target/arm: Handle page table walk load failures correctly
[qemu/kevin.git] / target / arm / op_helper.c
blob712c5c55b666225552c7289fe443192c4ddbdad0
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/log.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/helper-proto.h"
24 #include "internals.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
28 #define SIGNBIT (uint32_t)0x80000000
29 #define SIGNBIT64 ((uint64_t)1 << 63)
31 static void raise_exception(CPUARMState *env, uint32_t excp,
32 uint32_t syndrome, uint32_t target_el)
34 CPUState *cs = CPU(arm_env_get_cpu(env));
36 assert(!excp_is_internal(excp));
37 cs->exception_index = excp;
38 env->exception.syndrome = syndrome;
39 env->exception.target_el = target_el;
40 cpu_loop_exit(cs);
43 static int exception_target_el(CPUARMState *env)
45 int target_el = MAX(1, arm_current_el(env));
47 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
48 * to EL3 in this case.
50 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
51 target_el = 3;
54 return target_el;
57 uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
58 uint32_t rn, uint32_t maxindex)
60 uint32_t val;
61 uint32_t tmp;
62 int index;
63 int shift;
64 uint64_t *table;
65 table = (uint64_t *)&env->vfp.regs[rn];
66 val = 0;
67 for (shift = 0; shift < 32; shift += 8) {
68 index = (ireg >> shift) & 0xff;
69 if (index < maxindex) {
70 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
71 val |= tmp << shift;
72 } else {
73 val |= def & (0xff << shift);
76 return val;
79 #if !defined(CONFIG_USER_ONLY)
81 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
82 unsigned int target_el,
83 bool same_el, bool ea,
84 bool s1ptw, bool is_write,
85 int fsc)
87 uint32_t syn;
89 /* ISV is only set for data aborts routed to EL2 and
90 * never for stage-1 page table walks faulting on stage 2.
92 * Furthermore, ISV is only set for certain kinds of load/stores.
93 * If the template syndrome does not have ISV set, we should leave
94 * it cleared.
96 * See ARMv8 specs, D7-1974:
97 * ISS encoding for an exception from a Data Abort, the
98 * ISV field.
100 if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
101 syn = syn_data_abort_no_iss(same_el,
102 ea, 0, s1ptw, is_write, fsc);
103 } else {
104 /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
105 * syndrome created at translation time.
106 * Now we create the runtime syndrome with the remaining fields.
108 syn = syn_data_abort_with_iss(same_el,
109 0, 0, 0, 0, 0,
110 ea, 0, s1ptw, is_write, fsc,
111 false);
112 /* Merge the runtime syndrome with the template syndrome. */
113 syn |= template_syn;
115 return syn;
118 static void deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type,
119 int mmu_idx, ARMMMUFaultInfo *fi)
121 CPUARMState *env = &cpu->env;
122 int target_el;
123 bool same_el;
124 uint32_t syn, exc, fsr, fsc;
125 ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
127 target_el = exception_target_el(env);
128 if (fi->stage2) {
129 target_el = 2;
130 env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
132 same_el = (arm_current_el(env) == target_el);
134 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
135 arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
136 /* LPAE format fault status register : bottom 6 bits are
137 * status code in the same form as needed for syndrome
139 fsr = arm_fi_to_lfsc(fi);
140 fsc = extract32(fsr, 0, 6);
141 } else {
142 fsr = arm_fi_to_sfsc(fi);
143 /* Short format FSR : this fault will never actually be reported
144 * to an EL that uses a syndrome register. Use a (currently)
145 * reserved FSR code in case the constructed syndrome does leak
146 * into the guest somehow.
