target/arm: Restore SPSEL to correct CONTROL register on exception return
[qemu/kevin.git] / target / arm / cpu.c
blob4300de66e233a89718db1106320a3679d43f25a4
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
37 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
39 ARMCPU *cpu = ARM_CPU(cs);
41 cpu->env.regs[15] = value;
44 static bool arm_cpu_has_work(CPUState *cs)
46 ARMCPU *cpu = ARM_CPU(cs);
48 return (cpu->power_state != PSCI_OFF)
49 && cs->interrupt_request &
50 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
51 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
52 | CPU_INTERRUPT_EXITTB);
55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
56 void *opaque)
58 /* We currently only support registering a single hook function */
59 assert(!cpu->el_change_hook);
60 cpu->el_change_hook = hook;
61 cpu->el_change_hook_opaque = opaque;
64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
66 /* Reset a single ARMCPRegInfo register */
67 ARMCPRegInfo *ri = value;
68 ARMCPU *cpu = opaque;
70 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
71 return;
74 if (ri->resetfn) {
75 ri->resetfn(&cpu->env, ri);
76 return;
79 /* A zero offset is never possible as it would be regs[0]
80 * so we use it to indicate that reset is being handled elsewhere.
81 * This is basically only used for fields in non-core coprocessors
82 * (like the pxa2xx ones).
84 if (!ri->fieldoffset) {
85 return;
88 if (cpreg_field_is_64bit(ri)) {
89 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
90 } else {
91 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
95 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
97 /* Purely an assertion check: we've already done reset once,
98 * so now check that running the reset for the cpreg doesn't
99 * change its value. This traps bugs where two different cpregs
100 * both try to reset the same state field but to different values.
102 ARMCPRegInfo *ri = value;
103 ARMCPU *cpu = opaque;
104 uint64_t oldvalue, newvalue;
106 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
107 return;
110 oldvalue = read_raw_cp_reg(&cpu->env, ri);
111 cp_reg_reset(key, value, opaque);
112 newvalue = read_raw_cp_reg(&cpu->env, ri);
113 assert(oldvalue == newvalue);
116 /* CPUClass::reset() */
117 static void arm_cpu_reset(CPUState *s)
119 ARMCPU *cpu = ARM_CPU(s);
120 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
121 CPUARMState *env = &cpu->env;
123 acc->parent_reset(s);
125 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
127 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
128 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
130 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
131 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
132 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
133 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
135 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
136 s->halted = cpu->start_powered_off;
138 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
139 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
142 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
143 /* 64 bit CPUs always start in 64 bit mode */
144 env->aarch64 = 1;
145 #if defined(CONFIG_USER_ONLY)
146 env->pstate = PSTATE_MODE_EL0t;
147 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
148 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
149 /* and to the FP/Neon instructions */
150 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
151 #else
152 /* Reset into the highest available EL */
153 if (arm_feature(env, ARM_FEATURE_EL3)) {
154 env->pstate = PSTATE_MODE_EL3h;
155 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
156 env->pstate = PSTATE_MODE_EL2h;
157 } else {
158 env->pstate = PSTATE_MODE_EL1h;
160 env->pc = cpu->rvbar;
161 #endif
162 } else {
163 #if defined(CONFIG_USER_ONLY)
164 /* Userspace expects access to cp10 and cp11 for FP/Neon */
165 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
166 #endif
169 #if defined(CONFIG_USER_ONLY)
170 env->uncached_cpsr = ARM_CPU_MODE_USR;
171 /* For user mode we must enable access to coprocessors */
172 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
173 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
174 env->cp15.c15_cpar = 3;
175 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
176 env->cp15.c15_cpar = 1;
178 #else
179 /* SVC mode with interrupts disabled. */
180 env->uncached_cpsr = ARM_CPU_MODE_SVC;
181 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
183 if (arm_feature(env, ARM_FEATURE_M)) {
184 uint32_t initial_msp; /* Loaded from 0x0 */
185 uint32_t initial_pc; /* Loaded from 0x4 */
186 uint8_t *rom;
188 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
189 env->v7m.secure = true;
190 } else {
191 /* This bit resets to 0 if security is supported, but 1 if
192 * it is not. The bit is not present in v7M, but we set it
193 * here so we can avoid having to make checks on it conditional
194 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
196 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
199 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
200 * that it resets to 1, so QEMU always does that rather than making
201 * it dependent on CPU model. In v8M it is RES1.
203 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
204 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
205 if (arm_feature(env, ARM_FEATURE_V8)) {
206 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
207 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
208 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
211 /* Unlike A/R profile, M profile defines the reset LR value */
212 env->regs[14] = 0xffffffff;
214 /* Load the initial SP and PC from the vector table at address 0 */
215 rom = rom_ptr(0);
216 if (rom) {
217 /* Address zero is covered by ROM which hasn't yet been
218 * copied into physical memory.
220 initial_msp = ldl_p(rom);
221 initial_pc = ldl_p(rom + 4);
222 } else {
223 /* Address zero not covered by a ROM blob, or the ROM blob
224 * is in non-modifiable memory and this is a second reset after
225 * it got copied into memory. In the latter case, rom_ptr
226 * will return a NULL pointer and we should use ldl_phys instead.
228 initial_msp = ldl_phys(s->as, 0);
229 initial_pc = ldl_phys(s->as, 4);
232 env->regs[13] = initial_msp & 0xFFFFFFFC;
233 env->regs[15] = initial_pc & ~1;
234 env->thumb = initial_pc & 1;
237 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
238 * executing as AArch32 then check if highvecs are enabled and
239 * adjust the PC accordingly.
241 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
242 env->regs[15] = 0xFFFF0000;
245 /* M profile requires that reset clears the exclusive monitor;
246 * A profile does not, but clearing it makes more sense than having it
247 * set with an exclusive access on address zero.
