2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "block/qcow2.h"
32 #include "qemu/bswap.h"
35 int qcow2_shrink_l1_table(BlockDriverState
*bs
, uint64_t exact_size
)
37 BDRVQcow2State
*s
= bs
->opaque
;
38 int new_l1_size
, i
, ret
;
40 if (exact_size
>= s
->l1_size
) {
44 new_l1_size
= exact_size
;
47 fprintf(stderr
, "shrink l1_table from %d to %d\n", s
->l1_size
, new_l1_size
);
50 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_SHRINK_WRITE_TABLE
);
51 ret
= bdrv_pwrite_zeroes(bs
->file
, s
->l1_table_offset
+
52 new_l1_size
* sizeof(uint64_t),
53 (s
->l1_size
- new_l1_size
) * sizeof(uint64_t), 0);
58 ret
= bdrv_flush(bs
->file
->bs
);
63 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS
);
64 for (i
= s
->l1_size
- 1; i
> new_l1_size
- 1; i
--) {
65 if ((s
->l1_table
[i
] & L1E_OFFSET_MASK
) == 0) {
68 qcow2_free_clusters(bs
, s
->l1_table
[i
] & L1E_OFFSET_MASK
,
69 s
->cluster_size
, QCOW2_DISCARD_ALWAYS
);
76 * If the write in the l1_table failed the image may contain a partially
77 * overwritten l1_table. In this case it would be better to clear the
78 * l1_table in memory to avoid possible image corruption.
80 memset(s
->l1_table
+ new_l1_size
, 0,
81 (s
->l1_size
- new_l1_size
) * sizeof(uint64_t));
85 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
88 BDRVQcow2State
*s
= bs
->opaque
;
89 int new_l1_size2
, ret
, i
;
90 uint64_t *new_l1_table
;
91 int64_t old_l1_table_offset
, old_l1_size
;
92 int64_t new_l1_table_offset
, new_l1_size
;
95 if (min_size
<= s
->l1_size
)
98 /* Do a sanity check on min_size before trying to calculate new_l1_size
99 * (this prevents overflows during the while loop for the calculation of
101 if (min_size
> INT_MAX
/ sizeof(uint64_t)) {
106 new_l1_size
= min_size
;
108 /* Bump size up to reduce the number of times we have to grow */
109 new_l1_size
= s
->l1_size
;
110 if (new_l1_size
== 0) {
113 while (min_size
> new_l1_size
) {
114 new_l1_size
= DIV_ROUND_UP(new_l1_size
* 3, 2);
118 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE
> INT_MAX
);
119 if (new_l1_size
> QCOW_MAX_L1_SIZE
/ sizeof(uint64_t)) {
124 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
125 s
->l1_size
, new_l1_size
);
128 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
129 new_l1_table
= qemu_try_blockalign(bs
->file
->bs
,
130 align_offset(new_l1_size2
, 512));
131 if (new_l1_table
== NULL
) {
134 memset(new_l1_table
, 0, align_offset(new_l1_size2
, 512));
137 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
140 /* write new table (align to cluster) */
141 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
142 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
143 if (new_l1_table_offset
< 0) {
144 qemu_vfree(new_l1_table
);
145 return new_l1_table_offset
;
148 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
153 /* the L1 position has not yet been updated, so these clusters must
154 * indeed be completely free */
155 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_l1_table_offset
,
161 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
162 for(i
= 0; i
< s
->l1_size
; i
++)
163 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
164 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
,
165 new_l1_table
, new_l1_size2
);
168 for(i
= 0; i
< s
->l1_size
; i
++)
169 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
172 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
173 stl_be_p(data
, new_l1_size
);
174 stq_be_p(data
+ 4, new_l1_table_offset
);
175 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
),
180 qemu_vfree(s
->l1_table
);
181 old_l1_table_offset
= s
->l1_table_offset
;
182 s
->l1_table_offset
= new_l1_table_offset
;
183 s
->l1_table
= new_l1_table
;
184 old_l1_size
= s
->l1_size
;
185 s
->l1_size
= new_l1_size
;
186 qcow2_free_clusters(bs
, old_l1_table_offset
, old_l1_size
* sizeof(uint64_t),
187 QCOW2_DISCARD_OTHER
);
190 qemu_vfree(new_l1_table
);
191 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
,
192 QCOW2_DISCARD_OTHER
);
199 * Loads a L2 table into memory. If the table is in the cache, the cache
200 * is used; otherwise the L2 table is loaded from the image file.
202 * Returns a pointer to the L2 table on success, or NULL if the read from
203 * the image file failed.
206 static int l2_load(BlockDriverState
*bs
, uint64_t l2_offset
,
209 BDRVQcow2State
*s
= bs
->opaque
;
211 return qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
,
216 * Writes one sector of the L1 table to the disk (can't update single entries
217 * and we really don't want bdrv_pread to perform a read-modify-write)
219 #define L1_ENTRIES_PER_SECTOR (512 / 8)
220 int qcow2_write_l1_entry(BlockDriverState
*bs
, int l1_index
)
222 BDRVQcow2State
*s
= bs
->opaque
;
223 uint64_t buf
[L1_ENTRIES_PER_SECTOR
] = { 0 };
227 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
228 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
&& l1_start_index
+ i
< s
->l1_size
;
231 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
234 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L1
,
235 s
->l1_table_offset
+ 8 * l1_start_index
, sizeof(buf
));
240 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
241 ret
= bdrv_pwrite_sync(bs
->file
,
242 s
->l1_table_offset
+ 8 * l1_start_index
,
254 * Allocate a new l2 entry in the file. If l1_index points to an already
255 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
256 * table) copy the contents of the old L2 table into the newly allocated one.
257 * Otherwise the new table is initialized with zeros.
