* FUNC_MUX_CTRL_7 */
903 case 0x24: /* FUNC_MUX_CTRL_8 */
904 case 0x28: /* FUNC_MUX_CTRL_9 */
905 case 0x2c: /* FUNC_MUX_CTRL_A */
906 case 0x30: /* FUNC_MUX_CTRL_B */
907 case 0x34: /* FUNC_MUX_CTRL_C */
908 case 0x38: /* FUNC_MUX_CTRL_D */
909 s->func_mux_ctrl[(addr >> 2) - 1] = value;
910 return;
912 case 0x40: /* PULL_DWN_CTRL_0 */
913 case 0x44: /* PULL_DWN_CTRL_1 */
914 case 0x48: /* PULL_DWN_CTRL_2 */
915 case 0x4c: /* PULL_DWN_CTRL_3 */
916 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
917 return;
919 case 0x50: /* GATE_INH_CTRL_0 */
920 s->gate_inh_ctrl[0] = value;
921 return;
923 case 0x60: /* VOLTAGE_CTRL_0 */
924 s->voltage_ctrl[0] = value;
925 return;
927 case 0x70: /* TEST_DBG_CTRL_0 */
928 s->test_dbg_ctrl[0] = value;
929 return;
931 case 0x80: /* MOD_CONF_CTRL_0 */
932 diff = s->mod_conf_ctrl[0] ^ value;
933 s->mod_conf_ctrl[0] = value;
934 omap_pin_modconf1_update(s, diff, value);
935 return;
937 default:
938 OMAP_BAD_REG(addr);
942 static const MemoryRegionOps omap_pin_cfg_ops = {
943 .read = omap_pin_cfg_read,
944 .write = omap_pin_cfg_write,
945 .endianness = DEVICE_NATIVE_ENDIAN,
948 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
950 /* Start in Compatibility Mode. */
951 mpu->compat1509 = 1;
952 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
953 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
954 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
955 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
956 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
957 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
958 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
959 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
960 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
961 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
964 static void omap_pin_cfg_init(MemoryRegion *system_memory,
965 hwaddr base,
966 struct omap_mpu_state_s *mpu)
968 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
969 "omap-pin-cfg", 0x800);
970 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
971 omap_pin_cfg_reset(mpu);
974 /* Device Identification, Die Identification */
975 static uint64_t omap_id_read(void *opaque, hwaddr addr,
976 unsigned size)
978 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
980 if (size != 4) {
981 return omap_badwidth_read32(opaque, addr);
984 switch (addr) {
985 case 0xfffe1800: /* DIE_ID_LSB */
986 return 0xc9581f0e;
987 case 0xfffe1804: /* DIE_ID_MSB */
988 return 0xa8858bfa;
990 case 0xfffe2000: /* PRODUCT_ID_LSB */
991 return 0x00aaaafc;
992 case 0xfffe2004: /* PRODUCT_ID_MSB */
993 return 0xcafeb574;
995 case 0xfffed400: /* JTAG_ID_LSB */
996 switch (s->mpu_model) {
997 case omap310:
998 return 0x03310315;
999 case omap1510:
1000 return 0x03310115;
1001 default:
1002 hw_error("%s: bad mpu model\n", __FUNCTION__);
1004 break;
1006 case 0xfffed404: /* JTAG_ID_MSB */
1007 switch (s->mpu_model) {
1008 case omap310:
1009 return 0xfb57402f;
1010 case omap1510:
1011 return 0xfb47002f;
1012 default:
1013 hw_error("%s: bad mpu model\n", __FUNCTION__);
1015 break;
1018 OMAP_BAD_REG(addr);
1019 return 0;
1022 static void omap_id_write(void *opaque, hwaddr addr,
1023 uint64_t value, unsigned size)
1025 if (size != 4) {
1026 omap_badwidth_write32(opaque, addr, value);
1027 return;
1030 OMAP_BAD_REG(addr);
1033 static const MemoryRegionOps omap_id_ops = {
1034 .read = omap_id_read,
1035 .write = omap_id_write,
1036 .endianness = DEVICE_NATIVE_ENDIAN,
1039 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1041 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1042 "omap-id", 0x100000000ULL);
1043 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1044 0xfffe1800, 0x800);
1045 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1046 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1047 0xfffed400, 0x100);
1048 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1049 if (!cpu_is_omap15xx(mpu)) {
1050 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1051 &mpu->id_iomem, 0xfffe2000, 0x800);
1052 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1056 /* MPUI Control (Dummy) */
1057 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1058 unsigned size)
1060 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1062 if (size != 4) {
1063 return omap_badwidth_read32(opaque, addr);
1066 switch (addr) {
1067 case 0x00: /* CTRL */
1068 return s->mpui_ctrl;
1069 case 0x04: /* DEBUG_ADDR */
1070 return 0x01ffffff;
1071 case 0x08: /* DEBUG_DATA */
1072 return 0xffffffff;
1073 case 0x0c: /* DEBUG_FLAG */
1074 return 0x00000800;
1075 case 0x10: /* STATUS */
1076 return 0x00000000;
1078 /* Not in OMAP310 */
1079 case 0x14: /* DSP_STATUS */
1080 case 0x18: /* DSP_BOOT_CONFIG */
1081 return 0x00000000;
1082 case 0x1c: /* DSP_MPUI_CONFIG */
1083 return 0x0000ffff;
1086 OMAP_BAD_REG(addr);
1087 return 0;
1090 static void omap_mpui_write(void *opaque, hwaddr addr,
1091 uint64_t value, unsigned size)
1093 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1095 if (size != 4) {
1096 omap_badwidth_write32(opaque, addr, value);
1097 return;
1100 switch (addr) {
1101 case 0x00: /* CTRL */
1102 s->mpui_ctrl = value & 0x007fffff;
1103 break;
1105 case 0x04: /* DEBUG_ADDR */
1106 case 0x08: /* DEBUG_DATA */
1107 case 0x0c: /* DEBUG_FLAG */
1108 case 0x10: /* STATUS */
1109 /* Not in OMAP310 */
1110 case 0x14: /* DSP_STATUS */
1111 OMAP_RO_REG(addr);
1112 break;
1113 case 0x18: /* DSP_BOOT_CONFIG */
1114 case 0x1c: /* DSP_MPUI_CONFIG */
1115 break;
1117 default:
1118 OMAP_BAD_REG(addr);
1122 static const MemoryRegionOps omap_mpui_ops = {
1123 .read = omap_mpui_read,
1124 .write = omap_mpui_write,
1125 .endianness = DEVICE_NATIVE_ENDIAN,
1128 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1130 s->mpui_ctrl = 0x0003ff1b;
1133 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1134 struct omap_mpu_state_s *mpu)
1136 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1137 "omap-mpui", 0x100);
1138 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1140 omap_mpui_reset(mpu);
1143 /* TIPB Bridges */
1144 struct omap_tipb_bridge_s {
1145 qemu_irq abort;
1146 MemoryRegion iomem;
1148 int width_intr;
1149 uint16_t control;
1150 uint16_t alloc;
1151 uint16_t buffer;
1152 uint16_t enh_control;
1155 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1156 unsigned size)
1158 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1160 if (size < 2) {
1161 return omap_badwidth_read16(opaque, addr);
1164 switch (addr) {
1165 case 0x00: /* TIPB_CNTL */
1166 return s->control;
1167 case 0x04: /* TIPB_BUS_ALLOC */
1168 return s->alloc;
1169 case 0x08: /* MPU_TIPB_CNTL */
1170 return s->buffer;
1171 case 0x0c: /* ENHANCED_TIPB_CNTL */
1172 return s->enh_control;
1173 case 0x10: /* ADDRESS_DBG */
1174 case 0x14: /* DATA_DEBUG_LOW */
1175 case 0x18: /* DATA_DEBUG_HIGH */
1176 return 0xffff;
1177 case 0x1c: /* DEBUG_CNTR_SIG */
1178 return 0x00f8;
1181 OMAP_BAD_REG(addr);
1182 return 0;
1185 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1186 uint64_t value, unsigned size)
1188 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1190 if (size < 2) {
1191 omap_badwidth_write16(opaque, addr, value);
1192 return;
1195 switch (addr) {
1196 case 0x00: /* TIPB_CNTL */
1197 s->control = value & 0xffff;
1198 break;
1200 case 0x04: /* TIPB_BUS_ALLOC */
1201 s->alloc = value & 0x003f;
1202 break;
1204 case 0x08: /* MPU_TIPB_CNTL */
1205 s->buffer = value & 0x0003;
1206 break;
1208 case 0x0c: /* ENHANCED_TIPB_CNTL */
1209 s->width_intr = !(value & 2);
1210 s->enh_control = value & 0x000f;
1211 break;
1213 case 0x10: /* ADDRESS_DBG */
1214 case 0x14: /* DATA_DEBUG_LOW */
1215 case 0x18: /* DATA_DEBUG_HIGH */
1216 case 0x1c: /* DEBUG_CNTR_SIG */
1217 OMAP_RO_REG(addr);
1218 break;
1220 default:
1221 OMAP_BAD_REG(addr);
1225 static const MemoryRegionOps omap_tipb_bridge_ops = {
1226 .read = omap_tipb_bridge_read,
1227 .write = omap_tipb_bridge_write,
1228 .endianness = DEVICE_NATIVE_ENDIAN,
1231 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1233 s->control = 0xffff;
1234 s->alloc = 0x0009;
1235 s->buffer = 0x0000;
1236 s->enh_control = 0x000f;
1239 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1240 MemoryRegion *memory, hwaddr base,
1241 qemu_irq abort_irq, omap_clk clk)
1243 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1245 s->abort = abort_irq;
1246 omap_tipb_bridge_reset(s);
1248 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1249 "omap-tipb-bridge", 0x100);
1250 memory_region_add_subregion(memory, base, &s->iomem);
1252 return s;
1255 /* Dummy Traffic Controller's Memory Interface */
1256 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1257 unsigned size)
1259 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1260 uint32_t ret;
1262 if (size != 4) {
1263 return omap_badwidth_read32(opaque, addr);
1266 switch (addr) {
1267 case 0x00: /* IMIF_PRIO */
1268 case 0x04: /* EMIFS_PRIO */
1269 case 0x08: /* EMIFF_PRIO */
1270 case 0x0c: /* EMIFS_CONFIG */
1271 case 0x10: /* EMIFS_CS0_CONFIG */
1272 case 0x14: /* EMIFS_CS1_CONFIG */
1273 case 0x18: /* EMIFS_CS2_CONFIG */
1274 case 0x1c: /* EMIFS_CS3_CONFIG */
1275 case 0x24: /* EMIFF_MRS */
1276 case 0x28: /* TIMEOUT1 */
1277 case 0x2c: /* TIMEOUT2 */
1278 case 0x30: /* TIMEOUT3 */
1279 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1280 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1281 return s->tcmi_regs[addr >> 2];
1283 case 0x20: /* EMIFF_SDRAM_CONFIG */
1284 ret = s->tcmi_regs[addr >> 2];
1285 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1286 /* XXX: We can try using the VGA_DIRTY flag for this */
1287 return ret;
1290 OMAP_BAD_REG(addr);
1291 return 0;
1294 static void omap_tcmi_write(void *opaque, hwaddr addr,
1295 uint64_t value, unsigned size)
1297 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1299 if (size != 4) {
1300 omap_badwidth_write32(opaque, addr, value);