148 fsc = 0x3f;
151 if (access_type == MMU_INST_FETCH) {
152 syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
153 exc = EXCP_PREFETCH_ABORT;
154 } else {
155 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
156 same_el, fi->ea, fi->s1ptw,
157 access_type == MMU_DATA_STORE,
158 fsc);
159 if (access_type == MMU_DATA_STORE
160 && arm_feature(env, ARM_FEATURE_V6)) {
161 fsr |= (1 << 11);
163 exc = EXCP_DATA_ABORT;
166 env->exception.vaddress = addr;
167 env->exception.fsr = fsr;
168 raise_exception(env, exc, syn, target_el);
171 /* try to fill the TLB and return an exception if error. If retaddr is
172 * NULL, it means that the function was called in C code (i.e. not
173 * from generated code or from helper.c)
175 void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
176 int mmu_idx, uintptr_t retaddr)
178 bool ret;
179 ARMMMUFaultInfo fi = {};
181 ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fi);
182 if (unlikely(ret)) {
183 ARMCPU *cpu = ARM_CPU(cs);
185 /* now we have a real cpu fault */
186 cpu_restore_state(cs, retaddr);
188 deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
192 /* Raise a data fault alignment exception for the specified virtual address */
193 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
194 MMUAccessType access_type,
195 int mmu_idx, uintptr_t retaddr)
197 ARMCPU *cpu = ARM_CPU(cs);
198 ARMMMUFaultInfo fi = {};
200 /* now we have a real cpu fault */
201 cpu_restore_state(cs, retaddr);
203 fi.type = ARMFault_Alignment;
204 deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
207 /* arm_cpu_do_transaction_failed: handle a memory system error response
208 * (eg "no device/memory present at address") by raising an external abort
209 * exception
211 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
212 vaddr addr, unsigned size,
213 MMUAccessType access_type,
214 int mmu_idx, MemTxAttrs attrs,
215 MemTxResult response, uintptr_t retaddr)
217 ARMCPU *cpu = ARM_CPU(cs);
218 ARMMMUFaultInfo fi = {};
220 /* now we have a real cpu fault */
221 cpu_restore_state(cs, retaddr);
223 fi.ea = arm_extabort_type(response);
224 fi.type = ARMFault_SyncExternal;
225 deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
228 #endif /* !defined(CONFIG_USER_ONLY) */
230 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
232 uint32_t res = a + b;
233 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
234 env->QF = 1;
235 return res;
238 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
240 uint32_t res = a + b;
241 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
242 env->QF = 1;
243 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
245 return res;
248 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
250 uint32_t res = a - b;
251 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
252 env->QF = 1;
253 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
255 return res;
258 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
260 uint32_t res;
261 if (val >= 0x40000000) {
262 res = ~SIGNBIT;
263 env->QF = 1;
264 } else if (val <= (int32_t)0xc0000000) {
265 res = SIGNBIT;
266 env->QF = 1;
267 } else {
268 res = val << 1;
270 return res;
273 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
275 uint32_t res = a + b;
276 if (res < a) {
277 env->QF = 1;
278 res = ~0;
280 return res;
283 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
285 uint32_t res = a - b;
286 if (res > a) {
287 env->QF = 1;
288 res = 0;
290 return res;
293 /* Signed saturation. */
294 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
296 int32_t top;
297 uint32_t mask;
299 top = val >> shift;
300 mask = (1u << shift) - 1;
301 if (top > 0) {
302 env->QF = 1;
303 return mask;
304 } else if (top < -1) {
305 env->QF = 1;
306 return ~mask;
308 return val;
311 /* Unsigned saturation. */
312 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
314 uint32_t max;
316 max = (1u << shift) - 1;
317 if (val < 0) {
318 env->QF = 1;
319 return 0;
320 } else if (val > max) {
321 env->QF = 1;
322 return max;
324 return val;
327 /* Signed saturate. */
328 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
330 return do_ssat(env, x, shift);
333 /* Dual halfword signed saturate. */
334 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
336 uint32_t res;
338 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
339 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
340 return res;
343 /* Unsigned saturate. */
344 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
346 return do_usat(env, x, shift);
349 /* Dual halfword unsigned saturate. */
350 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
352 uint32_t res;
354 res = (uint16_t)do_usat(env, (int16_t)x, shift);
355 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
356 return res;
359 void HELPER(setend)(CPUARMState *env)
361 env->uncached_cpsr ^= CPSR_E;
364 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
365 * The function returns the target EL (1-3) if the instruction is to be trapped;
366 * otherwise it returns 0 indicating it is not trapped.
368 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
370 int cur_el = arm_current_el(env);
371 uint64_t mask;
373 if (arm_feature(env, ARM_FEATURE_M)) {
374 /* M profile cores can never trap WFI/WFE. */
375 return 0;
378 /* If we are currently in EL0 then we need to check if SCTLR is set up for
379 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
381 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
382 int target_el;
384 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
385 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
386 /* Secure EL0 and Secure PL1 is at EL3 */
387 target_el = 3;
388 } else {
389 target_el = 1;
392 if (!(env->cp15.sctlr_el[target_el] & mask)) {
393 return target_el;
397 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
398 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
399 * bits will be zero indicating no trap.