261 static int l2_allocate(BlockDriverState
*bs
, int l1_index
, uint64_t **table
)
263 BDRVQcow2State
*s
= bs
->opaque
;
264 uint64_t old_l2_offset
;
265 uint64_t *l2_table
= NULL
;
269 old_l2_offset
= s
->l1_table
[l1_index
];
271 trace_qcow2_l2_allocate(bs
, l1_index
);
273 /* allocate a new l2 entry */
275 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
281 /* If we're allocating the table at offset 0 then something is wrong */
282 if (l2_offset
== 0) {
283 qcow2_signal_corruption(bs
, true, -1, -1, "Preventing invalid "
284 "allocation of L2 table at offset 0");
289 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
294 /* allocate a new entry in the l2 cache */
296 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
297 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
, l2_offset
, (void**) table
);
304 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
305 /* if there was no old l2 table, clear the new table */
306 memset(l2_table
, 0, s
->l2_size
* sizeof(uint64_t));
310 /* if there was an old l2 table, read it from the disk */
311 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
312 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
,
313 old_l2_offset
& L1E_OFFSET_MASK
,
314 (void**) &old_table
);
319 memcpy(l2_table
, old_table
, s
->cluster_size
);
321 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &old_table
);
324 /* write the l2 table to the file */
325 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
327 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
328 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
329 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
334 /* update the L1 entry */
335 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
336 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
337 ret
= qcow2_write_l1_entry(bs
, l1_index
);
343 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
347 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
348 if (l2_table
!= NULL
) {
349 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) table
);
351 s
->l1_table
[l1_index
] = old_l2_offset
;
353 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
354 QCOW2_DISCARD_ALWAYS
);
360 * Checks how many clusters in a given L2 table are contiguous in the image
361 * file. As soon as one of the flags in the bitmask stop_flags changes compared
362 * to the first cluster, the search is stopped and the cluster is not counted
363 * as contiguous. (This allows it, for example, to stop at the first compressed
364 * cluster which may require a different handling)
366 static int count_contiguous_clusters(int nb_clusters
, int cluster_size
,
367 uint64_t *l2_table
, uint64_t stop_flags
)
370 QCow2ClusterType first_cluster_type
;
371 uint64_t mask
= stop_flags
| L2E_OFFSET_MASK
| QCOW_OFLAG_COMPRESSED
;
372 uint64_t first_entry
= be64_to_cpu(l2_table
[0]);
373 uint64_t offset
= first_entry
& mask
;
379 /* must be allocated */
380 first_cluster_type
= qcow2_get_cluster_type(first_entry
);
381 assert(first_cluster_type
== QCOW2_CLUSTER_NORMAL
||
382 first_cluster_type
== QCOW2_CLUSTER_ZERO_ALLOC
);
384 for (i
= 0; i
< nb_clusters
; i
++) {
385 uint64_t l2_entry
= be64_to_cpu(l2_table
[i
]) & mask
;
386 if (offset
+ (uint64_t) i
* cluster_size
!= l2_entry
) {
395 * Checks how many consecutive unallocated clusters in a given L2
396 * table have the same cluster type.
398 static int count_contiguous_clusters_unallocated(int nb_clusters
,
400 QCow2ClusterType wanted_type
)
404 assert(wanted_type
== QCOW2_CLUSTER_ZERO_PLAIN
||
405 wanted_type
== QCOW2_CLUSTER_UNALLOCATED
);
406 for (i
= 0; i
< nb_clusters
; i
++) {
407 uint64_t entry
= be64_to_cpu(l2_table
[i
]);
408 QCow2ClusterType type
= qcow2_get_cluster_type(entry
);
410 if (type
!= wanted_type
) {
418 static int coroutine_fn
do_perform_cow_read(BlockDriverState
*bs
,
419 uint64_t src_cluster_offset
,
420 unsigned offset_in_cluster
,
425 if (qiov
->size
== 0) {
429 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
435 /* Call .bdrv_co_readv() directly instead of using the public block-layer
436 * interface. This avoids double I/O throttling and request tracking,
437 * which can lead to deadlock when block layer copy-on-read is enabled.
439 ret
= bs
->drv
->bdrv_co_preadv(bs
, src_cluster_offset
+ offset_in_cluster
,
440 qiov
->size
, qiov
, 0);
448 static bool coroutine_fn
do_perform_cow_encrypt(BlockDriverState
*bs
,
449 uint64_t src_cluster_offset
,
450 uint64_t cluster_offset
,
451 unsigned offset_in_cluster
,
455 if (bytes
&& bs
->encrypted
) {
456 BDRVQcow2State
*s
= bs
->opaque
;
457 int64_t offset
= (s
->crypt_physical_offset
?
458 (cluster_offset
+ offset_in_cluster
) :
459 (src_cluster_offset
+ offset_in_cluster
));
460 assert((offset_in_cluster
& ~BDRV_SECTOR_MASK
) == 0);
461 assert((bytes
& ~BDRV_SECTOR_MASK
) == 0);
463 if (qcrypto_block_encrypt(s
->crypto
, offset
, buffer
, bytes
, NULL
) < 0) {
470 static int coroutine_fn
do_perform_cow_write(BlockDriverState
*bs
,
471 uint64_t cluster_offset
,
472 unsigned offset_in_cluster
,
477 if (qiov
->size
== 0) {
481 ret
= qcow2_pre_write_overlap_check(bs
, 0,
482 cluster_offset
+ offset_in_cluster
, qiov
->size
);
487 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
488 ret
= bdrv_co_pwritev(bs
->file
, cluster_offset
+ offset_in_cluster
,
489 qiov
->size
, qiov
, 0);
501 * For a given offset of the virtual disk, find the cluster type and offset in
502 * the qcow2 file. The offset is stored in *cluster_offset.
504 * On entry, *bytes is the maximum number of contiguous bytes starting at
505 * offset that we are interested in.
507 * On exit, *bytes is the number of bytes starting at offset that have the same
508 * cluster type and (if applicable) are stored contiguously in the image file.
509 * Compressed clusters are always returned one by one.
