4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
37 static void arm_cpu_set_pc(CPUState
*cs
, vaddr value
)
39 ARMCPU
*cpu
= ARM_CPU(cs
);
41 cpu
->env
.regs
[15] = value
;
44 static bool arm_cpu_has_work(CPUState
*cs
)
46 ARMCPU
*cpu
= ARM_CPU(cs
);
48 return (cpu
->power_state
!= PSCI_OFF
)
49 && cs
->interrupt_request
&
50 (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
51 | CPU_INTERRUPT_VFIQ
| CPU_INTERRUPT_VIRQ
52 | CPU_INTERRUPT_EXITTB
);
55 void arm_register_el_change_hook(ARMCPU
*cpu
, ARMELChangeHook
*hook
,
58 /* We currently only support registering a single hook function */
59 assert(!cpu
->el_change_hook
);
60 cpu
->el_change_hook
= hook
;
61 cpu
->el_change_hook_opaque
= opaque
;
64 static void cp_reg_reset(gpointer key
, gpointer value
, gpointer opaque
)
66 /* Reset a single ARMCPRegInfo register */
67 ARMCPRegInfo
*ri
= value
;
70 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
)) {
75 ri
->resetfn(&cpu
->env
, ri
);
79 /* A zero offset is never possible as it would be regs[0]
80 * so we use it to indicate that reset is being handled elsewhere.
81 * This is basically only used for fields in non-core coprocessors
82 * (like the pxa2xx ones).
84 if (!ri
->fieldoffset
) {
88 if (cpreg_field_is_64bit(ri
)) {
89 CPREG_FIELD64(&cpu
->env
, ri
) = ri
->resetvalue
;
91 CPREG_FIELD32(&cpu
->env
, ri
) = ri
->resetvalue
;
95 static void cp_reg_check_reset(gpointer key
, gpointer value
, gpointer opaque
)
97 /* Purely an assertion check: we've already done reset once,
98 * so now check that running the reset for the cpreg doesn't
99 * change its value. This traps bugs where two different cpregs
100 * both try to reset the same state field but to different values.
102 ARMCPRegInfo
*ri
= value
;
103 ARMCPU
*cpu
= opaque
;
104 uint64_t oldvalue
, newvalue
;
106 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
| ARM_CP_NO_RAW
)) {
110 oldvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
111 cp_reg_reset(key
, value
, opaque
);
112 newvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
113 assert(oldvalue
== newvalue
);
116 /* CPUClass::reset() */
117 static void arm_cpu_reset(CPUState
*s
)
119 ARMCPU
*cpu
= ARM_CPU(s
);
120 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(cpu
);
121 CPUARMState
*env
= &cpu
->env
;
123 acc
->parent_reset(s
);
125 memset(env
, 0, offsetof(CPUARMState
, end_reset_fields
));
127 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_reset
, cpu
);
128 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_check_reset
, cpu
);
130 env
->vfp
.xregs
[ARM_VFP_FPSID
] = cpu
->reset_fpsid
;
131 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = cpu
->mvfr0
;
132 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = cpu
->mvfr1
;
133 env
->vfp
.xregs
[ARM_VFP_MVFR2
] = cpu
->mvfr2
;
135 cpu
->power_state
= cpu
->start_powered_off
? PSCI_OFF
: PSCI_ON
;
136 s
->halted
= cpu
->start_powered_off
;
138 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
139 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
142 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
143 /* 64 bit CPUs always start in 64 bit mode */
145 #if defined(CONFIG_USER_ONLY)
146 env
->pstate
= PSTATE_MODE_EL0t
;
147 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
148 env
->cp15
.sctlr_el
[1] |= SCTLR_UCT
| SCTLR_UCI
| SCTLR_DZE
;
149 /* and to the FP/Neon instructions */
150 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 2, 3);
152 /* Reset into the highest available EL */
153 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
154 env
->pstate
= PSTATE_MODE_EL3h
;
155 } else if (arm_feature(env
, ARM_FEATURE_EL2
)) {
156 env
->pstate
= PSTATE_MODE_EL2h
;
158 env
->pstate
= PSTATE_MODE_EL1h
;
160 env
->pc
= cpu
->rvbar
;
163 #if defined(CONFIG_USER_ONLY)
164 /* Userspace expects access to cp10 and cp11 for FP/Neon */
165 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 4, 0xf);
169 #if defined(CONFIG_USER_ONLY)
170 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
171 /* For user mode we must enable access to coprocessors */
172 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
173 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
174 env
->cp15
.c15_cpar
= 3;
175 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
176 env
->cp15
.c15_cpar
= 1;
179 /* SVC mode with interrupts disabled. */
180 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
;
181 env
->daif
= PSTATE_D
| PSTATE_A
| PSTATE_I
| PSTATE_F
;
183 if (arm_feature(env
, ARM_FEATURE_M
)) {
184 uint32_t initial_msp
; /* Loaded from 0x0 */
185 uint32_t initial_pc
; /* Loaded from 0x4 */
188 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
189 env
->v7m
.secure
= true;
191 /* This bit resets to 0 if security is supported, but 1 if
192 * it is not. The bit is not present in v7M, but we set it
193 * here so we can avoid having to make checks on it conditional
194 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
196 env
->v7m
.aircr
= R_V7M_AIRCR_BFHFNMINS_MASK
;
199 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
200 * that it resets to 1, so QEMU always does that rather than making
201 * it dependent on CPU model. In v8M it is RES1.
203 env
->v7m
.ccr
[M_REG_NS
] = R_V7M_CCR_STKALIGN_MASK
;
204 env
->v7m
.ccr
[M_REG_S
] = R_V7M_CCR_STKALIGN_MASK
;
205 if (arm_feature(env
, ARM_FEATURE_V8
)) {
206 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
207 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
208 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
211 /* Unlike A/R profile, M profile defines the reset LR value */
212 env
->regs
[14] = 0xffffffff;
214 /* Load the initial SP and PC from the vector table at address 0 */
217 /* Address zero is covered by ROM which hasn't yet been
218 * copied into physical memory.
220 initial_msp
= ldl_p(rom
);
221 initial_pc
= ldl_p(rom
+ 4);
223 /* Address zero not covered by a ROM blob, or the ROM blob
224 * is in non-modifiable memory and this is a second reset after
225 * it got copied into memory. In the latter case, rom_ptr
226 * will return a NULL pointer and we should use ldl_phys instead.
228 initial_msp
= ldl_phys(s
->as
, 0);
229 initial_pc
= ldl_phys(s
->as
, 4);
232 env
->regs
[13] = initial_msp
& 0xFFFFFFFC;
233 env
->regs
[15] = initial_pc
& ~1;
234 env
->thumb
= initial_pc
& 1;
237 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
238 * executing as AArch32 then check if highvecs are enabled and
239 * adjust the PC accordingly.
241 if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
242 env
->regs
[15] = 0xFFFF0000;
245 /* M profile requires that reset clears the exclusive monitor;
246 * A profile does not, but clearing it makes more sense than having it
247 * set with an exclusive access on address zero.
