4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
14 #include "hw/arm/arm.h"
15 #include "hw/arm/linux-boot-if.h"
16 #include "sysemu/kvm.h"
17 #include "sysemu/sysemu.h"
18 #include "sysemu/numa.h"
19 #include "hw/boards.h"
20 #include "hw/loader.h"
22 #include "sysemu/device_tree.h"
23 #include "qemu/config-file.h"
24 #include "exec/address-spaces.h"
26 /* Kernel boot protocol is specified in the kernel docs
27 * Documentation/arm/Booting and Documentation/arm64/booting.txt
28 * They have different preferred image load offsets from system RAM base.
30 #define KERNEL_ARGS_ADDR 0x100
31 #define KERNEL_LOAD_ADDR 0x00010000
32 #define KERNEL64_LOAD_ADDR 0x00080000
34 #define ARM64_TEXT_OFFSET_OFFSET 8
35 #define ARM64_MAGIC_OFFSET 56
38 FIXUP_NONE
= 0, /* do nothing */
39 FIXUP_TERMINATOR
, /* end of insns */
40 FIXUP_BOARDID
, /* overwrite with board ID number */
41 FIXUP_BOARD_SETUP
, /* overwrite with board specific setup code address */
42 FIXUP_ARGPTR
, /* overwrite with pointer to kernel args */
43 FIXUP_ENTRYPOINT
, /* overwrite with kernel entry point */
44 FIXUP_GIC_CPU_IF
, /* overwrite with GIC CPU interface address */
45 FIXUP_BOOTREG
, /* overwrite with boot register address */
46 FIXUP_DSB
, /* overwrite with correct DSB insn for cpu */
50 typedef struct ARMInsnFixup
{
55 static const ARMInsnFixup bootloader_aarch64
[] = {
56 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
57 { 0xaa1f03e1 }, /* mov x1, xzr */
58 { 0xaa1f03e2 }, /* mov x2, xzr */
59 { 0xaa1f03e3 }, /* mov x3, xzr */
60 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
61 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
62 { 0, FIXUP_ARGPTR
}, /* arg: .word @DTB Lower 32-bits */
63 { 0 }, /* .word @DTB Higher 32-bits */
64 { 0, FIXUP_ENTRYPOINT
}, /* entry: .word @Kernel Entry Lower 32-bits */
65 { 0 }, /* .word @Kernel Entry Higher 32-bits */
66 { 0, FIXUP_TERMINATOR
}
69 /* A very small bootloader: call the board-setup code (if needed),
70 * set r0-r2, then jump to the kernel.
71 * If we're not calling boot setup code then we don't copy across
72 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
75 static const ARMInsnFixup bootloader
[] = {
76 { 0xe28fe004 }, /* add lr, pc, #4 */
77 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
78 { 0, FIXUP_BOARD_SETUP
},
79 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
80 { 0xe3a00000 }, /* mov r0, #0 */
81 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
82 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
83 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
86 { 0, FIXUP_ENTRYPOINT
},
87 { 0, FIXUP_TERMINATOR
}
90 /* Handling for secondary CPU boot in a multicore system.
91 * Unlike the uniprocessor/primary CPU boot, this is platform
92 * dependent. The default code here is based on the secondary
93 * CPU boot protocol used on realview/vexpress boards, with
94 * some parameterisation to increase its flexibility.
95 * QEMU platform models for which this code is not appropriate
96 * should override write_secondary_boot and secondary_cpu_reset_hook
99 * This code enables the interrupt controllers for the secondary
100 * CPUs and then puts all the secondary CPUs into a loop waiting
101 * for an interprocessor interrupt and polling a configurable
102 * location for the kernel secondary CPU entry point.