511 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
514 int qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
515 unsigned int *bytes
, uint64_t *cluster_offset
)
517 BDRVQcow2State
*s
= bs
->opaque
;
518 unsigned int l2_index
;
519 uint64_t l1_index
, l2_offset
, *l2_table
;
521 unsigned int offset_in_cluster
;
522 uint64_t bytes_available
, bytes_needed
, nb_clusters
;
523 QCow2ClusterType type
;
526 offset_in_cluster
= offset_into_cluster(s
, offset
);
527 bytes_needed
= (uint64_t) *bytes
+ offset_in_cluster
;
529 l1_bits
= s
->l2_bits
+ s
->cluster_bits
;
531 /* compute how many bytes there are between the start of the cluster
532 * containing offset and the end of the l1 entry */
533 bytes_available
= (1ULL << l1_bits
) - (offset
& ((1ULL << l1_bits
) - 1))
536 if (bytes_needed
> bytes_available
) {
537 bytes_needed
= bytes_available
;
542 /* seek to the l2 offset in the l1 table */
544 l1_index
= offset
>> l1_bits
;
545 if (l1_index
>= s
->l1_size
) {
546 type
= QCOW2_CLUSTER_UNALLOCATED
;
550 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
552 type
= QCOW2_CLUSTER_UNALLOCATED
;
556 if (offset_into_cluster(s
, l2_offset
)) {
557 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
558 " unaligned (L1 index: %#" PRIx64
")",
559 l2_offset
, l1_index
);
563 /* load the l2 table in memory */
565 ret
= l2_load(bs
, l2_offset
, &l2_table
);
570 /* find the cluster offset for the given disk offset */
572 l2_index
= offset_to_l2_index(s
, offset
);
573 *cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
575 nb_clusters
= size_to_clusters(s
, bytes_needed
);
576 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
577 * integers; the minimum cluster size is 512, so this assertion is always
579 assert(nb_clusters
<= INT_MAX
);
581 type
= qcow2_get_cluster_type(*cluster_offset
);
582 if (s
->qcow_version
< 3 && (type
== QCOW2_CLUSTER_ZERO_PLAIN
||
583 type
== QCOW2_CLUSTER_ZERO_ALLOC
)) {
584 qcow2_signal_corruption(bs
, true, -1, -1, "Zero cluster entry found"
585 " in pre-v3 image (L2 offset: %#" PRIx64
586 ", L2 index: %#x)", l2_offset
, l2_index
);
591 case QCOW2_CLUSTER_COMPRESSED
:
592 /* Compressed clusters can only be processed one by one */
594 *cluster_offset
&= L2E_COMPRESSED_OFFSET_SIZE_MASK
;
596 case QCOW2_CLUSTER_ZERO_PLAIN
:
597 case QCOW2_CLUSTER_UNALLOCATED
:
598 /* how many empty clusters ? */
599 c
= count_contiguous_clusters_unallocated(nb_clusters
,
600 &l2_table
[l2_index
], type
);
603 case QCOW2_CLUSTER_ZERO_ALLOC
:
604 case QCOW2_CLUSTER_NORMAL
:
605 /* how many allocated clusters ? */
606 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
607 &l2_table
[l2_index
], QCOW_OFLAG_ZERO
);
608 *cluster_offset
&= L2E_OFFSET_MASK
;
609 if (offset_into_cluster(s
, *cluster_offset
)) {
610 qcow2_signal_corruption(bs
, true, -1, -1,
611 "Cluster allocation offset %#"
612 PRIx64
" unaligned (L2 offset: %#" PRIx64
613 ", L2 index: %#x)", *cluster_offset
,
614 l2_offset
, l2_index
);
623 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
625 bytes_available
= (int64_t)c
* s
->cluster_size
;
628 if (bytes_available
> bytes_needed
) {
629 bytes_available
= bytes_needed
;
632 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
633 * subtracting offset_in_cluster will therefore definitely yield something
634 * not exceeding UINT_MAX */
635 assert(bytes_available
- offset_in_cluster
<= UINT_MAX
);
636 *bytes
= bytes_available
- offset_in_cluster
;
641 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **)&l2_table
);
648 * for a given disk offset, load (and allocate if needed)
651 * the l2 table offset in the qcow2 file and the cluster index
652 * in the l2 table are given to the caller.
654 * Returns 0 on success, -errno in failure case
656 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
657 uint64_t **new_l2_table
,
660 BDRVQcow2State
*s
= bs
->opaque
;
661 unsigned int l2_index
;
662 uint64_t l1_index
, l2_offset
;
663 uint64_t *l2_table
= NULL
;
666 /* seek to the l2 offset in the l1 table */
668 l1_index
= offset
>> (s
->l2_bits
+ s
->cluster_bits
);
669 if (l1_index
>= s
->l1_size
) {
670 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
676 assert(l1_index
< s
->l1_size
);
677 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
678 if (offset_into_cluster(s
, l2_offset
)) {
679 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
680 " unaligned (L1 index: %#" PRIx64
")",
681 l2_offset
, l1_index
);
685 /* seek the l2 table of the given l2 offset */
687 if (s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
) {
688 /* load the l2 table in memory */
689 ret
= l2_load(bs
, l2_offset
, &l2_table
);
694 /* First allocate a new L2 table (and do COW if needed) */
695 ret
= l2_allocate(bs
, l1_index
, &l2_table
);
700 /* Then decrease the refcount of the old table */
702 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
703 QCOW2_DISCARD_OTHER
);
707 /* find the cluster offset for the given disk offset */
709 l2_index
= offset_to_l2_index(s
, offset
);
711 *new_l2_table
= l2_table
;
712 *new_l2_index
= l2_index
;
718 * alloc_compressed_cluster_offset
720 * For a given offset of the disk image, return cluster offset in
723 * If the offset is not found, allocate a new compressed cluster.
725 * Return the cluster offset if successful,
726 * Return 0, otherwise.
730 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
734 BDRVQcow2State
*s
= bs
->opaque
;
737 int64_t cluster_offset
;
740 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
745 /* Compression can't overwrite anything. Fail if the cluster was already
747 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
748 if (cluster_offset
& L2E_OFFSET_MASK
) {
749 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
753 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
754 if (cluster_offset
< 0) {
755 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
759 nb_csectors
= ((cluster_offset
+ compressed_size
- 1) >> 9) -
760 (cluster_offset
>> 9);
762 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
763 ((uint64_t)nb_csectors
<< s
->csize_shift
);
765 /* update L2 table */
767 /* compressed clusters never have the copied flag */
769 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
770 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
771 l2_table
[l2_index
] = cpu_to_be64(cluster_offset
);
772 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
774 return cluster_offset
;
777 static int perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
)
779 BDRVQcow2State
*s
= bs
->opaque
;
780 Qcow2COWRegion
*start
= &m
->cow_start
;
781 Qcow2COWRegion
*end
= &m
->cow_end
;
782 unsigned buffer_size
;
783 unsigned data_bytes
= end
->offset
- (start
->offset
+ start
->nb_bytes
);
785 uint8_t *start_buffer
, *end_buffer
;
789 assert(start
->nb_bytes
<= UINT_MAX
- end
->nb_bytes
);
790 assert(start
->nb_bytes
+ end
->nb_bytes
<= UINT_MAX
- data_bytes
);
791 assert(start
->offset
+ start
->nb_bytes
<= end
->offset
);
792 assert(!m
->data_qiov
|| m
->data_qiov
->size
== data_bytes
);
794 if (start
->nb_bytes
== 0 && end
->nb_bytes
== 0) {
798 /* If we have to read both the start and end COW regions and the
799 * middle region is not too large then perform just one read
801 merge_reads
= start
->nb_bytes
&& end
->nb_bytes
&& data_bytes
<= 16384;
803 buffer_size
= start
->nb_bytes
+ data_bytes
+ end
->nb_bytes
;
805 /* If we have to do two reads, add some padding in the middle
806 * if necessary to make sure that the end region is optimally
808 size_t align
= bdrv_opt_mem_align(bs
);
809 assert(align
> 0 && align
<= UINT_MAX
);
810 assert(QEMU_ALIGN_UP(start
->nb_bytes