249 arm_clear_exclusive(env);
251 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
252 #endif
254 if (arm_feature(env, ARM_FEATURE_PMSA)) {
255 if (cpu->pmsav7_dregion > 0) {
256 if (arm_feature(env, ARM_FEATURE_V8)) {
257 memset(env->pmsav8.rbar[M_REG_NS], 0,
258 sizeof(*env->pmsav8.rbar[M_REG_NS])
259 * cpu->pmsav7_dregion);
260 memset(env->pmsav8.rlar[M_REG_NS], 0,
261 sizeof(*env->pmsav8.rlar[M_REG_NS])
262 * cpu->pmsav7_dregion);
263 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
264 memset(env->pmsav8.rbar[M_REG_S], 0,
265 sizeof(*env->pmsav8.rbar[M_REG_S])
266 * cpu->pmsav7_dregion);
267 memset(env->pmsav8.rlar[M_REG_S], 0,
268 sizeof(*env->pmsav8.rlar[M_REG_S])
269 * cpu->pmsav7_dregion);
271 } else if (arm_feature(env, ARM_FEATURE_V7)) {
272 memset(env->pmsav7.drbar, 0,
273 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
274 memset(env->pmsav7.drsr, 0,
275 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
276 memset(env->pmsav7.dracr, 0,
277 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
280 env->pmsav7.rnr[M_REG_NS] = 0;
281 env->pmsav7.rnr[M_REG_S] = 0;
282 env->pmsav8.mair0[M_REG_NS] = 0;
283 env->pmsav8.mair0[M_REG_S] = 0;
284 env->pmsav8.mair1[M_REG_NS] = 0;
285 env->pmsav8.mair1[M_REG_S] = 0;
288 set_flush_to_zero(1, &env->vfp.standard_fp_status);
289 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
290 set_default_nan_mode(1, &env->vfp.standard_fp_status);
291 set_float_detect_tininess(float_tininess_before_rounding,
292 &env->vfp.fp_status);
293 set_float_detect_tininess(float_tininess_before_rounding,
294 &env->vfp.standard_fp_status);
295 #ifndef CONFIG_USER_ONLY
296 if (kvm_enabled()) {
297 kvm_arm_reset_vcpu(cpu);
299 #endif
301 hw_breakpoint_update_all(cpu);
302 hw_watchpoint_update_all(cpu);
305 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
307 CPUClass *cc = CPU_GET_CLASS(cs);
308 CPUARMState *env = cs->env_ptr;
309 uint32_t cur_el = arm_current_el(env);
310 bool secure = arm_is_secure(env);
311 uint32_t target_el;
312 uint32_t excp_idx;
313 bool ret = false;
315 if (interrupt_request & CPU_INTERRUPT_FIQ) {
316 excp_idx = EXCP_FIQ;
317 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
318 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
319 cs->exception_index = excp_idx;
320 env->exception.target_el = target_el;
321 cc->do_interrupt(cs);
322 ret = true;
325 if (interrupt_request & CPU_INTERRUPT_HARD) {
326 excp_idx = EXCP_IRQ;
327 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
328 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
329 cs->exception_index = excp_idx;
330 env->exception.target_el = target_el;
331 cc->do_interrupt(cs);
332 ret = true;
335 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
336 excp_idx = EXCP_VIRQ;
337 target_el = 1;
338 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
339 cs->exception_index = excp_idx;
340 env->exception.target_el = target_el;
341 cc->do_interrupt(cs);
342 ret = true;
345 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
346 excp_idx = EXCP_VFIQ;
347 target_el = 1;
348 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
349 cs->exception_index = excp_idx;
350 env->exception.target_el = target_el;
351 cc->do_interrupt(cs);
352 ret = true;
356 return ret;
359 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
360 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
362 CPUClass *cc = CPU_GET_CLASS(cs);
363 ARMCPU *cpu = ARM_CPU(cs);
364 CPUARMState *env = &cpu->env;
365 bool ret = false;
367 /* ARMv7-M interrupt masking works differently than -A or -R.
368 * There is no FIQ/IRQ distinction. Instead of I and F bits
369 * masking FIQ and IRQ interrupts, an exception is taken only
370 * if it is higher priority than the current execution priority
371 * (which depends on state like BASEPRI, FAULTMASK and the
372 * currently active exception).
374 if (interrupt_request & CPU_INTERRUPT_HARD
375 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
376 cs->exception_index = EXCP_IRQ;
377 cc->do_interrupt(cs);
378 ret = true;
380 return ret;
382 #endif
384 #ifndef CONFIG_USER_ONLY
385 static void arm_cpu_set_irq(void *opaque, int irq, int level)
387 ARMCPU *cpu = opaque;
388 CPUARMState *env = &cpu->env;
389 CPUState *cs = CPU(cpu);
390 static const int mask[] = {
391 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
392 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
393 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
394 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
397 switch (irq) {
398 case ARM_CPU_VIRQ:
399 case ARM_CPU_VFIQ:
400 assert(arm_feature(env, ARM_FEATURE_EL2));
401 /* fall through */
402 case ARM_CPU_IRQ:
403 case ARM_CPU_FIQ:
404 if (level) {
405 cpu_interrupt(cs, mask[irq]);
406 } else {
407 cpu_reset_interrupt(cs, mask[irq]);
409 break;
410 default:
411 g_assert_not_reached();
415 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
417 #ifdef CONFIG_KVM
418 ARMCPU *cpu = opaque;
419 CPUState *cs = CPU(cpu);
420 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
422 switch (irq) {
423 case ARM_CPU_IRQ:
424 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
425 break;
426 case ARM_CPU_FIQ:
427 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
428 break;
429 default:
430 g_assert_not_reached();
432 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
433 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
434 #endif
437 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
439 ARMCPU *cpu = ARM_CPU(cs);
440 CPUARMState *env = &cpu->env;
442 cpu_synchronize_state(cs);
443 return arm_cpu_data_is_big_endian(env);
446 #endif
448 static inline void set_feature(CPUARMState *env, int feature)
450 env->features |= 1ULL << feature;
453 static inline void unset_feature(CPUARMState *env, int feature)
455 env->features &= ~(1ULL << feature);
458 static int
459 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
461 return print_insn_arm(pc | 1, info);
464 static int arm_read_memory_func(bfd_vma memaddr, bfd_byte *b,
465 int length, struct disassemble_info *info)
467 assert(info->read_memory_inner_func);
468 assert((info->flags & INSN_ARM_BE32) == 0 || length == 2 || length == 4);
470 if ((info->flags & INSN_ARM_BE32) != 0 && length == 2) {
471 assert(info->endian == BFD_ENDIAN_LITTLE);
472 return info->read_memory_inner_func(memaddr ^ 2, (bfd_byte *)b, 2,
473 info);
474 } else {
475 return info->read_memory_inner_func(memaddr, b, length, info);
479 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
481 ARMCPU *ac = ARM_CPU(cpu);
482 CPUARMState *env = &ac->env;
484 if (is_a64(env)) {
485 /* We might not be compiled with the A64 disassembler
486 * because it needs a C++ compiler. Leave print_insn
487 * unset in this case to use the caller default behaviour.
489 #if defined(CONFIG_ARM_A64_DIS)
490 info->print_insn = print_insn_arm_a64;
491 #endif
492 } else if (env->thumb) {
493 info->print_insn = print_insn_thumb1;
494 } else {
495 info->print_insn = print_insn_arm;
497 if (bswap_code(arm_sctlr_b(env))) {
498 #ifdef TARGET_WORDS_BIGENDIAN
499 info->endian = BFD_ENDIAN_LITTLE;
500 #else
501 info->endian = BFD_ENDIAN_BIG;
502 #endif
504 if (info->read_memory_inner_func == NULL) {
505 info->read_memory_inner_func = info->read_memory_func;
506 info->read_memory_func = arm_read_memory_func;
508 info->flags &= ~INSN_ARM_BE32;
509 if (arm_sctlr_b(env)) {
510 info->flags |= INSN_ARM_BE32;
514 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
516 uint32_t Aff1 = idx / clustersz;
517 uint32_t Aff0 = idx % clustersz;
518 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
521 static void arm_cpu_initfn(Object *obj)
523 CPUState *cs = CPU(obj);
524 ARMCPU *cpu = ARM_CPU(obj);
525 static bool inited;
527 cs->env_ptr = &cpu->env;
528 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
529 g_free, g_free);
531 #ifndef CONFIG_USER_ONLY
532 /* Our inbound IRQ and FIQ lines */
533 if (kvm_enabled()) {
534 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
535 * the same interface as non-KVM CPUs.
