spapr: check for the activation of the KVM IRQ device
[qemu/kevin.git] / qemu-img.texi
blobe8bc0fd7a2409f254d5597b318dd021cdb98d35e
1 @example
2 @c man begin SYNOPSIS
3 @command{qemu-img} [@var{standard} @var{options}] @var{command} [@var{command} @var{options}]
4 @c man end
5 @end example
7 @c man begin DESCRIPTION
8 qemu-img allows you to create, convert and modify images offline. It can handle
9 all image formats supported by QEMU.
11 @b{Warning:} Never use qemu-img to modify images in use by a running virtual
12 machine or any other process; this may destroy the image. Also, be aware that
13 querying an image that is being modified by another process may encounter
14 inconsistent state.
15 @c man end
17 @c man begin OPTIONS
19 Standard options:
20 @table @option
21 @item -h, --help
22 Display this help and exit
23 @item -V, --version
24 Display version information and exit
25 @item -T, --trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
26 @findex --trace
27 @include qemu-option-trace.texi
28 @end table
30 The following commands are supported:
32 @include qemu-img-cmds.texi
34 Command parameters:
35 @table @var
37 @item filename
38 is a disk image filename
40 @item fmt
41 is the disk image format. It is guessed automatically in most cases. See below
42 for a description of the supported disk formats.
44 @item size
45 is the disk image size in bytes. Optional suffixes @code{k} or @code{K}
46 (kilobyte, 1024) @code{M} (megabyte, 1024k) and @code{G} (gigabyte, 1024M)
47 and T (terabyte, 1024G) are supported.  @code{b} is ignored.
49 @item output_filename
50 is the destination disk image filename
52 @item output_fmt
53 is the destination format
55 @item options
56 is a comma separated list of format specific options in a
57 name=value format. Use @code{-o ?} for an overview of the options supported
58 by the used format or see the format descriptions below for details.
60 @item snapshot_param
61 is param used for internal snapshot, format is
62 'snapshot.id=[ID],snapshot.name=[NAME]' or '[ID_OR_NAME]'
64 @end table
66 @table @option
68 @item --object @var{objectdef}
69 is a QEMU user creatable object definition. See the @code{qemu(1)} manual
70 page for a description of the object properties. The most common object
71 type is a @code{secret}, which is used to supply passwords and/or encryption
72 keys.
74 @item --image-opts
75 Indicates that the source @var{filename} parameter is to be interpreted as a
76 full option string, not a plain filename. This parameter is mutually
77 exclusive with the @var{-f} parameter.
79 @item --target-image-opts
80 Indicates that the @var{output_filename} parameter(s) are to be interpreted as
81 a full option string, not a plain filename. This parameter is mutually
82 exclusive with the @var{-O} parameters. It is currently required to also use
83 the @var{-n} parameter to skip image creation. This restriction may be relaxed
84 in a future release.
86 @item --force-share (-U)
87 If specified, @code{qemu-img} will open the image in shared mode, allowing
88 other QEMU processes to open it in write mode. For example, this can be used to
89 get the image information (with 'info' subcommand) when the image is used by a
90 running guest.  Note that this could produce inconsistent results because of
91 concurrent metadata changes, etc. This option is only allowed when opening
92 images in read-only mode.
94 @item --backing-chain
95 will enumerate information about backing files in a disk image chain. Refer
96 below for further description.
98 @item -c
99 indicates that target image must be compressed (qcow format only)
101 @item -h
102 with or without a command shows help and lists the supported formats
104 @item -p
105 display progress bar (compare, convert and rebase commands only).
106 If the @var{-p} option is not used for a command that supports it, the
107 progress is reported when the process receives a @code{SIGUSR1} or
108 @code{SIGINFO} signal.
110 @item -q
111 Quiet mode - do not print any output (except errors). There's no progress bar
112 in case both @var{-q} and @var{-p} options are used.