, align
) <=
811 UINT_MAX
- end
->nb_bytes
);
812 buffer_size
= QEMU_ALIGN_UP(start
->nb_bytes
, align
) + end
->nb_bytes
;
815 /* Reserve a buffer large enough to store all the data that we're
817 start_buffer
= qemu_try_blockalign(bs
, buffer_size
);
818 if (start_buffer
== NULL
) {
821 /* The part of the buffer where the end region is located */
822 end_buffer
= start_buffer
+ buffer_size
- end
->nb_bytes
;
824 qemu_iovec_init(&qiov
, 2 + (m
->data_qiov
? m
->data_qiov
->niov
: 0));
826 qemu_co_mutex_unlock(&s
->lock
);
827 /* First we read the existing data from both COW regions. We
828 * either read the whole region in one go, or the start and end
829 * regions separately. */
831 qemu_iovec_add(&qiov
, start_buffer
, buffer_size
);
832 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
834 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
835 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
840 qemu_iovec_reset(&qiov
);
841 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
842 ret
= do_perform_cow_read(bs
, m
->offset
, end
->offset
, &qiov
);
848 /* Encrypt the data if necessary before writing it */
850 if (!do_perform_cow_encrypt(bs
, m
->offset
, m
->alloc_offset
,
851 start
->offset
, start_buffer
,
853 !do_perform_cow_encrypt(bs
, m
->offset
, m
->alloc_offset
,
854 end
->offset
, end_buffer
, end
->nb_bytes
)) {
860 /* And now we can write everything. If we have the guest data we
861 * can write everything in one single operation */
863 qemu_iovec_reset(&qiov
);
864 if (start
->nb_bytes
) {
865 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
867 qemu_iovec_concat(&qiov
, m
->data_qiov
, 0, data_bytes
);
869 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
871 /* NOTE: we have a write_aio blkdebug event here followed by
872 * a cow_write one in do_perform_cow_write(), but there's only
873 * one single I/O operation */
874 BLKDBG_EVENT(bs
->file
, BLKDBG_WRITE_AIO
);
875 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
877 /* If there's no guest data then write both COW regions separately */
878 qemu_iovec_reset(&qiov
);
879 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
880 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
885 qemu_iovec_reset(&qiov
);
886 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
887 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, end
->offset
, &qiov
);
891 qemu_co_mutex_lock(&s
->lock
);
894 * Before we update the L2 table to actually point to the new cluster, we
895 * need to be sure that the refcounts have been increased and COW was
899 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
902 qemu_vfree(start_buffer
);
903 qemu_iovec_destroy(&qiov
);
907 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
909 BDRVQcow2State
*s
= bs
->opaque
;
910 int i
, j
= 0, l2_index
, ret
;
911 uint64_t *old_cluster
, *l2_table
;
912 uint64_t cluster_offset
= m
->alloc_offset
;
914 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
915 assert(m
->nb_clusters
> 0);
917 old_cluster
= g_try_new(uint64_t, m
->nb_clusters
);
918 if (old_cluster
== NULL
) {
923 /* copy content of unmodified sectors */
924 ret
= perform_cow(bs
, m
);
929 /* Update L2 table. */
930 if (s
->use_lazy_refcounts
) {
931 qcow2_mark_dirty(bs
);
933 if (qcow2_need_accurate_refcounts(s
)) {
934 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
935 s
->refcount_block_cache
);
938 ret
= get_cluster_table(bs
, m
->offset
, &l2_table
, &l2_index
);
942 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
944 assert(l2_index
+ m
->nb_clusters
<= s
->l2_size
);
945 for (i
= 0; i
< m
->nb_clusters
; i
++) {
946 /* if two concurrent writes happen to the same unallocated cluster
947 * each write allocates separate cluster and writes data concurrently.
948 * The first one to complete updates l2 table with pointer to its
949 * cluster the second one has to do RMW (which is done above by
950 * perform_cow()), update l2 table with its cluster pointer and free
951 * old cluster. This is what this loop does */
952 if (l2_table
[l2_index
+ i
] != 0) {
953 old_cluster
[j
++] = l2_table
[l2_index
+ i
];
956 l2_table
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
957 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
961 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
964 * If this was a COW, we need to decrease the refcount of the old cluster.
966 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
967 * clusters), the next write will reuse them anyway.
969 if (!m
->keep_old_clusters
&& j
!= 0) {
970 for (i
= 0; i
< j
; i
++) {
971 qcow2_free_any_clusters(bs
, be64_to_cpu(old_cluster
[i
]), 1,
972 QCOW2_DISCARD_NEVER
);
983 * Returns the number of contiguous clusters that can be used for an allocating
984 * write, but require COW to be performed (this includes yet unallocated space,
985 * which must copy from the backing file)
987 static int count_cow_clusters(BDRVQcow2State
*s
, int nb_clusters
,
988 uint64_t *l2_table
, int l2_index
)
992 for (i
= 0; i
< nb_clusters
; i
++) {
993 uint64_t l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
994 QCow2ClusterType cluster_type
= qcow2_get_cluster_type(l2_entry
);
996 switch(cluster_type
) {
997 case QCOW2_CLUSTER_NORMAL
:
998 if (l2_entry
& QCOW_OFLAG_COPIED
) {
1002 case QCOW2_CLUSTER_UNALLOCATED
:
1003 case QCOW2_CLUSTER_COMPRESSED
:
1004 case QCOW2_CLUSTER_ZERO_PLAIN
:
1005 case QCOW2_CLUSTER_ZERO_ALLOC
:
1013 assert(i
<= nb_clusters
);
1018 * Check if there already is an AIO write request in flight which allocates
1019 * the same cluster. In this case we need to wait until the previous
1020 * request has completed and updated the L2 table accordingly.
1023 * 0 if there was no dependency. *cur_bytes indicates the number of
1024 * bytes from guest_offset that can be read before the next
1025 * dependency must be processed (or the request is complete)
1027 * -EAGAIN if we had to wait for another request, previously gathered
1028 * information on cluster allocation may be invalid now. The caller
1029 * must start over anyway, so consider *cur_bytes undefined.
1031 static int handle_dependencies(BlockDriverState
*bs
, uint64_t guest_offset
,
1032 uint64_t *cur_bytes
, QCowL2Meta
**m
)
1034 BDRVQcow2State
*s
= bs
->opaque
;
1035 QCowL2Meta
*old_alloc
;
1036 uint64_t bytes
= *cur_bytes
;
1038 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
1040 uint64_t start
= guest_offset
;
1041 uint64_t end
= start
+ bytes
;
1042 uint64_t old_start
= l2meta_cow_start(old_alloc
);
1043 uint64_t old_end
= l2meta_cow_end(old_alloc
);
1045 if (end
<= old_start
|| start
>= old_end
) {
1046 /* No intersection */
1048 if (start
< old_start
) {
1049 /* Stop at the start of a running allocation */
1050 bytes
= old_start
- start
;
1055 /* Stop if already an l2meta exists. After yielding, it wouldn't
1056 * be valid any more, so we'd have to clean up the old L2Metas
1057 * and deal with requests depending on them before starting to
1058 * gather new ones. Not worth the trouble. */
1059 if (bytes
== 0 && *m
) {
1065 /* Wait for the dependency to complete. We need to recheck
1066 * the free/allocated clusters when we continue. */
1067 qemu_co_queue_wait(&old_alloc
->dependent_requests
, &s
->lock
);
1073 /* Make sure that existing clusters and new allocations are only used up to
1074 * the next dependency if we shortened the request above */
1081 * Checks how many already allocated clusters that don't require a copy on
1082 * write there are at the given guest_offset (up to *bytes). If
1083 * *host_offset is not zero, only physically contiguous clusters beginning at
1084 * this host offset are counted.