249 arm_clear_exclusive(env
);
251 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
254 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
255 if (cpu
->pmsav7_dregion
> 0) {
256 if (arm_feature(env
, ARM_FEATURE_V8
)) {
257 memset(env
->pmsav8
.rbar
[M_REG_NS
], 0,
258 sizeof(*env
->pmsav8
.rbar
[M_REG_NS
])
259 * cpu
->pmsav7_dregion
);
260 memset(env
->pmsav8
.rlar
[M_REG_NS
], 0,
261 sizeof(*env
->pmsav8
.rlar
[M_REG_NS
])
262 * cpu
->pmsav7_dregion
);
263 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
264 memset(env
->pmsav8
.rbar
[M_REG_S
], 0,
265 sizeof(*env
->pmsav8
.rbar
[M_REG_S
])
266 * cpu
->pmsav7_dregion
);
267 memset(env
->pmsav8
.rlar
[M_REG_S
], 0,
268 sizeof(*env
->pmsav8
.rlar
[M_REG_S
])
269 * cpu
->pmsav7_dregion
);
271 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
272 memset(env
->pmsav7
.drbar
, 0,
273 sizeof(*env
->pmsav7
.drbar
) * cpu
->pmsav7_dregion
);
274 memset(env
->pmsav7
.drsr
, 0,
275 sizeof(*env
->pmsav7
.drsr
) * cpu
->pmsav7_dregion
);
276 memset(env
->pmsav7
.dracr
, 0,
277 sizeof(*env
->pmsav7
.dracr
) * cpu
->pmsav7_dregion
);
280 env
->pmsav7
.rnr
[M_REG_NS
] = 0;
281 env
->pmsav7
.rnr
[M_REG_S
] = 0;
282 env
->pmsav8
.mair0
[M_REG_NS
] = 0;
283 env
->pmsav8
.mair0
[M_REG_S
] = 0;
284 env
->pmsav8
.mair1
[M_REG_NS
] = 0;
285 env
->pmsav8
.mair1
[M_REG_S
] = 0;
288 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
289 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
290 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
291 set_float_detect_tininess(float_tininess_before_rounding
,
292 &env
->vfp
.fp_status
);
293 set_float_detect_tininess(float_tininess_before_rounding
,
294 &env
->vfp
.standard_fp_status
);
295 #ifndef CONFIG_USER_ONLY
297 kvm_arm_reset_vcpu(cpu
);
301 hw_breakpoint_update_all(cpu
);
302 hw_watchpoint_update_all(cpu
);
305 bool arm_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
307 CPUClass
*cc
= CPU_GET_CLASS(cs
);
308 CPUARMState
*env
= cs
->env_ptr
;
309 uint32_t cur_el
= arm_current_el(env
);
310 bool secure
= arm_is_secure(env
);
315 if (interrupt_request
& CPU_INTERRUPT_FIQ
) {
317 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
318 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
319 cs
->exception_index
= excp_idx
;
320 env
->exception
.target_el
= target_el
;
321 cc
->do_interrupt(cs
);
325 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
327 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
328 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
329 cs
->exception_index
= excp_idx
;
330 env
->exception
.target_el
= target_el
;
331 cc
->do_interrupt(cs
);
335 if (interrupt_request
& CPU_INTERRUPT_VIRQ
) {
336 excp_idx
= EXCP_VIRQ
;
338 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
339 cs
->exception_index
= excp_idx
;
340 env
->exception
.target_el
= target_el
;
341 cc
->do_interrupt(cs
);
345 if (interrupt_request
& CPU_INTERRUPT_VFIQ
) {
346 excp_idx
= EXCP_VFIQ
;
348 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
349 cs
->exception_index
= excp_idx
;
350 env
->exception
.target_el
= target_el
;
351 cc
->do_interrupt(cs
);
359 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
360 static bool arm_v7m_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
362 CPUClass
*cc
= CPU_GET_CLASS(cs
);
363 ARMCPU
*cpu
= ARM_CPU(cs
);
364 CPUARMState
*env
= &cpu
->env
;
367 /* ARMv7-M interrupt masking works differently than -A or -R.
368 * There is no FIQ/IRQ distinction. Instead of I and F bits
369 * masking FIQ and IRQ interrupts, an exception is taken only
370 * if it is higher priority than the current execution priority
371 * (which depends on state like BASEPRI, FAULTMASK and the
372 * currently active exception).
374 if (interrupt_request
& CPU_INTERRUPT_HARD
375 && (armv7m_nvic_can_take_pending_exception(env
->nvic
))) {
376 cs
->exception_index
= EXCP_IRQ
;
377 cc
->do_interrupt(cs
);
384 #ifndef CONFIG_USER_ONLY
385 static void arm_cpu_set_irq(void *opaque
, int irq
, int level
)
387 ARMCPU
*cpu
= opaque
;
388 CPUARMState
*env
= &cpu
->env
;
389 CPUState
*cs
= CPU(cpu
);
390 static const int mask
[] = {
391 [ARM_CPU_IRQ
] = CPU_INTERRUPT_HARD
,
392 [ARM_CPU_FIQ
] = CPU_INTERRUPT_FIQ
,
393 [ARM_CPU_VIRQ
] = CPU_INTERRUPT_VIRQ
,
394 [ARM_CPU_VFIQ
] = CPU_INTERRUPT_VFIQ
400 assert(arm_feature(env
, ARM_FEATURE_EL2
));
405 cpu_interrupt(cs
, mask
[irq
]);
407 cpu_reset_interrupt(cs
, mask
[irq
]);
411 g_assert_not_reached();
415 static void arm_cpu_kvm_set_irq(void *opaque
, int irq
, int level
)
418 ARMCPU
*cpu
= opaque
;
419 CPUState
*cs
= CPU(cpu
);
420 int kvm_irq
= KVM_ARM_IRQ_TYPE_CPU
<< KVM_ARM_IRQ_TYPE_SHIFT
;
424 kvm_irq
|= KVM_ARM_IRQ_CPU_IRQ
;
427 kvm_irq
|= KVM_ARM_IRQ_CPU_FIQ
;
430 g_assert_not_reached();
432 kvm_irq
|= cs
->cpu_index
<< KVM_ARM_IRQ_VCPU_SHIFT
;
433 kvm_set_irq(kvm_state
, kvm_irq
, level
? 1 : 0);
437 static bool arm_cpu_virtio_is_big_endian(CPUState
*cs
)
439 ARMCPU
*cpu
= ARM_CPU(cs
);
440 CPUARMState
*env
= &cpu
->env
;
442 cpu_synchronize_state(cs
);
443 return arm_cpu_data_is_big_endian(env
);
448 static inline void set_feature(CPUARMState
*env
, int feature
)
450 env
->features
|= 1ULL << feature
;
453 static inline void unset_feature(CPUARMState
*env
, int feature
)
455 env
->features
&= ~(1ULL << feature
);
459 print_insn_thumb1(bfd_vma pc
, disassemble_info
*info
)
461 return print_insn_arm(pc
| 1, info
);
464 static int arm_read_memory_func(bfd_vma memaddr
, bfd_byte
*b
,
465 int length
, struct disassemble_info
*info
)
467 assert(info
->read_memory_inner_func
);
468 assert((info
->flags
& INSN_ARM_BE32
) == 0 || length
== 2 || length
== 4);
470 if ((info
->flags
& INSN_ARM_BE32
) != 0 && length
== 2) {
471 assert(info
->endian
== BFD_ENDIAN_LITTLE
);
472 return info
->read_memory_inner_func(memaddr
^ 2, (bfd_byte
*)b
, 2,
475 return info
->read_memory_inner_func(memaddr
, b
, length
, info
);
479 static void arm_disas_set_info(CPUState
*cpu
, disassemble_info
*info
)
481 ARMCPU
*ac
= ARM_CPU(cpu
);
482 CPUARMState
*env
= &ac
->env
;
485 /* We might not be compiled with the A64 disassembler
486 * because it needs a C++ compiler. Leave print_insn
487 * unset in this case to use the caller default behaviour.
489 #if defined(CONFIG_ARM_A64_DIS)
490 info
->print_insn
= print_insn_arm_a64
;
492 } else if (env
->thumb
) {
493 info
->print_insn
= print_insn_thumb1
;
495 info
->print_insn
= print_insn_arm
;
497 if (bswap_code(arm_sctlr_b(env
))) {
498 #ifdef TARGET_WORDS_BIGENDIAN
499 info
->endian
= BFD_ENDIAN_LITTLE
;
501 info
->endian
= BFD_ENDIAN_BIG
;
504 if (info
->read_memory_inner_func
== NULL
) {
505 info
->read_memory_inner_func
= info
->read_memory_func
;
506 info
->read_memory_func
= arm_read_memory_func
;
508 info
->flags
&= ~INSN_ARM_BE32
;
509 if (arm_sctlr_b(env
)) {
510 info
->flags
|= INSN_ARM_BE32
;
514 uint64_t arm_cpu_mp_affinity(int idx
, uint8_t clustersz
)
516 uint32_t Aff1
= idx
/ clustersz
;
517 uint32_t Aff0
= idx
% clustersz
;
518 return (Aff1
<< ARM_AFF1_SHIFT
) | Aff0
;
521 static void arm_cpu_initfn(Object
*obj
)
523 CPUState
*cs
= CPU(obj
);
524 ARMCPU
*cpu
= ARM_CPU(obj
);
527 cs
->env_ptr
= &cpu
->env
;
528 cpu
->cp_regs
= g_hash_table_new_full(g_int_hash
, g_int_equal
,
531 #ifndef CONFIG_USER_ONLY
532 /* Our inbound IRQ and FIQ lines */
534 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
535 * the same interface as non-KVM CPUs.