1301 return;
1304 switch (addr) {
1305 case 0x00: /* IMIF_PRIO */
1306 case 0x04: /* EMIFS_PRIO */
1307 case 0x08: /* EMIFF_PRIO */
1308 case 0x10: /* EMIFS_CS0_CONFIG */
1309 case 0x14: /* EMIFS_CS1_CONFIG */
1310 case 0x18: /* EMIFS_CS2_CONFIG */
1311 case 0x1c: /* EMIFS_CS3_CONFIG */
1312 case 0x20: /* EMIFF_SDRAM_CONFIG */
1313 case 0x24: /* EMIFF_MRS */
1314 case 0x28: /* TIMEOUT1 */
1315 case 0x2c: /* TIMEOUT2 */
1316 case 0x30: /* TIMEOUT3 */
1317 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1318 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1319 s->tcmi_regs[addr >> 2] = value;
1320 break;
1321 case 0x0c: /* EMIFS_CONFIG */
1322 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1323 break;
1325 default:
1326 OMAP_BAD_REG(addr);
1330 static const MemoryRegionOps omap_tcmi_ops = {
1331 .read = omap_tcmi_read,
1332 .write = omap_tcmi_write,
1333 .endianness = DEVICE_NATIVE_ENDIAN,
1336 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1338 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1339 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1340 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1341 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1342 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1343 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1344 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1345 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1346 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1347 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1348 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1349 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1350 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1351 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1352 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1355 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1356 struct omap_mpu_state_s *mpu)
1358 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1359 "omap-tcmi", 0x100);
1360 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1361 omap_tcmi_reset(mpu);
1364 /* Digital phase-locked loops control */
1365 struct dpll_ctl_s {
1366 MemoryRegion iomem;
1367 uint16_t mode;
1368 omap_clk dpll;
1371 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1372 unsigned size)
1374 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1376 if (size != 2) {
1377 return omap_badwidth_read16(opaque, addr);
1380 if (addr == 0x00) /* CTL_REG */
1381 return s->mode;
1383 OMAP_BAD_REG(addr);
1384 return 0;
1387 static void omap_dpll_write(void *opaque, hwaddr addr,
1388 uint64_t value, unsigned size)
1390 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1391 uint16_t diff;
1392 static const int bypass_div[4] = { 1, 2, 4, 4 };
1393 int div, mult;
1395 if (size != 2) {
1396 omap_badwidth_write16(opaque, addr, value);
1397 return;
1400 if (addr == 0x00) { /* CTL_REG */
1401 /* See omap_ulpd_pm_write() too */
1402 diff = s->mode & value;
1403 s->mode = value & 0x2fff;
1404 if (diff & (0x3ff << 2)) {
1405 if (value & (1 << 4)) { /* PLL_ENABLE */
1406 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1407 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1408 } else {
1409 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1410 mult = 1;
1412 omap_clk_setrate(s->dpll, div, mult);
1415 /* Enter the desired mode. */
1416 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1418 /* Act as if the lock is restored. */
1419 s->mode |= 2;
1420 } else {
1421 OMAP_BAD_REG(addr);
1425 static const MemoryRegionOps omap_dpll_ops = {
1426 .read = omap_dpll_read,
1427 .write = omap_dpll_write,
1428 .endianness = DEVICE_NATIVE_ENDIAN,
1431 static void omap_dpll_reset(struct dpll_ctl_s *s)
1433 s->mode = 0x2002;
1434 omap_clk_setrate(s->dpll, 1, 1);
1437 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1438 hwaddr base, omap_clk clk)
1440 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1441 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1443 s->dpll = clk;
1444 omap_dpll_reset(s);
1446 memory_region_add_subregion(memory, base, &s->iomem);
1447 return s;
1450 /* MPU Clock/Reset/Power Mode Control */
1451 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1452 unsigned size)
1454 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1456 if (size != 2) {
1457 return omap_badwidth_read16(opaque, addr);
1460 switch (addr) {
1461 case 0x00: /* ARM_CKCTL */
1462 return s->clkm.arm_ckctl;
1464 case 0x04: /* ARM_IDLECT1 */
1465 return s->clkm.arm_idlect1;
1467 case 0x08: /* ARM_IDLECT2 */
1468 return s->clkm.arm_idlect2;
1470 case 0x0c: /* ARM_EWUPCT */
1471 return s->clkm.arm_ewupct;
1473 case 0x10: /* ARM_RSTCT1 */
1474 return s->clkm.arm_rstct1;
1476 case 0x14: /* ARM_RSTCT2 */
1477 return s->clkm.arm_rstct2;
1479 case 0x18: /* ARM_SYSST */
1480 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1482 case 0x1c: /* ARM_CKOUT1 */
1483 return s->clkm.arm_ckout1;
1485 case 0x20: /* ARM_CKOUT2 */
1486 break;
1489 OMAP_BAD_REG(addr);
1490 return 0;
1493 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1494 uint16_t diff, uint16_t value)
1496 omap_clk clk;
1498 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1499 if (value & (1 << 14))
1500 /* Reserved */;
1501 else {
1502 clk = omap_findclk(s, "arminth_ck");
1503 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1506 if (diff & (1 << 12)) { /* ARM_TIMXO */
1507 clk = omap_findclk(s, "armtim_ck");
1508 if (value & (1 << 12))
1509 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1510 else
1511 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1513 /* XXX: en_dspck */
1514 if (diff & (3 << 10)) { /* DSPMMUDIV */
1515 clk = omap_findclk(s, "dspmmu_ck");
1516 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1518 if (diff & (3 << 8)) { /* TCDIV */
1519 clk = omap_findclk(s, "tc_ck");
1520 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1522 if (diff & (3 << 6)) { /* DSPDIV */
1523 clk = omap_findclk(s, "dsp_ck");
1524 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1526 if (diff & (3 << 4)) { /* ARMDIV */
1527 clk = omap_findclk(s, "arm_ck");
1528 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1530 if (diff & (3 << 2)) { /* LCDDIV */
1531 clk = omap_findclk(s, "lcd_ck");
1532 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1534 if (diff & (3 << 0)) { /* PERDIV */
1535 clk = omap_findclk(s, "armper_ck");
1536 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1540 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1541 uint16_t diff, uint16_t value)
1543 omap_clk clk;
1545 if (value & (1 << 11)) { /* SETARM_IDLE */
1546 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1548 if (!(value & (1 << 10))) { /* WKUP_MODE */
1549 /* XXX: disable wakeup from IRQ */
1550 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1553 #define SET_CANIDLE(clock, bit) \
1554 if (diff & (1 << bit)) { \
1555 clk = omap_findclk(s, clock); \
1556 omap_clk_canidle(clk, (value >> bit) & 1); \
1558 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1559 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1560 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1561 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1562 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1563 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1564 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1565 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1566 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1567 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1568 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1569 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1570 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1571 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1574 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1575 uint16_t diff, uint16_t value)
1577 omap_clk clk;
1579 #define SET_ONOFF(clock, bit) \
1580 if (diff & (1 << bit)) { \
1581 clk = omap_findclk(s, clock); \
1582 omap_clk_onoff(clk, (value >> bit) & 1); \
1584 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1585 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1586 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1587 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1588 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1589 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1590 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1591 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1592 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1593 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1594 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1597 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1598 uint16_t diff, uint16_t value)
1600 omap_clk clk;
1602 if (diff & (3 << 4)) { /* TCLKOUT */
1603 clk = omap_findclk(s, "tclk_out");
1604 switch ((value >> 4) & 3) {
1605 case 1:
1606 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1607 omap_clk_onoff(clk, 1);
1608 break;
1609 case 2:
1610 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1611 omap_clk_onoff(clk, 1);
1612 break;
1613 default:
1614 omap_clk_onoff(clk, 0);
1617 if (diff & (3 << 2)) { /* DCLKOUT */
1618 clk = omap_findclk(s, "dclk_out");
1619 switch ((value >> 2) & 3) {
1620 case 0:
1621 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1622 break;
1623 case 1:
1624 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1625 break;
1626 case 2:
1627 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1628 break;
1629 case 3:
1630 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1631 break;
1634 if (diff & (3 << 0)) { /* ACLKOUT */
1635 clk = omap_findclk(s, "aclk_out");
1636 switch ((value >> 0) & 3) {
1637 case 1:
1638 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1639 omap_clk_onoff(clk, 1);
1640 break;
1641 case 2:
1642 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1643 omap_clk_onoff(clk, 1);
1644 break;
1645 case 3:
1646 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1647 omap_clk_onoff(clk, 1);
1648 break;
1649 default:
1650 omap_clk_onoff(clk, 0);
1655 static void omap_clkm_write(void *opaque, hwaddr addr,
1656 uint64_t value, unsigned size)
1658 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1659 uint16_t diff;
1660 omap_clk clk;
1661 static const char *clkschemename[8] = {
1662 "fully synchronous", "fully asynchronous", "synchronous scalable",
1663 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1666 if (size != 2) {
1667 omap_badwidth_write16(opaque, addr, value);
1668 return;
1671 switch (addr) {
1672 case 0x00: /* ARM_CKCTL */
1673 diff = s->clkm.arm_ckctl ^ value;
1674 s->clkm.arm_ckctl = value & 0x7fff;
1675 omap_clkm_ckctl_update(s, diff, value);
1676 return;
1678 case 0x04: /* ARM_IDLECT1 */
1679 diff = s->clkm.arm_idlect1 ^ value;
1680 s->clkm.arm_idlect1 = value & 0x0fff;
1681 omap_clkm_idlect1_update(s, diff, value);
1682 return;
1684 case 0x08: /* ARM_IDLECT2 */
1685 diff = s->clkm.arm_idlect2 ^ value;
1686 s->clkm.arm_idlect2 = value & 0x07ff;
1687 omap_clkm_idlect2_update(s, diff, value);
1688 return;
1690 case 0x0c: /* ARM_EWUPCT */
1691 s->clkm.arm_ewupct = value & 0x003f;
1692 return;
1694 case 0x10: /* ARM_RSTCT1 */
1695 diff = s->clkm.arm_rstct1 ^ value;
1696 s->clkm.arm_rstct1 = value & 0x0007;
1697 if (value & 9) {
1698 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1699 s->clkm.cold_start = 0xa;
1701 if (diff & ~value & 4) { /* DSP_RST */
1702 omap_mpui_reset(s);
1703 omap_tipb_bridge_reset(s->private_tipb);
1704 omap_tipb_bridge_reset(s->public_tipb);
1706 if (diff & 2) { /* DSP_EN */
1707 clk = omap_findclk(s, "dsp_ck");
1708 omap_clk_canidle(clk, (~value >> 1) & 1);
1710 return;
1712 case 0x14: /* ARM_RSTCT2 */
1713 s->clkm.arm_rstct2 = value & 0x0001;
1714 return;
1716 case 0x18: /* ARM_SYSST */
1717 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1718 s->clkm.clocking_scheme = (value >> 11) & 7;
1719 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1720 clkschemename[s->clkm.clocking_scheme]);
1722 s->clkm.cold_start &= value & 0x3f;
1723 return;
1725 case 0x1c: /* ARM_CKOUT1 */
1726 diff = s->clkm.arm_ckout1 ^ value;
1727 s->clkm.arm_ckout1 = value & 0x003f;
1728 omap_clkm_ckout1_update(s, diff, value);
1729 return;
1731 case 0x20: /* ARM_CKOUT2 */
1732 default:
1733 OMAP_BAD_REG(addr);
1737 static const MemoryRegionOps omap_clkm_ops = {
1738 .read = omap_clkm_read,
1739 .write = omap_clkm_write,
1740 .endianness = DEVICE_NATIVE_ENDIAN,
1743 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1744 unsigned size)
1746 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1747 CPUState *cpu = CPU(s->cpu);
1749 if (size != 2) {
1750 return omap_badwidth_read16(opaque, addr);
1753 switch (addr) {
1754 case 0x04: /* DSP_IDLECT1 */
1755 return s->clkm.dsp_idlect1;
1757 case 0x08: /* DSP_IDLECT2 */
1758 return s->clkm.dsp_idlect2;
1760 case 0x14: /* DSP_RSTCT2 */
1761 return s->clkm.dsp_rstct2;
1763 case 0x18: /* DSP_SYSST */
1764 cpu = CPU(s->cpu);
1765 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1766 (cpu->halted << 6); /* Quite useless... */
1769 OMAP_BAD_REG(addr);
1770 return 0;
1773 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1774 uint16_t diff, uint16_t value)
1776 omap_clk clk;
1778 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1781 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1782 uint16_t diff, uint16_t value)
1784 omap_clk clk;
1786 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1789 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1790 uint64_t value, unsigned size)
1792 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1793 uint16_t diff;
1795 if (size != 2) {
1796 omap_badwidth_write16(opaque, addr, value);
1797 return;
1800 switch (addr) {
1801 case 0x04: /* DSP_IDLECT1 */
1802 diff = s->clkm.dsp_idlect1 ^ value;
1803 s->clkm.dsp_idlect1 = value & 0x01f7;
1804 omap_clkdsp_idlect1_update(s, diff, value);
1805 break;
1807 case 0x08: /* DSP_IDLECT2 */
1808 s->clkm.dsp_idlect2 = value & 0x0037;
1809 diff = s->clkm.dsp_idlect1 ^ value;
1810 omap_clkdsp_idlect2_update(s, diff, value);
1811 break;
1813 case 0x14: /* DSP_RSTCT2 */
1814 s->clkm.dsp_rstct2 = value & 0x0001;
1815 break;
1817 case 0x18: /* DSP_SYSST */
1818 s->clkm.cold_start &= value & 0x3f;
1819 break;
1821 default:
1822 OMAP_BAD_REG(addr);
1826 static const MemoryRegionOps omap_clkdsp_ops = {
1827 .read = omap_clkdsp_read,
1828 .write = omap_clkdsp_write,
1829 .endianness = DEVICE_NATIVE_ENDIAN,
1832 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1834 if (s->wdt && s->wdt->reset)
1835 s->clkm.cold_start = 0x6;
1836 s->clkm.clocking_scheme = 0;
1837 omap_clkm_ckctl_update(s, ~0, 0x3000);
1838 s->clkm.arm_ckctl = 0x3000;
1839 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1840 s->clkm.arm_idlect1 = 0x0400;
1841 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1842 s->clkm.arm_idlect2 = 0x0100;
1843 s->clkm.arm_ewupct = 0x003f;
1844 s->clkm.arm_rstct1 = 0x0000;
1845 s->clkm.arm_rstct2 = 0x0000;
1846 s->clkm.arm_ckout1 = 0x0015;
1847 s->clkm.dpll1_mode = 0x2002;
1848 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1849 s->clkm.dsp_idlect1 = 0x0040;
1850 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1851 s->clkm.dsp_idlect2 = 0x0000;
1852 s->clkm.dsp_rstct2 = 0x0000;
1855 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1856 hwaddr dsp_base, struct omap_mpu_state_s *s)
1858 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1859 "omap-clkm", 0x100);
1860 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1861 "omap-clkdsp", 0x1000);
1863 s->clkm.arm_idlect1 = 0x03ff;
1864 s->clkm.arm_idlect2 = 0x0100;
1865 s->clkm.dsp_idlect1 = 0x0002;
1866 omap_clkm_reset(s);
1867 s->clkm.cold_start = 0x3a;
1869 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1870 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1873 /* MPU I/O */
1874 struct omap_mpuio_s {
1875 qemu_irq irq;
1876 qemu_irq kbd_irq;
1877 qemu_irq *in;
1878 qemu_irq handler[16];
1879 qemu_irq wakeup;
1880 MemoryRegion iomem;
1882 uint16_t inputs;
1883 uint16_t outputs;
1884 uint16_t dir;
1885 uint16_t edge;
1886 uint16_t mask;
1887 uint16_t ints;
1889 uint16_t debounce;
1890 uint16_t latch;
1891 uint8_t event;
1893 uint8_t buttons[5];
1894 uint8_t row_latch;
1895 uint8_t cols;
1896 int kbd_mask;
1897 int clk;
1900 static void omap_mpuio_set(void *opaque, int line, int level)
1902 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1903 uint16_t prev = s->inputs;
1905 if (level)
1906 s->inputs |= 1 << line;
1907 else
1908 s->inputs &= ~(1 << line);
1910 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1911 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1912 s->ints |= 1 << line;
1913 qemu_irq_raise(s->irq);
1914 /* TODO: wakeup */
1916 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1917 (s->event >> 1) == line) /* PIN_SELECT */
1918 s->latch = s->inputs;
1922 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1924 int i;
1925 uint8_t *row, rows = 0, cols = ~s->cols;
1927 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1928 if (*row & cols)
1929 rows |= i;
1931 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1932 s->row_latch = ~rows;
1935 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1936 unsigned size)
1938 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1939 int offset = addr & OMAP_MPUI_REG_MASK;
1940 uint16_t ret;
1942 if (size != 2) {
1943 return omap_badwidth_read16(opaque, addr);
1946 switch (offset) {
1947 case 0x00: /* INPUT_LATCH */
1948 return s->inputs;
1950 case 0x04: /* OUTPUT_REG */
1951 return s->outputs;
1953 case 0x08: /* IO_CNTL */
1954 return s->dir;
1956 case 0x10: /* KBR_LATCH */
1957 return s->row_latch;
1959 case 0x14: /* KBC_REG */
1960 return s->cols;
1962 case 0x18: /* GPIO_EVENT_MODE_REG */
1963 return s->event;
1965 case 0x1c: /* GPIO_INT_EDGE_REG */
1966 return s->edge;
1968 case 0x20: /* KBD_INT */
1969 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1971 case 0x24: /* GPIO_INT */
1972 ret = s->ints;
1973 s->ints &= s->mask;
1974 if (ret)
1975 qemu_irq_lower(s->irq);
1976 return ret;
1978 case 0x28: /* KBD_MASKIT */
1979 return s->kbd_mask;
1981 case 0x2c: /* GPIO_MASKIT */
1982 return s->mask;
1984 case 0x30: /* GPIO_DEBOUNCING_REG */
1985 return s->debounce;
1987 case 0x34: /* GPIO_LATCH_REG */
1988 return s->latch;
1991 OMAP_BAD_REG(addr);
1992 return 0;
1995 static void omap_mpuio_write(void *opaque, hwaddr addr,
1996 uint64_t value, unsigned size)
1998 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1999 int offset = addr & OMAP_MPUI_REG_MASK;
2000 uint16_t diff;
2001 int ln;
2003 if (size != 2) {
2004 omap_badwidth_write16(opaque, addr, value);
2005 return;
2008 switch (offset) {
2009 case 0x04: /* OUTPUT_REG */
2010 diff = (s->outputs ^ value) & ~s->dir;
2011 s->outputs = value;
2012 while ((ln = ctz32(diff)) != 32) {
2013 if (s->handler[ln])
2014 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2015 diff &= ~(1 << ln);
2017 break;
2019 case 0x08: /* IO_CNTL */
2020 diff = s->outputs & (s->dir ^ value);
2021 s->dir = value;
2023 value = s->outputs & ~s->dir;
2024 while ((ln = ctz32(diff)) != 32) {
2025 if (s->handler[ln])
2026 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2027 diff &= ~(1 << ln);
2029 break;
2031 case 0x14: /* KBC_REG */
2032 s->cols = value;
2033 omap_mpuio_kbd_update(s);
2034 break;
2036 case 0x18: /* GPIO_EVENT_MODE_REG */
2037 s->event = value & 0x1f;
2038 break;
2040 case 0x1c: /* GPIO_INT_EDGE_REG */
2041 s->edge = value;
2042 break;
2044 case 0x28: /* KBD_MASKIT */
2045 s->kbd_mask = value & 1;
2046 omap_mpuio_kbd_update(s);
2047 break;
2049 case 0x2c: /* GPIO_MASKIT */
2050 s->mask = value;
2051 break;
2053 case 0x30: /* GPIO_DEBOUNCING_REG */
2054 s->debounce = value & 0x1ff;
2055 break;