104 #define DSB_INSN 0xf57ff04f
105 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
107 static const ARMInsnFixup smpboot
[] = {
108 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
109 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
110 { 0xe3a01001 }, /* mov r1, #1 */
111 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
112 { 0xe3a010ff }, /* mov r1, #0xff */
113 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
114 { 0, FIXUP_DSB
}, /* dsb */
115 { 0xe320f003 }, /* wfi */
116 { 0xe5901000 }, /* ldr r1, [r0] */
117 { 0xe1110001 }, /* tst r1, r1 */
118 { 0x0afffffb }, /* beq <wfi> */
119 { 0xe12fff11 }, /* bx r1 */
120 { 0, FIXUP_GIC_CPU_IF
}, /* gic_cpu_if: .word 0x.... */
121 { 0, FIXUP_BOOTREG
}, /* bootreg_addr: .word 0x.... */
122 { 0, FIXUP_TERMINATOR
}
125 static void write_bootloader(const char *name
, hwaddr addr
,
126 const ARMInsnFixup
*insns
, uint32_t *fixupcontext
)
128 /* Fix up the specified bootloader fragment and write it into
129 * guest memory using rom_add_blob_fixed(). fixupcontext is
130 * an array giving the values to write in for the fixup types
131 * which write a value into the code array.
137 while (insns
[len
].fixup
!= FIXUP_TERMINATOR
) {
141 code
= g_new0(uint32_t, len
);
143 for (i
= 0; i
< len
; i
++) {
144 uint32_t insn
= insns
[i
].insn
;
145 FixupType fixup
= insns
[i
].fixup
;
151 case FIXUP_BOARD_SETUP
:
153 case FIXUP_ENTRYPOINT
:
154 case FIXUP_GIC_CPU_IF
:
157 insn
= fixupcontext
[fixup
];
162 code
[i
] = tswap32(insn
);
165 rom_add_blob_fixed(name
, code
, len
* sizeof(uint32_t), addr
);
170 static void default_write_secondary(ARMCPU
*cpu
,
171 const struct arm_boot_info
*info
)
173 uint32_t fixupcontext
[FIXUP_MAX
];
175 fixupcontext
[FIXUP_GIC_CPU_IF
] = info
->gic_cpu_if_addr
;
176 fixupcontext
[FIXUP_BOOTREG
] = info
->smp_bootreg_addr
;
177 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
178 fixupcontext
[FIXUP_DSB
] = DSB_INSN
;
180 fixupcontext
[FIXUP_DSB
] = CP15_DSB_INSN
;
183 write_bootloader("smpboot", info
->smp_loader_start
,
184 smpboot
, fixupcontext
);
187 void arm_write_secure_board_setup_dummy_smc(ARMCPU
*cpu
,
188 const struct arm_boot_info
*info
,
192 uint32_t mvbar_blob
[] = {
193 /* mvbar_addr: secure monitor vectors
194 * Default unimplemented and unused vectors to spin. Makes it
195 * easier to debug (as opposed to the CPU running away).
197 0xeafffffe, /* (spin) */
198 0xeafffffe, /* (spin) */
199 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
200 0xeafffffe, /* (spin) */
201 0xeafffffe, /* (spin) */
202 0xeafffffe, /* (spin) */
203 0xeafffffe, /* (spin) */
204 0xeafffffe, /* (spin) */
206 uint32_t board_setup_blob
[] = {
207 /* board setup addr */
208 0xe3a00e00 + (mvbar_addr
>> 4), /* mov r0, #mvbar_addr */
209 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
210 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
211 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
212 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
213 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
214 0xe1600070, /* smc #0 ;call monitor to flush SCR */
215 0xe1a0f001, /* mov pc, r1 ;return */
218 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
219 assert((mvbar_addr
& 0x1f) == 0 && (mvbar_addr
>> 4) < 0x100);
221 /* check that these blobs don't overlap */
222 assert((mvbar_addr
+ sizeof(mvbar_blob
) <= info
->board_setup_addr
)
223 || (info
->board_setup_addr
+ sizeof(board_setup_blob
) <= mvbar_addr
));
225 for (n
= 0; n
< ARRAY_SIZE(mvbar_blob
); n
++) {
226 mvbar_blob
[n
] = tswap32(mvbar_blob
[n
]);
228 rom_add_blob_fixed("board-setup-mvbar", mvbar_blob