537 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
538 } else {
539 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
542 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
543 arm_gt_ptimer_cb, cpu);
544 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
545 arm_gt_vtimer_cb, cpu);
546 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
547 arm_gt_htimer_cb, cpu);
548 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
549 arm_gt_stimer_cb, cpu);
550 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
551 ARRAY_SIZE(cpu->gt_timer_outputs));
553 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
554 "gicv3-maintenance-interrupt", 1);
555 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
556 "pmu-interrupt", 1);
557 #endif
559 /* DTB consumers generally don't in fact care what the 'compatible'
560 * string is, so always provide some string and trust that a hypothetical
561 * picky DTB consumer will also provide a helpful error message.
563 cpu->dtb_compatible = "qemu,unknown";
564 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
565 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
567 if (tcg_enabled()) {
568 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
569 if (!inited) {
570 inited = true;
571 arm_translate_init();
576 static Property arm_cpu_reset_cbar_property =
577 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
579 static Property arm_cpu_reset_hivecs_property =
580 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
582 static Property arm_cpu_rvbar_property =
583 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
585 static Property arm_cpu_has_el2_property =
586 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
588 static Property arm_cpu_has_el3_property =
589 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
591 static Property arm_cpu_cfgend_property =
592 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
594 /* use property name "pmu" to match other archs and virt tools */
595 static Property arm_cpu_has_pmu_property =
596 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
598 static Property arm_cpu_has_mpu_property =
599 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
601 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
602 * because the CPU initfn will have already set cpu->pmsav7_dregion to
603 * the right value for that particular CPU type, and we don't want
604 * to override that with an incorrect constant value.
606 static Property arm_cpu_pmsav7_dregion_property =
607 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
608 pmsav7_dregion,
609 qdev_prop_uint32, uint32_t);
611 static void arm_cpu_post_init(Object *obj)
613 ARMCPU *cpu = ARM_CPU(obj);
615 /* M profile implies PMSA. We have to do this here rather than
616 * in realize with the other feature-implication checks because
617 * we look at the PMSA bit to see if we should add some properties.
619 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
620 set_feature(&cpu->env, ARM_FEATURE_PMSA);
623 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
624 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
625 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
626 &error_abort);
629 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
630 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
631 &error_abort);
634 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
635 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
636 &error_abort);
639 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
640 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
641 * prevent "has_el3" from existing on CPUs which cannot support EL3.
643 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
644 &error_abort);
646 #ifndef CONFIG_USER_ONLY
647 object_property_add_link(obj, "secure-memory",
648 TYPE_MEMORY_REGION,
649 (Object **)&cpu->secure_memory,
650 qdev_prop_allow_set_link_before_realize,
651 OBJ_PROP_LINK_UNREF_ON_RELEASE,
652 &error_abort);
653 #endif
656 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
657 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
658 &error_abort);
661 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
662 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
663 &error_abort);
666 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
667 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
668 &error_abort);
669 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
670 qdev_property_add_static(DEVICE(obj),
671 &arm_cpu_pmsav7_dregion_property,
672 &error_abort);
676 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
677 &error_abort);
680 static void arm_cpu_finalizefn(Object *obj)
682 ARMCPU *cpu = ARM_CPU(obj);
683 g_hash_table_destroy(cpu->cp_regs);
686 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
688 CPUState *cs = CPU(dev);
689 ARMCPU *cpu = ARM_CPU(dev);
690 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
691 CPUARMState *env = &cpu->env;
692 int pagebits;
693 Error *local_err = NULL;
694 #ifndef CONFIG_USER_ONLY
695 AddressSpace *as;
696 #endif
698 cpu_exec_realizefn(cs, &local_err);
699 if (local_err != NULL) {
700 error_propagate(errp, local_err);
701 return;
704 /* Some features automatically imply others: */
705 if (arm_feature(env, ARM_FEATURE_V8)) {
706 set_feature(env, ARM_FEATURE_V7);
707 set_feature(env, ARM_FEATURE_ARM_DIV);
708 set_feature(env, ARM_FEATURE_LPAE);
710 if (arm_feature(env, ARM_FEATURE_V7)) {
711 set_feature(env, ARM_FEATURE_VAPA);
712 set_feature(env, ARM_FEATURE_THUMB2);
713 set_feature(env, ARM_FEATURE_MPIDR);
714 if (!arm_feature(env, ARM_FEATURE_M)) {
715 set_feature(env, ARM_FEATURE_V6K);
716 } else {
717 set_feature(env, ARM_FEATURE_V6);
720 /* Always define VBAR for V7 CPUs even if it doesn't exist in
721 * non-EL3 configs. This is needed by some legacy boards.
723 set_feature(env, ARM_FEATURE_VBAR);
725 if (arm_feature(env, ARM_FEATURE_V6K)) {
726 set_feature(env, ARM_FEATURE_V6);
727 set_feature(env, ARM_FEATURE_MVFR);
729 if (arm_feature(env, ARM_FEATURE_V6)) {
730 set_feature(env, ARM_FEATURE_V5);
731 set_feature(env, ARM_FEATURE_JAZELLE);
732 if (!arm_feature(env, ARM_FEATURE_M)) {
733 set_feature(env, ARM_FEATURE_AUXCR);
736 if (arm_feature(env, ARM_FEATURE_V5)) {
737 set_feature(env, ARM_FEATURE_V4T);
739 if (arm_feature(env, ARM_FEATURE_M)) {
740 set_feature(env, ARM_FEATURE_THUMB_DIV);
742 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
743 set_feature(env, ARM_FEATURE_THUMB_DIV);
745 if (arm_feature(env, ARM_FEATURE_VFP4)) {
746 set_feature(env, ARM_FEATURE_VFP3);
747 set_feature(env, ARM_FEATURE_VFP_FP16);
749 if (arm_feature(env, ARM_FEATURE_VFP3)) {
750 set_feature(env, ARM_FEATURE_VFP);
752 if (arm_feature(env, ARM_FEATURE_LPAE)) {
753 set_feature(env, ARM_FEATURE_V7MP);
754 set_feature(env, ARM_FEATURE_PXN);
756 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
757 set_feature(env, ARM_FEATURE_CBAR);
759 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
760 !arm_feature(env, ARM_FEATURE_M)) {
761 set_feature(env, ARM_FEATURE_THUMB_DSP);
764 if (arm_feature(env, ARM_FEATURE_V7) &&
765 !arm_feature(env, ARM_FEATURE_M) &&
766 !arm_feature(env, ARM_FEATURE_PMSA)) {
767 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
768 * can use 4K pages.