2057 case 0x00: /* INPUT_LATCH */
2058 case 0x10: /* KBR_LATCH */
2059 case 0x20: /* KBD_INT */
2060 case 0x24: /* GPIO_INT */
2061 case 0x34: /* GPIO_LATCH_REG */
2062 OMAP_RO_REG(addr);
2063 return;
2065 default:
2066 OMAP_BAD_REG(addr);
2067 return;
2071 static const MemoryRegionOps omap_mpuio_ops = {
2072 .read = omap_mpuio_read,
2073 .write = omap_mpuio_write,
2074 .endianness = DEVICE_NATIVE_ENDIAN,
2077 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2079 s->inputs = 0;
2080 s->outputs = 0;
2081 s->dir = ~0;
2082 s->event = 0;
2083 s->edge = 0;
2084 s->kbd_mask = 0;
2085 s->mask = 0;
2086 s->debounce = 0;
2087 s->latch = 0;
2088 s->ints = 0;
2089 s->row_latch = 0x1f;
2090 s->clk = 1;
2093 static void omap_mpuio_onoff(void *opaque, int line, int on)
2095 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2097 s->clk = on;
2098 if (on)
2099 omap_mpuio_kbd_update(s);
2102 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2103 hwaddr base,
2104 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2105 omap_clk clk)
2107 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2109 s->irq = gpio_int;
2110 s->kbd_irq = kbd_int;
2111 s->wakeup = wakeup;
2112 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2113 omap_mpuio_reset(s);
2115 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2116 "omap-mpuio", 0x800);
2117 memory_region_add_subregion(memory, base, &s->iomem);
2119 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2121 return s;
2124 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2126 return s->in;
2129 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2131 if (line >= 16 || line < 0)
2132 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2133 s->handler[line] = handler;
2136 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2138 if (row >= 5 || row < 0)
2139 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2141 if (down)
2142 s->buttons[row] |= 1 << col;
2143 else
2144 s->buttons[row] &= ~(1 << col);
2146 omap_mpuio_kbd_update(s);
2149 /* MicroWire Interface */
2150 struct omap_uwire_s {
2151 MemoryRegion iomem;
2152 qemu_irq txirq;
2153 qemu_irq rxirq;
2154 qemu_irq txdrq;
2156 uint16_t txbuf;
2157 uint16_t rxbuf;
2158 uint16_t control;
2159 uint16_t setup[5];
2161 uWireSlave *chip[4];
2164 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2166 int chipselect = (s->control >> 10) & 3; /* INDEX */
2167 uWireSlave *slave = s->chip[chipselect];
2169 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2170 if (s->control & (1 << 12)) /* CS_CMD */
2171 if (slave && slave->send)
2172 slave->send(slave->opaque,
2173 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2174 s->control &= ~(1 << 14); /* CSRB */
2175 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2176 * a DRQ. When is the level IRQ supposed to be reset? */
2179 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2180 if (s->control & (1 << 12)) /* CS_CMD */
2181 if (slave && slave->receive)
2182 s->rxbuf = slave->receive(slave->opaque);
2183 s->control |= 1 << 15; /* RDRB */
2184 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2185 * a DRQ. When is the level IRQ supposed to be reset? */
2189 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2190 unsigned size)
2192 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2193 int offset = addr & OMAP_MPUI_REG_MASK;
2195 if (size != 2) {
2196 return omap_badwidth_read16(opaque, addr);
2199 switch (offset) {
2200 case 0x00: /* RDR */
2201 s->control &= ~(1 << 15); /* RDRB */
2202 return s->rxbuf;
2204 case 0x04: /* CSR */
2205 return s->control;
2207 case 0x08: /* SR1 */
2208 return s->setup[0];
2209 case 0x0c: /* SR2 */
2210 return s->setup[1];
2211 case 0x10: /* SR3 */
2212 return s->setup[2];
2213 case 0x14: /* SR4 */
2214 return s->setup[3];
2215 case 0x18: /* SR5 */
2216 return s->setup[4];
2219 OMAP_BAD_REG(addr);
2220 return 0;
2223 static void omap_uwire_write(void *opaque, hwaddr addr,
2224 uint64_t value, unsigned size)
2226 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2227 int offset = addr & OMAP_MPUI_REG_MASK;
2229 if (size != 2) {
2230 omap_badwidth_write16(opaque, addr, value);
2231 return;
2234 switch (offset) {
2235 case 0x00: /* TDR */
2236 s->txbuf = value; /* TD */
2237 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2238 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2239 (s->control & (1 << 12)))) { /* CS_CMD */
2240 s->control |= 1 << 14; /* CSRB */
2241 omap_uwire_transfer_start(s);
2243 break;
2245 case 0x04: /* CSR */
2246 s->control = value & 0x1fff;
2247 if (value & (1 << 13)) /* START */
2248 omap_uwire_transfer_start(s);
2249 break;
2251 case 0x08: /* SR1 */
2252 s->setup[0] = value & 0x003f;
2253 break;
2255 case 0x0c: /* SR2 */
2256 s->setup[1] = value & 0x0fc0;
2257 break;
2259 case 0x10: /* SR3 */
2260 s->setup[2] = value & 0x0003;
2261 break;
2263 case 0x14: /* SR4 */
2264 s->setup[3] = value & 0x0001;
2265 break;
2267 case 0x18: /* SR5 */
2268 s->setup[4] = value & 0x000f;
2269 break;
2271 default:
2272 OMAP_BAD_REG(addr);
2273 return;
2277 static const MemoryRegionOps omap_uwire_ops = {
2278 .read = omap_uwire_read,
2279 .write = omap_uwire_write,
2280 .endianness = DEVICE_NATIVE_ENDIAN,
2283 static void omap_uwire_reset(struct omap_uwire_s *s)
2285 s->control = 0;
2286 s->setup[0] = 0;
2287 s->setup[1] = 0;
2288 s->setup[2] = 0;
2289 s->setup[3] = 0;
2290 s->setup[4] = 0;
2293 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2294 hwaddr base,
2295 qemu_irq txirq, qemu_irq rxirq,
2296 qemu_irq dma,
2297 omap_clk clk)
2299 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2301 s->txirq = txirq;
2302 s->rxirq = rxirq;
2303 s->txdrq = dma;
2304 omap_uwire_reset(s);
2306 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2307 memory_region_add_subregion(system_memory, base, &s->iomem);
2309 return s;
2312 void omap_uwire_attach(struct omap_uwire_s *s,
2313 uWireSlave *slave, int chipselect)
2315 if (chipselect < 0 || chipselect > 3) {
2316 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2317 exit(-1);
2320 s->chip[chipselect] = slave;
2323 /* Pseudonoise Pulse-Width Light Modulator */
2324 struct omap_pwl_s {
2325 MemoryRegion iomem;
2326 uint8_t output;
2327 uint8_t level;
2328 uint8_t enable;
2329 int clk;
2332 static void omap_pwl_update(struct omap_pwl_s *s)
2334 int output = (s->clk && s->enable) ? s->level : 0;
2336 if (output != s->output) {
2337 s->output = output;
2338 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2342 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2343 unsigned size)
2345 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2346 int offset = addr & OMAP_MPUI_REG_MASK;
2348 if (size != 1) {
2349 return omap_badwidth_read8(opaque, addr);
2352 switch (offset) {
2353 case 0x00: /* PWL_LEVEL */
2354 return s->level;
2355 case 0x04: /* PWL_CTRL */
2356 return s->enable;
2358 OMAP_BAD_REG(addr);
2359 return 0;
2362 static void omap_pwl_write(void *opaque, hwaddr addr,
2363 uint64_t value, unsigned size)
2365 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2366 int offset = addr & OMAP_MPUI_REG_MASK;
2368 if (size != 1) {
2369 omap_badwidth_write8(opaque, addr, value);
2370 return;
2373 switch (offset) {
2374 case 0x00: /* PWL_LEVEL */
2375 s->level = value;
2376 omap_pwl_update(s);
2377 break;
2378 case 0x04: /* PWL_CTRL */
2379 s->enable = value & 1;
2380 omap_pwl_update(s);
2381 break;
2382 default:
2383 OMAP_BAD_REG(addr);
2384 return;
2388 static const MemoryRegionOps omap_pwl_ops = {
2389 .read = omap_pwl_read,
2390 .write = omap_pwl_write,
2391 .endianness = DEVICE_NATIVE_ENDIAN,
2394 static void omap_pwl_reset(struct omap_pwl_s *s)
2396 s->output = 0;
2397 s->level = 0;
2398 s->enable = 0;
2399 s->clk = 1;
2400 omap_pwl_update(s);
2403 static void omap_pwl_clk_update(void *opaque, int line, int on)
2405 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2407 s->clk = on;
2408 omap_pwl_update(s);
2411 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2412 hwaddr base,
2413 omap_clk clk)
2415 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2417 omap_pwl_reset(s);
2419 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2420 "omap-pwl", 0x800);
2421 memory_region_add_subregion(system_memory, base, &s->iomem);
2423 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2424 return s;
2427 /* Pulse-Width Tone module */
2428 struct omap_pwt_s {
2429 MemoryRegion iomem;
2430 uint8_t frc;
2431 uint8_t vrc;
2432 uint8_t gcr;
2433 omap_clk clk;
2436 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2437 unsigned size)
2439 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2440 int offset = addr & OMAP_MPUI_REG_MASK;
2442 if (size != 1) {
2443 return omap_badwidth_read8(opaque, addr);
2446 switch (offset) {
2447 case 0x00: /* FRC */
2448 return s->frc;
2449 case 0x04: /* VCR */
2450 return s->vrc;
2451 case 0x08: /* GCR */
2452 return s->gcr;
2454 OMAP_BAD_REG(addr);
2455 return 0;
2458 static void omap_pwt_write(void *opaque, hwaddr addr,
2459 uint64_t value, unsigned size)
2461 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2462 int offset = addr & OMAP_MPUI_REG_MASK;
2464 if (size != 1) {
2465 omap_badwidth_write8(opaque, addr, value);
2466 return;
2469 switch (offset) {
2470 case 0x00: /* FRC */
2471 s->frc = value & 0x3f;
2472 break;
2473 case 0x04: /* VRC */
2474 if ((value ^ s->vrc) & 1) {
2475 if (value & 1)
2476 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2477 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2478 ((omap_clk_getrate(s->clk) >> 3) /
2479 /* Pre-multiplexer divider */
2480 ((s->gcr & 2) ? 1 : 154) /
2481 /* Octave multiplexer */
2482 (2 << (value & 3)) *
2483 /* 101/107 divider */
2484 ((value & (1 << 2)) ? 101 : 107) *
2485 /* 49/55 divider */
2486 ((value & (1 << 3)) ? 49 : 55) *
2487 /* 50/63 divider */
2488 ((value & (1 << 4)) ? 50 : 63) *
2489 /* 80/127 divider */
2490 ((value & (1 << 5)) ? 80 : 127) /
2491 (107 * 55 * 63 * 127)));