114 @item -S @var{size}
115 indicates the consecutive number of bytes that must contain only zeros
116 for qemu-img to create a sparse image during conversion. This value is rounded
117 down to the nearest 512 bytes. You may use the common size suffixes like
118 @code{k} for kilobytes.
120 @item -t @var{cache}
121 specifies the cache mode that should be used with the (destination) file. See
122 the documentation of the emulator's @code{-drive cache=...} option for allowed
123 values.
125 @item -T @var{src_cache}
126 specifies the cache mode that should be used with the source file(s). See
127 the documentation of the emulator's @code{-drive cache=...} option for allowed
128 values.
130 @end table
132 Parameters to snapshot subcommand:
134 @table @option
136 @item snapshot
137 is the name of the snapshot to create, apply or delete
138 @item -a
139 applies a snapshot (revert disk to saved state)
140 @item -c
141 creates a snapshot
142 @item -d
143 deletes a snapshot
144 @item -l
145 lists all snapshots in the given image
146 @end table
148 Parameters to compare subcommand:
150 @table @option
152 @item -f
153 First image format
154 @item -F
155 Second image format
156 @item -s
157 Strict mode - fail on different image size or sector allocation
158 @end table
160 Parameters to convert subcommand:
162 @table @option
164 @item -n
165 Skip the creation of the target volume
166 @item -m
167 Number of parallel coroutines for the convert process
168 @item -W
169 Allow out-of-order writes to the destination. This option improves performance,
170 but is only recommended for preallocated devices like host devices or other
171 raw block devices.
172 @item -C
173 Try to use copy offloading to move data from source image to target. This may
174 improve performance if the data is remote, such as with NFS or iSCSI backends,
175 but will not automatically sparsify zero sectors, and may result in a fully
176 allocated target image depending on the host support for getting allocation
177 information.
178 @end table
180 Parameters to dd subcommand:
182 @table @option
184 @item bs=@var{block_size}
185 defines the block size
186 @item count=@var{blocks}
187 sets the number of input blocks to copy
188 @item if=@var{input}
189 sets the input file
190 @item of=@var{output}
191 sets the output file
192 @item skip=@var{blocks}
193 sets the number of input blocks to skip
194 @end table
196 Command description:
198 @table @option
200 @item amend [--object @var{objectdef}] [--image-opts] [-p] [-q] [-f @var{fmt}] [-t @var{cache}] -o @var{options} @var{filename}
202 Amends the image format specific @var{options} for the image file
203 @var{filename}. Not all file formats support this operation.
205 @item bench [-c @var{count}] [-d @var{depth}] [-f @var{fmt}] [--flush-interval=@var{flush_interval}] [-n] [--no-drain] [-o @var{offset}] [--pattern=@var{pattern}] [-q] [-s @var{buffer_size}] [-S @var{step_size}] [-t @var{cache}] [-w] [-U] @var{filename}
207 Run a simple sequential I/O benchmark on the specified image. If @code{-w} is
208 specified, a write test is performed, otherwise a read test is performed.
210 A total number of @var{count} I/O requests is performed, each @var{buffer_size}
211 bytes in size, and with @var{depth} requests in parallel. The first request
212 starts at the position given by @var{offset}, each following request increases
213 the current position by @var{step_size}. If @var{step_size} is not given,
214 @var{buffer_size} is used for its value.
216 If @var{flush_interval} is specified for a write test, the request queue is
217 drained and a flush is issued before new writes are made whenever the number of
218 remaining requests is a multiple of @var{flush_interval}. If additionally
219 @code{--no-drain} is specified, a flush is issued without draining the request
220 queue first.
222 If @code{-n} is specified, the native AIO backend is used if possible. On
223 Linux, this option only works if @code{-t none} or @code{-t directsync} is
224 specified as well.
226 For write tests, by default a buffer filled with zeros is written. This can be
227 overridden with a pattern byte specified by @var{pattern}.