537 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_kvm_set_irq
, 4);
539 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_set_irq
, 4);
542 cpu
->gt_timer
[GTIMER_PHYS
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
543 arm_gt_ptimer_cb
, cpu
);
544 cpu
->gt_timer
[GTIMER_VIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
545 arm_gt_vtimer_cb
, cpu
);
546 cpu
->gt_timer
[GTIMER_HYP
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
547 arm_gt_htimer_cb
, cpu
);
548 cpu
->gt_timer
[GTIMER_SEC
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
549 arm_gt_stimer_cb
, cpu
);
550 qdev_init_gpio_out(DEVICE(cpu
), cpu
->gt_timer_outputs
,
551 ARRAY_SIZE(cpu
->gt_timer_outputs
));
553 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->gicv3_maintenance_interrupt
,
554 "gicv3-maintenance-interrupt", 1);
555 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->pmu_interrupt
,
559 /* DTB consumers generally don't in fact care what the 'compatible'
560 * string is, so always provide some string and trust that a hypothetical
561 * picky DTB consumer will also provide a helpful error message.
563 cpu
->dtb_compatible
= "qemu,unknown";
564 cpu
->psci_version
= 1; /* By default assume PSCI v0.1 */
565 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
568 cpu
->psci_version
= 2; /* TCG implements PSCI 0.2 */
571 arm_translate_init();
576 static Property arm_cpu_reset_cbar_property
=
577 DEFINE_PROP_UINT64("reset-cbar", ARMCPU
, reset_cbar
, 0);
579 static Property arm_cpu_reset_hivecs_property
=
580 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU
, reset_hivecs
, false);
582 static Property arm_cpu_rvbar_property
=
583 DEFINE_PROP_UINT64("rvbar", ARMCPU
, rvbar
, 0);
585 static Property arm_cpu_has_el2_property
=
586 DEFINE_PROP_BOOL("has_el2", ARMCPU
, has_el2
, true);
588 static Property arm_cpu_has_el3_property
=
589 DEFINE_PROP_BOOL("has_el3", ARMCPU
, has_el3
, true);
591 static Property arm_cpu_cfgend_property
=
592 DEFINE_PROP_BOOL("cfgend", ARMCPU
, cfgend
, false);
594 /* use property name "pmu" to match other archs and virt tools */
595 static Property arm_cpu_has_pmu_property
=
596 DEFINE_PROP_BOOL("pmu", ARMCPU
, has_pmu
, true);
598 static Property arm_cpu_has_mpu_property
=
599 DEFINE_PROP_BOOL("has-mpu", ARMCPU
, has_mpu
, true);
601 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
602 * because the CPU initfn will have already set cpu->pmsav7_dregion to
603 * the right value for that particular CPU type, and we don't want
604 * to override that with an incorrect constant value.
606 static Property arm_cpu_pmsav7_dregion_property
=
607 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU
,
609 qdev_prop_uint32
, uint32_t);
611 static void arm_cpu_post_init(Object
*obj
)
613 ARMCPU
*cpu
= ARM_CPU(obj
);
615 /* M profile implies PMSA. We have to do this here rather than
616 * in realize with the other feature-implication checks because
617 * we look at the PMSA bit to see if we should add some properties.
619 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
620 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
623 if (arm_feature(&cpu
->env
, ARM_FEATURE_CBAR
) ||
624 arm_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
)) {
625 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_cbar_property
,
629 if (!arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
630 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_hivecs_property
,
634 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
635 qdev_property_add_static(DEVICE(obj
), &arm_cpu_rvbar_property
,
639 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
640 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
641 * prevent "has_el3" from existing on CPUs which cannot support EL3.
643 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el3_property
,
646 #ifndef CONFIG_USER_ONLY
647 object_property_add_link(obj
, "secure-memory",
649 (Object
**)&cpu
->secure_memory
,
650 qdev_prop_allow_set_link_before_realize
,
651 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
656 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)) {
657 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el2_property
,
661 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMU
)) {
662 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_pmu_property
,
666 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMSA
)) {
667 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_mpu_property
,
669 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
670 qdev_property_add_static(DEVICE(obj
),
671 &arm_cpu_pmsav7_dregion_property
,
676 qdev_property_add_static(DEVICE(obj
), &arm_cpu_cfgend_property
,
680 static void arm_cpu_finalizefn(Object
*obj
)
682 ARMCPU
*cpu
= ARM_CPU(obj
);
683 g_hash_table_destroy(cpu
->cp_regs
);
686 static void arm_cpu_realizefn(DeviceState
*dev
, Error
**errp
)
688 CPUState
*cs
= CPU(dev
);
689 ARMCPU
*cpu
= ARM_CPU(dev
);
690 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(dev
);
691 CPUARMState
*env
= &cpu
->env
;
693 Error
*local_err
= NULL
;
694 #ifndef CONFIG_USER_ONLY
698 cpu_exec_realizefn(cs
, &local_err
);
699 if (local_err
!= NULL
) {
700 error_propagate(errp
, local_err
);
704 /* Some features automatically imply others: */
705 if (arm_feature(env
, ARM_FEATURE_V8
)) {
706 set_feature(env
, ARM_FEATURE_V7
);
707 set_feature(env
, ARM_FEATURE_ARM_DIV
);
708 set_feature(env
, ARM_FEATURE_LPAE
);
710 if (arm_feature(env
, ARM_FEATURE_V7
)) {
711 set_feature(env
, ARM_FEATURE_VAPA
);
712 set_feature(env
, ARM_FEATURE_THUMB2
);
713 set_feature(env
, ARM_FEATURE_MPIDR
);
714 if (!arm_feature(env
, ARM_FEATURE_M
)) {
715 set_feature(env
, ARM_FEATURE_V6K
);
717 set_feature(env
, ARM_FEATURE_V6
);
720 /* Always define VBAR for V7 CPUs even if it doesn't exist in
721 * non-EL3 configs. This is needed by some legacy boards.
723 set_feature(env
, ARM_FEATURE_VBAR
);
725 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
726 set_feature(env
, ARM_FEATURE_V6
);
727 set_feature(env
, ARM_FEATURE_MVFR
);
729 if (arm_feature(env
, ARM_FEATURE_V6
)) {
730 set_feature(env
, ARM_FEATURE_V5
);
731 set_feature(env
, ARM_FEATURE_JAZELLE
);
732 if (!arm_feature(env
, ARM_FEATURE_M
)) {
733 set_feature(env
, ARM_FEATURE_AUXCR
);
736 if (arm_feature(env
, ARM_FEATURE_V5
)) {
737 set_feature(env
, ARM_FEATURE_V4T
);
739 if (arm_feature(env
, ARM_FEATURE_M
)) {
740 set_feature(env
, ARM_FEATURE_THUMB_DIV
);
742 if (arm_feature(env
, ARM_FEATURE_ARM_DIV
)) {
743 set_feature(env
, ARM_FEATURE_THUMB_DIV
);
745 if (arm_feature(env
, ARM_FEATURE_VFP4
)) {
746 set_feature(env
, ARM_FEATURE_VFP3
);
747 set_feature(env
, ARM_FEATURE_VFP_FP16
);
749 if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
750 set_feature(env
, ARM_FEATURE_VFP
);
752 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
753 set_feature(env
, ARM_FEATURE_V7MP
);
754 set_feature(env
, ARM_FEATURE_PXN
);
756 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
757 set_feature(env
, ARM_FEATURE_CBAR
);
759 if (arm_feature(env
, ARM_FEATURE_THUMB2
) &&
760 !arm_feature(env
, ARM_FEATURE_M
)) {
761 set_feature(env
, ARM_FEATURE_THUMB_DSP
);
764 if (arm_feature(env
, ARM_FEATURE_V7
) &&
765 !arm_feature(env
, ARM_FEATURE_M
) &&
766 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
767 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
772 /* For CPUs which might have tiny 1K pages, or which have an
773 * MPU and might have small region sizes, stick with 1K pages.