2492 else
2493 printf("%s: silence!\n", __FUNCTION__);
2495 s->vrc = value & 0x7f;
2496 break;
2497 case 0x08: /* GCR */
2498 s->gcr = value & 3;
2499 break;
2500 default:
2501 OMAP_BAD_REG(addr);
2502 return;
2506 static const MemoryRegionOps omap_pwt_ops = {
2507 .read =omap_pwt_read,
2508 .write = omap_pwt_write,
2509 .endianness = DEVICE_NATIVE_ENDIAN,
2512 static void omap_pwt_reset(struct omap_pwt_s *s)
2514 s->frc = 0;
2515 s->vrc = 0;
2516 s->gcr = 0;
2519 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2520 hwaddr base,
2521 omap_clk clk)
2523 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2524 s->clk = clk;
2525 omap_pwt_reset(s);
2527 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2528 "omap-pwt", 0x800);
2529 memory_region_add_subregion(system_memory, base, &s->iomem);
2530 return s;
2533 /* Real-time Clock module */
2534 struct omap_rtc_s {
2535 MemoryRegion iomem;
2536 qemu_irq irq;
2537 qemu_irq alarm;
2538 QEMUTimer *clk;
2540 uint8_t interrupts;
2541 uint8_t status;
2542 int16_t comp_reg;
2543 int running;
2544 int pm_am;
2545 int auto_comp;
2546 int round;
2547 struct tm alarm_tm;
2548 time_t alarm_ti;
2550 struct tm current_tm;
2551 time_t ti;
2552 uint64_t tick;
2555 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2557 /* s->alarm is level-triggered */
2558 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2561 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2563 s->alarm_ti = mktimegm(&s->alarm_tm);
2564 if (s->alarm_ti == -1)
2565 printf("%s: conversion failed\n", __FUNCTION__);
2568 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2569 unsigned size)
2571 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2572 int offset = addr & OMAP_MPUI_REG_MASK;
2573 uint8_t i;
2575 if (size != 1) {
2576 return omap_badwidth_read8(opaque, addr);
2579 switch (offset) {
2580 case 0x00: /* SECONDS_REG */
2581 return to_bcd(s->current_tm.tm_sec);
2583 case 0x04: /* MINUTES_REG */
2584 return to_bcd(s->current_tm.tm_min);
2586 case 0x08: /* HOURS_REG */
2587 if (s->pm_am)
2588 return ((s->current_tm.tm_hour > 11) << 7) |
2589 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2590 else
2591 return to_bcd(s->current_tm.tm_hour);
2593 case 0x0c: /* DAYS_REG */
2594 return to_bcd(s->current_tm.tm_mday);
2596 case 0x10: /* MONTHS_REG */
2597 return to_bcd(s->current_tm.tm_mon + 1);
2599 case 0x14: /* YEARS_REG */
2600 return to_bcd(s->current_tm.tm_year % 100);
2602 case 0x18: /* WEEK_REG */
2603 return s->current_tm.tm_wday;
2605 case 0x20: /* ALARM_SECONDS_REG */
2606 return to_bcd(s->alarm_tm.tm_sec);
2608 case 0x24: /* ALARM_MINUTES_REG */
2609 return to_bcd(s->alarm_tm.tm_min);
2611 case 0x28: /* ALARM_HOURS_REG */
2612 if (s->pm_am)
2613 return ((s->alarm_tm.tm_hour > 11) << 7) |
2614 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2615 else
2616 return to_bcd(s->alarm_tm.tm_hour);
2618 case 0x2c: /* ALARM_DAYS_REG */
2619 return to_bcd(s->alarm_tm.tm_mday);
2621 case 0x30: /* ALARM_MONTHS_REG */
2622 return to_bcd(s->alarm_tm.tm_mon + 1);
2624 case 0x34: /* ALARM_YEARS_REG */
2625 return to_bcd(s->alarm_tm.tm_year % 100);
2627 case 0x40: /* RTC_CTRL_REG */
2628 return (s->pm_am << 3) | (s->auto_comp << 2) |
2629 (s->round << 1) | s->running;
2631 case 0x44: /* RTC_STATUS_REG */
2632 i = s->status;
2633 s->status &= ~0x3d;
2634 return i;
2636 case 0x48: /* RTC_INTERRUPTS_REG */
2637 return s->interrupts;
2639 case 0x4c: /* RTC_COMP_LSB_REG */
2640 return ((uint16_t) s->comp_reg) & 0xff;
2642 case 0x50: /* RTC_COMP_MSB_REG */
2643 return ((uint16_t) s->comp_reg) >> 8;
2646 OMAP_BAD_REG(addr);
2647 return 0;
2650 static void omap_rtc_write(void *opaque, hwaddr addr,
2651 uint64_t value, unsigned size)
2653 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2654 int offset = addr & OMAP_MPUI_REG_MASK;
2655 struct tm new_tm;
2656 time_t ti[2];
2658 if (size != 1) {
2659 omap_badwidth_write8(opaque, addr, value);
2660 return;
2663 switch (offset) {
2664 case 0x00: /* SECONDS_REG */
2665 #ifdef ALMDEBUG
2666 printf("RTC SEC_REG <-- %02x\n", value);
2667 #endif
2668 s->ti -= s->current_tm.tm_sec;
2669 s->ti += from_bcd(value);
2670 return;
2672 case 0x04: /* MINUTES_REG */
2673 #ifdef ALMDEBUG
2674 printf("RTC MIN_REG <-- %02x\n", value);
2675 #endif
2676 s->ti -= s->current_tm.tm_min * 60;
2677 s->ti += from_bcd(value) * 60;
2678 return;
2680 case 0x08: /* HOURS_REG */
2681 #ifdef ALMDEBUG
2682 printf("RTC HRS_REG <-- %02x\n", value);
2683 #endif
2684 s->ti -= s->current_tm.tm_hour * 3600;
2685 if (s->pm_am) {
2686 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2687 s->ti += ((value >> 7) & 1) * 43200;
2688 } else
2689 s->ti += from_bcd(value & 0x3f) * 3600;
2690 return;
2692 case 0x0c: /* DAYS_REG */
2693 #ifdef ALMDEBUG
2694 printf("RTC DAY_REG <-- %02x\n", value);
2695 #endif
2696 s->ti -= s->current_tm.tm_mday * 86400;
2697 s->ti += from_bcd(value) * 86400;
2698 return;
2700 case 0x10: /* MONTHS_REG */
2701 #ifdef ALMDEBUG
2702 printf("RTC MTH_REG <-- %02x\n", value);
2703 #endif
2704 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2705 new_tm.tm_mon = from_bcd(value);
2706 ti[0] = mktimegm(&s->current_tm);
2707 ti[1] = mktimegm(&new_tm);
2709 if (ti[0] != -1 && ti[1] != -1) {
2710 s->ti -= ti[0];
2711 s->ti += ti[1];
2712 } else {
2713 /* A less accurate version */
2714 s->ti -= s->current_tm.tm_mon * 2592000;
2715 s->ti += from_bcd(value) * 2592000;
2717 return;
2719 case 0x14: /* YEARS_REG */
2720 #ifdef ALMDEBUG
2721 printf("RTC YRS_REG <-- %02x\n", value);
2722 #endif
2723 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2724 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2725 ti[0] = mktimegm(&s->current_tm);
2726 ti[1] = mktimegm(&new_tm);
2728 if (ti[0] != -1 && ti[1] != -1) {
2729 s->ti -= ti[0];
2730 s->ti += ti[1];
2731 } else {
2732 /* A less accurate version */
2733 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2734 s->ti += (time_t)from_bcd(value) * 31536000;
2736 return;
2738 case 0x18: /* WEEK_REG */
2739 return; /* Ignored */
2741 case 0x20: /* ALARM_SECONDS_REG */
2742 #ifdef ALMDEBUG
2743 printf("ALM SEC_REG <-- %02x\n", value);
2744 #endif
2745 s->alarm_tm.tm_sec = from_bcd(value);
2746 omap_rtc_alarm_update(s);
2747 return;
2749 case 0x24: /* ALARM_MINUTES_REG */
2750 #ifdef ALMDEBUG
2751 printf("ALM MIN_REG <-- %02x\n", value);
2752 #endif
2753 s->alarm_tm.tm_min = from_bcd(value);
2754 omap_rtc_alarm_update(s);
2755 return;
2757 case 0x28: /* ALARM_HOURS_REG */
2758 #ifdef ALMDEBUG
2759 printf("ALM HRS_REG <-- %02x\n", value);
2760 #endif
2761 if (s->pm_am)
2762 s->alarm_tm.tm_hour =
2763 ((from_bcd(value & 0x3f)) % 12) +
2764 ((value >> 7) & 1) * 12;
2765 else
2766 s->alarm_tm.tm_hour = from_bcd(value);
2767 omap_rtc_alarm_update(s);
2768 return;
2770 case 0x2c: /* ALARM_DAYS_REG */
2771 #ifdef ALMDEBUG
2772 printf("ALM DAY_REG <-- %02x\n", value);
2773 #endif
2774 s->alarm_tm.tm_mday = from_bcd(value);
2775 omap_rtc_alarm_update(s);
2776 return;
2778 case 0x30: /* ALARM_MONTHS_REG */
2779 #ifdef ALMDEBUG
2780 printf("ALM MON_REG <-- %02x\n", value);
2781 #endif
2782 s->alarm_tm.tm_mon = from_bcd(value);
2783 omap_rtc_alarm_update(s);
2784 return;
2786 case 0x34: /* ALARM_YEARS_REG */
2787 #ifdef ALMDEBUG
2788 printf("ALM YRS_REG <-- %02x\n", value);
2789 #endif
2790 s->alarm_tm.tm_year = from_bcd(value);
2791 omap_rtc_alarm_update(s);
2792 return;
2794 case 0x40: /* RTC_CTRL_REG */
2795 #ifdef ALMDEBUG
2796 printf("RTC CONTROL <-- %02x\n", value);
2797 #endif
2798 s->pm_am = (value >> 3) & 1;
2799 s->auto_comp = (value >> 2) & 1;
2800 s->round = (value >> 1) & 1;
2801 s->running = value & 1;
2802 s->status &= 0xfd;
2803 s->status |= s->running << 1;
2804 return;
2806 case 0x44: /* RTC_STATUS_REG */
2807 #ifdef ALMDEBUG
2808 printf("RTC STATUSL <-- %02x\n", value);
2809 #endif
2810 s->status &= ~((value & 0xc0) ^ 0x80);
2811 omap_rtc_interrupts_update(s);
2812 return;
2814 case 0x48: /* RTC_INTERRUPTS_REG */
2815 #ifdef ALMDEBUG
2816 printf("RTC INTRS <-- %02x\n", value);
2817 #endif
2818 s->interrupts = value;
2819 return;
2821 case 0x4c: /* RTC_COMP_LSB_REG */
2822 #ifdef ALMDEBUG
2823 printf("RTC COMPLSB <-- %02x\n", value);
2824 #endif
2825 s->comp_reg &= 0xff00;
2826 s->comp_reg |= 0x00ff & value;
2827 return;
2829 case 0x50: /* RTC_COMP_MSB_REG */
2830 #ifdef ALMDEBUG
2831 printf("RTC COMPMSB <-- %02x\n", value);
2832 #endif
2833 s->comp_reg &= 0x00ff;
2834 s->comp_reg |= 0xff00 & (value << 8);
2835 return;
2837 default:
2838 OMAP_BAD_REG(addr);
2839 return;
2843 static const MemoryRegionOps omap_rtc_ops = {
2844 .read = omap_rtc_read,
2845 .write = omap_rtc_write,
2846 .endianness = DEVICE_NATIVE_ENDIAN,
2849 static void omap_rtc_tick(void *opaque)
2851 struct omap_rtc_s *s = opaque;
2853 if (s->round) {
2854 /* Round to nearest full minute. */
2855 if (s->current_tm.tm_sec < 30)
2856 s->ti -= s->current_tm.tm_sec;
2857 else
2858 s->ti += 60 - s->current_tm.tm_sec;
2860 s->round = 0;
2863 localtime_r(&s->ti, &s->current_tm);
2865 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2866 s->status |= 0x40;
2867 omap_rtc_interrupts_update(s);
2870 if (s->interrupts & 0x04)
2871 switch (s->interrupts & 3) {
2872 case 0:
2873 s->status |= 0x04;
2874 qemu_irq_pulse(s->irq);
2875 break;
2876 case 1:
2877 if (s->current_tm.tm_sec)
2878 break;
2879 s->status |= 0x08;
2880 qemu_irq_pulse(s->irq);
2881 break;
2882 case 2:
2883 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2884 break;
2885 s->status |= 0x10;
2886 qemu_irq_pulse(s->irq);
2887 break;
2888 case 3:
2889 if (s->current_tm.tm_sec ||
2890 s->current_tm.tm_min || s->current_tm.tm_hour)
2891 break;
2892 s->status |= 0x20;
2893 qemu_irq_pulse(s->irq);
2894 break;
2897 /* Move on */
2898 if (s->running)
2899 s->ti ++;
2900 s->tick += 1000;
2903 * Every full hour add a rough approximation of the compensation
2904 * register to the 32kHz Timer (which drives the RTC) value.