229 @item check [--object @var{objectdef}] [--image-opts] [-q] [-f @var{fmt}] [--output=@var{ofmt}] [-r [leaks | all]] [-T @var{src_cache}] [-U] @var{filename}
231 Perform a consistency check on the disk image @var{filename}. The command can
232 output in the format @var{ofmt} which is either @code{human} or @code{json}.
233 The JSON output is an object of QAPI type @code{ImageCheck}.
235 If @code{-r} is specified, qemu-img tries to repair any inconsistencies found
236 during the check. @code{-r leaks} repairs only cluster leaks, whereas
237 @code{-r all} fixes all kinds of errors, with a higher risk of choosing the
238 wrong fix or hiding corruption that has already occurred.
240 Only the formats @code{qcow2}, @code{qed} and @code{vdi} support
241 consistency checks.
243 In case the image does not have any inconsistencies, check exits with @code{0}.
244 Other exit codes indicate the kind of inconsistency found or if another error
245 occurred. The following table summarizes all exit codes of the check subcommand:
247 @table @option
249 @item 0
250 Check completed, the image is (now) consistent
251 @item 1
252 Check not completed because of internal errors
253 @item 2
254 Check completed, image is corrupted
255 @item 3
256 Check completed, image has leaked clusters, but is not corrupted
257 @item 63
258 Checks are not supported by the image format
260 @end table
262 If @code{-r} is specified, exit codes representing the image state refer to the
263 state after (the attempt at) repairing it. That is, a successful @code{-r all}
264 will yield the exit code 0, independently of the image state before.
266 @item commit [--object @var{objectdef}] [--image-opts] [-q] [-f @var{fmt}] [-t @var{cache}] [-b @var{base}] [-d] [-p] @var{filename}
268 Commit the changes recorded in @var{filename} in its base image or backing file.
269 If the backing file is smaller than the snapshot, then the backing file will be
270 resized to be the same size as the snapshot.  If the snapshot is smaller than
271 the backing file, the backing file will not be truncated.  If you want the
272 backing file to match the size of the smaller snapshot, you can safely truncate
273 it yourself once the commit operation successfully completes.
275 The image @var{filename} is emptied after the operation has succeeded. If you do
276 not need @var{filename} afterwards and intend to drop it, you may skip emptying
277 @var{filename} by specifying the @code{-d} flag.
279 If the backing chain of the given image file @var{filename} has more than one
280 layer, the backing file into which the changes will be committed may be
281 specified as @var{base} (which has to be part of @var{filename}'s backing
282 chain). If @var{base} is not specified, the immediate backing file of the top
283 image (which is @var{filename}) will be used. Note that after a commit operation
284 all images between @var{base} and the top image will be invalid and may return
285 garbage data when read. For this reason, @code{-b} implies @code{-d} (so that
286 the top image stays valid).
288 @item compare [--object @var{objectdef}] [--image-opts] [-f @var{fmt}] [-F @var{fmt}] [-T @var{src_cache}] [-p] [-q] [-s] [-U] @var{filename1} @var{filename2}
290 Check if two images have the same content. You can compare images with
291 different format or settings.
293 The format is probed unless you specify it by @var{-f} (used for
294 @var{filename1}) and/or @var{-F} (used for @var{filename2}) option.
296 By default, images with different size are considered identical if the larger
297 image contains only unallocated and/or zeroed sectors in the area after the end
298 of the other image. In addition, if any sector is not allocated in one image
299 and contains only zero bytes in the second one, it is evaluated as equal. You
300 can use Strict mode by specifying the @var{-s} option. When compare runs in
301 Strict mode, it fails in case image size differs or a sector is allocated in
302 one image and is not allocated in the second one.
304 By default, compare prints out a result message. This message displays
305 information that both images are same or the position of the first different
306 byte. In addition, result message can report different image size in case
307 Strict mode is used.
309 Compare exits with @code{0} in case the images are equal and with @code{1}
310 in case the images differ. Other exit codes mean an error occurred during
311 execution and standard error output should contain an error message.