, sizeof(mvbar_blob
),
231 for (n
= 0; n
< ARRAY_SIZE(board_setup_blob
); n
++) {
232 board_setup_blob
[n
] = tswap32(board_setup_blob
[n
]);
234 rom_add_blob_fixed("board-setup", board_setup_blob
,
235 sizeof(board_setup_blob
), info
->board_setup_addr
);
238 static void default_reset_secondary(ARMCPU
*cpu
,
239 const struct arm_boot_info
*info
)
241 CPUState
*cs
= CPU(cpu
);
243 address_space_stl_notdirty(&address_space_memory
, info
->smp_bootreg_addr
,
244 0, MEMTXATTRS_UNSPECIFIED
, NULL
);
245 cpu_set_pc(cs
, info
->smp_loader_start
);
248 static inline bool have_dtb(const struct arm_boot_info
*info
)
250 return info
->dtb_filename
|| info
->get_dtb
;
253 #define WRITE_WORD(p, value) do { \
254 address_space_stl_notdirty(&address_space_memory, p, value, \
255 MEMTXATTRS_UNSPECIFIED, NULL); \
259 static void set_kernel_args(const struct arm_boot_info
*info
)
261 int initrd_size
= info
->initrd_size
;
262 hwaddr base
= info
->loader_start
;
265 p
= base
+ KERNEL_ARGS_ADDR
;
268 WRITE_WORD(p
, 0x54410001);
270 WRITE_WORD(p
, 0x1000);
273 /* TODO: handle multiple chips on one ATAG list */
275 WRITE_WORD(p
, 0x54410002);
276 WRITE_WORD(p
, info
->ram_size
);
277 WRITE_WORD(p
, info
->loader_start
);
281 WRITE_WORD(p
, 0x54420005);
282 WRITE_WORD(p
, info
->initrd_start
);
283 WRITE_WORD(p
, initrd_size
);
285 if (info
->kernel_cmdline
&& *info
->kernel_cmdline
) {
289 cmdline_size
= strlen(info
->kernel_cmdline
);
290 cpu_physical_memory_write(p
+ 8, info
->kernel_cmdline
,
292 cmdline_size
= (cmdline_size
>> 2) + 1;
293 WRITE_WORD(p
, cmdline_size
+ 2);
294 WRITE_WORD(p
, 0x54410009);
295 p
+= cmdline_size
* 4;
297 if (info
->atag_board
) {
300 uint8_t atag_board_buf
[0x1000];
302 atag_board_len
= (info
->atag_board(info
, atag_board_buf
) + 3) & ~3;
303 WRITE_WORD(p
, (atag_board_len
+ 8) >> 2);
304 WRITE_WORD(p
, 0x414f4d50);
305 cpu_physical_memory_write(p
, atag_board_buf
, atag_board_len
);
313 static void set_kernel_args_old(const struct arm_boot_info
*info
)
317 int initrd_size
= info
->initrd_size
;
318 hwaddr base
= info
->loader_start
;
320 /* see linux/include/asm-arm/setup.h */
321 p
= base
+ KERNEL_ARGS_ADDR
;
325 WRITE_WORD(p
, info
->ram_size
/ 4096);
328 #define FLAG_READONLY 1
329 #define FLAG_RDLOAD 4
330 #define FLAG_RDPROMPT 8
332 WRITE_WORD(p
, FLAG_READONLY
| FLAG_RDLOAD
| FLAG_RDPROMPT
);
334 WRITE_WORD(p
, (31 << 8) | 0); /* /dev/mtdblock0 */
343 /* memc_control_reg */
345 /* unsigned char sounddefault */
346 /* unsigned char adfsdrives */
347 /* unsigned char bytes_per_char_h */
348 /* unsigned char bytes_per_char_v */
350 /* pages_in_bank[4] */
359 WRITE_WORD(p
, info
->initrd_start
);
364 WRITE_WORD(p
, initrd_size
);
369 /* system_serial_low */
371 /* system_serial_high */
375 /* zero unused fields */
376 while (p
< base
+ KERNEL_ARGS_ADDR
+ 256 + 1024) {
379 s
= info
->kernel_cmdline
;
381 cpu_physical_memory_write(p
, s
, strlen(s
) + 1);
388 * load_dtb() - load a device tree binary image into memory
389 * @addr: the address to load the image at
390 * @binfo: struct describing the boot environment
391 * @addr_limit: upper limit of the available memory area at @addr
393 * Load a device tree supplied by the machine or by the user with the
394 * '-dtb' command line option, and put it at offset @addr in target
397 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
398 * than @addr), the device tree is only loaded if its size does not exceed
401 * Returns: the size of the device tree image on success,
402 * 0 if the image size exceeds the limit,
405 * Note: Must not be called unless have_dtb(binfo) is true.