1086 * Note that guest_offset may not be cluster aligned. In this case, the
1087 * returned *host_offset points to exact byte referenced by guest_offset and
1088 * therefore isn't cluster aligned as well.
1091 * 0: if no allocated clusters are available at the given offset.
1092 * *bytes is normally unchanged. It is set to 0 if the cluster
1093 * is allocated and doesn't need COW, but doesn't have the right
1096 * 1: if allocated clusters that don't require a COW are available at
1097 * the requested offset. *bytes may have decreased and describes
1098 * the length of the area that can be written to.
1100 * -errno: in error cases
1102 static int handle_copied(BlockDriverState
*bs
, uint64_t guest_offset
,
1103 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1105 BDRVQcow2State
*s
= bs
->opaque
;
1107 uint64_t cluster_offset
;
1109 uint64_t nb_clusters
;
1110 unsigned int keep_clusters
;
1113 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
1116 assert(*host_offset
== 0 || offset_into_cluster(s
, guest_offset
)
1117 == offset_into_cluster(s
, *host_offset
));
1120 * Calculate the number of clusters to look for. We stop at L2 table
1121 * boundaries to keep things simple.
1124 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1126 l2_index
= offset_to_l2_index(s
, guest_offset
);
1127 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1128 assert(nb_clusters
<= INT_MAX
);
1130 /* Find L2 entry for the first involved cluster */
1131 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
1136 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
1138 /* Check how many clusters are already allocated and don't need COW */
1139 if (qcow2_get_cluster_type(cluster_offset
) == QCOW2_CLUSTER_NORMAL
1140 && (cluster_offset
& QCOW_OFLAG_COPIED
))
1142 /* If a specific host_offset is required, check it */
1143 bool offset_matches
=
1144 (cluster_offset
& L2E_OFFSET_MASK
) == *host_offset
;
1146 if (offset_into_cluster(s
, cluster_offset
& L2E_OFFSET_MASK
)) {
1147 qcow2_signal_corruption(bs
, true, -1, -1, "Data cluster offset "
1148 "%#llx unaligned (guest offset: %#" PRIx64
1149 ")", cluster_offset
& L2E_OFFSET_MASK
,
1155 if (*host_offset
!= 0 && !offset_matches
) {
1161 /* We keep all QCOW_OFLAG_COPIED clusters */
1163 count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
1164 &l2_table
[l2_index
],
1165 QCOW_OFLAG_COPIED
| QCOW_OFLAG_ZERO
);
1166 assert(keep_clusters
<= nb_clusters
);
1168 *bytes
= MIN(*bytes
,
1169 keep_clusters
* s
->cluster_size
1170 - offset_into_cluster(s
, guest_offset
));
1179 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1181 /* Only return a host offset if we actually made progress. Otherwise we
1182 * would make requirements for handle_alloc() that it can't fulfill */
1184 *host_offset
= (cluster_offset
& L2E_OFFSET_MASK
)
1185 + offset_into_cluster(s
, guest_offset
);
1192 * Allocates new clusters for the given guest_offset.
1194 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1195 * contain the number of clusters that have been allocated and are contiguous
1196 * in the image file.
1198 * If *host_offset is non-zero, it specifies the offset in the image file at
1199 * which the new clusters must start. *nb_clusters can be 0 on return in this
1200 * case if the cluster at host_offset is already in use. If *host_offset is
1201 * zero, the clusters can be allocated anywhere in the image file.
1203 * *host_offset is updated to contain the offset into the image file at which
1204 * the first allocated cluster starts.
1206 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1207 * function has been waiting for another request and the allocation must be
1208 * restarted, but the whole request should not be failed.
1210 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
1211 uint64_t *host_offset
, uint64_t *nb_clusters
)
1213 BDRVQcow2State
*s
= bs
->opaque
;
1215 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
1216 *host_offset
, *nb_clusters
);
1218 /* Allocate new clusters */
1219 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1220 if (*host_offset
== 0) {
1221 int64_t cluster_offset
=
1222 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
1223 if (cluster_offset
< 0) {
1224 return cluster_offset
;
1226 *host_offset
= cluster_offset
;
1229 int64_t ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
1239 * Allocates new clusters for an area that either is yet unallocated or needs a
1240 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1241 * the new allocation can match the specified host offset.
1243 * Note that guest_offset may not be cluster aligned. In this case, the
1244 * returned *host_offset points to exact byte referenced by guest_offset and
1245 * therefore isn't cluster aligned as well.
1248 * 0: if no clusters could be allocated. *bytes is set to 0,
1249 * *host_offset is left unchanged.
1251 * 1: if new clusters were allocated. *bytes may be decreased if the
1252 * new allocation doesn't cover all of the requested area.
1253 * *host_offset is updated to contain the host offset of the first
1254 * newly allocated cluster.
1256 * -errno: in error cases
1258 static int handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
1259 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1261 BDRVQcow2State
*s
= bs
->opaque
;
1265 uint64_t nb_clusters
;
1267 bool keep_old_clusters
= false;
1269 uint64_t alloc_cluster_offset
= 0;
1271 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1276 * Calculate the number of clusters to look for. We stop at L2 table
1277 * boundaries to keep things simple.