770 pagebits = 12;
771 } else {
772 /* For CPUs which might have tiny 1K pages, or which have an
773 * MPU and might have small region sizes, stick with 1K pages.
775 pagebits = 10;
777 if (!set_preferred_target_page_bits(pagebits)) {
778 /* This can only ever happen for hotplugging a CPU, or if
779 * the board code incorrectly creates a CPU which it has
780 * promised via minimum_page_size that it will not.
782 error_setg(errp, "This CPU requires a smaller page size than the "
783 "system is using");
784 return;
787 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
788 * We don't support setting cluster ID ([16..23]) (known as Aff2
789 * in later ARM ARM versions), or any of the higher affinity level fields,
790 * so these bits always RAZ.
792 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
793 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
794 ARM_DEFAULT_CPUS_PER_CLUSTER);
797 if (cpu->reset_hivecs) {
798 cpu->reset_sctlr |= (1 << 13);
801 if (cpu->cfgend) {
802 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
803 cpu->reset_sctlr |= SCTLR_EE;
804 } else {
805 cpu->reset_sctlr |= SCTLR_B;
809 if (!cpu->has_el3) {
810 /* If the has_el3 CPU property is disabled then we need to disable the
811 * feature.
813 unset_feature(env, ARM_FEATURE_EL3);
815 /* Disable the security extension feature bits in the processor feature
816 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
818 cpu->id_pfr1 &= ~0xf0;
819 cpu->id_aa64pfr0 &= ~0xf000;
822 if (!cpu->has_el2) {
823 unset_feature(env, ARM_FEATURE_EL2);
826 if (!cpu->has_pmu) {
827 unset_feature(env, ARM_FEATURE_PMU);
828 cpu->id_aa64dfr0 &= ~0xf00;
831 if (!arm_feature(env, ARM_FEATURE_EL2)) {
832 /* Disable the hypervisor feature bits in the processor feature
833 * registers if we don't have EL2. These are id_pfr1[15:12] and
834 * id_aa64pfr0_el1[11:8].
836 cpu->id_aa64pfr0 &= ~0xf00;
837 cpu->id_pfr1 &= ~0xf000;
840 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
841 * to false or by setting pmsav7-dregion to 0.
843 if (!cpu->has_mpu) {
844 cpu->pmsav7_dregion = 0;
846 if (cpu->pmsav7_dregion == 0) {
847 cpu->has_mpu = false;
850 if (arm_feature(env, ARM_FEATURE_PMSA) &&
851 arm_feature(env, ARM_FEATURE_V7)) {
852 uint32_t nr = cpu->pmsav7_dregion;
854 if (nr > 0xff) {
855 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
856 return;
859 if (nr) {
860 if (arm_feature(env, ARM_FEATURE_V8)) {
861 /* PMSAv8 */
862 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
863 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
864 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
865 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
866 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
868 } else {
869 env->pmsav7.drbar = g_new0(uint32_t, nr);
870 env->pmsav7.drsr = g_new0(uint32_t, nr);
871 env->pmsav7.dracr = g_new0(uint32_t, nr);
876 if (arm_feature(env, ARM_FEATURE_EL3)) {
877 set_feature(env, ARM_FEATURE_VBAR);
880 register_cp_regs_for_features(cpu);
881 arm_cpu_register_gdb_regs_for_features(cpu);
883 init_cpreg_list(cpu);
885 #ifndef CONFIG_USER_ONLY
886 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
887 as = g_new0(AddressSpace, 1);
889 cs->num_ases = 2;
891 if (!cpu->secure_memory) {
892 cpu->secure_memory = cs->memory;
894 address_space_init(as, cpu->secure_memory, "cpu-secure-memory");
895 cpu_address_space_init(cs, as, ARMASIdx_S);
896 } else {
897 cs->num_ases = 1;
899 as = g_new0(AddressSpace, 1);
900 address_space_init(as, cs->memory, "cpu-memory");
901 cpu_address_space_init(cs, as, ARMASIdx_NS);
902 #endif
904 qemu_init_vcpu(cs);
905 cpu_reset(cs);
907 acc->parent_realize(dev, errp);
910 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
912 ObjectClass *oc;
913 char *typename;
914 char **cpuname;
916 if (!cpu_model) {
917 return NULL;
920 cpuname = g_strsplit(cpu_model, ",", 1);
921 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpuname[0]);
922 oc = object_class_by_name(typename);
923 g_strfreev(cpuname);
924 g_free(typename);
925 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
926 object_class_is_abstract(oc)) {
927 return NULL;
929 return oc;
932 /* CPU models. These are not needed for the AArch64 linux-user build. */
933 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
935 static void arm926_initfn(Object *obj)
937 ARMCPU *cpu = ARM_CPU(obj);
939 cpu->dtb_compatible = "arm,arm926";
940 set_feature(&cpu->env, ARM_FEATURE_V5);
941 set_feature(&cpu->env, ARM_FEATURE_VFP);
942 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
943 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
944 set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
945 cpu->midr = 0x41069265;
946 cpu->reset_fpsid = 0x41011090;
947 cpu->ctr = 0x1dd20d2;
948 cpu->reset_sctlr = 0x00090078;
951 static void arm946_initfn(Object *obj)
953 ARMCPU *cpu = ARM_CPU(obj);
955 cpu->dtb_compatible = "arm,arm946";
956 set_feature(&cpu->env, ARM_FEATURE_V5);
957 set_feature(&cpu->env, ARM_FEATURE_PMSA);
958 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
959 cpu->midr = 0x41059461;
960 cpu->ctr = 0x0f004006;
961 cpu->reset_sctlr = 0x00000078;
964 static void arm1026_initfn(Object *obj)
966 ARMCPU *cpu = ARM_CPU(obj);
968 cpu->dtb_compatible = "arm,arm1026";
969 set_feature(&cpu->env, ARM_FEATURE_V5);
970 set_feature(&cpu->env, ARM_FEATURE_VFP);
971 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
972 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
973 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
974 set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
975 cpu->midr = 0x4106a262;
976 cpu->reset_fpsid = 0x410110a0;
977 cpu->ctr = 0x1dd20d2;
978 cpu->reset_sctlr = 0x00090078;
979 cpu->reset_auxcr = 1;
981 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
982 ARMCPRegInfo ifar = {
983 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
984 .access = PL1_RW,
985 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
986 .resetvalue = 0
988 define_one_arm_cp_reg(cpu, &ifar);
992 static void arm1136_r2_initfn(Object *obj)
994 ARMCPU *cpu = ARM_CPU(obj);
995 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
996 * older core than plain "arm1136". In particular this does not
997 * have the v6K features.
998 * These ID register values are correct for 1136 but may be wrong
999 * for 1136_r2 (in particular r0p2 does not actually implement most
1000 * of the ID registers).