777 if (!set_preferred_target_page_bits(pagebits
)) {
778 /* This can only ever happen for hotplugging a CPU, or if
779 * the board code incorrectly creates a CPU which it has
780 * promised via minimum_page_size that it will not.
782 error_setg(errp
, "This CPU requires a smaller page size than the "
787 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
788 * We don't support setting cluster ID ([16..23]) (known as Aff2
789 * in later ARM ARM versions), or any of the higher affinity level fields,
790 * so these bits always RAZ.
792 if (cpu
->mp_affinity
== ARM64_AFFINITY_INVALID
) {
793 cpu
->mp_affinity
= arm_cpu_mp_affinity(cs
->cpu_index
,
794 ARM_DEFAULT_CPUS_PER_CLUSTER
);
797 if (cpu
->reset_hivecs
) {
798 cpu
->reset_sctlr
|= (1 << 13);
802 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
803 cpu
->reset_sctlr
|= SCTLR_EE
;
805 cpu
->reset_sctlr
|= SCTLR_B
;
810 /* If the has_el3 CPU property is disabled then we need to disable the
813 unset_feature(env
, ARM_FEATURE_EL3
);
815 /* Disable the security extension feature bits in the processor feature
816 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
818 cpu
->id_pfr1
&= ~0xf0;
819 cpu
->id_aa64pfr0
&= ~0xf000;
823 unset_feature(env
, ARM_FEATURE_EL2
);
827 unset_feature(env
, ARM_FEATURE_PMU
);
828 cpu
->id_aa64dfr0
&= ~0xf00;
831 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
832 /* Disable the hypervisor feature bits in the processor feature
833 * registers if we don't have EL2. These are id_pfr1[15:12] and
834 * id_aa64pfr0_el1[11:8].
836 cpu
->id_aa64pfr0
&= ~0xf00;
837 cpu
->id_pfr1
&= ~0xf000;
840 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
841 * to false or by setting pmsav7-dregion to 0.
844 cpu
->pmsav7_dregion
= 0;
846 if (cpu
->pmsav7_dregion
== 0) {
847 cpu
->has_mpu
= false;
850 if (arm_feature(env
, ARM_FEATURE_PMSA
) &&
851 arm_feature(env
, ARM_FEATURE_V7
)) {
852 uint32_t nr
= cpu
->pmsav7_dregion
;
855 error_setg(errp
, "PMSAv7 MPU #regions invalid %" PRIu32
, nr
);
860 if (arm_feature(env
, ARM_FEATURE_V8
)) {
862 env
->pmsav8
.rbar
[M_REG_NS
] = g_new0(uint32_t, nr
);
863 env
->pmsav8
.rlar
[M_REG_NS
] = g_new0(uint32_t, nr
);
864 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
865 env
->pmsav8
.rbar
[M_REG_S
] = g_new0(uint32_t, nr
);
866 env
->pmsav8
.rlar
[M_REG_S
] = g_new0(uint32_t, nr
);
869 env
->pmsav7
.drbar
= g_new0(uint32_t, nr
);
870 env
->pmsav7
.drsr
= g_new0(uint32_t, nr
);
871 env
->pmsav7
.dracr
= g_new0(uint32_t, nr
);
876 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
877 set_feature(env
, ARM_FEATURE_VBAR
);
880 register_cp_regs_for_features(cpu
);
881 arm_cpu_register_gdb_regs_for_features(cpu
);
883 init_cpreg_list(cpu
);
885 #ifndef CONFIG_USER_ONLY
886 if (cpu
->has_el3
|| arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
887 as
= g_new0(AddressSpace
, 1);
891 if (!cpu
->secure_memory
) {
892 cpu
->secure_memory
= cs
->memory
;
894 address_space_init(as
, cpu
->secure_memory
, "cpu-secure-memory");
895 cpu_address_space_init(cs
, as
, ARMASIdx_S
);
899 as
= g_new0(AddressSpace
, 1);
900 address_space_init(as
, cs
->memory
, "cpu-memory");
901 cpu_address_space_init(cs
, as
, ARMASIdx_NS
);
907 acc
->parent_realize(dev
, errp
);
910 static ObjectClass
*arm_cpu_class_by_name(const char *cpu_model
)
920 cpuname
= g_strsplit(cpu_model
, ",", 1);
921 typename
= g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpuname
[0]);
922 oc
= object_class_by_name(typename
);
925 if (!oc
|| !object_class_dynamic_cast(oc
, TYPE_ARM_CPU
) ||
926 object_class_is_abstract(oc
)) {
932 /* CPU models. These are not needed for the AArch64 linux-user build. */
933 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
935 static void arm926_initfn(Object
*obj
)
937 ARMCPU
*cpu
= ARM_CPU(obj
);
939 cpu
->dtb_compatible
= "arm,arm926";
940 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
941 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
942 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
943 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_TEST_CLEAN
);
944 set_feature(&cpu
->env
, ARM_FEATURE_JAZELLE
);
945 cpu
->midr
= 0x41069265;
946 cpu
->reset_fpsid
= 0x41011090;
947 cpu
->ctr
= 0x1dd20d2;
948 cpu
->reset_sctlr
= 0x00090078;
951 static void arm946_initfn(Object
*obj
)
953 ARMCPU
*cpu
= ARM_CPU(obj
);
955 cpu
->dtb_compatible
= "arm,arm946";
956 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
957 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
958 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
959 cpu
->midr
= 0x41059461;
960 cpu
->ctr
= 0x0f004006;
961 cpu
->reset_sctlr
= 0x00000078;
964 static void arm1026_initfn(Object
*obj
)
966 ARMCPU
*cpu
= ARM_CPU(obj
);
968 cpu
->dtb_compatible
= "arm,arm1026";
969 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
970 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
971 set_feature(&cpu
->env
, ARM_FEATURE_AUXCR
);
972 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
973 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_TEST_CLEAN
);
974 set_feature(&cpu
->env
, ARM_FEATURE_JAZELLE
);
975 cpu
->midr
= 0x4106a262;
976 cpu
->reset_fpsid
= 0x410110a0;
977 cpu
->ctr
= 0x1dd20d2;
978 cpu
->reset_sctlr
= 0x00090078;
979 cpu
->reset_auxcr
= 1;
981 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
982 ARMCPRegInfo ifar
= {
983 .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
985 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifar_ns
),
988 define_one_arm_cp_reg(cpu
, &ifar
);
992 static void arm1136_r2_initfn(Object
*obj
)
994 ARMCPU
*cpu
= ARM_CPU(obj
);
995 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
996 * older core than plain "arm1136". In particular this does not
997 * have the v6K features.
998 * These ID register values are correct for 1136 but may be wrong
999 * for 1136_r2 (in particular r0p2 does not actually implement most
1000 * of the ID registers).