2906 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2907 s->tick += s->comp_reg * 1000 / 32768;
2909 timer_mod(s->clk, s->tick);
2912 static void omap_rtc_reset(struct omap_rtc_s *s)
2914 struct tm tm;
2916 s->interrupts = 0;
2917 s->comp_reg = 0;
2918 s->running = 0;
2919 s->pm_am = 0;
2920 s->auto_comp = 0;
2921 s->round = 0;
2922 s->tick = qemu_clock_get_ms(rtc_clock);
2923 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2924 s->alarm_tm.tm_mday = 0x01;
2925 s->status = 1 << 7;
2926 qemu_get_timedate(&tm, 0);
2927 s->ti = mktimegm(&tm);
2929 omap_rtc_alarm_update(s);
2930 omap_rtc_tick(s);
2933 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2934 hwaddr base,
2935 qemu_irq timerirq, qemu_irq alarmirq,
2936 omap_clk clk)
2938 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2940 s->irq = timerirq;
2941 s->alarm = alarmirq;
2942 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2944 omap_rtc_reset(s);
2946 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2947 "omap-rtc", 0x800);
2948 memory_region_add_subregion(system_memory, base, &s->iomem);
2950 return s;
2953 /* Multi-channel Buffered Serial Port interfaces */
2954 struct omap_mcbsp_s {
2955 MemoryRegion iomem;
2956 qemu_irq txirq;
2957 qemu_irq rxirq;
2958 qemu_irq txdrq;
2959 qemu_irq rxdrq;
2961 uint16_t spcr[2];
2962 uint16_t rcr[2];
2963 uint16_t xcr[2];
2964 uint16_t srgr[2];
2965 uint16_t mcr[2];
2966 uint16_t pcr;
2967 uint16_t rcer[8];
2968 uint16_t xcer[8];
2969 int tx_rate;
2970 int rx_rate;
2971 int tx_req;
2972 int rx_req;
2974 I2SCodec *codec;
2975 QEMUTimer *source_timer;
2976 QEMUTimer *sink_timer;
2979 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2981 int irq;
2983 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2984 case 0:
2985 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2986 break;
2987 case 3:
2988 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2989 break;
2990 default:
2991 irq = 0;
2992 break;
2995 if (irq)
2996 qemu_irq_pulse(s->rxirq);
2998 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
2999 case 0:
3000 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3001 break;
3002 case 3:
3003 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3004 break;
3005 default:
3006 irq = 0;
3007 break;
3010 if (irq)
3011 qemu_irq_pulse(s->txirq);
3014 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3016 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3017 s->spcr[0] |= 1 << 2; /* RFULL */
3018 s->spcr[0] |= 1 << 1; /* RRDY */
3019 qemu_irq_raise(s->rxdrq);
3020 omap_mcbsp_intr_update(s);
3023 static void omap_mcbsp_source_tick(void *opaque)
3025 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3026 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3028 if (!s->rx_rate)
3029 return;
3030 if (s->rx_req)
3031 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3033 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3035 omap_mcbsp_rx_newdata(s);
3036 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3037 NANOSECONDS_PER_SECOND);
3040 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3042 if (!s->codec || !s->codec->rts)
3043 omap_mcbsp_source_tick(s);
3044 else if (s->codec->in.len) {
3045 s->rx_req = s->codec->in.len;
3046 omap_mcbsp_rx_newdata(s);
3050 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3052 timer_del(s->source_timer);
3055 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3057 s->spcr[0] &= ~(1 << 1); /* RRDY */
3058 qemu_irq_lower(s->rxdrq);
3059 omap_mcbsp_intr_update(s);
3062 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3064 s->spcr[1] |= 1 << 1; /* XRDY */
3065 qemu_irq_raise(s->txdrq);
3066 omap_mcbsp_intr_update(s);
3069 static void omap_mcbsp_sink_tick(void *opaque)
3071 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3072 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3074 if (!s->tx_rate)
3075 return;
3076 if (s->tx_req)
3077 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3079 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3081 omap_mcbsp_tx_newdata(s);
3082 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3083 NANOSECONDS_PER_SECOND);
3086 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3088 if (!s->codec || !s->codec->cts)
3089 omap_mcbsp_sink_tick(s);
3090 else if (s->codec->out.size) {
3091 s->tx_req = s->codec->out.size;
3092 omap_mcbsp_tx_newdata(s);
3096 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3098 s->spcr[1] &= ~(1 << 1); /* XRDY */
3099 qemu_irq_lower(s->txdrq);
3100 omap_mcbsp_intr_update(s);
3101 if (s->codec && s->codec->cts)
3102 s->codec->tx_swallow(s->codec->opaque);
3105 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3107 s->tx_req = 0;
3108 omap_mcbsp_tx_done(s);
3109 timer_del(s->sink_timer);
3112 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3114 int prev_rx_rate, prev_tx_rate;
3115 int rx_rate = 0, tx_rate = 0;
3116 int cpu_rate = 1500000; /* XXX */
3118 /* TODO: check CLKSTP bit */
3119 if (s->spcr[1] & (1 << 6)) { /* GRST */
3120 if (s->spcr[0] & (1 << 0)) { /* RRST */
3121 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3122 (s->pcr & (1 << 8))) { /* CLKRM */
3123 if (~s->pcr & (1 << 7)) /* SCLKME */
3124 rx_rate = cpu_rate /
3125 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3126 } else
3127 if (s->codec)
3128 rx_rate = s->codec->rx_rate;
3131 if (s->spcr[1] & (1 << 0)) { /* XRST */
3132 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3133 (s->pcr & (1 << 9))) { /* CLKXM */
3134 if (~s->pcr & (1 << 7)) /* SCLKME */
3135 tx_rate = cpu_rate /
3136 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3137 } else
3138 if (s->codec)
3139 tx_rate = s->codec->tx_rate;
3142 prev_tx_rate = s->tx_rate;
3143 prev_rx_rate = s->rx_rate;
3144 s->tx_rate = tx_rate;
3145 s->rx_rate = rx_rate;
3147 if (s->codec)
3148 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3150 if (!prev_tx_rate && tx_rate)
3151 omap_mcbsp_tx_start(s);
3152 else if (s->tx_rate && !tx_rate)
3153 omap_mcbsp_tx_stop(s);
3155 if (!prev_rx_rate && rx_rate)
3156 omap_mcbsp_rx_start(s);
3157 else if (prev_tx_rate && !tx_rate)
3158 omap_mcbsp_rx_stop(s);
3161 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3162 unsigned size)
3164 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3165 int offset = addr & OMAP_MPUI_REG_MASK;
3166 uint16_t ret;
3168 if (size != 2) {
3169 return omap_badwidth_read16(opaque, addr);
3172 switch (offset) {
3173 case 0x00: /* DRR2 */
3174 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3175 return 0x0000;
3176 /* Fall through. */
3177 case 0x02: /* DRR1 */
3178 if (s->rx_req < 2) {
3179 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3180 omap_mcbsp_rx_done(s);
3181 } else {
3182 s->tx_req -= 2;
3183 if (s->codec && s->codec->in.len >= 2) {
3184 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3185 ret |= s->codec->in.fifo[s->codec->in.start ++];
3186 s->codec->in.len -= 2;
3187 } else
3188 ret = 0x0000;
3189 if (!s->tx_req)
3190 omap_mcbsp_rx_done(s);
3191 return ret;
3193 return 0x0000;
3195 case 0x04: /* DXR2 */
3196 case 0x06: /* DXR1 */
3197 return 0x0000;
3199 case 0x08: /* SPCR2 */
3200 return s->spcr[1];
3201 case 0x0a: /* SPCR1 */
3202 return s->spcr[0];
3203 case 0x0c: /* RCR2 */
3204 return s->rcr[1];
3205 case 0x0e: /* RCR1 */
3206 return s->rcr[0];
3207 case 0x10: /* XCR2 */
3208 return s->xcr[1];
3209 case 0x12: /* XCR1 */
3210 return s->xcr[0];
3211 case 0x14: /* SRGR2 */
3212 return s->srgr[1];
3213 case 0x16: /* SRGR1 */
3214 return s->srgr[0];
3215 case 0x18: /* MCR2 */
3216 return s->mcr[1];
3217 case 0x1a: /* MCR1 */
3218 return s->mcr[0];
3219 case 0x1c: /* RCERA */
3220 return s->rcer[0];
3221 case 0x1e: /* RCERB */
3222 return s->rcer[1];
3223 case 0x20: /* XCERA */
3224 return s->xcer[0];
3225 case 0x22: /* XCERB */
3226 return s->xcer[1];
3227 case 0x24: /* PCR0 */
3228 return s->pcr;
3229 case 0x26: /* RCERC */
3230 return s->rcer[2];
3231 case 0x28: /* RCERD */
3232 return s->rcer[3];
3233 case 0x2a: /* XCERC */
3234 return s->xcer[2];
3235 case 0x2c: /* XCERD */
3236 return s->xcer[3];
3237 case 0x2e: /* RCERE */
3238 return s->rcer[4];
3239 case 0x30: /* RCERF */
3240 return s->rcer[5];
3241 case 0x32: /* XCERE */
3242 return s->xcer[4];
3243 case 0x34: /* XCERF */
3244 return s->xcer[5];
3245 case 0x36: /* RCERG */
3246 return s->rcer[6];
3247 case 0x38: /* RCERH */
3248 return s->rcer[7];
3249 case 0x3a: /* XCERG */
3250 return s->xcer[6];
3251 case 0x3c: /* XCERH */
3252 return s->xcer[7];
3255 OMAP_BAD_REG(addr);
3256 return 0;
3259 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3260 uint32_t value)
3262 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3263 int offset = addr & OMAP_MPUI_REG_MASK;
3265 switch (offset) {
3266 case 0x00: /* DRR2 */
3267 case 0x02: /* DRR1 */
3268 OMAP_RO_REG(addr);
3269 return;
3271 case 0x04: /* DXR2 */
3272 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3273 return;
3274 /* Fall through. */
3275 case 0x06: /* DXR1 */
3276 if (s->tx_req > 1) {
3277 s->tx_req -= 2;
3278 if (s->codec && s->codec->cts) {
3279 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3280 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3282 if (s->tx_req < 2)
3283 omap_mcbsp_tx_done(s);
3284 } else
3285 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3286 return;
3288 case 0x08: /* SPCR2 */
3289 s->spcr[1] &= 0x0002;
3290 s->spcr[1] |= 0x03f9 & value;
3291 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3292 if (~value & 1) /* XRST */
3293 s->spcr[1] &= ~6;
3294 omap_mcbsp_req_update(s);
3295 return;
3296 case 0x0a: /* SPCR1 */
3297 s->spcr[0] &= 0x0006;
3298 s->spcr[0] |= 0xf8f9 & value;
3299 if (value & (1 << 15)) /* DLB */
3300 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3301 if (~value & 1) { /* RRST */
3302 s->spcr[0] &= ~6;
3303 s->rx_req = 0;
3304 omap_mcbsp_rx_done(s);
3306 omap_mcbsp_req_update(s);
3307 return;
3309 case 0x0c: /* RCR2 */
3310 s->rcr[1] = value & 0xffff;
3311 return;
3312 case 0x0e: /* RCR1 */
3313 s->rcr[0] = value & 0x7fe0;
3314 return;
3315 case 0x10: /* XCR2 */
3316 s->xcr[1] = value & 0xffff;
3317 return;
3318 case 0x12: /* XCR1 */
3319 s->xcr[0] = value & 0x7fe0;
3320 return;
3321 case 0x14: /* SRGR2 */
3322 s->srgr[1] = value & 0xffff;
3323 omap_mcbsp_req_update(s);
3324 return;
3325 case 0x16: /* SRGR1 */
3326 s->srgr[0] = value & 0xffff;
3327 omap_mcbsp_req_update(s);
3328 return;
3329 case 0x18: /* MCR2 */
3330 s->mcr[1] = value & 0x03e3;
3331 if (value & 3) /* XMCM */
3332 printf("%s: Tx channel selection mode enable attempt\n",
3333 __FUNCTION__);
3334 return;
3335 case 0x1a: /* MCR1 */
3336 s->mcr[0] = value & 0x03e1;
3337 if (value & 1) /* RMCM */
3338 printf("%s: Rx channel selection mode enable attempt\n",
3339 __FUNCTION__);
3340 return;
3341 case 0x1c: /* RCERA */
3342 s->rcer[0] = value & 0xffff;
3343 return;
3344 case 0x1e: /* RCERB */
3345 s->rcer[1] = value & 0xffff;
3346 return;
3347 case 0x20: /* XCERA */
3348 s->xcer[0] = value & 0xffff;
3349 return;
3350 case 0x22: /* XCERB */