312 The following table sumarizes all exit codes of the compare subcommand:
314 @table @option
316 @item 0
317 Images are identical
318 @item 1
319 Images differ
320 @item 2
321 Error on opening an image
322 @item 3
323 Error on checking a sector allocation
324 @item 4
325 Error on reading data
327 @end table
329 @item convert [--object @var{objectdef}] [--image-opts] [--target-image-opts] [-U] [-C] [-c] [-p] [-q] [-n] [-f @var{fmt}] [-t @var{cache}] [-T @var{src_cache}] [-O @var{output_fmt}] [-B @var{backing_file}] [-o @var{options}] [-l @var{snapshot_param}] [-S @var{sparse_size}] [-m @var{num_coroutines}] [-W] @var{filename} [@var{filename2} [...]] @var{output_filename}
331 Convert the disk image @var{filename} or a snapshot @var{snapshot_param}
332 to disk image @var{output_filename} using format @var{output_fmt}. It can be optionally compressed (@code{-c}
333 option) or use any format specific options like encryption (@code{-o} option).
335 Only the formats @code{qcow} and @code{qcow2} support compression. The
336 compression is read-only. It means that if a compressed sector is
337 rewritten, then it is rewritten as uncompressed data.
339 Image conversion is also useful to get smaller image when using a
340 growable format such as @code{qcow}: the empty sectors are detected and
341 suppressed from the destination image.
343 @var{sparse_size} indicates the consecutive number of bytes (defaults to 4k)
344 that must contain only zeros for qemu-img to create a sparse image during
345 conversion. If @var{sparse_size} is 0, the source will not be scanned for
346 unallocated or zero sectors, and the destination image will always be
347 fully allocated.
349 You can use the @var{backing_file} option to force the output image to be
350 created as a copy on write image of the specified base image; the
351 @var{backing_file} should have the same content as the input's base image,
352 however the path, image format, etc may differ.
354 If a relative path name is given, the backing file is looked up relative to
355 the directory containing @var{output_filename}.
357 If the @code{-n} option is specified, the target volume creation will be
358 skipped. This is useful for formats such as @code{rbd} if the target
359 volume has already been created with site specific options that cannot
360 be supplied through qemu-img.
362 Out of order writes can be enabled with @code{-W} to improve performance.
363 This is only recommended for preallocated devices like host devices or other
364 raw block devices. Out of order write does not work in combination with
365 creating compressed images.
367 @var{num_coroutines} specifies how many coroutines work in parallel during
368 the convert process (defaults to 8).
370 @item create [--object @var{objectdef}] [-q] [-f @var{fmt}] [-b @var{backing_file}] [-F @var{backing_fmt}] [-u] [-o @var{options}] @var{filename} [@var{size}]
372 Create the new disk image @var{filename} of size @var{size} and format
373 @var{fmt}. Depending on the file format, you can add one or more @var{options}
374 that enable additional features of this format.
376 If the option @var{backing_file} is specified, then the image will record
377 only the differences from @var{backing_file}. No size needs to be specified in
378 this case. @var{backing_file} will never be modified unless you use the
379 @code{commit} monitor command (or qemu-img commit).
381 If a relative path name is given, the backing file is looked up relative to
382 the directory containing @var{filename}.
384 Note that a given backing file will be opened to check that it is valid. Use
385 the @code{-u} option to enable unsafe backing file mode, which means that the
386 image will be created even if the associated backing file cannot be opened. A
387 matching backing file must be created or additional options be used to make the
388 backing file specification valid when you want to use an image created this
389 way.
391 The size can also be specified using the @var{size} option with @code{-o},
392 it doesn't need to be specified separately in this case.
394 @item dd [--image-opts] [-U] [-f @var{fmt}] [-O @var{output_fmt}] [bs=@var{block_size}] [count=@var{blocks}] [skip=@var{blocks}] if=@var{input} of=@var{output}
396 Dd copies from @var{input} file to @var{output} file converting it from
397 @var{fmt} format to @var{output_fmt} format.