1003 cpu
->dtb_compatible
= "arm,arm1136";
1004 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1005 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1006 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1007 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1008 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1009 cpu
->midr
= 0x4107b362;
1010 cpu
->reset_fpsid
= 0x410120b4;
1011 cpu
->mvfr0
= 0x11111111;
1012 cpu
->mvfr1
= 0x00000000;
1013 cpu
->ctr
= 0x1dd20d2;
1014 cpu
->reset_sctlr
= 0x00050078;
1015 cpu
->id_pfr0
= 0x111;
1019 cpu
->id_mmfr0
= 0x01130003;
1020 cpu
->id_mmfr1
= 0x10030302;
1021 cpu
->id_mmfr2
= 0x01222110;
1022 cpu
->id_isar0
= 0x00140011;
1023 cpu
->id_isar1
= 0x12002111;
1024 cpu
->id_isar2
= 0x11231111;
1025 cpu
->id_isar3
= 0x01102131;
1026 cpu
->id_isar4
= 0x141;
1027 cpu
->reset_auxcr
= 7;
1030 static void arm1136_initfn(Object
*obj
)
1032 ARMCPU
*cpu
= ARM_CPU(obj
);
1034 cpu
->dtb_compatible
= "arm,arm1136";
1035 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1036 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1037 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1038 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1039 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1040 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1041 cpu
->midr
= 0x4117b363;
1042 cpu
->reset_fpsid
= 0x410120b4;
1043 cpu
->mvfr0
= 0x11111111;
1044 cpu
->mvfr1
= 0x00000000;
1045 cpu
->ctr
= 0x1dd20d2;
1046 cpu
->reset_sctlr
= 0x00050078;
1047 cpu
->id_pfr0
= 0x111;
1051 cpu
->id_mmfr0
= 0x01130003;
1052 cpu
->id_mmfr1
= 0x10030302;
1053 cpu
->id_mmfr2
= 0x01222110;
1054 cpu
->id_isar0
= 0x00140011;
1055 cpu
->id_isar1
= 0x12002111;
1056 cpu
->id_isar2
= 0x11231111;
1057 cpu
->id_isar3
= 0x01102131;
1058 cpu
->id_isar4
= 0x141;
1059 cpu
->reset_auxcr
= 7;
1062 static void arm1176_initfn(Object
*obj
)
1064 ARMCPU
*cpu
= ARM_CPU(obj
);
1066 cpu
->dtb_compatible
= "arm,arm1176";
1067 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1068 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1069 set_feature(&cpu
->env
, ARM_FEATURE_VAPA
);
1070 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1071 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1072 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1073 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1074 cpu
->midr
= 0x410fb767;
1075 cpu
->reset_fpsid
= 0x410120b5;
1076 cpu
->mvfr0
= 0x11111111;
1077 cpu
->mvfr1
= 0x00000000;
1078 cpu
->ctr
= 0x1dd20d2;
1079 cpu
->reset_sctlr
= 0x00050078;
1080 cpu
->id_pfr0
= 0x111;
1081 cpu
->id_pfr1
= 0x11;
1082 cpu
->id_dfr0
= 0x33;
1084 cpu
->id_mmfr0
= 0x01130003;
1085 cpu
->id_mmfr1
= 0x10030302;
1086 cpu
->id_mmfr2
= 0x01222100;
1087 cpu
->id_isar0
= 0x0140011;
1088 cpu
->id_isar1
= 0x12002111;
1089 cpu
->id_isar2
= 0x11231121;
1090 cpu
->id_isar3
= 0x01102131;
1091 cpu
->id_isar4
= 0x01141;
1092 cpu
->reset_auxcr
= 7;
1095 static void arm11mpcore_initfn(Object
*obj
)
1097 ARMCPU
*cpu
= ARM_CPU(obj
);
1099 cpu
->dtb_compatible
= "arm,arm11mpcore";
1100 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1101 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1102 set_feature(&cpu
->env
, ARM_FEATURE_VAPA
);
1103 set_feature(&cpu
->env
, ARM_FEATURE_MPIDR
);
1104 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1105 cpu
->midr
= 0x410fb022;
1106 cpu
->reset_fpsid
= 0x410120b4;
1107 cpu
->mvfr0
= 0x11111111;
1108 cpu
->mvfr1
= 0x00000000;
1109 cpu
->ctr
= 0x1d192992; /* 32K icache 32K dcache */
1110 cpu
->id_pfr0
= 0x111;
1114 cpu
->id_mmfr0
= 0x01100103;
1115 cpu
->id_mmfr1
= 0x10020302;
1116 cpu
->id_mmfr2
= 0x01222000;
1117 cpu
->id_isar0
= 0x00100011;
1118 cpu
->id_isar1
= 0x12002111;
1119 cpu
->id_isar2
= 0x11221011;
1120 cpu
->id_isar3
= 0x01102131;
1121 cpu
->id_isar4
= 0x141;
1122 cpu
->reset_auxcr
= 1;
1125 static void cortex_m3_initfn(Object
*obj
)
1127 ARMCPU
*cpu
= ARM_CPU(obj
);
1128 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1129 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1130 cpu
->midr
= 0x410fc231;
1131 cpu
->pmsav7_dregion
= 8;
1134 static void cortex_m4_initfn(Object
*obj
)
1136 ARMCPU
*cpu
= ARM_CPU(obj
);
1138 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1139 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1140 set_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
);
1141 cpu
->midr
= 0x410fc240; /* r0p0 */
1142 cpu
->pmsav7_dregion
= 8;
1144 static void arm_v7m_class_init(ObjectClass
*oc
, void *data
)
1146 CPUClass
*cc
= CPU_CLASS(oc
);
1148 #ifndef CONFIG_USER_ONLY
1149 cc
->do_interrupt
= arm_v7m_cpu_do_interrupt
;
1152 cc
->cpu_exec_interrupt
= arm_v7m_cpu_exec_interrupt
;
1155 static const ARMCPRegInfo cortexr5_cp_reginfo
[] = {
1156 /* Dummy the TCM region regs for the moment */
1157 { .name
= "ATCM", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
1158 .access
= PL1_RW
, .type
= ARM_CP_CONST
},
1159 { .name
= "BTCM", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
1160 .access
= PL1_RW
, .type
= ARM_CP_CONST
},
1161 { .name
= "DCACHE_INVAL", .cp
= 15, .opc1
= 0, .crn
= 15, .crm
= 5,
1162 .opc2
= 0, .access
= PL1_W
, .type
= ARM_CP_NOP
},
1166 static void cortex_r5_initfn(Object
*obj
)
1168 ARMCPU
*cpu
= ARM_CPU(obj
);
1170 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1171 set_feature(&cpu
->env
, ARM_FEATURE_THUMB_DIV
);
1172 set_feature(&cpu
->env
, ARM_FEATURE_ARM_DIV
);
1173 set_feature(&cpu
->env
, ARM_FEATURE_V7MP
);
1174 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1175 cpu
->midr
= 0x411fc153; /* r1p3 */
1176 cpu
->id_pfr0
= 0x0131;
1177 cpu
->id_pfr1
= 0x001;
1178 cpu
->id_dfr0
= 0x010400;
1180 cpu
->id_mmfr0
= 0x0210030;
1181 cpu
->id_mmfr1
= 0x00000000;
1182 cpu
->id_mmfr2
= 0x01200000;
1183 cpu
->id_mmfr3
= 0x0211;
1184 cpu
->id_isar0
= 0x2101111;
1185 cpu
->id_isar1
= 0x13112111;
1186 cpu
->id_isar2
= 0x21232141;
1187 cpu
->id_isar3
= 0x01112131;
1188 cpu
->id_isar4
= 0x0010142;
1189 cpu
->id_isar5
= 0x0;
1190 cpu
->mp_is_up
= true;
1191 cpu
->pmsav7_dregion
= 16;
1192 define_arm_cp_regs(cpu
, cortexr5_cp_reginfo
);
1195 static const ARMCPRegInfo cortexa8_cp_reginfo
[] = {
1196 { .name
= "L2LOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 0,
1197 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1198 { .name
= "L2AUXCR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
1199 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1203 static void cortex_a8_initfn(Object
*obj
)
1205 ARMCPU
*cpu
= ARM_CPU(obj
);
1207 cpu
->dtb_compatible
= "arm,cortex-a8";
1208 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1209 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1210 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1211 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1212 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1213 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1214 cpu
->midr
= 0x410fc080;
1215 cpu
->reset_fpsid
= 0x410330c0;
1216 cpu
->mvfr0
= 0x11110222;
1217 cpu
->mvfr1
= 0x00011111;
1218 cpu
->ctr
= 0x82048004;
1219 cpu
->reset_sctlr
= 0x00c50078;
1220 cpu
->id_pfr0
= 0x1031;