401 if (cur_el < 2 && !arm_is_secure(env)) {
402 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
403 if (env->cp15.hcr_el2 & mask) {
404 return 2;
408 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
409 if (cur_el < 3) {
410 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
411 if (env->cp15.scr_el3 & mask) {
412 return 3;
416 return 0;
419 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
421 CPUState *cs = CPU(arm_env_get_cpu(env));
422 int target_el = check_wfx_trap(env, false);
424 if (cpu_has_work(cs)) {
425 /* Don't bother to go into our "low power state" if
426 * we would just wake up immediately.
428 return;
431 if (target_el) {
432 env->pc -= insn_len;
433 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
434 target_el);
437 cs->exception_index = EXCP_HLT;
438 cs->halted = 1;
439 cpu_loop_exit(cs);
442 void HELPER(wfe)(CPUARMState *env)
444 /* This is a hint instruction that is semantically different
445 * from YIELD even though we currently implement it identically.
446 * Don't actually halt the CPU, just yield back to top
447 * level loop. This is not going into a "low power state"
448 * (ie halting until some event occurs), so we never take
449 * a configurable trap to a different exception level.
451 HELPER(yield)(env);
454 void HELPER(yield)(CPUARMState *env)
456 ARMCPU *cpu = arm_env_get_cpu(env);
457 CPUState *cs = CPU(cpu);
459 /* This is a non-trappable hint instruction that generally indicates
460 * that the guest is currently busy-looping. Yield control back to the
461 * top level loop so that a more deserving VCPU has a chance to run.
463 cs->exception_index = EXCP_YIELD;
464 cpu_loop_exit(cs);
467 /* Raise an internal-to-QEMU exception. This is limited to only
468 * those EXCP values which are special cases for QEMU to interrupt
469 * execution and not to be used for exceptions which are passed to
470 * the guest (those must all have syndrome information and thus should
471 * use exception_with_syndrome).
473 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
475 CPUState *cs = CPU(arm_env_get_cpu(env));
477 assert(excp_is_internal(excp));
478 cs->exception_index = excp;
479 cpu_loop_exit(cs);
482 /* Raise an exception with the specified syndrome register value */
483 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
484 uint32_t syndrome, uint32_t target_el)
486 raise_exception(env, excp, syndrome, target_el);
489 uint32_t HELPER(cpsr_read)(CPUARMState *env)
491 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
494 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
496 cpsr_write(env, val, mask, CPSRWriteByInstr);
499 /* Write the CPSR for a 32-bit exception return */
500 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
502 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
504 /* Generated code has already stored the new PC value, but
505 * without masking out its low bits, because which bits need
506 * masking depends on whether we're returning to Thumb or ARM
507 * state. Do the masking now.
509 env->regs[15] &= (env->thumb ? ~1 : ~3);
511 qemu_mutex_lock_iothread();
512 arm_call_el_change_hook(arm_env_get_cpu(env));
513 qemu_mutex_unlock_iothread();
516 /* Access to user mode registers from privileged modes. */
517 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
519 uint32_t val;
521 if (regno == 13) {
522 val = env->banked_r13[BANK_USRSYS];
523 } else if (regno == 14) {
524 val = env->banked_r14[BANK_USRSYS];
525 } else if (regno >= 8
526 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
527 val = env->usr_regs[regno - 8];
528 } else {
529 val = env->regs[regno];
531 return val;
534 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
536 if (regno == 13) {
537 env->banked_r13[BANK_USRSYS] = val;
538 } else if (regno == 14) {
539 env->banked_r14[BANK_USRSYS] = val;
540 } else if (regno >= 8
541 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
542 env->usr_regs[regno - 8] = val;
543 } else {
544 env->regs[regno] = val;
548 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
550 if ((env->uncached_cpsr & CPSR_M) == mode) {
551 env->regs[13] = val;
552 } else {
553 env->banked_r13[bank_number(mode)] = val;
557 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
559 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
560 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
561 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
563 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
564 exception_target_el(env));
567 if ((env->uncached_cpsr & CPSR_M) == mode) {
568 return env->regs[13];
569 } else {
570 return env->banked_r13[bank_number(mode)];
574 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
575 uint32_t regno)
577 /* Raise an exception if the requested access is one of the UNPREDICTABLE
578 * cases; otherwise return. This broadly corresponds to the pseudocode
579 * BankedRegisterAccessValid() and SPSRAccessValid(),
580 * except that we have already handled some cases at translate time.