407 static int load_dtb(hwaddr addr
, const struct arm_boot_info
*binfo
,
412 uint32_t acells
, scells
;
415 hwaddr mem_base
, mem_len
;
417 if (binfo
->dtb_filename
) {
419 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, binfo
->dtb_filename
);
421 fprintf(stderr
, "Couldn't open dtb file %s\n", binfo
->dtb_filename
);
425 fdt
= load_device_tree(filename
, &size
);
427 fprintf(stderr
, "Couldn't open dtb file %s\n", filename
);
433 fdt
= binfo
->get_dtb(binfo
, &size
);
435 fprintf(stderr
, "Board was unable to create a dtb blob\n");
440 if (addr_limit
> addr
&& size
> (addr_limit
- addr
)) {
441 /* Installing the device tree blob at addr would exceed addr_limit.
442 * Whether this constitutes failure is up to the caller to decide,
443 * so just return 0 as size, i.e., no error.
449 acells
= qemu_fdt_getprop_cell(fdt
, "/", "#address-cells",
451 scells
= qemu_fdt_getprop_cell(fdt
, "/", "#size-cells",
453 if (acells
== 0 || scells
== 0) {
454 fprintf(stderr
, "dtb file invalid (#address-cells or #size-cells 0)\n");
458 if (scells
< 2 && binfo
->ram_size
>= (1ULL << 32)) {
459 /* This is user error so deserves a friendlier error message
460 * than the failure of setprop_sized_cells would provide
462 fprintf(stderr
, "qemu: dtb file not compatible with "
467 if (nb_numa_nodes
> 0) {
469 * Turn the /memory node created before into a NOP node, then create
470 * /memory@addr nodes for all numa nodes respectively.
472 qemu_fdt_nop_node(fdt
, "/memory");
473 mem_base
= binfo
->loader_start
;
474 for (i
= 0; i
< nb_numa_nodes
; i
++) {
475 mem_len
= numa_info
[i
].node_mem
;
476 nodename
= g_strdup_printf("/memory@%" PRIx64
, mem_base
);
477 qemu_fdt_add_subnode(fdt
, nodename
);
478 qemu_fdt_setprop_string(fdt
, nodename
, "device_type", "memory");
479 rc
= qemu_fdt_setprop_sized_cells(fdt
, nodename
, "reg",
483 fprintf(stderr
, "couldn't set %s/reg for node %d\n", nodename
,
488 qemu_fdt_setprop_cell(fdt
, nodename
, "numa-node-id", i
);
495 rc
= fdt_path_offset(fdt
, "/memory");
497 qemu_fdt_add_subnode(fdt
, "/memory");
500 if (!qemu_fdt_getprop(fdt
, "/memory", "device_type", NULL
, &err
)) {
501 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
504 rc
= qemu_fdt_setprop_sized_cells(fdt
, "/memory", "reg",
505 acells
, binfo
->loader_start
,
506 scells
, binfo
->ram_size
);
508 fprintf(stderr
, "couldn't set /memory/reg\n");
513 rc
= fdt_path_offset(fdt
, "/chosen");
515 qemu_fdt_add_subnode(fdt
, "/chosen");
518 if (binfo
->kernel_cmdline
&& *binfo
->kernel_cmdline
) {
519 rc
= qemu_fdt_setprop_string(fdt
, "/chosen", "bootargs",
520 binfo
->kernel_cmdline
);
522 fprintf(stderr
, "couldn't set /chosen/bootargs\n");
527 if (binfo
->initrd_size
) {
528 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-start",
529 binfo
->initrd_start
);
531 fprintf(stderr
, "couldn't set /chosen/linux,initrd-start\n");
535 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-end",
536 binfo
->initrd_start
+ binfo
->initrd_size
);
538 fprintf(stderr
, "couldn't set /chosen/linux,initrd-end\n");
543 if (binfo
->modify_dtb
) {
544 binfo
->modify_dtb(binfo
, fdt
);
547 qemu_fdt_dumpdtb(fdt
, size
);
549 /* Put the DTB into the memory map as a ROM image: this will ensure
550 * the DTB is copied again upon reset, even if addr points into RAM.