399 The data is by default read and written using blocks of 512 bytes but can be
400 modified by specifying @var{block_size}. If count=@var{blocks} is specified
401 dd will stop reading input after reading @var{blocks} input blocks.
403 The size syntax is similar to dd(1)'s size syntax.
405 @item info [--object @var{objectdef}] [--image-opts] [-f @var{fmt}] [--output=@var{ofmt}] [--backing-chain] [-U] @var{filename}
407 Give information about the disk image @var{filename}. Use it in
408 particular to know the size reserved on disk which can be different
409 from the displayed size. If VM snapshots are stored in the disk image,
410 they are displayed too.
412 If a disk image has a backing file chain, information about each disk image in
413 the chain can be recursively enumerated by using the option @code{--backing-chain}.
415 For instance, if you have an image chain like:
417 @example
418 base.qcow2 <- snap1.qcow2 <- snap2.qcow2
419 @end example
421 To enumerate information about each disk image in the above chain, starting from top to base, do:
423 @example
424 qemu-img info --backing-chain snap2.qcow2
425 @end example
427 The command can output in the format @var{ofmt} which is either @code{human} or
428 @code{json}.  The JSON output is an object of QAPI type @code{ImageInfo}; with
429 @code{--backing-chain}, it is an array of @code{ImageInfo} objects.
431 @code{--output=human} reports the following information (for every image in the
432 chain):
433 @table @var
434 @item image
435 The image file name
437 @item file format
438 The image format
440 @item virtual size
441 The size of the guest disk
443 @item disk size
444 How much space the image file occupies on the host file system (may be shown as
445 0 if this information is unavailable, e.g. because there is no file system)
447 @item cluster_size
448 Cluster size of the image format, if applicable
450 @item encrypted
451 Whether the image is encrypted (only present if so)
453 @item cleanly shut down
454 This is shown as @code{no} if the image is dirty and will have to be
455 auto-repaired the next time it is opened in qemu.
457 @item backing file
458 The backing file name, if present
460 @item backing file format
461 The format of the backing file, if the image enforces it
463 @item Snapshot list
464 A list of all internal snapshots
466 @item Format specific information
467 Further information whose structure depends on the image format.  This section
468 is a textual representation of the respective @code{ImageInfoSpecific*} QAPI
469 object (e.g. @code{ImageInfoSpecificQCow2} for qcow2 images).
470 @end table
472 @item map [--object @var{objectdef}] [--image-opts] [-f @var{fmt}] [--output=@var{ofmt}] [-U] @var{filename}
474 Dump the metadata of image @var{filename} and its backing file chain.
475 In particular, this commands dumps the allocation state of every sector
476 of @var{filename}, together with the topmost file that allocates it in
477 the backing file chain.
479 Two option formats are possible.  The default format (@code{human})
480 only dumps known-nonzero areas of the file.  Known-zero parts of the
481 file are omitted altogether, and likewise for parts that are not allocated
482 throughout the chain.  @command{qemu-img} output will identify a file
483 from where the data can be read, and the offset in the file.  Each line
484 will include four fields, the first three of which are hexadecimal
485 numbers.  For example the first line of:
486 @example
487 Offset          Length          Mapped to       File
488 0               0x20000         0x50000         /tmp/overlay.qcow2
489 0x100000        0x10000         0x95380000      /tmp/backing.qcow2
490 @end example
491 @noindent
492 means that 0x20000 (131072) bytes starting at offset 0 in the image are
493 available in /tmp/overlay.qcow2 (opened in @code{raw} format) starting
494 at offset 0x50000 (327680).  Data that is compressed, encrypted, or
495 otherwise not available in raw format will cause an error if @code{human}
496 format is in use.  Note that file names can include newlines, thus it is
497 not safe to parse this output format in scripts.