582 int curmode = env->uncached_cpsr & CPSR_M;
584 if (curmode == tgtmode) {
585 goto undef;
588 if (tgtmode == ARM_CPU_MODE_USR) {
589 switch (regno) {
590 case 8 ... 12:
591 if (curmode != ARM_CPU_MODE_FIQ) {
592 goto undef;
594 break;
595 case 13:
596 if (curmode == ARM_CPU_MODE_SYS) {
597 goto undef;
599 break;
600 case 14:
601 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
602 goto undef;
604 break;
605 default:
606 break;
610 if (tgtmode == ARM_CPU_MODE_HYP) {
611 switch (regno) {
612 case 17: /* ELR_Hyp */
613 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
614 goto undef;
616 break;
617 default:
618 if (curmode != ARM_CPU_MODE_MON) {
619 goto undef;
621 break;
625 return;
627 undef:
628 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
629 exception_target_el(env));
632 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
633 uint32_t regno)
635 msr_mrs_banked_exc_checks(env, tgtmode, regno);
637 switch (regno) {
638 case 16: /* SPSRs */
639 env->banked_spsr[bank_number(tgtmode)] = value;
640 break;
641 case 17: /* ELR_Hyp */
642 env->elr_el[2] = value;
643 break;
644 case 13:
645 env->banked_r13[bank_number(tgtmode)] = value;
646 break;
647 case 14:
648 env->banked_r14[bank_number(tgtmode)] = value;
649 break;
650 case 8 ... 12:
651 switch (tgtmode) {
652 case ARM_CPU_MODE_USR:
653 env->usr_regs[regno - 8] = value;
654 break;
655 case ARM_CPU_MODE_FIQ:
656 env->fiq_regs[regno - 8] = value;
657 break;
658 default:
659 g_assert_not_reached();
661 break;
662 default:
663 g_assert_not_reached();
667 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
669 msr_mrs_banked_exc_checks(env, tgtmode, regno);
671 switch (regno) {
672 case 16: /* SPSRs */
673 return env->banked_spsr[bank_number(tgtmode)];
674 case 17: /* ELR_Hyp */
675 return env->elr_el[2];
676 case 13:
677 return env->banked_r13[bank_number(tgtmode)];
678 case 14:
679 return env->banked_r14[bank_number(tgtmode)];
680 case 8 ... 12:
681 switch (tgtmode) {
682 case ARM_CPU_MODE_USR:
683 return env->usr_regs[regno - 8];
684 case ARM_CPU_MODE_FIQ:
685 return env->fiq_regs[regno - 8];
686 default:
687 g_assert_not_reached();
689 default:
690 g_assert_not_reached();
694 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
695 uint32_t isread)
697 const ARMCPRegInfo *ri = rip;
698 int target_el;
700 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
701 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
702 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
705 if (!ri->accessfn) {
706 return;
709 switch (ri->accessfn(env, ri, isread)) {
710 case CP_ACCESS_OK:
711 return;
712 case CP_ACCESS_TRAP:
713 target_el = exception_target_el(env);
714 break;
715 case CP_ACCESS_TRAP_EL2:
716 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
717 * a bug in the access function.
719 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
720 target_el = 2;
721 break;
722 case CP_ACCESS_TRAP_EL3:
723 target_el = 3;
724 break;
725 case CP_ACCESS_TRAP_UNCATEGORIZED:
726 target_el = exception_target_el(env);
727 syndrome = syn_uncategorized();
728 break;
729 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
730 target_el = 2;
731 syndrome = syn_uncategorized();
732 break;
733 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
734 target_el = 3;
735 syndrome = syn_uncategorized();
736 break;
737 case CP_ACCESS_TRAP_FP_EL2:
738 target_el = 2;
739 /* Since we are an implementation that takes exceptions on a trapped
740 * conditional insn only if the insn has passed its condition code
741 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
742 * (which is also the required value for AArch64 traps).