3351 s->xcer[1] = value & 0xffff;
3352 return;
3353 case 0x24: /* PCR0 */
3354 s->pcr = value & 0x7faf;
3355 return;
3356 case 0x26: /* RCERC */
3357 s->rcer[2] = value & 0xffff;
3358 return;
3359 case 0x28: /* RCERD */
3360 s->rcer[3] = value & 0xffff;
3361 return;
3362 case 0x2a: /* XCERC */
3363 s->xcer[2] = value & 0xffff;
3364 return;
3365 case 0x2c: /* XCERD */
3366 s->xcer[3] = value & 0xffff;
3367 return;
3368 case 0x2e: /* RCERE */
3369 s->rcer[4] = value & 0xffff;
3370 return;
3371 case 0x30: /* RCERF */
3372 s->rcer[5] = value & 0xffff;
3373 return;
3374 case 0x32: /* XCERE */
3375 s->xcer[4] = value & 0xffff;
3376 return;
3377 case 0x34: /* XCERF */
3378 s->xcer[5] = value & 0xffff;
3379 return;
3380 case 0x36: /* RCERG */
3381 s->rcer[6] = value & 0xffff;
3382 return;
3383 case 0x38: /* RCERH */
3384 s->rcer[7] = value & 0xffff;
3385 return;
3386 case 0x3a: /* XCERG */
3387 s->xcer[6] = value & 0xffff;
3388 return;
3389 case 0x3c: /* XCERH */
3390 s->xcer[7] = value & 0xffff;
3391 return;
3394 OMAP_BAD_REG(addr);
3397 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3398 uint32_t value)
3400 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3401 int offset = addr & OMAP_MPUI_REG_MASK;
3403 if (offset == 0x04) { /* DXR */
3404 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3405 return;
3406 if (s->tx_req > 3) {
3407 s->tx_req -= 4;
3408 if (s->codec && s->codec->cts) {
3409 s->codec->out.fifo[s->codec->out.len ++] =
3410 (value >> 24) & 0xff;
3411 s->codec->out.fifo[s->codec->out.len ++] =
3412 (value >> 16) & 0xff;
3413 s->codec->out.fifo[s->codec->out.len ++] =
3414 (value >> 8) & 0xff;
3415 s->codec->out.fifo[s->codec->out.len ++] =
3416 (value >> 0) & 0xff;
3418 if (s->tx_req < 4)
3419 omap_mcbsp_tx_done(s);
3420 } else
3421 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3422 return;
3425 omap_badwidth_write16(opaque, addr, value);
3428 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3429 uint64_t value, unsigned size)
3431 switch (size) {
3432 case 2:
3433 omap_mcbsp_writeh(opaque, addr, value);
3434 break;
3435 case 4:
3436 omap_mcbsp_writew(opaque, addr, value);
3437 break;
3438 default:
3439 omap_badwidth_write16(opaque, addr, value);
3443 static const MemoryRegionOps omap_mcbsp_ops = {
3444 .read = omap_mcbsp_read,
3445 .write = omap_mcbsp_write,
3446 .endianness = DEVICE_NATIVE_ENDIAN,
3449 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3451 memset(&s->spcr, 0, sizeof(s->spcr));
3452 memset(&s->rcr, 0, sizeof(s->rcr));
3453 memset(&s->xcr, 0, sizeof(s->xcr));
3454 s->srgr[0] = 0x0001;
3455 s->srgr[1] = 0x2000;
3456 memset(&s->mcr, 0, sizeof(s->mcr));
3457 memset(&s->pcr, 0, sizeof(s->pcr));
3458 memset(&s->rcer, 0, sizeof(s->rcer));
3459 memset(&s->xcer, 0, sizeof(s->xcer));
3460 s->tx_req = 0;
3461 s->rx_req = 0;
3462 s->tx_rate = 0;
3463 s->rx_rate = 0;
3464 timer_del(s->source_timer);
3465 timer_del(s->sink_timer);
3468 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3469 hwaddr base,
3470 qemu_irq txirq, qemu_irq rxirq,
3471 qemu_irq *dma, omap_clk clk)
3473 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3475 s->txirq = txirq;
3476 s->rxirq = rxirq;
3477 s->txdrq = dma[0];
3478 s->rxdrq = dma[1];
3479 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3480 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3481 omap_mcbsp_reset(s);
3483 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3484 memory_region_add_subregion(system_memory, base, &s->iomem);
3486 return s;
3489 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3491 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3493 if (s->rx_rate) {
3494 s->rx_req = s->codec->in.len;
3495 omap_mcbsp_rx_newdata(s);
3499 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3501 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3503 if (s->tx_rate) {
3504 s->tx_req = s->codec->out.size;
3505 omap_mcbsp_tx_newdata(s);
3509 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3511 s->codec = slave;
3512 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3513 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3516 /* LED Pulse Generators */
3517 struct omap_lpg_s {
3518 MemoryRegion iomem;
3519 QEMUTimer *tm;
3521 uint8_t control;
3522 uint8_t power;
3523 int64_t on;
3524 int64_t period;
3525 int clk;
3526 int cycle;
3529 static void omap_lpg_tick(void *opaque)
3531 struct omap_lpg_s *s = opaque;
3533 if (s->cycle)
3534 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3535 else
3536 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3538 s->cycle = !s->cycle;
3539 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3542 static void omap_lpg_update(struct omap_lpg_s *s)
3544 int64_t on, period = 1, ticks = 1000;
3545 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3547 if (~s->control & (1 << 6)) /* LPGRES */
3548 on = 0;
3549 else if (s->control & (1 << 7)) /* PERM_ON */
3550 on = period;
3551 else {
3552 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3553 256 / 32);
3554 on = (s->clk && s->power) ? muldiv64(ticks,
3555 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3558 timer_del(s->tm);
3559 if (on == period && s->on < s->period)
3560 printf("%s: LED is on\n", __FUNCTION__);
3561 else if (on == 0 && s->on)
3562 printf("%s: LED is off\n", __FUNCTION__);
3563 else if (on && (on != s->on || period != s->period)) {
3564 s->cycle = 0;
3565 s->on = on;
3566 s->period = period;
3567 omap_lpg_tick(s);
3568 return;
3571 s->on = on;
3572 s->period = period;
3575 static void omap_lpg_reset(struct omap_lpg_s *s)
3577 s->control = 0x00;
3578 s->power = 0x00;
3579 s->clk = 1;
3580 omap_lpg_update(s);
3583 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3584 unsigned size)
3586 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3587 int offset = addr & OMAP_MPUI_REG_MASK;
3589 if (size != 1) {
3590 return omap_badwidth_read8(opaque, addr);
3593 switch (offset) {
3594 case 0x00: /* LCR */
3595 return s->control;
3597 case 0x04: /* PMR */
3598 return s->power;
3601 OMAP_BAD_REG(addr);
3602 return 0;
3605 static void omap_lpg_write(void *opaque, hwaddr addr,
3606 uint64_t value, unsigned size)
3608 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3609 int offset = addr & OMAP_MPUI_REG_MASK;
3611 if (size != 1) {
3612 omap_badwidth_write8(opaque, addr, value);
3613 return;
3616 switch (offset) {
3617 case 0x00: /* LCR */
3618 if (~value & (1 << 6)) /* LPGRES */
3619 omap_lpg_reset(s);
3620 s->control = value & 0xff;
3621 omap_lpg_update(s);
3622 return;
3624 case 0x04: /* PMR */
3625 s->power = value & 0x01;
3626 omap_lpg_update(s);
3627 return;
3629 default:
3630 OMAP_BAD_REG(addr);
3631 return;
3635 static const MemoryRegionOps omap_lpg_ops = {
3636 .read = omap_lpg_read,
3637 .write = omap_lpg_write,
3638 .endianness = DEVICE_NATIVE_ENDIAN,
3641 static void omap_lpg_clk_update(void *opaque, int line, int on)
3643 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3645 s->clk = on;
3646 omap_lpg_update(s);
3649 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3650 hwaddr base, omap_clk clk)
3652 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3654 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3656 omap_lpg_reset(s);
3658 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3659 memory_region_add_subregion(system_memory, base, &s->iomem);
3661 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3663 return s;
3666 /* MPUI Peripheral Bridge configuration */
3667 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3668 unsigned size)
3670 if (size != 2) {
3671 return omap_badwidth_read16(opaque, addr);
3674 if (addr == OMAP_MPUI_BASE) /* CMR */
3675 return 0xfe4d;
3677 OMAP_BAD_REG(addr);
3678 return 0;
3681 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3682 uint64_t value, unsigned size)
3684 /* FIXME: infinite loop */
3685 omap_badwidth_write16(opaque, addr, value);
3688 static const MemoryRegionOps omap_mpui_io_ops = {
3689 .read = omap_mpui_io_read,
3690 .write = omap_mpui_io_write,
3691 .endianness = DEVICE_NATIVE_ENDIAN,
3694 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3695 struct omap_mpu_state_s *mpu)
3697 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3698 "omap-mpui-io", 0x7fff);
3699 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3700 &mpu->mpui_io_iomem);
3703 /* General chip reset */
3704 static void omap1_mpu_reset(void *opaque)
3706 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3708 omap_dma_reset(mpu->dma);
3709 omap_mpu_timer_reset(mpu->timer[0]);
3710 omap_mpu_timer_reset(mpu->timer[1]);
3711 omap_mpu_timer_reset(mpu->timer[2]);
3712 omap_wd_timer_reset(mpu->wdt);
3713 omap_os_timer_reset(mpu->os_timer);
3714 omap_lcdc_reset(mpu->lcd);
3715 omap_ulpd_pm_reset(mpu);
3716 omap_pin_cfg_reset(mpu);
3717 omap_mpui_reset(mpu);
3718 omap_tipb_bridge_reset(mpu->private_tipb);
3719 omap_tipb_bridge_reset(mpu->public_tipb);
3720 omap_dpll_reset(mpu->dpll[0]);
3721 omap_dpll_reset(mpu->dpll[1]);
3722 omap_dpll_reset(mpu->dpll[2]);
3723 omap_uart_reset(mpu->uart[0]);
3724 omap_uart_reset(mpu->uart[1]);
3725 omap_uart_reset(mpu->uart[2]);
3726 omap_mmc_reset(mpu->mmc);
3727 omap_mpuio_reset(mpu->mpuio);
3728 omap_uwire_reset(mpu->microwire);
3729 omap_pwl_reset(mpu->pwl);
3730 omap_pwt_reset(mpu->pwt);
3731 omap_rtc_reset(mpu->rtc);
3732 omap_mcbsp_reset(mpu->mcbsp1);
3733 omap_mcbsp_reset(mpu->mcbsp2);
3734 omap_mcbsp_reset(mpu->mcbsp3);
3735 omap_lpg_reset(mpu->led[0]);
3736 omap_lpg_reset(mpu->led[1]);
3737 omap_clkm_reset(mpu);
3738 cpu_reset(CPU(mpu->cpu));
3741 static const struct omap_map_s {
3742 hwaddr phys_dsp;
3743 hwaddr phys_mpu;
3744 uint32_t size;
3745 const char *name;
3746 } omap15xx_dsp_mm[] = {
3747 /* Strobe 0 */
3748 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3749 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3750 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3751 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3752 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3753 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3754 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3755 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3756 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3757 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3758 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3759 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3760 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3761 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3762 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3763 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3764 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3765 /* Strobe 1 */
3766 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3768 { 0 }
3771 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3772 const struct omap_map_s *map)
3774 MemoryRegion *io;
3776 for (; map->phys_dsp; map ++) {
3777 io = g_new(MemoryRegion, 1);