1003 cpu->dtb_compatible = "arm,arm1136";
1004 set_feature(&cpu->env, ARM_FEATURE_V6);
1005 set_feature(&cpu->env, ARM_FEATURE_VFP);
1006 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1007 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1008 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1009 cpu->midr = 0x4107b362;
1010 cpu->reset_fpsid = 0x410120b4;
1011 cpu->mvfr0 = 0x11111111;
1012 cpu->mvfr1 = 0x00000000;
1013 cpu->ctr = 0x1dd20d2;
1014 cpu->reset_sctlr = 0x00050078;
1015 cpu->id_pfr0 = 0x111;
1016 cpu->id_pfr1 = 0x1;
1017 cpu->id_dfr0 = 0x2;
1018 cpu->id_afr0 = 0x3;
1019 cpu->id_mmfr0 = 0x01130003;
1020 cpu->id_mmfr1 = 0x10030302;
1021 cpu->id_mmfr2 = 0x01222110;
1022 cpu->id_isar0 = 0x00140011;
1023 cpu->id_isar1 = 0x12002111;
1024 cpu->id_isar2 = 0x11231111;
1025 cpu->id_isar3 = 0x01102131;
1026 cpu->id_isar4 = 0x141;
1027 cpu->reset_auxcr = 7;
1030 static void arm1136_initfn(Object *obj)
1032 ARMCPU *cpu = ARM_CPU(obj);
1034 cpu->dtb_compatible = "arm,arm1136";
1035 set_feature(&cpu->env, ARM_FEATURE_V6K);
1036 set_feature(&cpu->env, ARM_FEATURE_V6);
1037 set_feature(&cpu->env, ARM_FEATURE_VFP);
1038 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1039 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1040 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1041 cpu->midr = 0x4117b363;
1042 cpu->reset_fpsid = 0x410120b4;
1043 cpu->mvfr0 = 0x11111111;
1044 cpu->mvfr1 = 0x00000000;
1045 cpu->ctr = 0x1dd20d2;
1046 cpu->reset_sctlr = 0x00050078;
1047 cpu->id_pfr0 = 0x111;
1048 cpu->id_pfr1 = 0x1;
1049 cpu->id_dfr0 = 0x2;
1050 cpu->id_afr0 = 0x3;
1051 cpu->id_mmfr0 = 0x01130003;
1052 cpu->id_mmfr1 = 0x10030302;
1053 cpu->id_mmfr2 = 0x01222110;
1054 cpu->id_isar0 = 0x00140011;
1055 cpu->id_isar1 = 0x12002111;
1056 cpu->id_isar2 = 0x11231111;
1057 cpu->id_isar3 = 0x01102131;
1058 cpu->id_isar4 = 0x141;
1059 cpu->reset_auxcr = 7;
1062 static void arm1176_initfn(Object *obj)
1064 ARMCPU *cpu = ARM_CPU(obj);
1066 cpu->dtb_compatible = "arm,arm1176";
1067 set_feature(&cpu->env, ARM_FEATURE_V6K);
1068 set_feature(&cpu->env, ARM_FEATURE_VFP);
1069 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1070 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1071 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1072 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1073 set_feature(&cpu->env, ARM_FEATURE_EL3);
1074 cpu->midr = 0x410fb767;
1075 cpu->reset_fpsid = 0x410120b5;
1076 cpu->mvfr0 = 0x11111111;
1077 cpu->mvfr1 = 0x00000000;
1078 cpu->ctr = 0x1dd20d2;
1079 cpu->reset_sctlr = 0x00050078;
1080 cpu->id_pfr0 = 0x111;
1081 cpu->id_pfr1 = 0x11;
1082 cpu->id_dfr0 = 0x33;
1083 cpu->id_afr0 = 0;
1084 cpu->id_mmfr0 = 0x01130003;
1085 cpu->id_mmfr1 = 0x10030302;
1086 cpu->id_mmfr2 = 0x01222100;
1087 cpu->id_isar0 = 0x0140011;
1088 cpu->id_isar1 = 0x12002111;
1089 cpu->id_isar2 = 0x11231121;
1090 cpu->id_isar3 = 0x01102131;
1091 cpu->id_isar4 = 0x01141;
1092 cpu->reset_auxcr = 7;
1095 static void arm11mpcore_initfn(Object *obj)
1097 ARMCPU *cpu = ARM_CPU(obj);
1099 cpu->dtb_compatible = "arm,arm11mpcore";
1100 set_feature(&cpu->env, ARM_FEATURE_V6K);
1101 set_feature(&cpu->env, ARM_FEATURE_VFP);
1102 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1103 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1104 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1105 cpu->midr = 0x410fb022;
1106 cpu->reset_fpsid = 0x410120b4;
1107 cpu->mvfr0 = 0x11111111;
1108 cpu->mvfr1 = 0x00000000;
1109 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1110 cpu->id_pfr0 = 0x111;
1111 cpu->id_pfr1 = 0x1;
1112 cpu->id_dfr0 = 0;
1113 cpu->id_afr0 = 0x2;
1114 cpu->id_mmfr0 = 0x01100103;
1115 cpu->id_mmfr1 = 0x10020302;
1116 cpu->id_mmfr2 = 0x01222000;
1117 cpu->id_isar0 = 0x00100011;
1118 cpu->id_isar1 = 0x12002111;
1119 cpu->id_isar2 = 0x11221011;
1120 cpu->id_isar3 = 0x01102131;
1121 cpu->id_isar4 = 0x141;
1122 cpu->reset_auxcr = 1;
1125 static void cortex_m3_initfn(Object *obj)
1127 ARMCPU *cpu = ARM_CPU(obj);
1128 set_feature(&cpu->env, ARM_FEATURE_V7);
1129 set_feature(&cpu->env, ARM_FEATURE_M);
1130 cpu->midr = 0x410fc231;
1131 cpu->pmsav7_dregion = 8;
1134 static void cortex_m4_initfn(Object *obj)
1136 ARMCPU *cpu = ARM_CPU(obj);
1138 set_feature(&cpu->env, ARM_FEATURE_V7);
1139 set_feature(&cpu->env, ARM_FEATURE_M);
1140 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1141 cpu->midr = 0x410fc240; /* r0p0 */
1142 cpu->pmsav7_dregion = 8;
1144 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1146 CPUClass *cc = CPU_CLASS(oc);
1148 #ifndef CONFIG_USER_ONLY
1149 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1150 #endif
1152 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1155 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1156 /* Dummy the TCM region regs for the moment */
1157 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1158 .access = PL1_RW, .type = ARM_CP_CONST },
1159 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1160 .access = PL1_RW, .type = ARM_CP_CONST },
1161 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1162 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1163 REGINFO_SENTINEL
1166 static void cortex_r5_initfn(Object *obj)
1168 ARMCPU *cpu = ARM_CPU(obj);
1170 set_feature(&cpu->env, ARM_FEATURE_V7);
1171 set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1172 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1173 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1174 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1175 cpu->midr = 0x411fc153; /* r1p3 */