1280 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1282 l2_index
= offset_to_l2_index(s
, guest_offset
);
1283 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1284 assert(nb_clusters
<= INT_MAX
);
1286 /* Find L2 entry for the first involved cluster */
1287 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
1292 entry
= be64_to_cpu(l2_table
[l2_index
]);
1294 /* For the moment, overwrite compressed clusters one by one */
1295 if (entry
& QCOW_OFLAG_COMPRESSED
) {
1298 nb_clusters
= count_cow_clusters(s
, nb_clusters
, l2_table
, l2_index
);
1301 /* This function is only called when there were no non-COW clusters, so if
1302 * we can't find any unallocated or COW clusters either, something is
1303 * wrong with our code. */
1304 assert(nb_clusters
> 0);
1306 if (qcow2_get_cluster_type(entry
) == QCOW2_CLUSTER_ZERO_ALLOC
&&
1307 (entry
& QCOW_OFLAG_COPIED
) &&
1309 start_of_cluster(s
, *host_offset
) == (entry
& L2E_OFFSET_MASK
)))
1311 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1312 * would be fine, too, but count_cow_clusters() above has limited
1313 * nb_clusters already to a range of COW clusters */
1314 int preallocated_nb_clusters
=
1315 count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
1316 &l2_table
[l2_index
], QCOW_OFLAG_COPIED
);
1317 assert(preallocated_nb_clusters
> 0);
1319 nb_clusters
= preallocated_nb_clusters
;
1320 alloc_cluster_offset
= entry
& L2E_OFFSET_MASK
;
1322 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1323 * should not free them. */
1324 keep_old_clusters
= true;
1327 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1329 if (!alloc_cluster_offset
) {
1330 /* Allocate, if necessary at a given offset in the image file */
1331 alloc_cluster_offset
= start_of_cluster(s
, *host_offset
);
1332 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1338 /* Can't extend contiguous allocation */
1339 if (nb_clusters
== 0) {
1344 /* !*host_offset would overwrite the image header and is reserved for
1345 * "no host offset preferred". If 0 was a valid host offset, it'd
1346 * trigger the following overlap check; do that now to avoid having an
1347 * invalid value in *host_offset. */
1348 if (!alloc_cluster_offset
) {
1349 ret
= qcow2_pre_write_overlap_check(bs
, 0, alloc_cluster_offset
,
1350 nb_clusters
* s
->cluster_size
);
1357 * Save info needed for meta data update.
1359 * requested_bytes: Number of bytes from the start of the first
1360 * newly allocated cluster to the end of the (possibly shortened
1361 * before) write request.
1363 * avail_bytes: Number of bytes from the start of the first
1364 * newly allocated to the end of the last newly allocated cluster.
1366 * nb_bytes: The number of bytes from the start of the first
1367 * newly allocated cluster to the end of the area that the write
1368 * request actually writes to (excluding COW at the end)
1370 uint64_t requested_bytes
= *bytes
+ offset_into_cluster(s
, guest_offset
);
1371 int avail_bytes
= MIN(INT_MAX
, nb_clusters
<< s
->cluster_bits
);
1372 int nb_bytes
= MIN(requested_bytes
, avail_bytes
);
1373 QCowL2Meta
*old_m
= *m
;
1375 *m
= g_malloc0(sizeof(**m
));
1377 **m
= (QCowL2Meta
) {
1380 .alloc_offset
= alloc_cluster_offset
,
1381 .offset
= start_of_cluster(s
, guest_offset
),
1382 .nb_clusters
= nb_clusters
,
1384 .keep_old_clusters
= keep_old_clusters
,
1388 .nb_bytes
= offset_into_cluster(s
, guest_offset
),
1392 .nb_bytes
= avail_bytes
- nb_bytes
,
1395 qemu_co_queue_init(&(*m
)->dependent_requests
);
1396 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1398 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1399 *bytes
= MIN(*bytes
, nb_bytes
- offset_into_cluster(s
, guest_offset
));
1400 assert(*bytes
!= 0);
1405 if (*m
&& (*m
)->nb_clusters
> 0) {
1406 QLIST_REMOVE(*m
, next_in_flight
);
1412 * alloc_cluster_offset
1414 * For a given offset on the virtual disk, find the cluster offset in qcow2
1415 * file. If the offset is not found, allocate a new cluster.
1417 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1418 * other fields in m are meaningless.
1420 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1421 * contiguous clusters that have been allocated. In this case, the other
1422 * fields of m are valid and contain information about the first allocated
1425 * If the request conflicts with another write request in flight, the coroutine
1426 * is queued and will be reentered when the dependency has completed.
1428 * Return 0 on success and -errno in error cases
1430 int qcow2_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
1431 unsigned int *bytes
, uint64_t *host_offset
,
1434 BDRVQcow2State
*s
= bs
->opaque
;
1435 uint64_t start
, remaining
;
1436 uint64_t cluster_offset
;
1440 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
, *bytes
);
1452 if (!*host_offset
) {
1453 *host_offset
= start_of_cluster(s
, cluster_offset
);
1456 assert(remaining
>= cur_bytes
);
1459 remaining
-= cur_bytes
;
1460 cluster_offset
+= cur_bytes
;
1462 if (remaining
== 0) {
1466 cur_bytes
= remaining
;
1469 * Now start gathering as many contiguous clusters as possible:
1471 * 1. Check for overlaps with in-flight allocations
1473 * a) Overlap not in the first cluster -> shorten this request and
1474 * let the caller handle the rest in its next loop iteration.
1476 * b) Real overlaps of two requests. Yield and restart the search
1477 * for contiguous clusters (the situation could have changed
1478 * while we were sleeping)
1480 * c) TODO: Request starts in the same cluster as the in-flight
1481 * allocation ends. Shorten the COW of the in-fight allocation,
1482 * set cluster_offset to write to the same cluster and set up
1483 * the right synchronisation between the in-flight request and
1486 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1487 if (ret
== -EAGAIN
) {
1488 /* Currently handle_dependencies() doesn't yield if we already had
1489 * an allocation. If it did, we would have to clean up the L2Meta
1490 * structs before starting over. */
1493 } else if (ret
< 0) {
1495 } else if (cur_bytes
== 0) {
1498 /* handle_dependencies() may have decreased cur_bytes (shortened
1499 * the allocations below) so that the next dependency is processed
1500 * correctly during the next loop iteration. */
1504 * 2. Count contiguous COPIED clusters.
1506 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1511 } else if (cur_bytes
== 0) {
1516 * 3. If the request still hasn't completed, allocate new clusters,
1517 * considering any cluster_offset of steps 1c or 2.
1519 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1525 assert(cur_bytes
== 0);
1530 *bytes
-= remaining
;
1532 assert(*host_offset
!= 0);
1537 static int decompress_buffer(uint8_t *out_buf
, int out_buf_size
,
1538 const uint8_t *buf
, int buf_size
)
1540 z_stream strm1
, *strm
= &strm1
;
1543 memset(strm
, 0, sizeof(*strm
));
1545 strm
->next_in
= (uint8_t *)buf
;
1546 strm
->avail_in
= buf_size
;
1547 strm
->next_out
= out_buf
;
1548 strm
->avail_out
= out_buf_size
;
1550 ret
= inflateInit2(strm
, -12);
1553 ret
= inflate(strm
, Z_FINISH
);
1554 out_len
= strm
->next_out
- out_buf
;
1555 if ((ret
!= Z_STREAM_END
&& ret
!= Z_BUF_ERROR
) ||
1556 out_len
!= out_buf_size
) {
1564 int qcow2_decompress_cluster(BlockDriverState
*bs
, uint64_t cluster_offset
)
1566 BDRVQcow2State
*s
= bs
->opaque
;
1567 int ret
, csize
, nb_csectors
, sector_offset
;
1570 coffset
= cluster_offset
& s
->cluster_offset_mask
;
1571 if (s
->cluster_cache_offset
!= coffset
) {
1572 nb_csectors
= ((cluster_offset
>> s
->csize_shift
) & s
->csize_mask
) + 1;
1573 sector_offset
= coffset
& 511;
1574 csize
= nb_csectors
* 512 - sector_offset
;
1576 /* Allocate buffers on first decompress operation, most images are
1577 * uncompressed and the memory overhead can be avoided. The buffers
1578 * are freed in .bdrv_close().