744 syndrome = syn_fp_access_trap(1, 0xe, false);
745 break;
746 case CP_ACCESS_TRAP_FP_EL3:
747 target_el = 3;
748 syndrome = syn_fp_access_trap(1, 0xe, false);
749 break;
750 default:
751 g_assert_not_reached();
754 raise_exception(env, EXCP_UDEF, syndrome, target_el);
757 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
759 const ARMCPRegInfo *ri = rip;
761 if (ri->type & ARM_CP_IO) {
762 qemu_mutex_lock_iothread();
763 ri->writefn(env, ri, value);
764 qemu_mutex_unlock_iothread();
765 } else {
766 ri->writefn(env, ri, value);
770 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
772 const ARMCPRegInfo *ri = rip;
773 uint32_t res;
775 if (ri->type & ARM_CP_IO) {
776 qemu_mutex_lock_iothread();
777 res = ri->readfn(env, ri);
778 qemu_mutex_unlock_iothread();
779 } else {
780 res = ri->readfn(env, ri);
783 return res;
786 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
788 const ARMCPRegInfo *ri = rip;
790 if (ri->type & ARM_CP_IO) {
791 qemu_mutex_lock_iothread();
792 ri->writefn(env, ri, value);
793 qemu_mutex_unlock_iothread();
794 } else {
795 ri->writefn(env, ri, value);
799 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
801 const ARMCPRegInfo *ri = rip;
802 uint64_t res;
804 if (ri->type & ARM_CP_IO) {
805 qemu_mutex_lock_iothread();
806 res = ri->readfn(env, ri);
807 qemu_mutex_unlock_iothread();
808 } else {
809 res = ri->readfn(env, ri);
812 return res;
815 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
817 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
818 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
819 * to catch that case at translate time.
821 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
822 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
823 extract32(op, 3, 3), 4,
824 imm, 0x1f, 0);
825 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
828 switch (op) {
829 case 0x05: /* SPSel */
830 update_spsel(env, imm);
831 break;
832 case 0x1e: /* DAIFSet */
833 env->daif |= (imm << 6) & PSTATE_DAIF;
834 break;
835 case 0x1f: /* DAIFClear */
836 env->daif &= ~((imm << 6) & PSTATE_DAIF);
837 break;
838 default:
839 g_assert_not_reached();
843 void HELPER(clear_pstate_ss)(CPUARMState *env)
845 env->pstate &= ~PSTATE_SS;
848 void HELPER(pre_hvc)(CPUARMState *env)
850 ARMCPU *cpu = arm_env_get_cpu(env);
851 int cur_el = arm_current_el(env);
852 /* FIXME: Use actual secure state. */
853 bool secure = false;
854 bool undef;
856 if (arm_is_psci_call(cpu, EXCP_HVC)) {
857 /* If PSCI is enabled and this looks like a valid PSCI call then
858 * that overrides the architecturally mandated HVC behaviour.
860 return;
863 if (!arm_feature(env, ARM_FEATURE_EL2)) {
864 /* If EL2 doesn't exist, HVC always UNDEFs */
865 undef = true;
866 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
867 /* EL3.HCE has priority over EL2.HCD. */
868 undef = !(env->cp15.scr_el3 & SCR_HCE);
869 } else {
870 undef = env->cp15.hcr_el2 & HCR_HCD;
873 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
874 * For ARMv8/AArch64, HVC is allowed in EL3.
875 * Note that we've already trapped HVC from EL0 at translation
876 * time.
878 if (secure && (!is_a64(env) || cur_el == 1)) {
879 undef = true;
882 if (undef) {
883 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
884 exception_target_el(env));
888 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
890 ARMCPU *cpu = arm_env_get_cpu(env);
891 int cur_el = arm_current_el(env);
892 bool secure = arm_is_secure(env);
893 bool smd = env->cp15.scr_el3 & SCR_SMD;
894 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
895 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
896 * extensions, SMD only applies to NS state.
897 * On ARMv7 without the Virtualization extensions, the SMD bit
898 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
899 * so we need not special case this here.
901 bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
903 if (!arm_feature(env, ARM_FEATURE_EL3) &&
904 cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
905 /* If we have no EL3 then SMC always UNDEFs and can't be
906 * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
907 * firmware within QEMU, and we want an EL2 guest to be able
908 * to forbid its EL1 from making PSCI calls into QEMU's
909 * "firmware" via HCR.TSC, so for these purposes treat
910 * PSCI-via-SMC as implying an EL3.
912 undef = true;
913 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
914 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
915 * We also want an EL2 guest to be able to forbid its EL1 from
916 * making PSCI calls into QEMU's "firmware" via HCR.TSC.
918 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
921 /* If PSCI is enabled and this looks like a valid PSCI call then
922 * suppress the UNDEF -- we'll catch the SMC exception and
923 * implement the PSCI call behaviour there.