552 rom_add_blob_fixed("dtb", fdt
, size
, addr
);
563 static void do_cpu_reset(void *opaque
)
565 ARMCPU
*cpu
= opaque
;
566 CPUState
*cs
= CPU(cpu
);
567 CPUARMState
*env
= &cpu
->env
;
568 const struct arm_boot_info
*info
= env
->boot_info
;
572 if (!info
->is_linux
) {
574 /* Jump to the entry point. */
575 uint64_t entry
= info
->entry
;
577 switch (info
->endianness
) {
578 case ARM_ENDIANNESS_LE
:
579 env
->cp15
.sctlr_el
[1] &= ~SCTLR_E0E
;
580 for (i
= 1; i
< 4; ++i
) {
581 env
->cp15
.sctlr_el
[i
] &= ~SCTLR_EE
;
583 env
->uncached_cpsr
&= ~CPSR_E
;
585 case ARM_ENDIANNESS_BE8
:
586 env
->cp15
.sctlr_el
[1] |= SCTLR_E0E
;
587 for (i
= 1; i
< 4; ++i
) {
588 env
->cp15
.sctlr_el
[i
] |= SCTLR_EE
;
590 env
->uncached_cpsr
|= CPSR_E
;
592 case ARM_ENDIANNESS_BE32
:
593 env
->cp15
.sctlr_el
[1] |= SCTLR_B
;
595 case ARM_ENDIANNESS_UNKNOWN
:
596 break; /* Board's decision */
598 g_assert_not_reached();
602 env
->thumb
= info
->entry
& 1;
605 cpu_set_pc(cs
, entry
);
607 /* If we are booting Linux then we need to check whether we are
608 * booting into secure or non-secure state and adjust the state
609 * accordingly. Out of reset, ARM is defined to be in secure state
610 * (SCR.NS = 0), we change that here if non-secure boot has been
613 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
614 /* AArch64 is defined to come out of reset into EL3 if enabled.
615 * If we are booting Linux then we need to adjust our EL as
616 * Linux expects us to be in EL2 or EL1. AArch32 resets into
617 * SVC, which Linux expects, so no privilege/exception level to
621 env
->cp15
.scr_el3
|= SCR_RW
;
622 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
623 env
->cp15
.hcr_el2
|= HCR_RW
;
624 env
->pstate
= PSTATE_MODE_EL2h
;
626 env
->pstate
= PSTATE_MODE_EL1h
;
630 /* Set to non-secure if not a secure boot */
631 if (!info
->secure_boot
&&
632 (cs
!= first_cpu
|| !info
->secure_board_setup
)) {
633 /* Linux expects non-secure state */
634 env
->cp15
.scr_el3
|= SCR_NS
;
638 if (cs
== first_cpu
) {
639 cpu_set_pc(cs
, info
->loader_start
);
641 if (!have_dtb(info
)) {
643 set_kernel_args_old(info
);
645 set_kernel_args(info
);
649 info
->secondary_cpu_reset_hook(cpu
, info
);
656 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
658 * @fw_cfg: The firmware config instance to store the data in.
659 * @size_key: The firmware config key to store the size of the loaded
660 * data under, with fw_cfg_add_i32().
661 * @data_key: The firmware config key to store the loaded data under,
662 * with fw_cfg_add_bytes().
663 * @image_name: The name of the image file to load. If it is NULL, the
664 * function returns without doing anything.
665 * @try_decompress: Whether the image should be decompressed (gunzipped) before
666 * adding it to fw_cfg. If decompression fails, the image is
669 * In case of failure, the function prints an error message to stderr and the
670 * process exits with status 1.