1176 cpu->id_pfr0 = 0x0131;
1177 cpu->id_pfr1 = 0x001;
1178 cpu->id_dfr0 = 0x010400;
1179 cpu->id_afr0 = 0x0;
1180 cpu->id_mmfr0 = 0x0210030;
1181 cpu->id_mmfr1 = 0x00000000;
1182 cpu->id_mmfr2 = 0x01200000;
1183 cpu->id_mmfr3 = 0x0211;
1184 cpu->id_isar0 = 0x2101111;
1185 cpu->id_isar1 = 0x13112111;
1186 cpu->id_isar2 = 0x21232141;
1187 cpu->id_isar3 = 0x01112131;
1188 cpu->id_isar4 = 0x0010142;
1189 cpu->id_isar5 = 0x0;
1190 cpu->mp_is_up = true;
1191 cpu->pmsav7_dregion = 16;
1192 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1195 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1196 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1197 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1198 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1199 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1200 REGINFO_SENTINEL
1203 static void cortex_a8_initfn(Object *obj)
1205 ARMCPU *cpu = ARM_CPU(obj);
1207 cpu->dtb_compatible = "arm,cortex-a8";
1208 set_feature(&cpu->env, ARM_FEATURE_V7);
1209 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1210 set_feature(&cpu->env, ARM_FEATURE_NEON);
1211 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1212 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1213 set_feature(&cpu->env, ARM_FEATURE_EL3);
1214 cpu->midr = 0x410fc080;
1215 cpu->reset_fpsid = 0x410330c0;
1216 cpu->mvfr0 = 0x11110222;
1217 cpu->mvfr1 = 0x00011111;
1218 cpu->ctr = 0x82048004;
1219 cpu->reset_sctlr = 0x00c50078;
1220 cpu->id_pfr0 = 0x1031;
1221 cpu->id_pfr1 = 0x11;
1222 cpu->id_dfr0 = 0x400;
1223 cpu->id_afr0 = 0;
1224 cpu->id_mmfr0 = 0x31100003;
1225 cpu->id_mmfr1 = 0x20000000;
1226 cpu->id_mmfr2 = 0x01202000;
1227 cpu->id_mmfr3 = 0x11;
1228 cpu->id_isar0 = 0x00101111;
1229 cpu->id_isar1 = 0x12112111;
1230 cpu->id_isar2 = 0x21232031;
1231 cpu->id_isar3 = 0x11112131;
1232 cpu->id_isar4 = 0x00111142;
1233 cpu->dbgdidr = 0x15141000;
1234 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1235 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1236 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1237 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1238 cpu->reset_auxcr = 2;
1239 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1242 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1243 /* power_control should be set to maximum latency. Again,
1244 * default to 0 and set by private hook
1246 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1247 .access = PL1_RW, .resetvalue = 0,
1248 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1249 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1250 .access = PL1_RW, .resetvalue = 0,
1251 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1252 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1253 .access = PL1_RW, .resetvalue = 0,
1254 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1255 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1256 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1257 /* TLB lockdown control */
1258 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1259 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1260 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1261 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1262 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1263 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1264 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1265 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1266 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1267 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1268 REGINFO_SENTINEL
1271 static void cortex_a9_initfn(Object *obj)
1273 ARMCPU *cpu = ARM_CPU(obj);
1275 cpu->dtb_compatible = "arm,cortex-a9";
1276 set_feature(&cpu->env, ARM_FEATURE_V7);
1277 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1278 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1279 set_feature(&cpu->env, ARM_FEATURE_NEON);
1280 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1281 set_feature(&cpu->env, ARM_FEATURE_EL3);
1282 /* Note that A9 supports the MP extensions even for
1283 * A9UP and single-core A9MP (which are both different
1284 * and valid configurations; we don't model A9UP).
1286 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1287 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1288 cpu->midr = 0x410fc090;
1289 cpu->reset_fpsid = 0x41033090;
1290 cpu->mvfr0 = 0x11110222;
1291 cpu->mvfr1 = 0x01111111;
1292 cpu->ctr = 0x80038003;
1293 cpu->reset_sctlr = 0x00c50078;
1294 cpu->id_pfr0 = 0x1031;
1295 cpu->id_pfr1 = 0x11;
1296 cpu->id_dfr0 = 0x000;
1297 cpu->id_afr0 = 0;
1298 cpu->id_mmfr0 = 0x00100103;
1299 cpu->id_mmfr1 = 0x20000000;
1300 cpu->id_mmfr2 = 0x01230000;
1301 cpu->id_mmfr3 = 0x00002111;
1302 cpu->id_isar0 = 0x00101111;
1303 cpu->id_isar1 = 0x13112111;
1304 cpu->id_isar2 = 0x21232041;
1305 cpu->id_isar3 = 0x11112131;
1306 cpu->id_isar4 = 0x00111142;
1307 cpu->dbgdidr = 0x35141000;
1308 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1309 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1310 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1311 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1314 #ifndef CONFIG_USER_ONLY
1315 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1317 /* Linux wants the number of processors from here.
1318 * Might as well set the interrupt-controller bit too.
