target/arm: Restore SPSEL to correct CONTROL register on exception return
[qemu/kevin.git] / target / arm / cpu64.c
blob670c07ab6ed45ff94b784d6c19dc892adae09368
1 /*
2 * QEMU AArch64 CPU
4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu-common.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "hw/arm/arm.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/kvm.h"
32 static inline void set_feature(CPUARMState *env, int feature)
34 env->features |= 1ULL << feature;
37 static inline void unset_feature(CPUARMState *env, int feature)
39 env->features &= ~(1ULL << feature);
42 #ifndef CONFIG_USER_ONLY
43 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
45 /* Number of processors is in [25:24]; otherwise we RAZ */
46 return (smp_cpus - 1) << 24;
48 #endif
50 static const ARMCPRegInfo cortex_a57_a53_cp_reginfo[] = {
51 #ifndef CONFIG_USER_ONLY
52 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
53 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
54 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
55 .writefn = arm_cp_write_ignore },
56 { .name = "L2CTLR",
57 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
58 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
59 .writefn = arm_cp_write_ignore },
60 #endif
61 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
62 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
63 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
64 { .name = "L2ECTLR",
65 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
66 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
67 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
68 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
69 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
70 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
71 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
72 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
73 { .name = "CPUACTLR",
74 .cp = 15, .opc1 = 0, .crm = 15,
75 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
76 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
77 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
78 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
79 { .name = "CPUECTLR",
80 .cp = 15, .opc1 = 1, .crm = 15,
81 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
82 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
83 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
84 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
85 { .name = "CPUMERRSR",
86 .cp = 15, .opc1 = 2, .crm = 15,
87 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
88 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
89 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
90 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
91 { .name = "L2MERRSR",
92 .cp = 15, .opc1 = 3, .crm = 15,
93 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
94 REGINFO_SENTINEL
97 static void aarch64_a57_initfn(Object *obj)
99 ARMCPU *cpu = ARM_CPU(obj);
101 cpu->dtb_compatible = "arm,cortex-a57";
102 set_feature(&cpu->env, ARM_FEATURE_V8);
103 set_feature(&cpu->env, ARM_FEATURE_VFP4);
104 set_feature(&cpu->env, ARM_FEATURE_NEON);
105 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
106 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
107 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
108 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
109 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
110 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
111 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
112 set_feature(&cpu->env, ARM_FEATURE_CRC);
113 set_feature(&cpu->env, ARM_FEATURE_EL2);
114 set_feature(&cpu->env, ARM_FEATURE_EL3);
115 set_feature(&cpu->env, ARM_FEATURE_PMU);
116 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
117 cpu->midr = 0x411fd070;
118 cpu->revidr = 0x00000000;
119 cpu->reset_fpsid = 0x41034070;
120 cpu->mvfr0 = 0x10110222;
121 cpu->mvfr1 = 0x12111111;
122 cpu->mvfr2 = 0x00000043;
123 cpu->ctr = 0x8444c004;
124 cpu->reset_sctlr = 0x00c50838;
125 cpu->id_pfr0 = 0x00000131;
126 cpu->id_pfr1 = 0x00011011;
127 cpu->id_dfr0 = 0x03010066;
128 cpu->id_afr0 = 0x00000000;
129 cpu->id_mmfr0 = 0x10101105;
130 cpu->id_mmfr1 = 0x40000000;
131 cpu->id_mmfr2 = 0x01260000;
132 cpu->id_mmfr3 = 0x02102211;
133 cpu->id_isar0 = 0x02101110;
134 cpu->id_isar1 = 0x13112111;
135 cpu->id_isar2 = 0x21232042;
136 cpu->id_isar3 = 0x01112131;
137 cpu->id_isar4 = 0x00011142;
138 cpu->id_isar5 = 0x00011121;
139 cpu->id_aa64pfr0 = 0x00002222;
140 cpu->id_aa64dfr0 = 0x10305106;
141 cpu->pmceid0 = 0x00000000;
142 cpu->pmceid1 = 0x00000000;
143 cpu->id_aa64isar0 = 0x00011120;
144 cpu->id_aa64mmfr0 = 0x00001124;
145 cpu->dbgdidr = 0x3516d000;
146 cpu->clidr = 0x0a200023;
147 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
148 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
149 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
150 cpu->dcz_blocksize = 4; /* 64 bytes */
151 cpu->gic_num_lrs = 4;
152 cpu->gic_vpribits = 5;
153 cpu->gic_vprebits = 5;
154 define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
157 static void aarch64_a53_initfn(Object *obj)
159 ARMCPU *cpu = ARM_CPU(obj);
161 cpu->dtb_compatible = "arm,cortex-a53";
162 set_feature(&cpu->env, ARM_FEATURE_V8);
163 set_feature(&cpu->env, ARM_FEATURE_VFP4);
164 set_feature(&cpu->env, ARM_FEATURE_NEON);
165 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
166 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
167 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
168 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
169 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
170 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