672 static void load_image_to_fw_cfg(FWCfgState
*fw_cfg
, uint16_t size_key
,
673 uint16_t data_key
, const char *image_name
,
679 if (image_name
== NULL
) {
683 if (try_decompress
) {
684 size
= load_image_gzipped_buffer(image_name
,
685 LOAD_IMAGE_MAX_GUNZIP_BYTES
, &data
);
688 if (size
== (size_t)-1) {
692 if (!g_file_get_contents(image_name
, &contents
, &length
, NULL
)) {
693 fprintf(stderr
, "failed to load \"%s\"\n", image_name
);
697 data
= (uint8_t *)contents
;
700 fw_cfg_add_i32(fw_cfg
, size_key
, size
);
701 fw_cfg_add_bytes(fw_cfg
, data_key
, data
, size
);
704 static int do_arm_linux_init(Object
*obj
, void *opaque
)
706 if (object_dynamic_cast(obj
, TYPE_ARM_LINUX_BOOT_IF
)) {
707 ARMLinuxBootIf
*albif
= ARM_LINUX_BOOT_IF(obj
);
708 ARMLinuxBootIfClass
*albifc
= ARM_LINUX_BOOT_IF_GET_CLASS(obj
);
709 struct arm_boot_info
*info
= opaque
;
711 if (albifc
->arm_linux_init
) {
712 albifc
->arm_linux_init(albif
, info
->secure_boot
);
718 static uint64_t arm_load_elf(struct arm_boot_info
*info
, uint64_t *pentry
,
719 uint64_t *lowaddr
, uint64_t *highaddr
,
733 load_elf_hdr(info
->kernel_filename
, &elf_header
, &elf_is64
, &err
);
739 big_endian
= elf_header
.h64
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
740 info
->endianness
= big_endian
? ARM_ENDIANNESS_BE8
743 big_endian
= elf_header
.h32
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
745 if (bswap32(elf_header
.h32
.e_flags
) & EF_ARM_BE8
) {
746 info
->endianness
= ARM_ENDIANNESS_BE8
;
748 info
->endianness
= ARM_ENDIANNESS_BE32
;
749 /* In BE32, the CPU has a different view of the per-byte
750 * address map than the rest of the system. BE32 ELF files
751 * are organised such that they can be programmed through
752 * the CPU's per-word byte-reversed view of the world. QEMU
753 * however loads ELF files independently of the CPU. So
754 * tell the ELF loader to byte reverse the data for us.
759 info
->endianness
= ARM_ENDIANNESS_LE
;
763 ret
= load_elf(info
->kernel_filename
, NULL
, NULL
,
764 pentry
, lowaddr
, highaddr
, big_endian
, elf_machine
,
767 /* The header loaded but the image didn't */
774 static uint64_t load_aarch64_image(const char *filename
, hwaddr mem_base
,
777 hwaddr kernel_load_offset
= KERNEL64_LOAD_ADDR
;
781 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
782 size
= load_image_gzipped_buffer(filename
, LOAD_IMAGE_MAX_GUNZIP_BYTES
,
788 /* Load as raw file otherwise */
789 if (!g_file_get_contents(filename
, (char **)&buffer
, &len
, NULL
)) {
795 /* check the arm64 magic header value -- very old kernels may not have it */
796 if (memcmp(buffer
+ ARM64_MAGIC_OFFSET
, "ARM\x64", 4) == 0) {
799 /* The arm64 Image header has text_offset and image_size fields at 8 and
800 * 16 bytes into the Image header, respectively. The text_offset field
801 * is only valid if the image_size is non-zero.
803 memcpy(&hdrvals
, buffer
+ ARM64_TEXT_OFFSET_OFFSET
, sizeof(hdrvals
));
804 if (hdrvals
[1] != 0) {
805 kernel_load_offset
= le64_to_cpu(hdrvals
[0]);
809 *entry
= mem_base
+ kernel_load_offset
;
810 rom_add_blob_fixed(filename
, buffer
, size
, *entry
);
817 static void arm_load_kernel_notify(Notifier
*notifier
, void *data
)
823 uint64_t elf_entry
, elf_low_addr
, elf_high_addr
;
826 static const ARMInsnFixup
*primary_loader
;
827 ArmLoadKernelNotifier
*n
= DO_UPCAST(ArmLoadKernelNotifier
,
829 ARMCPU
*cpu
= n
->cpu
;
830 struct arm_boot_info
*info
=
831 container_of(n
, struct arm_boot_info
, load_kernel_notifier
);
833 /* The board code is not supposed to set secure_board_setup unless
834 * running its code in secure mode is actually possible, and KVM
835 * doesn't support secure.