1221 cpu
->id_pfr1
= 0x11;
1222 cpu
->id_dfr0
= 0x400;
1224 cpu
->id_mmfr0
= 0x31100003;
1225 cpu
->id_mmfr1
= 0x20000000;
1226 cpu
->id_mmfr2
= 0x01202000;
1227 cpu
->id_mmfr3
= 0x11;
1228 cpu
->id_isar0
= 0x00101111;
1229 cpu
->id_isar1
= 0x12112111;
1230 cpu
->id_isar2
= 0x21232031;
1231 cpu
->id_isar3
= 0x11112131;
1232 cpu
->id_isar4
= 0x00111142;
1233 cpu
->dbgdidr
= 0x15141000;
1234 cpu
->clidr
= (1 << 27) | (2 << 24) | 3;
1235 cpu
->ccsidr
[0] = 0xe007e01a; /* 16k L1 dcache. */
1236 cpu
->ccsidr
[1] = 0x2007e01a; /* 16k L1 icache. */
1237 cpu
->ccsidr
[2] = 0xf0000000; /* No L2 icache. */
1238 cpu
->reset_auxcr
= 2;
1239 define_arm_cp_regs(cpu
, cortexa8_cp_reginfo
);
1242 static const ARMCPRegInfo cortexa9_cp_reginfo
[] = {
1243 /* power_control should be set to maximum latency. Again,
1244 * default to 0 and set by private hook
1246 { .name
= "A9_PWRCTL", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1247 .access
= PL1_RW
, .resetvalue
= 0,
1248 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_control
) },
1249 { .name
= "A9_DIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 1,
1250 .access
= PL1_RW
, .resetvalue
= 0,
1251 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_diagnostic
) },
1252 { .name
= "A9_PWRDIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 2,
1253 .access
= PL1_RW
, .resetvalue
= 0,
1254 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_diagnostic
) },
1255 { .name
= "NEONBUSY", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1256 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1257 /* TLB lockdown control */
1258 { .name
= "TLB_LOCKR", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 2,
1259 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1260 { .name
= "TLB_LOCKW", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 4,
1261 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1262 { .name
= "TLB_VA", .cp
= 15, .crn
= 15, .crm
= 5, .opc1
= 5, .opc2
= 2,
1263 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1264 { .name
= "TLB_PA", .cp
= 15, .crn
= 15, .crm
= 6, .opc1
= 5, .opc2
= 2,
1265 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1266 { .name
= "TLB_ATTR", .cp
= 15, .crn
= 15, .crm
= 7, .opc1
= 5, .opc2
= 2,
1267 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1271 static void cortex_a9_initfn(Object
*obj
)
1273 ARMCPU
*cpu
= ARM_CPU(obj
);
1275 cpu
->dtb_compatible
= "arm,cortex-a9";
1276 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1277 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1278 set_feature(&cpu
->env
, ARM_FEATURE_VFP_FP16
);
1279 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1280 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1281 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1282 /* Note that A9 supports the MP extensions even for
1283 * A9UP and single-core A9MP (which are both different
1284 * and valid configurations; we don't model A9UP).
1286 set_feature(&cpu
->env
, ARM_FEATURE_V7MP
);
1287 set_feature(&cpu
->env
, ARM_FEATURE_CBAR
);
1288 cpu
->midr
= 0x410fc090;
1289 cpu
->reset_fpsid
= 0x41033090;
1290 cpu
->mvfr0
= 0x11110222;
1291 cpu
->mvfr1
= 0x01111111;
1292 cpu
->ctr
= 0x80038003;
1293 cpu
->reset_sctlr
= 0x00c50078;
1294 cpu
->id_pfr0
= 0x1031;
1295 cpu
->id_pfr1
= 0x11;
1296 cpu
->id_dfr0
= 0x000;
1298 cpu
->id_mmfr0
= 0x00100103;
1299 cpu
->id_mmfr1
= 0x20000000;
1300 cpu
->id_mmfr2
= 0x01230000;
1301 cpu
->id_mmfr3
= 0x00002111;
1302 cpu
->id_isar0
= 0x00101111;
1303 cpu
->id_isar1
= 0x13112111;
1304 cpu
->id_isar2
= 0x21232041;
1305 cpu
->id_isar3
= 0x11112131;
1306 cpu
->id_isar4
= 0x00111142;
1307 cpu
->dbgdidr
= 0x35141000;
1308 cpu
->clidr
= (1 << 27) | (1 << 24) | 3;
1309 cpu
->ccsidr
[0] = 0xe00fe019; /* 16k L1 dcache. */
1310 cpu
->ccsidr
[1] = 0x200fe019; /* 16k L1 icache. */
1311 define_arm_cp_regs(cpu
, cortexa9_cp_reginfo
);
1314 #ifndef CONFIG_USER_ONLY
1315 static uint64_t a15_l2ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1317 /* Linux wants the number of processors from here.
1318 * Might as well set the interrupt-controller bit too.
1320 return ((smp_cpus
- 1) << 24) | (1 << 23);
1324 static const ARMCPRegInfo cortexa15_cp_reginfo
[] = {
1325 #ifndef CONFIG_USER_ONLY
1326 { .name
= "L2CTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
1327 .access
= PL1_RW
, .resetvalue
= 0, .readfn
= a15_l2ctlr_read
,
1328 .writefn
= arm_cp_write_ignore
, },
1330 { .name
= "L2ECTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 3,
1331 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1335 static void cortex_a7_initfn(Object
*obj
)
1337 ARMCPU
*cpu
= ARM_CPU(obj
);
1339 cpu
->dtb_compatible
= "arm,cortex-a7";
1340 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1341 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1342 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1343 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1344 set_feature(&cpu
->env
, ARM_FEATURE_ARM_DIV
);
1345 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
1346 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1347 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
1348 set_feature(&cpu
->env
, ARM_FEATURE_LPAE
);
1349 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1350 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A7
;
1351 cpu
->midr
= 0x410fc075;
1352 cpu
->reset_fpsid
= 0x41023075;
1353 cpu
->mvfr0
= 0x10110222;
1354 cpu
->mvfr1
= 0x11111111;
1355 cpu
->ctr
= 0x84448003;
1356 cpu
->reset_sctlr
= 0x00c50078;
1357 cpu
->id_pfr0
= 0x00001131;
1358 cpu
->id_pfr1
= 0x00011011;
1359 cpu
->id_dfr0
= 0x02010555;
1360 cpu
->pmceid0
= 0x00000000;
1361 cpu
->pmceid1
= 0x00000000;
1362 cpu
->id_afr0
= 0x00000000;
1363 cpu
->id_mmfr0
= 0x10101105;
1364 cpu
->id_mmfr1
= 0x40000000;
1365 cpu
->id_mmfr2
= 0x01240000;
1366 cpu
->id_mmfr3
= 0x02102211;
1367 cpu
->id_isar0
= 0x01101110;
1368 cpu
->id_isar1
= 0x13112111;
1369 cpu
->id_isar2
= 0x21232041;
1370 cpu
->id_isar3
= 0x11112131;
1371 cpu
->id_isar4
= 0x10011142;
1372 cpu
->dbgdidr
= 0x3515f005;
1373 cpu
->clidr
= 0x0a200023;
1374 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
1375 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
1376 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
1377 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
); /* Same as A15 */
1380 static void cortex_a15_initfn(Object
*obj
)
1382 ARMCPU
*cpu
= ARM_CPU(obj
);
1384 cpu
->dtb_compatible
= "arm,cortex-a15";
1385 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1386 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1387 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1388 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1389 set_feature(&cpu
->env
, ARM_FEATURE_ARM_DIV
);
1390 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
1391 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1392 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
1393 set_feature(&cpu
->env
, ARM_FEATURE_LPAE
);
1394 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1395 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A15
;
1396 cpu
->midr
= 0x412fc0f1;