171 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
172 set_feature(&cpu->env, ARM_FEATURE_CRC);
173 set_feature(&cpu->env, ARM_FEATURE_EL2);
174 set_feature(&cpu->env, ARM_FEATURE_EL3);
175 set_feature(&cpu->env, ARM_FEATURE_PMU);
176 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
177 cpu->midr = 0x410fd034;
178 cpu->revidr = 0x00000000;
179 cpu->reset_fpsid = 0x41034070;
180 cpu->mvfr0 = 0x10110222;
181 cpu->mvfr1 = 0x12111111;
182 cpu->mvfr2 = 0x00000043;
183 cpu->ctr = 0x84448004; /* L1Ip = VIPT */
184 cpu->reset_sctlr = 0x00c50838;
185 cpu->id_pfr0 = 0x00000131;
186 cpu->id_pfr1 = 0x00011011;
187 cpu->id_dfr0 = 0x03010066;
188 cpu->id_afr0 = 0x00000000;
189 cpu->id_mmfr0 = 0x10101105;
190 cpu->id_mmfr1 = 0x40000000;
191 cpu->id_mmfr2 = 0x01260000;
192 cpu->id_mmfr3 = 0x02102211;
193 cpu->id_isar0 = 0x02101110;
194 cpu->id_isar1 = 0x13112111;
195 cpu->id_isar2 = 0x21232042;
196 cpu->id_isar3 = 0x01112131;
197 cpu->id_isar4 = 0x00011142;
198 cpu->id_isar5 = 0x00011121;
199 cpu->id_aa64pfr0 = 0x00002222;
200 cpu->id_aa64dfr0 = 0x10305106;
201 cpu->id_aa64isar0 = 0x00011120;
202 cpu->id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
203 cpu->dbgdidr = 0x3516d000;
204 cpu->clidr = 0x0a200023;
205 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
206 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
207 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
208 cpu->dcz_blocksize = 4; /* 64 bytes */
209 cpu->gic_num_lrs = 4;
210 cpu->gic_vpribits = 5;
211 cpu->gic_vprebits = 5;
212 define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
215 #ifdef CONFIG_USER_ONLY
216 static void aarch64_any_initfn(Object *obj)
218 ARMCPU *cpu = ARM_CPU(obj);
220 set_feature(&cpu->env, ARM_FEATURE_V8);
221 set_feature(&cpu->env, ARM_FEATURE_VFP4);
222 set_feature(&cpu->env, ARM_FEATURE_NEON);
223 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
224 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
225 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
226 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
227 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
228 set_feature(&cpu->env, ARM_FEATURE_CRC);
229 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
230 cpu->dcz_blocksize = 7; /* 512 bytes */
232 #endif
234 typedef struct ARMCPUInfo {
235 const char *name;
236 void (*initfn)(Object *obj);
237 void (*class_init)(ObjectClass *oc, void *data);
238 } ARMCPUInfo;
240 static const ARMCPUInfo aarch64_cpus[] = {
241 { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
242 { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
243 #ifdef CONFIG_USER_ONLY
244 { .name = "any", .initfn = aarch64_any_initfn },
245 #endif
246 { .name = NULL }
249 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
251 ARMCPU *cpu = ARM_CPU(obj);
253 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
256 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
258 ARMCPU *cpu = ARM_CPU(obj);
260 /* At this time, this property is only allowed if KVM is enabled. This
261 * restriction allows us to avoid fixing up functionality that assumes a
262 * uniform execution state like do_interrupt.
264 if (!kvm_enabled()) {
265 error_setg(errp, "'aarch64' feature cannot be disabled "
266 "unless KVM is enabled");
267 return;
270 if (value == false) {
271 unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
272 } else {
273 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
277 static void aarch64_cpu_initfn(Object *obj)
279 object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
280 aarch64_cpu_set_aarch64, NULL);
281 object_property_set_description(obj, "aarch64",
282 "Set on/off to enable/disable aarch64 "
283 "execution state ",
284 NULL);
287 static void aarch64_cpu_finalizefn(Object *obj)
291 static void aarch64_cpu_set_pc(CPUState *cs, vaddr value)
293 ARMCPU *cpu = ARM_CPU(cs);
294 /* It's OK to look at env for the current mode here, because it's
295 * never possible for an AArch64 TB to chain to an AArch32 TB.
296 * (Otherwise we would need to use synchronize_from_tb instead.)
298 if (is_a64(&cpu->env)) {
299 cpu->env.pc = value;
300 } else {
301 cpu->env.regs[15] = value;
305 static gchar *aarch64_gdb_arch_name(CPUState *cs)
307 return g_strdup("aarch64");
310 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
312 CPUClass *cc = CPU_CLASS(oc);
314 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
315 cc->set_pc = aarch64_cpu_set_pc;
316 cc->gdb_read_register = aarch64_cpu_gdb_read_register;
317 cc->gdb_write_register = aarch64_cpu_gdb_write_register;
318 cc->gdb_num_core_regs = 34;
319 cc->gdb_core_xml_file = "aarch64-core.xml";
320 cc->gdb_arch_name = aarch64_gdb_arch_name;
323 static void aarch64_cpu_register(const ARMCPUInfo *info)
325 TypeInfo type_info = {
326 .parent = TYPE_AARCH64_CPU,
327 .instance_size = sizeof(ARMCPU),
328 .instance_init = info->initfn,
329 .class_size = sizeof(ARMCPUClass),
330 .class_init = info->class_init,
333 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
334 type_register(&type_info);
335 g_free((void *)type_info.name);
338 static const TypeInfo aarch64_cpu_type_info = {
339 .name = TYPE_AARCH64_CPU,
340 .parent = TYPE_ARM_CPU,
341 .instance_size = sizeof(ARMCPU),
342 .instance_init = aarch64_cpu_initfn,
343 .instance_finalize = aarch64_cpu_finalizefn,
344 .abstract = true,
345 .class_size = sizeof(AArch64CPUClass),
346 .class_init = aarch64_cpu_class_init,
349 static void aarch64_cpu_register_types(void)
351 const ARMCPUInfo *info = aarch64_cpus;
353 type_register_static(&aarch64_cpu_type_info);
355 while (info->name) {
356 aarch64_cpu_register(info);
357 info++;
361 type_init(aarch64_cpu_register_types)