837 assert(!(info
->secure_board_setup
&& kvm_enabled()));
839 info
->dtb_filename
= qemu_opt_get(qemu_get_machine_opts(), "dtb");
841 /* Load the kernel. */
842 if (!info
->kernel_filename
|| info
->firmware_loaded
) {
844 if (have_dtb(info
)) {
845 /* If we have a device tree blob, but no kernel to supply it to (or
846 * the kernel is supposed to be loaded by the bootloader), copy the
847 * DTB to the base of RAM for the bootloader to pick up.
849 if (load_dtb(info
->loader_start
, info
, 0) < 0) {
854 if (info
->kernel_filename
) {
856 bool try_decompressing_kernel
;
858 fw_cfg
= fw_cfg_find();
859 try_decompressing_kernel
= arm_feature(&cpu
->env
,
860 ARM_FEATURE_AARCH64
);
862 /* Expose the kernel, the command line, and the initrd in fw_cfg.
863 * We don't process them here at all, it's all left to the
866 load_image_to_fw_cfg(fw_cfg
,
867 FW_CFG_KERNEL_SIZE
, FW_CFG_KERNEL_DATA
,
868 info
->kernel_filename
,
869 try_decompressing_kernel
);
870 load_image_to_fw_cfg(fw_cfg
,
871 FW_CFG_INITRD_SIZE
, FW_CFG_INITRD_DATA
,
872 info
->initrd_filename
, false);
874 if (info
->kernel_cmdline
) {
875 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
,
876 strlen(info
->kernel_cmdline
) + 1);
877 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
,
878 info
->kernel_cmdline
);
882 /* We will start from address 0 (typically a boot ROM image) in the
883 * same way as hardware.
888 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
889 primary_loader
= bootloader_aarch64
;
890 elf_machine
= EM_AARCH64
;
892 primary_loader
= bootloader
;
893 if (!info
->write_board_setup
) {
894 primary_loader
+= BOOTLOADER_NO_BOARD_SETUP_OFFSET
;
896 elf_machine
= EM_ARM
;
899 if (!info
->secondary_cpu_reset_hook
) {
900 info
->secondary_cpu_reset_hook
= default_reset_secondary
;
902 if (!info
->write_secondary_boot
) {
903 info
->write_secondary_boot
= default_write_secondary
;
906 if (info
->nb_cpus
== 0)
909 /* We want to put the initrd far enough into RAM that when the
910 * kernel is uncompressed it will not clobber the initrd. However
911 * on boards without much RAM we must ensure that we still leave
912 * enough room for a decent sized initrd, and on boards with large
913 * amounts of RAM we must avoid the initrd being so far up in RAM
914 * that it is outside lowmem and inaccessible to the kernel.
915 * So for boards with less than 256MB of RAM we put the initrd
916 * halfway into RAM, and for boards with 256MB of RAM or more we put
917 * the initrd at 128MB.
919 info
->initrd_start
= info
->loader_start
+
920 MIN(info
->ram_size
/ 2, 128 * 1024 * 1024);
922 /* Assume that raw images are linux kernels, and ELF images are not. */
923 kernel_size
= arm_load_elf(info
, &elf_entry
, &elf_low_addr
,
924 &elf_high_addr
, elf_machine
);
925 if (kernel_size
> 0 && have_dtb(info
)) {
926 /* If there is still some room left at the base of RAM, try and put
927 * the DTB there like we do for images loaded with -bios or -pflash.