499 The alternative format @code{json} will return an array of dictionaries
500 in JSON format.  It will include similar information in
501 the @code{start}, @code{length}, @code{offset} fields;
502 it will also include other more specific information:
503 @itemize @minus
504 @item
505 whether the sectors contain actual data or not (boolean field @code{data};
506 if false, the sectors are either unallocated or stored as optimized
507 all-zero clusters);
509 @item
510 whether the data is known to read as zero (boolean field @code{zero});
512 @item
513 in order to make the output shorter, the target file is expressed as
514 a @code{depth}; for example, a depth of 2 refers to the backing file
515 of the backing file of @var{filename}.
516 @end itemize
518 In JSON format, the @code{offset} field is optional; it is absent in
519 cases where @code{human} format would omit the entry or exit with an error.
520 If @code{data} is false and the @code{offset} field is present, the
521 corresponding sectors in the file are not yet in use, but they are
522 preallocated.
524 For more information, consult @file{include/block/block.h} in QEMU's
525 source code.
527 @item measure [--output=@var{ofmt}] [-O @var{output_fmt}] [-o @var{options}] [--size @var{N} | [--object @var{objectdef}] [--image-opts] [-f @var{fmt}] [-l @var{snapshot_param}] @var{filename}]
529 Calculate the file size required for a new image.  This information can be used
530 to size logical volumes or SAN LUNs appropriately for the image that will be
531 placed in them.  The values reported are guaranteed to be large enough to fit
532 the image.  The command can output in the format @var{ofmt} which is either
533 @code{human} or @code{json}.  The JSON output is an object of QAPI type
534 @code{BlockMeasureInfo}.
536 If the size @var{N} is given then act as if creating a new empty image file
537 using @command{qemu-img create}.  If @var{filename} is given then act as if
538 converting an existing image file using @command{qemu-img convert}.  The format
539 of the new file is given by @var{output_fmt} while the format of an existing
540 file is given by @var{fmt}.
542 A snapshot in an existing image can be specified using @var{snapshot_param}.
544 The following fields are reported:
545 @example
546 required size: 524288
547 fully allocated size: 1074069504
548 @end example
550 The @code{required size} is the file size of the new image.  It may be smaller
551 than the virtual disk size if the image format supports compact representation.
553 The @code{fully allocated size} is the file size of the new image once data has
554 been written to all sectors.  This is the maximum size that the image file can
555 occupy with the exception of internal snapshots, dirty bitmaps, vmstate data,
556 and other advanced image format features.
558 @item snapshot [--object @var{objectdef}] [--image-opts] [-U] [-q] [-l | -a @var{snapshot} | -c @var{snapshot} | -d @var{snapshot}] @var{filename}
560 List, apply, create or delete snapshots in image @var{filename}.
562 @item rebase [--object @var{objectdef}] [--image-opts] [-U] [-q] [-f @var{fmt}] [-t @var{cache}] [-T @var{src_cache}] [-p] [-u] -b @var{backing_file} [-F @var{backing_fmt}] @var{filename}
564 Changes the backing file of an image. Only the formats @code{qcow2} and
565 @code{qed} support changing the backing file.
567 The backing file is changed to @var{backing_file} and (if the image format of
568 @var{filename} supports this) the backing file format is changed to
569 @var{backing_fmt}. If @var{backing_file} is specified as ``'' (the empty
570 string), then the image is rebased onto no backing file (i.e. it will exist
571 independently of any backing file).
573 If a relative path name is given, the backing file is looked up relative to
574 the directory containing @var{filename}.
576 @var{cache} specifies the cache mode to be used for @var{filename}, whereas
577 @var{src_cache} specifies the cache mode for reading backing files.
579 There are two different modes in which @code{rebase} can operate:
580 @table @option
581 @item Safe mode
582 This is the default mode and performs a real rebase operation. The new backing
583 file may differ from the old one and qemu-img rebase will take care of keeping
584 the guest-visible content of @var{filename} unchanged.