1397 cpu
->reset_fpsid
= 0x410430f0;
1398 cpu
->mvfr0
= 0x10110222;
1399 cpu
->mvfr1
= 0x11111111;
1400 cpu
->ctr
= 0x8444c004;
1401 cpu
->reset_sctlr
= 0x00c50078;
1402 cpu
->id_pfr0
= 0x00001131;
1403 cpu
->id_pfr1
= 0x00011011;
1404 cpu
->id_dfr0
= 0x02010555;
1405 cpu
->pmceid0
= 0x0000000;
1406 cpu
->pmceid1
= 0x00000000;
1407 cpu
->id_afr0
= 0x00000000;
1408 cpu
->id_mmfr0
= 0x10201105;
1409 cpu
->id_mmfr1
= 0x20000000;
1410 cpu
->id_mmfr2
= 0x01240000;
1411 cpu
->id_mmfr3
= 0x02102211;
1412 cpu
->id_isar0
= 0x02101110;
1413 cpu
->id_isar1
= 0x13112111;
1414 cpu
->id_isar2
= 0x21232041;
1415 cpu
->id_isar3
= 0x11112131;
1416 cpu
->id_isar4
= 0x10011142;
1417 cpu
->dbgdidr
= 0x3515f021;
1418 cpu
->clidr
= 0x0a200023;
1419 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
1420 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
1421 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
1422 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
);
1425 static void ti925t_initfn(Object
*obj
)
1427 ARMCPU
*cpu
= ARM_CPU(obj
);
1428 set_feature(&cpu
->env
, ARM_FEATURE_V4T
);
1429 set_feature(&cpu
->env
, ARM_FEATURE_OMAPCP
);
1430 cpu
->midr
= ARM_CPUID_TI925T
;
1431 cpu
->ctr
= 0x5109149;
1432 cpu
->reset_sctlr
= 0x00000070;
1435 static void sa1100_initfn(Object
*obj
)
1437 ARMCPU
*cpu
= ARM_CPU(obj
);
1439 cpu
->dtb_compatible
= "intel,sa1100";
1440 set_feature(&cpu
->env
, ARM_FEATURE_STRONGARM
);
1441 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1442 cpu
->midr
= 0x4401A11B;
1443 cpu
->reset_sctlr
= 0x00000070;
1446 static void sa1110_initfn(Object
*obj
)
1448 ARMCPU
*cpu
= ARM_CPU(obj
);
1449 set_feature(&cpu
->env
, ARM_FEATURE_STRONGARM
);
1450 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1451 cpu
->midr
= 0x6901B119;
1452 cpu
->reset_sctlr
= 0x00000070;
1455 static void pxa250_initfn(Object
*obj
)
1457 ARMCPU
*cpu
= ARM_CPU(obj
);
1459 cpu
->dtb_compatible
= "marvell,xscale";
1460 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1461 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1462 cpu
->midr
= 0x69052100;
1463 cpu
->ctr
= 0xd172172;
1464 cpu
->reset_sctlr
= 0x00000078;
1467 static void pxa255_initfn(Object
*obj
)
1469 ARMCPU
*cpu
= ARM_CPU(obj
);
1471 cpu
->dtb_compatible
= "marvell,xscale";
1472 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1473 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1474 cpu
->midr
= 0x69052d00;
1475 cpu
->ctr
= 0xd172172;
1476 cpu
->reset_sctlr
= 0x00000078;
1479 static void pxa260_initfn(Object
*obj
)
1481 ARMCPU
*cpu
= ARM_CPU(obj
);
1483 cpu
->dtb_compatible
= "marvell,xscale";
1484 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1485 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1486 cpu
->midr
= 0x69052903;
1487 cpu
->ctr
= 0xd172172;
1488 cpu
->reset_sctlr
= 0x00000078;
1491 static void pxa261_initfn(Object
*obj
)
1493 ARMCPU
*cpu
= ARM_CPU(obj
);
1495 cpu
->dtb_compatible
= "marvell,xscale";
1496 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1497 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1498 cpu
->midr
= 0x69052d05;
1499 cpu
->ctr
= 0xd172172;
1500 cpu
->reset_sctlr
= 0x00000078;
1503 static void pxa262_initfn(Object
*obj
)
1505 ARMCPU
*cpu
= ARM_CPU(obj
);
1507 cpu
->dtb_compatible
= "marvell,xscale";
1508 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1509 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1510 cpu
->midr
= 0x69052d06;
1511 cpu
->ctr
= 0xd172172;
1512 cpu
->reset_sctlr
= 0x00000078;
1515 static void pxa270a0_initfn(Object
*obj
)
1517 ARMCPU
*cpu
= ARM_CPU(obj
);
1519 cpu
->dtb_compatible
= "marvell,xscale";
1520 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1521 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1522 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1523 cpu
->midr
= 0x69054110;
1524 cpu
->ctr
= 0xd172172;
1525 cpu
->reset_sctlr
= 0x00000078;
1528 static void pxa270a1_initfn(Object
*obj
)
1530 ARMCPU
*cpu
= ARM_CPU(obj
);
1532 cpu
->dtb_compatible
= "marvell,xscale";
1533 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1534 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1535 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1536 cpu
->midr
= 0x69054111;
1537 cpu
->ctr
= 0xd172172;
1538 cpu
->reset_sctlr
= 0x00000078;
1541 static void pxa270b0_initfn(Object
*obj
)
1543 ARMCPU
*cpu
= ARM_CPU(obj
);
1545 cpu
->dtb_compatible
= "marvell,xscale";
1546 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1547 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1548 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1549 cpu
->midr
= 0x69054112;
1550 cpu
->ctr
= 0xd172172;
1551 cpu
->reset_sctlr
= 0x00000078;
1554 static void pxa270b1_initfn(Object
*obj
)
1556 ARMCPU
*cpu
= ARM_CPU(obj
);
1558 cpu
->dtb_compatible
= "marvell,xscale";
1559 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1560 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1561 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1562 cpu
->midr
= 0x69054113;
1563 cpu
->ctr
= 0xd172172;
1564 cpu
->reset_sctlr
= 0x00000078;
1567 static void pxa270c0_initfn(Object
*obj
)
1569 ARMCPU
*cpu
= ARM_CPU(obj
);
1571 cpu
->dtb_compatible
= "marvell,xscale";
1572 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1573 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1574 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1575 cpu
->midr
= 0x69054114;
1576 cpu
->ctr
= 0xd172172;
1577 cpu
->reset_sctlr
= 0x00000078;
1580 static void pxa270c5_initfn(Object
*obj
)
1582 ARMCPU
*cpu
= ARM_CPU(obj
);
1584 cpu
->dtb_compatible
= "marvell,xscale";
1585 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1586 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1587 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1588 cpu
->midr
= 0x69054117;
1589 cpu
->ctr
= 0xd172172;
1590 cpu
->reset_sctlr
= 0x00000078;
1593 #ifdef CONFIG_USER_ONLY
1594 static void arm_any_initfn(Object
*obj
)
1596 ARMCPU
*cpu
= ARM_CPU(obj
);
1597 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
1598 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1599 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1600 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1601 set_feature(&cpu
->env
, ARM_FEATURE_V8_AES
);
1602 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA1
);
1603 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA256
);
1604 set_feature(&cpu
->env
, ARM_FEATURE_V8_PMULL
);
1605 set_feature(&cpu
->env
, ARM_FEATURE_CRC
);
1606 cpu
->midr
= 0xffffffff;
1610 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1612 typedef struct ARMCPUInfo
{
1614 void (*initfn
)(Object
*obj
);
1615 void (*class_init
)(ObjectClass
*oc
, void *data
);
1618 static const ARMCPUInfo arm_cpus
[] = {
1619 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1620 { .name
= "arm926", .initfn
= arm926_initfn
},
1621 { .name
= "arm946", .initfn
= arm946_initfn
},
1622 { .name
= "arm1026", .initfn
= arm1026_initfn
},
1623 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1624 * older core than plain "arm1136". In particular this does not
1625 * have the v6K features.