1580 if (!s
->cluster_data
) {
1581 /* one more sector for decompressed data alignment */
1582 s
->cluster_data
= qemu_try_blockalign(bs
->file
->bs
,
1583 QCOW_MAX_CRYPT_CLUSTERS
* s
->cluster_size
+ 512);
1584 if (!s
->cluster_data
) {
1588 if (!s
->cluster_cache
) {
1589 s
->cluster_cache
= g_malloc(s
->cluster_size
);
1592 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_COMPRESSED
);
1593 ret
= bdrv_read(bs
->file
, coffset
>> 9, s
->cluster_data
,
1598 if (decompress_buffer(s
->cluster_cache
, s
->cluster_size
,
1599 s
->cluster_data
+ sector_offset
, csize
) < 0) {
1602 s
->cluster_cache_offset
= coffset
;
1608 * This discards as many clusters of nb_clusters as possible at once (i.e.
1609 * all clusters in the same L2 table) and returns the number of discarded
1612 static int discard_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1613 uint64_t nb_clusters
, enum qcow2_discard_type type
,
1616 BDRVQcow2State
*s
= bs
->opaque
;
1622 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1627 /* Limit nb_clusters to one L2 table */
1628 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1629 assert(nb_clusters
<= INT_MAX
);
1631 for (i
= 0; i
< nb_clusters
; i
++) {
1632 uint64_t old_l2_entry
;
1634 old_l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1637 * If full_discard is false, make sure that a discarded area reads back
1638 * as zeroes for v3 images (we cannot do it for v2 without actually
1639 * writing a zero-filled buffer). We can skip the operation if the
1640 * cluster is already marked as zero, or if it's unallocated and we
1641 * don't have a backing file.
1643 * TODO We might want to use bdrv_block_status(bs) here, but we're
1644 * holding s->lock, so that doesn't work today.
1646 * If full_discard is true, the sector should not read back as zeroes,
1647 * but rather fall through to the backing file.
1649 switch (qcow2_get_cluster_type(old_l2_entry
)) {
1650 case QCOW2_CLUSTER_UNALLOCATED
:
1651 if (full_discard
|| !bs
->backing
) {
1656 case QCOW2_CLUSTER_ZERO_PLAIN
:
1657 if (!full_discard
) {
1662 case QCOW2_CLUSTER_ZERO_ALLOC
:
1663 case QCOW2_CLUSTER_NORMAL
:
1664 case QCOW2_CLUSTER_COMPRESSED
:
1671 /* First remove L2 entries */
1672 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
1673 if (!full_discard
&& s
->qcow_version
>= 3) {
1674 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1676 l2_table
[l2_index
+ i
] = cpu_to_be64(0);
1679 /* Then decrease the refcount */
1680 qcow2_free_any_clusters(bs
, old_l2_entry
, 1, type
);
1683 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1688 int qcow2_cluster_discard(BlockDriverState
*bs
, uint64_t offset
,
1689 uint64_t bytes
, enum qcow2_discard_type type
,
1692 BDRVQcow2State
*s
= bs
->opaque
;
1693 uint64_t end_offset
= offset
+ bytes
;
1694 uint64_t nb_clusters
;
1698 /* Caller must pass aligned values, except at image end */
1699 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
1700 assert(QEMU_IS_ALIGNED(end_offset
, s
->cluster_size
) ||
1701 end_offset
== bs
->total_sectors
<< BDRV_SECTOR_BITS
);
1703 nb_clusters
= size_to_clusters(s
, bytes
);
1705 s
->cache_discards
= true;
1707 /* Each L2 table is handled by its own loop iteration */
1708 while (nb_clusters
> 0) {
1709 cleared
= discard_single_l2(bs
, offset
, nb_clusters
, type
,
1716 nb_clusters
-= cleared
;
1717 offset
+= (cleared
* s
->cluster_size
);
1722 s
->cache_discards
= false;
1723 qcow2_process_discards(bs
, ret
);
1729 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1730 * all clusters in the same L2 table) and returns the number of zeroed
1733 static int zero_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1734 uint64_t nb_clusters
, int flags
)
1736 BDRVQcow2State
*s
= bs
->opaque
;
1741 bool unmap
= !!(flags
& BDRV_REQ_MAY_UNMAP
);
1743 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1748 /* Limit nb_clusters to one L2 table */
1749 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1750 assert(nb_clusters
<= INT_MAX
);
1752 for (i
= 0; i
< nb_clusters
; i
++) {
1753 uint64_t old_offset
;
1754 QCow2ClusterType cluster_type
;
1756 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1759 * Minimize L2 changes if the cluster already reads back as
1760 * zeroes with correct allocation.
1762 cluster_type
= qcow2_get_cluster_type(old_offset
);
1763 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
||
1764 (cluster_type
== QCOW2_CLUSTER_ZERO_ALLOC
&& !unmap
)) {
1768 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
1769 if (cluster_type
== QCOW2_CLUSTER_COMPRESSED
|| unmap
) {
1770 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1771 qcow2_free_any_clusters(bs
, old_offset
, 1, QCOW2_DISCARD_REQUEST
);
1773 l2_table
[l2_index
+ i
] |= cpu_to_be64(QCOW_OFLAG_ZERO
);
1777 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1782 int qcow2_cluster_zeroize(BlockDriverState
*bs
, uint64_t offset
,
1783 uint64_t bytes
, int flags
)
1785 BDRVQcow2State
*s
= bs
->opaque
;
1786 uint64_t end_offset
= offset
+ bytes
;
1787 uint64_t nb_clusters
;
1791 /* Caller must pass aligned values, except at image end */
1792 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
1793 assert(QEMU_IS_ALIGNED(end_offset
, s
->cluster_size
) ||
1794 end_offset
== bs
->total_sectors
<< BDRV_SECTOR_BITS
);
1796 /* The zero flag is only supported by version 3 and newer */
1797 if (s
->qcow_version
< 3) {
1801 /* Each L2 table is handled by its own loop iteration */
1802 nb_clusters
= size_to_clusters(s
, bytes
);
1804 s
->cache_discards
= true;
1806 while (nb_clusters
> 0) {
1807 cleared
= zero_single_l2(bs
, offset
, nb_clusters
, flags
);
1813 nb_clusters
-= cleared
;
1814 offset
+= (cleared
* s
->cluster_size
);
1819 s
->cache_discards
= false;
1820 qcow2_process_discards(bs
, ret
);
1826 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1827 * non-backed non-pre-allocated zero clusters).