586 In order to achieve this, any clusters that differ between @var{backing_file}
587 and the old backing file of @var{filename} are merged into @var{filename}
588 before actually changing the backing file.
590 Note that the safe mode is an expensive operation, comparable to converting
591 an image. It only works if the old backing file still exists.
593 @item Unsafe mode
594 qemu-img uses the unsafe mode if @code{-u} is specified. In this mode, only the
595 backing file name and format of @var{filename} is changed without any checks
596 on the file contents. The user must take care of specifying the correct new
597 backing file, or the guest-visible content of the image will be corrupted.
599 This mode is useful for renaming or moving the backing file to somewhere else.
600 It can be used without an accessible old backing file, i.e. you can use it to
601 fix an image whose backing file has already been moved/renamed.
602 @end table
604 You can use @code{rebase} to perform a ``diff'' operation on two
605 disk images.  This can be useful when you have copied or cloned
606 a guest, and you want to get back to a thin image on top of a
607 template or base image.
609 Say that @code{base.img} has been cloned as @code{modified.img} by
610 copying it, and that the @code{modified.img} guest has run so there
611 are now some changes compared to @code{base.img}.  To construct a thin
612 image called @code{diff.qcow2} that contains just the differences, do:
614 @example
615 qemu-img create -f qcow2 -b modified.img diff.qcow2
616 qemu-img rebase -b base.img diff.qcow2
617 @end example
619 At this point, @code{modified.img} can be discarded, since
620 @code{base.img + diff.qcow2} contains the same information.
622 @item resize [--object @var{objectdef}] [--image-opts] [-f @var{fmt}] [--preallocation=@var{prealloc}] [-q] [--shrink] @var{filename} [+ | -]@var{size}
624 Change the disk image as if it had been created with @var{size}.
626 Before using this command to shrink a disk image, you MUST use file system and
627 partitioning tools inside the VM to reduce allocated file systems and partition
628 sizes accordingly.  Failure to do so will result in data loss!
630 When shrinking images, the @code{--shrink} option must be given. This informs
631 qemu-img that the user acknowledges all loss of data beyond the truncated
632 image's end.
634 After using this command to grow a disk image, you must use file system and
635 partitioning tools inside the VM to actually begin using the new space on the
636 device.
638 When growing an image, the @code{--preallocation} option may be used to specify
639 how the additional image area should be allocated on the host.  See the format
640 description in the @code{NOTES} section which values are allowed.  Using this
641 option may result in slightly more data being allocated than necessary.
643 @end table
644 @c man end
646 @ignore
647 @c man begin NOTES
648 Supported image file formats:
650 @table @option
651 @item raw
653 Raw disk image format (default). This format has the advantage of
654 being simple and easily exportable to all other emulators. If your
655 file system supports @emph{holes} (for example in ext2 or ext3 on
656 Linux or NTFS on Windows), then only the written sectors will reserve
657 space. Use @code{qemu-img info} to know the real size used by the
658 image or @code{ls -ls} on Unix/Linux.
660 Supported options:
661 @table @code
662 @item preallocation
663 Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
664 @code{falloc} mode preallocates space for image by calling posix_fallocate().
665 @code{full} mode preallocates space for image by writing zeros to underlying
666 storage.
667 @end table
669 @item qcow2
670 QEMU image format, the most versatile format. Use it to have smaller
671 images (useful if your filesystem does not supports holes, for example
672 on Windows), optional AES encryption, zlib based compression and
673 support of multiple VM snapshots.
675 Supported options:
676 @table @code
677 @item compat
678 Determines the qcow2 version to use. @code{compat=0.10} uses the
679 traditional image format that can be read by any QEMU since 0.10.
680 @code{compat=1.1} enables image format extensions that only QEMU 1.1 and
681 newer understand (this is the default). Amongst others, this includes zero
682 clusters, which allow efficient copy-on-read for sparse images.