1320 return ((smp_cpus - 1) << 24) | (1 << 23);
1322 #endif
1324 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1325 #ifndef CONFIG_USER_ONLY
1326 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1327 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1328 .writefn = arm_cp_write_ignore, },
1329 #endif
1330 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1331 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1332 REGINFO_SENTINEL
1335 static void cortex_a7_initfn(Object *obj)
1337 ARMCPU *cpu = ARM_CPU(obj);
1339 cpu->dtb_compatible = "arm,cortex-a7";
1340 set_feature(&cpu->env, ARM_FEATURE_V7);
1341 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1342 set_feature(&cpu->env, ARM_FEATURE_NEON);
1343 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1344 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1345 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1346 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1347 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1348 set_feature(&cpu->env, ARM_FEATURE_LPAE);
1349 set_feature(&cpu->env, ARM_FEATURE_EL3);
1350 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1351 cpu->midr = 0x410fc075;
1352 cpu->reset_fpsid = 0x41023075;
1353 cpu->mvfr0 = 0x10110222;
1354 cpu->mvfr1 = 0x11111111;
1355 cpu->ctr = 0x84448003;
1356 cpu->reset_sctlr = 0x00c50078;
1357 cpu->id_pfr0 = 0x00001131;
1358 cpu->id_pfr1 = 0x00011011;
1359 cpu->id_dfr0 = 0x02010555;
1360 cpu->pmceid0 = 0x00000000;
1361 cpu->pmceid1 = 0x00000000;
1362 cpu->id_afr0 = 0x00000000;
1363 cpu->id_mmfr0 = 0x10101105;
1364 cpu->id_mmfr1 = 0x40000000;
1365 cpu->id_mmfr2 = 0x01240000;
1366 cpu->id_mmfr3 = 0x02102211;
1367 cpu->id_isar0 = 0x01101110;
1368 cpu->id_isar1 = 0x13112111;
1369 cpu->id_isar2 = 0x21232041;
1370 cpu->id_isar3 = 0x11112131;
1371 cpu->id_isar4 = 0x10011142;
1372 cpu->dbgdidr = 0x3515f005;
1373 cpu->clidr = 0x0a200023;
1374 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1375 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1376 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1377 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1380 static void cortex_a15_initfn(Object *obj)
1382 ARMCPU *cpu = ARM_CPU(obj);
1384 cpu->dtb_compatible = "arm,cortex-a15";
1385 set_feature(&cpu->env, ARM_FEATURE_V7);
1386 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1387 set_feature(&cpu->env, ARM_FEATURE_NEON);
1388 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1389 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1390 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1391 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1392 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1393 set_feature(&cpu->env, ARM_FEATURE_LPAE);
1394 set_feature(&cpu->env, ARM_FEATURE_EL3);
1395 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1396 cpu->midr = 0x412fc0f1;
1397 cpu->reset_fpsid = 0x410430f0;
1398 cpu->mvfr0 = 0x10110222;
1399 cpu->mvfr1 = 0x11111111;
1400 cpu->ctr = 0x8444c004;
1401 cpu->reset_sctlr = 0x00c50078;
1402 cpu->id_pfr0 = 0x00001131;
1403 cpu->id_pfr1 = 0x00011011;
1404 cpu->id_dfr0 = 0x02010555;
1405 cpu->pmceid0 = 0x0000000;
1406 cpu->pmceid1 = 0x00000000;
1407 cpu->id_afr0 = 0x00000000;
1408 cpu->id_mmfr0 = 0x10201105;
1409 cpu->id_mmfr1 = 0x20000000;
1410 cpu->id_mmfr2 = 0x01240000;
1411 cpu->id_mmfr3 = 0x02102211;
1412 cpu->id_isar0 = 0x02101110;
1413 cpu->id_isar1 = 0x13112111;
1414 cpu->id_isar2 = 0x21232041;
1415 cpu->id_isar3 = 0x11112131;
1416 cpu->id_isar4 = 0x10011142;
1417 cpu->dbgdidr = 0x3515f021;
1418 cpu->clidr = 0x0a200023;
1419 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1420 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1421 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1422 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1425 static void ti925t_initfn(Object *obj)
1427 ARMCPU *cpu = ARM_CPU(obj);
1428 set_feature(&cpu->env, ARM_FEATURE_V4T);
1429 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1430 cpu->midr = ARM_CPUID_TI925T;
1431 cpu->ctr = 0x5109149;
1432 cpu->reset_sctlr = 0x00000070;
1435 static void sa1100_initfn(Object *obj)
1437 ARMCPU *cpu = ARM_CPU(obj);
1439 cpu->dtb_compatible = "intel,sa1100";
1440 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1441 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1442 cpu->midr = 0x4401A11B;
1443 cpu->reset_sctlr = 0x00000070;
1446 static void sa1110_initfn(Object *obj)
1448 ARMCPU *cpu = ARM_CPU(obj);
1449 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1450 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1451 cpu->midr = 0x6901B119;
1452 cpu->reset_sctlr = 0x00000070;
1455 static void pxa250_initfn(Object *obj)
1457 ARMCPU *cpu = ARM_CPU(obj);
1459 cpu->dtb_compatible = "marvell,xscale";
1460 set_feature(&cpu->env, ARM_FEATURE_V5);
1461 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1462 cpu->midr = 0x69052100;
1463 cpu->ctr = 0xd172172;
1464 cpu->reset_sctlr = 0x00000078;
1467 static void pxa255_initfn(Object *obj)
1469 ARMCPU *cpu = ARM_CPU(obj);
1471 cpu->dtb_compatible = "marvell,xscale";
1472 set_feature(&cpu->env, ARM_FEATURE_V5);
1473 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1474 cpu->midr = 0x69052d00;
1475 cpu->ctr = 0xd172172;
1476 cpu->reset_sctlr = 0x00000078;
1479 static void pxa260_initfn(Object *obj)
1481 ARMCPU *cpu = ARM_CPU(obj);
1483 cpu->dtb_compatible = "marvell,xscale";
1484 set_feature(&cpu->env, ARM_FEATURE_V5);
1485 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1486 cpu->midr = 0x69052903;
1487 cpu->ctr = 0xd172172;
1488 cpu->reset_sctlr = 0x00000078;
1491 static void pxa261_initfn(Object *obj)
1493 ARMCPU *cpu = ARM_CPU(obj);
1495 cpu->dtb_compatible = "marvell,xscale";
1496 set_feature(&cpu->env, ARM_FEATURE_V5);
1497 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1498 cpu->midr = 0x69052d05;
1499 cpu->ctr = 0xd172172;
1500 cpu->reset_sctlr = 0x00000078;
1503 static void pxa262_initfn(Object *obj)
1505 ARMCPU *cpu = ARM_CPU(obj);
1507 cpu->dtb_compatible = "marvell,xscale";
1508 set_feature(&cpu->env, ARM_FEATURE_V5);
1509 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1510 cpu->midr = 0x69052d06;
1511 cpu->ctr = 0xd172172;
1512 cpu->reset_sctlr = 0x00000078;
1515 static void pxa270a0_initfn(Object *obj)
1517 ARMCPU *cpu = ARM_CPU(obj);
1519 cpu->dtb_compatible = "marvell,xscale";
1520 set_feature(&cpu->env, ARM_FEATURE_V5);
1521 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1522 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1523 cpu->midr = 0x69054110;
1524 cpu->ctr = 0xd172172;
1525 cpu->reset_sctlr = 0x00000078;
1528 static void pxa270a1_initfn(Object *obj)
1530 ARMCPU *cpu = ARM_CPU(obj);
1532 cpu->dtb_compatible = "marvell,xscale";
1533 set_feature(&cpu->env, ARM_FEATURE_V5);
1534 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1535 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1536 cpu->midr = 0x69054111;
1537 cpu->ctr = 0xd172172;
1538 cpu->reset_sctlr = 0x00000078;
1541 static void pxa270b0_initfn(Object *obj)
1543 ARMCPU *cpu = ARM_CPU(obj);
1545 cpu->dtb_compatible = "marvell,xscale";
1546 set_feature(&cpu->env, ARM_FEATURE_V5);
1547 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1548 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1549 cpu->midr = 0x69054112;
1550 cpu->ctr = 0xd172172;
1551 cpu->reset_sctlr = 0x00000078;
1554 static void pxa270b1_initfn(Object *obj)
1556 ARMCPU *cpu = ARM_CPU(obj);
1558 cpu->dtb_compatible = "marvell,xscale";
1559 set_feature(&cpu->env, ARM_FEATURE_V5);
1560 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1561 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1562 cpu->midr = 0x69054113;
1563 cpu->ctr = 0xd172172;
1564 cpu->reset_sctlr = 0x00000078;
1567 static void pxa270c0_initfn(Object *obj)
1569 ARMCPU *cpu = ARM_CPU(obj);
1571 cpu->dtb_compatible = "marvell,xscale";
1572 set_feature(&cpu->env, ARM_FEATURE_V5);
1573 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1574 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1575 cpu->midr = 0x69054114;
1576 cpu->ctr = 0xd172172;
1577 cpu->reset_sctlr = 0x00000078;
1580 static void pxa270c5_initfn(Object *obj)
1582 ARMCPU *cpu = ARM_CPU(obj);
1584 cpu->dtb_compatible = "marvell,xscale";
1585 set_feature(&cpu->env, ARM_FEATURE_V5);
1586 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1587 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1588 cpu->midr = 0x69054117;
1589 cpu->ctr = 0xd172172;
1590 cpu->reset_sctlr = 0x00000078;
1593 #ifdef CONFIG_USER_ONLY
1594 static void arm_any_initfn(Object *obj)
1596 ARMCPU *cpu = ARM_CPU(obj);
1597 set_feature(&cpu->env, ARM_FEATURE_V8);
1598 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1599 set_feature(&cpu->env, ARM_FEATURE_NEON);
1600 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1601 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1602 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1603 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1604 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1605 set_feature(&cpu->env, ARM_FEATURE_CRC);
1606 cpu->midr = 0xffffffff;
1608 #endif
1610 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1612 typedef struct ARMCPUInfo {
1613 const char *name;
1614 void (*initfn)(Object *obj);
1615 void (*class_init)(ObjectClass *oc, void *data);
1616 } ARMCPUInfo;
1618 static const ARMCPUInfo arm_cpus[] = {
1619 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1620 { .name = "arm926", .initfn = arm926_initfn },
1621 { .name = "arm946", .initfn = arm946_initfn },
1622 { .name = "arm1026", .initfn = arm1026_initfn },
1623 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1624 * older core than plain "arm1136". In particular this does not
1625 * have the v6K features.