3778 memory_region_init_alias(io, NULL, map->name,
3779 system_memory, map->phys_mpu, map->size);
3780 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3784 void omap_mpu_wakeup(void *opaque, int irq, int req)
3786 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3787 CPUState *cpu = CPU(mpu->cpu);
3789 if (cpu->halted) {
3790 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3794 static const struct dma_irq_map omap1_dma_irq_map[] = {
3795 { 0, OMAP_INT_DMA_CH0_6 },
3796 { 0, OMAP_INT_DMA_CH1_7 },
3797 { 0, OMAP_INT_DMA_CH2_8 },
3798 { 0, OMAP_INT_DMA_CH3 },
3799 { 0, OMAP_INT_DMA_CH4 },
3800 { 0, OMAP_INT_DMA_CH5 },
3801 { 1, OMAP_INT_1610_DMA_CH6 },
3802 { 1, OMAP_INT_1610_DMA_CH7 },
3803 { 1, OMAP_INT_1610_DMA_CH8 },
3804 { 1, OMAP_INT_1610_DMA_CH9 },
3805 { 1, OMAP_INT_1610_DMA_CH10 },
3806 { 1, OMAP_INT_1610_DMA_CH11 },
3807 { 1, OMAP_INT_1610_DMA_CH12 },
3808 { 1, OMAP_INT_1610_DMA_CH13 },
3809 { 1, OMAP_INT_1610_DMA_CH14 },
3810 { 1, OMAP_INT_1610_DMA_CH15 }
3813 /* DMA ports for OMAP1 */
3814 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3815 hwaddr addr)
3817 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3820 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3821 hwaddr addr)
3823 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3824 addr);
3827 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3828 hwaddr addr)
3830 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3833 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3834 hwaddr addr)
3836 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3839 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3840 hwaddr addr)
3842 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3845 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3846 hwaddr addr)
3848 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3851 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3852 unsigned long sdram_size,
3853 const char *core)
3855 int i;
3856 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3857 qemu_irq dma_irqs[6];
3858 DriveInfo *dinfo;
3859 SysBusDevice *busdev;
3861 if (!core)
3862 core = "ti925t";
3864 /* Core */
3865 s->mpu_model = omap310;
3866 s->cpu = cpu_arm_init(core);
3867 if (s->cpu == NULL) {
3868 fprintf(stderr, "Unable to find CPU definition\n");
3869 exit(1);
3871 s->sdram_size = sdram_size;
3872 s->sram_size = OMAP15XX_SRAM_SIZE;
3874 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3876 /* Clocks */
3877 omap_clk_init(s);
3879 /* Memory-mapped stuff */
3880 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3881 s->sdram_size);
3882 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3883 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3884 &error_fatal);
3885 vmstate_register_ram_global(&s->imif_ram);
3886 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3888 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3890 s->ih[0] = qdev_create(NULL, "omap-intc");
3891 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3892 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3893 qdev_init_nofail(s->ih[0]);
3894 busdev = SYS_BUS_DEVICE(s->ih[0]);
3895 sysbus_connect_irq(busdev, 0,
3896 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3897 sysbus_connect_irq(busdev, 1,
3898 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3899 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3900 s->ih[1] = qdev_create(NULL, "omap-intc");
3901 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3902 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3903 qdev_init_nofail(s->ih[1]);
3904 busdev = SYS_BUS_DEVICE(s->ih[1]);
3905 sysbus_connect_irq(busdev, 0,
3906 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3907 /* The second interrupt controller's FIQ output is not wired up */
3908 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3910 for (i = 0; i < 6; i++) {
3911 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3912 omap1_dma_irq_map[i].intr);
3914 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3915 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3916 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3918 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3919 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3920 s->port[imif ].addr_valid = omap_validate_imif_addr;
3921 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3922 s->port[local ].addr_valid = omap_validate_local_addr;
3923 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3925 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3926 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3927 OMAP_EMIFF_BASE, s->sdram_size);
3928 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3929 OMAP_IMIF_BASE, s->sram_size);
3931 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3932 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3933 omap_findclk(s, "mputim_ck"));
3934 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3935 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3936 omap_findclk(s, "mputim_ck"));
3937 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3938 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3939 omap_findclk(s, "mputim_ck"));
3941 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3942 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3943 omap_findclk(s, "armwdt_ck"));
3945 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3946 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3947 omap_findclk(s, "clk32-kHz"));
3949 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3950 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3951 omap_dma_get_lcdch(s->dma),
3952 omap_findclk(s, "lcd_ck"));
3954 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3955 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3956 omap_id_init(system_memory, s);
3958 omap_mpui_init(system_memory, 0xfffec900, s);
3960 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3961 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3962 omap_findclk(s, "tipb_ck"));
3963 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3964 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3965 omap_findclk(s, "tipb_ck"));
3967 omap_tcmi_init(system_memory, 0xfffecc00, s);
3969 s->uart[0] = omap_uart_init(0xfffb0000,
3970 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3971 omap_findclk(s, "uart1_ck"),
3972 omap_findclk(s, "uart1_ck"),
3973 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3974 "uart1",
3975 serial_hds[0]);
3976 s->uart[1] = omap_uart_init(0xfffb0800,
3977 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3978 omap_findclk(s, "uart2_ck"),
3979 omap_findclk(s, "uart2_ck"),
3980 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3981 "uart2",
3982 serial_hds[0] ? serial_hds[1] : NULL);
3983 s->uart[2] = omap_uart_init(0xfffb9800,
3984 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3985 omap_findclk(s, "uart3_ck"),
3986 omap_findclk(s, "uart3_ck"),
3987 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3988 "uart3",
3989 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3991 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3992 omap_findclk(s, "dpll1"));
3993 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3994 omap_findclk(s, "dpll2"));
3995 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3996 omap_findclk(s, "dpll3"));
3998 dinfo = drive_get(IF_SD, 0, 0);
3999 if (!dinfo) {
4000 fprintf(stderr, "qemu: missing SecureDigital device\n");
4001 exit(1);
4003 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4004 blk_by_legacy_dinfo(dinfo),
4005 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4006 &s->drq[OMAP_DMA_MMC_TX],
4007 omap_findclk(s, "mmc_ck"));
4009 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4010 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4011 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4012 s->wakeup, omap_findclk(s, "clk32-kHz"));
4014 s->gpio = qdev_create(NULL, "omap-gpio");
4015 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4016 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4017 qdev_init_nofail(s->gpio);
4018 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4019 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4020 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4022 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4023 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4024 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4025 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4027 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4028 omap_findclk(s, "armxor_ck"));
4029 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4030 omap_findclk(s, "armxor_ck"));
4032 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4033 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4034 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4035 qdev_init_nofail(s->i2c[0]);
4036 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4037 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4038 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4039 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4040 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4042 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4043 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4044 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4045 omap_findclk(s, "clk32-kHz"));
4047 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4048 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4049 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4050 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4051 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4052 qdev_get_gpio_in(s->ih[0],
4053 OMAP_INT_310_McBSP2_TX),
4054 qdev_get_gpio_in(s->ih[0],
4055 OMAP_INT_310_McBSP2_RX),
4056 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4057 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4058 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4059 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4060 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4062 s->led[0] = omap_lpg_init(system_memory,
4063 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4064 s->led[1] = omap_lpg_init(system_memory,
4065 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4067 /* Register mappings not currenlty implemented:
4068 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4069 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4070 * USB W2FC fffb4000 - fffb47ff
4071 * Camera Interface fffb6800 - fffb6fff
4072 * USB Host fffba000 - fffba7ff
4073 * FAC fffba800 - fffbafff
4074 * HDQ/1-Wire fffbc000 - fffbc7ff
4075 * TIPB switches fffbc800 - fffbcfff
4076 * Mailbox fffcf000 - fffcf7ff
4077 * Local bus IF fffec100 - fffec1ff
4078 * Local bus MMU fffec200 - fffec2ff
4079 * DSP MMU fffed200 - fffed2ff
4082 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4083 omap_setup_mpui_io(system_memory, s);
4085 qemu_register_reset(omap1_mpu_reset, s);
4087 return s;