684 @item backing_file
685 File name of a base image (see @option{create} subcommand)
686 @item backing_fmt
687 Image format of the base image
688 @item encryption
689 If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
691 The use of encryption in qcow and qcow2 images is considered to be flawed by
692 modern cryptography standards, suffering from a number of design problems:
694 @itemize @minus
695 @item
696 The AES-CBC cipher is used with predictable initialization vectors based
697 on the sector number. This makes it vulnerable to chosen plaintext attacks
698 which can reveal the existence of encrypted data.
699 @item
700 The user passphrase is directly used as the encryption key. A poorly
701 chosen or short passphrase will compromise the security of the encryption.
702 @item
703 In the event of the passphrase being compromised there is no way to
704 change the passphrase to protect data in any qcow images. The files must
705 be cloned, using a different encryption passphrase in the new file. The
706 original file must then be securely erased using a program like shred,
707 though even this is ineffective with many modern storage technologies.
708 @item
709 Initialization vectors used to encrypt sectors are based on the
710 guest virtual sector number, instead of the host physical sector. When
711 a disk image has multiple internal snapshots this means that data in
712 multiple physical sectors is encrypted with the same initialization
713 vector. With the CBC mode, this opens the possibility of watermarking
714 attacks if the attack can collect multiple sectors encrypted with the
715 same IV and some predictable data. Having multiple qcow2 images with
716 the same passphrase also exposes this weakness since the passphrase
717 is directly used as the key.
718 @end itemize
720 Use of qcow / qcow2 encryption is thus strongly discouraged. Users are
721 recommended to use an alternative encryption technology such as the
722 Linux dm-crypt / LUKS system.
724 @item cluster_size
725 Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
726 sizes can improve the image file size whereas larger cluster sizes generally
727 provide better performance.
729 @item preallocation
730 Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
731 @code{full}). An image with preallocated metadata is initially larger but can
732 improve performance when the image needs to grow. @code{falloc} and @code{full}
733 preallocations are like the same options of @code{raw} format, but sets up
734 metadata also.
736 @item lazy_refcounts
737 If this option is set to @code{on}, reference count updates are postponed with
738 the goal of avoiding metadata I/O and improving performance. This is
739 particularly interesting with @option{cache=writethrough} which doesn't batch
740 metadata updates. The tradeoff is that after a host crash, the reference count
741 tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
742 check -r all} is required, which may take some time.
744 This option can only be enabled if @code{compat=1.1} is specified.
746 @item nocow
747 If this option is set to @code{on}, it will turn off COW of the file. It's only
748 valid on btrfs, no effect on other file systems.
750 Btrfs has low performance when hosting a VM image file, even more when the guest
751 on the VM also using btrfs as file system. Turning off COW is a way to mitigate
752 this bad performance. Generally there are two ways to turn off COW on btrfs:
753 a) Disable it by mounting with nodatacow, then all newly created files will be
754 NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
755 does.
757 Note: this option is only valid to new or empty files. If there is an existing
758 file which is COW and has data blocks already, it couldn't be changed to NOCOW
759 by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
760 the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
762 @end table
764 @item Other
765 QEMU also supports various other image file formats for compatibility with
766 older QEMU versions or other hypervisors, including VMDK, VDI, VHD (vpc), VHDX,
767 qcow1 and QED. For a full list of supported formats see @code{qemu-img --help}.
768 For a more detailed description of these formats, see the QEMU Emulation User
769 Documentation.
771 The main purpose of the block drivers for these formats is image conversion.
772 For running VMs, it is recommended to convert the disk images to either raw or
773 qcow2 in order to achieve good performance.
774 @end table
777 @c man end
779 @setfilename qemu-img
780 @settitle QEMU disk image utility
782 @c man begin SEEALSO
783 The HTML documentation of QEMU for more precise information and Linux
784 user mode emulator invocation.
785 @c man end
787 @c man begin AUTHOR
788 Fabrice Bellard
789 @c man end
791 @end ignore