1829 * l1_entries and *visited_l1_entries are used to keep track of progress for
1830 * status_cb(). l1_entries contains the total number of L1 entries and
1831 * *visited_l1_entries counts all visited L1 entries.
1833 static int expand_zero_clusters_in_l1(BlockDriverState
*bs
, uint64_t *l1_table
,
1834 int l1_size
, int64_t *visited_l1_entries
,
1836 BlockDriverAmendStatusCB
*status_cb
,
1839 BDRVQcow2State
*s
= bs
->opaque
;
1840 bool is_active_l1
= (l1_table
== s
->l1_table
);
1841 uint64_t *l2_table
= NULL
;
1845 if (!is_active_l1
) {
1846 /* inactive L2 tables require a buffer to be stored in when loading
1848 l2_table
= qemu_try_blockalign(bs
->file
->bs
, s
->cluster_size
);
1849 if (l2_table
== NULL
) {
1854 for (i
= 0; i
< l1_size
; i
++) {
1855 uint64_t l2_offset
= l1_table
[i
] & L1E_OFFSET_MASK
;
1856 bool l2_dirty
= false;
1857 uint64_t l2_refcount
;
1861 (*visited_l1_entries
)++;
1863 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
1868 if (offset_into_cluster(s
, l2_offset
)) {
1869 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
1870 PRIx64
" unaligned (L1 index: %#x)",
1877 /* get active L2 tables from cache */
1878 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
,
1879 (void **)&l2_table
);
1881 /* load inactive L2 tables from disk */
1882 ret
= bdrv_read(bs
->file
, l2_offset
/ BDRV_SECTOR_SIZE
,
1883 (void *)l2_table
, s
->cluster_sectors
);
1889 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1895 for (j
= 0; j
< s
->l2_size
; j
++) {
1896 uint64_t l2_entry
= be64_to_cpu(l2_table
[j
]);
1897 int64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
1898 QCow2ClusterType cluster_type
= qcow2_get_cluster_type(l2_entry
);
1900 if (cluster_type
!= QCOW2_CLUSTER_ZERO_PLAIN
&&
1901 cluster_type
!= QCOW2_CLUSTER_ZERO_ALLOC
) {
1905 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
1907 /* not backed; therefore we can simply deallocate the
1914 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
1920 if (l2_refcount
> 1) {
1921 /* For shared L2 tables, set the refcount accordingly (it is
1922 * already 1 and needs to be l2_refcount) */
1923 ret
= qcow2_update_cluster_refcount(bs
,
1924 offset
>> s
->cluster_bits
,
1925 refcount_diff(1, l2_refcount
), false,
1926 QCOW2_DISCARD_OTHER
);
1928 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1929 QCOW2_DISCARD_OTHER
);
1935 if (offset_into_cluster(s
, offset
)) {
1936 qcow2_signal_corruption(bs
, true, -1, -1,
1937 "Cluster allocation offset "
1938 "%#" PRIx64
" unaligned (L2 offset: %#"
1939 PRIx64
", L2 index: %#x)", offset
,
1941 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
1942 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1943 QCOW2_DISCARD_ALWAYS
);
1949 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
, s
->cluster_size
);
1951 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
1952 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1953 QCOW2_DISCARD_ALWAYS
);
1958 ret
= bdrv_pwrite_zeroes(bs
->file
, offset
, s
->cluster_size
, 0);
1960 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
1961 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1962 QCOW2_DISCARD_ALWAYS
);
1967 if (l2_refcount
== 1) {
1968 l2_table
[j
] = cpu_to_be64(offset
| QCOW_OFLAG_COPIED
);
1970 l2_table
[j
] = cpu_to_be64(offset
);
1977 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
1978 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
1980 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1983 ret
= qcow2_pre_write_overlap_check(bs
,
1984 QCOW2_OL_INACTIVE_L2
| QCOW2_OL_ACTIVE_L2
, l2_offset
,
1990 ret
= bdrv_write(bs
->file
, l2_offset
/ BDRV_SECTOR_SIZE
,
1991 (void *)l2_table
, s
->cluster_sectors
);
1998 (*visited_l1_entries
)++;
2000 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
2008 if (!is_active_l1
) {
2009 qemu_vfree(l2_table
);
2011 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
2018 * For backed images, expands all zero clusters on the image. For non-backed
2019 * images, deallocates all non-pre-allocated zero clusters (and claims the
2020 * allocation for pre-allocated ones). This is important for downgrading to a
2021 * qcow2 version which doesn't yet support metadata zero clusters.
2023 int qcow2_expand_zero_clusters(BlockDriverState
*bs
,
2024 BlockDriverAmendStatusCB
*status_cb
,
2027 BDRVQcow2State
*s
= bs
->opaque
;
2028 uint64_t *l1_table
= NULL
;
2029 int64_t l1_entries
= 0, visited_l1_entries
= 0;
2034 l1_entries
= s
->l1_size
;
2035 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2036 l1_entries
+= s
->snapshots
[i
].l1_size
;
2040 ret
= expand_zero_clusters_in_l1(bs
, s
->l1_table
, s
->l1_size
,
2041 &visited_l1_entries
, l1_entries
,
2042 status_cb
, cb_opaque
);
2047 /* Inactive L1 tables may point to active L2 tables - therefore it is
2048 * necessary to flush the L2 table cache before trying to access the L2
2049 * tables pointed to by inactive L1 entries (else we might try to expand
2050 * zero clusters that have already been expanded); furthermore, it is also
2051 * necessary to empty the L2 table cache, since it may contain tables which
2052 * are now going to be modified directly on disk, bypassing the cache.
2053 * qcow2_cache_empty() does both for us. */
2054 ret
= qcow2_cache_empty(bs
, s
->l2_table_cache
);
2059 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2060 int l1_sectors
= DIV_ROUND_UP(s
->snapshots
[i
].l1_size
*
2061 sizeof(uint64_t), BDRV_SECTOR_SIZE
);
2063 l1_table
= g_realloc(l1_table
, l1_sectors
* BDRV_SECTOR_SIZE
);
2065 ret
= bdrv_read(bs
->file
,
2066 s
->snapshots
[i
].l1_table_offset
/ BDRV_SECTOR_SIZE
,
2067 (void *)l1_table
, l1_sectors
);
2072 for (j
= 0; j
< s
->snapshots
[i
].l1_size
; j
++) {
2073 be64_to_cpus(&l1_table
[j
]);
2076 ret
= expand_zero_clusters_in_l1(bs
, l1_table
, s
->snapshots
[i
].l1_size
,
2077 &visited_l1_entries
, l1_entries
,
2078 status_cb
, cb_opaque
);