929 if (elf_low_addr
> info
->loader_start
930 || elf_high_addr
< info
->loader_start
) {
931 /* Pass elf_low_addr as address limit to load_dtb if it may be
932 * pointing into RAM, otherwise pass '0' (no limit)
934 if (elf_low_addr
< info
->loader_start
) {
937 if (load_dtb(info
->loader_start
, info
, elf_low_addr
) < 0) {
943 if (kernel_size
< 0) {
944 kernel_size
= load_uimage(info
->kernel_filename
, &entry
, NULL
,
945 &is_linux
, NULL
, NULL
);
947 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) && kernel_size
< 0) {
948 kernel_size
= load_aarch64_image(info
->kernel_filename
,
949 info
->loader_start
, &entry
);
951 } else if (kernel_size
< 0) {
953 entry
= info
->loader_start
+ KERNEL_LOAD_ADDR
;
954 kernel_size
= load_image_targphys(info
->kernel_filename
, entry
,
955 info
->ram_size
- KERNEL_LOAD_ADDR
);
958 if (kernel_size
< 0) {
959 fprintf(stderr
, "qemu: could not load kernel '%s'\n",
960 info
->kernel_filename
);
965 uint32_t fixupcontext
[FIXUP_MAX
];
967 if (info
->initrd_filename
) {
968 initrd_size
= load_ramdisk(info
->initrd_filename
,
972 if (initrd_size
< 0) {
973 initrd_size
= load_image_targphys(info
->initrd_filename
,
978 if (initrd_size
< 0) {
979 fprintf(stderr
, "qemu: could not load initrd '%s'\n",
980 info
->initrd_filename
);
986 info
->initrd_size
= initrd_size
;
988 fixupcontext
[FIXUP_BOARDID
] = info
->board_id
;
989 fixupcontext
[FIXUP_BOARD_SETUP
] = info
->board_setup_addr
;
991 /* for device tree boot, we pass the DTB directly in r2. Otherwise
992 * we point to the kernel args.
994 if (have_dtb(info
)) {
998 if (elf_machine
== EM_AARCH64
) {
1000 * Some AArch64 kernels on early bootup map the fdt region as
1002 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1004 * Let's play safe and prealign it to 2MB to give us some space.
1006 align
= 2 * 1024 * 1024;
1009 * Some 32bit kernels will trash anything in the 4K page the
1010 * initrd ends in, so make sure the DTB isn't caught up in that.
1015 /* Place the DTB after the initrd in memory with alignment. */
1016 dtb_start
= QEMU_ALIGN_UP(info
->initrd_start
+ initrd_size
, align
);
1017 if (load_dtb(dtb_start
, info
, 0) < 0) {
1020 fixupcontext
[FIXUP_ARGPTR
] = dtb_start
;
1022 fixupcontext
[FIXUP_ARGPTR
] = info
->loader_start
+ KERNEL_ARGS_ADDR
;
1023 if (info
->ram_size
>= (1ULL << 32)) {
1024 fprintf(stderr
, "qemu: RAM size must be less than 4GB to boot"
1025 " Linux kernel using ATAGS (try passing a device tree"
1030 fixupcontext
[FIXUP_ENTRYPOINT
] = entry
;
1032 write_bootloader("bootloader", info
->loader_start
,
1033 primary_loader
, fixupcontext
);
1035 if (info
->nb_cpus
> 1) {
1036 info
->write_secondary_boot(cpu
, info
);
1038 if (info
->write_board_setup
) {
1039 info
->write_board_setup(cpu
, info
);
1042 /* Notify devices which need to fake up firmware initialization
1043 * that we're doing a direct kernel boot.
1045 object_child_foreach_recursive(object_get_root(),
1046 do_arm_linux_init
, info
);
1048 info
->is_linux
= is_linux
;
1050 for (cs
= CPU(cpu
); cs
; cs
= CPU_NEXT(cs
)) {
1051 ARM_CPU(cs
)->env
.boot_info
= info
;
1055 void arm_load_kernel(ARMCPU
*cpu
, struct arm_boot_info
*info
)
1059 info
->load_kernel_notifier
.cpu
= cpu
;
1060 info
->load_kernel_notifier
.notifier
.notify
= arm_load_kernel_notify
;
1061 qemu_add_machine_init_done_notifier(&info
->load_kernel_notifier
.notifier
);
1063 /* CPU objects (unlike devices) are not automatically reset on system
1064 * reset, so we must always register a handler to do so. If we're
1065 * actually loading a kernel, the handler is also responsible for
1066 * arranging that we start it correctly.
1068 for (cs
= CPU(cpu
); cs
; cs
= CPU_NEXT(cs
)) {
1069 qemu_register_reset(do_cpu_reset
, ARM_CPU(cs
));
1073 static const TypeInfo arm_linux_boot_if_info
= {
1074 .name
= TYPE_ARM_LINUX_BOOT_IF
,
1075 .parent
= TYPE_INTERFACE
,
1076 .class_size
= sizeof(ARMLinuxBootIfClass
),
1079 static void arm_linux_boot_register_types(void)
1081 type_register_static(&arm_linux_boot_if_info
);
1084 type_init(arm_linux_boot_register_types
)