1627 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
1628 { .name = "arm1136", .initfn = arm1136_initfn },
1629 { .name = "arm1176", .initfn = arm1176_initfn },
1630 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1631 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
1632 .class_init = arm_v7m_class_init },
1633 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
1634 .class_init = arm_v7m_class_init },
1635 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
1636 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
1637 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
1638 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
1639 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
1640 { .name = "ti925t", .initfn = ti925t_initfn },
1641 { .name = "sa1100", .initfn = sa1100_initfn },
1642 { .name = "sa1110", .initfn = sa1110_initfn },
1643 { .name = "pxa250", .initfn = pxa250_initfn },
1644 { .name = "pxa255", .initfn = pxa255_initfn },
1645 { .name = "pxa260", .initfn = pxa260_initfn },
1646 { .name = "pxa261", .initfn = pxa261_initfn },
1647 { .name = "pxa262", .initfn = pxa262_initfn },
1648 /* "pxa270" is an alias for "pxa270-a0" */
1649 { .name = "pxa270", .initfn = pxa270a0_initfn },
1650 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
1651 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
1652 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
1653 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
1654 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
1655 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
1656 #ifdef CONFIG_USER_ONLY
1657 { .name = "any", .initfn = arm_any_initfn },
1658 #endif
1659 #endif
1660 { .name = NULL }
1663 static Property arm_cpu_properties[] = {
1664 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1665 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1666 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1667 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1668 mp_affinity, ARM64_AFFINITY_INVALID),
1669 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1670 DEFINE_PROP_END_OF_LIST()
1673 #ifdef CONFIG_USER_ONLY
1674 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1675 int mmu_idx)
1677 ARMCPU *cpu = ARM_CPU(cs);
1678 CPUARMState *env = &cpu->env;
1680 env->exception.vaddress = address;
1681 if (rw == 2) {
1682 cs->exception_index = EXCP_PREFETCH_ABORT;
1683 } else {
1684 cs->exception_index = EXCP_DATA_ABORT;
1686 return 1;
1688 #endif
1690 static gchar *arm_gdb_arch_name(CPUState *cs)
1692 ARMCPU *cpu = ARM_CPU(cs);
1693 CPUARMState *env = &cpu->env;
1695 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1696 return g_strdup("iwmmxt");
1698 return g_strdup("arm");
1701 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1703 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1704 CPUClass *cc = CPU_CLASS(acc);
1705 DeviceClass *dc = DEVICE_CLASS(oc);
1707 acc->parent_realize = dc->realize;
1708 dc->realize = arm_cpu_realizefn;
1709 dc->props = arm_cpu_properties;
1711 acc->parent_reset = cc->reset;
1712 cc->reset = arm_cpu_reset;
1714 cc->class_by_name = arm_cpu_class_by_name;
1715 cc->has_work = arm_cpu_has_work;
1716 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1717 cc->dump_state = arm_cpu_dump_state;
1718 cc->set_pc = arm_cpu_set_pc;
1719 cc->gdb_read_register = arm_cpu_gdb_read_register;
1720 cc->gdb_write_register = arm_cpu_gdb_write_register;
1721 #ifdef CONFIG_USER_ONLY
1722 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1723 #else
1724 cc->do_interrupt = arm_cpu_do_interrupt;
1725 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1726 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1727 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1728 cc->asidx_from_attrs = arm_asidx_from_attrs;
1729 cc->vmsd = &vmstate_arm_cpu;
1730 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1731 cc->write_elf64_note = arm_cpu_write_elf64_note;
1732 cc->write_elf32_note = arm_cpu_write_elf32_note;
1733 #endif
1734 cc->gdb_num_core_regs = 26;
1735 cc->gdb_core_xml_file = "arm-core.xml";
1736 cc->gdb_arch_name = arm_gdb_arch_name;
1737 cc->gdb_stop_before_watchpoint = true;
1738 cc->debug_excp_handler = arm_debug_excp_handler;
1739 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1740 #if !defined(CONFIG_USER_ONLY)
1741 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1742 #endif
1744 cc->disas_set_info = arm_disas_set_info;
1747 static void cpu_register(const ARMCPUInfo *info)
1749 TypeInfo type_info = {
1750 .parent = TYPE_ARM_CPU,
1751 .instance_size = sizeof(ARMCPU),
1752 .instance_init = info->initfn,
1753 .class_size = sizeof(ARMCPUClass),
1754 .class_init = info->class_init,
1757 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1758 type_register(&type_info);
1759 g_free((void *)type_info.name);
1762 static const TypeInfo arm_cpu_type_info = {
1763 .name = TYPE_ARM_CPU,
1764 .parent = TYPE_CPU,
1765 .instance_size = sizeof(ARMCPU),
1766 .instance_init = arm_cpu_initfn,
1767 .instance_post_init = arm_cpu_post_init,
1768 .instance_finalize = arm_cpu_finalizefn,
1769 .abstract = true,
1770 .class_size = sizeof(ARMCPUClass),
1771 .class_init = arm_cpu_class_init,
1774 static void arm_cpu_register_types(void)
1776 const ARMCPUInfo *info = arm_cpus;
1778 type_register_static(&arm_cpu_type_info);
1780 while (info->name) {
1781 cpu_register(info);
1782 info++;
1786 type_init(arm_cpu_register_types)