1627 { .name
= "arm1136-r2", .initfn
= arm1136_r2_initfn
},
1628 { .name
= "arm1136", .initfn
= arm1136_initfn
},
1629 { .name
= "arm1176", .initfn
= arm1176_initfn
},
1630 { .name
= "arm11mpcore", .initfn
= arm11mpcore_initfn
},
1631 { .name
= "cortex-m3", .initfn
= cortex_m3_initfn
,
1632 .class_init
= arm_v7m_class_init
},
1633 { .name
= "cortex-m4", .initfn
= cortex_m4_initfn
,
1634 .class_init
= arm_v7m_class_init
},
1635 { .name
= "cortex-r5", .initfn
= cortex_r5_initfn
},
1636 { .name
= "cortex-a7", .initfn
= cortex_a7_initfn
},
1637 { .name
= "cortex-a8", .initfn
= cortex_a8_initfn
},
1638 { .name
= "cortex-a9", .initfn
= cortex_a9_initfn
},
1639 { .name
= "cortex-a15", .initfn
= cortex_a15_initfn
},
1640 { .name
= "ti925t", .initfn
= ti925t_initfn
},
1641 { .name
= "sa1100", .initfn
= sa1100_initfn
},
1642 { .name
= "sa1110", .initfn
= sa1110_initfn
},
1643 { .name
= "pxa250", .initfn
= pxa250_initfn
},
1644 { .name
= "pxa255", .initfn
= pxa255_initfn
},
1645 { .name
= "pxa260", .initfn
= pxa260_initfn
},
1646 { .name
= "pxa261", .initfn
= pxa261_initfn
},
1647 { .name
= "pxa262", .initfn
= pxa262_initfn
},
1648 /* "pxa270" is an alias for "pxa270-a0" */
1649 { .name
= "pxa270", .initfn
= pxa270a0_initfn
},
1650 { .name
= "pxa270-a0", .initfn
= pxa270a0_initfn
},
1651 { .name
= "pxa270-a1", .initfn
= pxa270a1_initfn
},
1652 { .name
= "pxa270-b0", .initfn
= pxa270b0_initfn
},
1653 { .name
= "pxa270-b1", .initfn
= pxa270b1_initfn
},
1654 { .name
= "pxa270-c0", .initfn
= pxa270c0_initfn
},
1655 { .name
= "pxa270-c5", .initfn
= pxa270c5_initfn
},
1656 #ifdef CONFIG_USER_ONLY
1657 { .name
= "any", .initfn
= arm_any_initfn
},
1663 static Property arm_cpu_properties
[] = {
1664 DEFINE_PROP_BOOL("start-powered-off", ARMCPU
, start_powered_off
, false),
1665 DEFINE_PROP_UINT32("psci-conduit", ARMCPU
, psci_conduit
, 0),
1666 DEFINE_PROP_UINT32("midr", ARMCPU
, midr
, 0),
1667 DEFINE_PROP_UINT64("mp-affinity", ARMCPU
,
1668 mp_affinity
, ARM64_AFFINITY_INVALID
),
1669 DEFINE_PROP_INT32("node-id", ARMCPU
, node_id
, CPU_UNSET_NUMA_NODE_ID
),
1670 DEFINE_PROP_END_OF_LIST()
1673 #ifdef CONFIG_USER_ONLY
1674 static int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
, int rw
,
1677 ARMCPU
*cpu
= ARM_CPU(cs
);
1678 CPUARMState
*env
= &cpu
->env
;
1680 env
->exception
.vaddress
= address
;
1682 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
1684 cs
->exception_index
= EXCP_DATA_ABORT
;
1690 static gchar
*arm_gdb_arch_name(CPUState
*cs
)
1692 ARMCPU
*cpu
= ARM_CPU(cs
);
1693 CPUARMState
*env
= &cpu
->env
;
1695 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
1696 return g_strdup("iwmmxt");
1698 return g_strdup("arm");
1701 static void arm_cpu_class_init(ObjectClass
*oc
, void *data
)
1703 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
1704 CPUClass
*cc
= CPU_CLASS(acc
);
1705 DeviceClass
*dc
= DEVICE_CLASS(oc
);
1707 acc
->parent_realize
= dc
->realize
;
1708 dc
->realize
= arm_cpu_realizefn
;
1709 dc
->props
= arm_cpu_properties
;
1711 acc
->parent_reset
= cc
->reset
;
1712 cc
->reset
= arm_cpu_reset
;
1714 cc
->class_by_name
= arm_cpu_class_by_name
;
1715 cc
->has_work
= arm_cpu_has_work
;
1716 cc
->cpu_exec_interrupt
= arm_cpu_exec_interrupt
;
1717 cc
->dump_state
= arm_cpu_dump_state
;
1718 cc
->set_pc
= arm_cpu_set_pc
;
1719 cc
->gdb_read_register
= arm_cpu_gdb_read_register
;
1720 cc
->gdb_write_register
= arm_cpu_gdb_write_register
;
1721 #ifdef CONFIG_USER_ONLY
1722 cc
->handle_mmu_fault
= arm_cpu_handle_mmu_fault
;
1724 cc
->do_interrupt
= arm_cpu_do_interrupt
;
1725 cc
->do_unaligned_access
= arm_cpu_do_unaligned_access
;
1726 cc
->do_transaction_failed
= arm_cpu_do_transaction_failed
;
1727 cc
->get_phys_page_attrs_debug
= arm_cpu_get_phys_page_attrs_debug
;
1728 cc
->asidx_from_attrs
= arm_asidx_from_attrs
;
1729 cc
->vmsd
= &vmstate_arm_cpu
;
1730 cc
->virtio_is_big_endian
= arm_cpu_virtio_is_big_endian
;
1731 cc
->write_elf64_note
= arm_cpu_write_elf64_note
;
1732 cc
->write_elf32_note
= arm_cpu_write_elf32_note
;
1734 cc
->gdb_num_core_regs
= 26;
1735 cc
->gdb_core_xml_file
= "arm-core.xml";
1736 cc
->gdb_arch_name
= arm_gdb_arch_name
;
1737 cc
->gdb_stop_before_watchpoint
= true;
1738 cc
->debug_excp_handler
= arm_debug_excp_handler
;
1739 cc
->debug_check_watchpoint
= arm_debug_check_watchpoint
;
1740 #if !defined(CONFIG_USER_ONLY)
1741 cc
->adjust_watchpoint_address
= arm_adjust_watchpoint_address
;
1744 cc
->disas_set_info
= arm_disas_set_info
;
1747 static void cpu_register(const ARMCPUInfo
*info
)
1749 TypeInfo type_info
= {
1750 .parent
= TYPE_ARM_CPU
,
1751 .instance_size
= sizeof(ARMCPU
),
1752 .instance_init
= info
->initfn
,
1753 .class_size
= sizeof(ARMCPUClass
),
1754 .class_init
= info
->class_init
,
1757 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
1758 type_register(&type_info
);
1759 g_free((void *)type_info
.name
);
1762 static const TypeInfo arm_cpu_type_info
= {
1763 .name
= TYPE_ARM_CPU
,
1765 .instance_size
= sizeof(ARMCPU
),
1766 .instance_init
= arm_cpu_initfn
,
1767 .instance_post_init
= arm_cpu_post_init
,
1768 .instance_finalize
= arm_cpu_finalizefn
,
1770 .class_size
= sizeof(ARMCPUClass
),
1771 .class_init
= arm_cpu_class_init
,
1774 static void arm_cpu_register_types(void)
1776 const ARMCPUInfo
*info
= arm_cpus
;
1778 type_register_static(&arm_cpu_type_info
);
1780 while (info
->name
) {
1786 type_init(arm_cpu_register_types
)