925 if (undef && !arm_is_psci_call(cpu, EXCP_SMC)) {
926 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
927 exception_target_el(env));
931 static int el_from_spsr(uint32_t spsr)
933 /* Return the exception level that this SPSR is requesting a return to,
934 * or -1 if it is invalid (an illegal return)
936 if (spsr & PSTATE_nRW) {
937 switch (spsr & CPSR_M) {
938 case ARM_CPU_MODE_USR:
939 return 0;
940 case ARM_CPU_MODE_HYP:
941 return 2;
942 case ARM_CPU_MODE_FIQ:
943 case ARM_CPU_MODE_IRQ:
944 case ARM_CPU_MODE_SVC:
945 case ARM_CPU_MODE_ABT:
946 case ARM_CPU_MODE_UND:
947 case ARM_CPU_MODE_SYS:
948 return 1;
949 case ARM_CPU_MODE_MON:
950 /* Returning to Mon from AArch64 is never possible,
951 * so this is an illegal return.
953 default:
954 return -1;
956 } else {
957 if (extract32(spsr, 1, 1)) {
958 /* Return with reserved M[1] bit set */
959 return -1;
961 if (extract32(spsr, 0, 4) == 1) {
962 /* return to EL0 with M[0] bit set */
963 return -1;
965 return extract32(spsr, 2, 2);
969 void HELPER(exception_return)(CPUARMState *env)
971 int cur_el = arm_current_el(env);
972 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
973 uint32_t spsr = env->banked_spsr[spsr_idx];
974 int new_el;
975 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
977 aarch64_save_sp(env, cur_el);
979 arm_clear_exclusive(env);
981 /* We must squash the PSTATE.SS bit to zero unless both of the
982 * following hold:
983 * 1. debug exceptions are currently disabled
984 * 2. singlestep will be active in the EL we return to
985 * We check 1 here and 2 after we've done the pstate/cpsr write() to
986 * transition to the EL we're going to.
988 if (arm_generate_debug_exceptions(env)) {
989 spsr &= ~PSTATE_SS;
992 new_el = el_from_spsr(spsr);
993 if (new_el == -1) {
994 goto illegal_return;
996 if (new_el > cur_el
997 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
998 /* Disallow return to an EL which is unimplemented or higher
999 * than the current one.
1001 goto illegal_return;
1004 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
1005 /* Return to an EL which is configured for a different register width */
1006 goto illegal_return;
1009 if (new_el == 2 && arm_is_secure_below_el3(env)) {
1010 /* Return to the non-existent secure-EL2 */
1011 goto illegal_return;
1014 if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
1015 && !arm_is_secure_below_el3(env)) {
1016 goto illegal_return;
1019 if (!return_to_aa64) {
1020 env->aarch64 = 0;
1021 /* We do a raw CPSR write because aarch64_sync_64_to_32()
1022 * will sort the register banks out for us, and we've already
1023 * caught all the bad-mode cases in el_from_spsr().
1025 cpsr_write(env, spsr, ~0, CPSRWriteRaw);
1026 if (!arm_singlestep_active(env)) {
1027 env->uncached_cpsr &= ~PSTATE_SS;
1029 aarch64_sync_64_to_32(env);
1031 if (spsr & CPSR_T) {
1032 env->regs[15] = env->elr_el[cur_el] & ~0x1;
1033 } else {
1034 env->regs[15] = env->elr_el[cur_el] & ~0x3;
1036 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1037 "AArch32 EL%d PC 0x%" PRIx32 "\n",
1038 cur_el, new_el, env->regs[15]);
1039 } else {
1040 env->aarch64 = 1;
1041 pstate_write(env, spsr);
1042 if (!arm_singlestep_active(env)) {
1043 env->pstate &= ~PSTATE_SS;
1045 aarch64_restore_sp(env, new_el);
1046 env->pc = env->elr_el[cur_el];
1047 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1048 "AArch64 EL%d PC 0x%" PRIx64 "\n",
1049 cur_el, new_el, env->pc);
1052 qemu_mutex_lock_iothread();
1053 arm_call_el_change_hook(arm_env_get_cpu(env));
1054 qemu_mutex_unlock_iothread();
1056 return;
1058 illegal_return:
1059 /* Illegal return events of various kinds have architecturally
1060 * mandated behaviour:
1061 * restore NZCV and DAIF from SPSR_ELx
1062 * set PSTATE.IL
1063 * restore PC from ELR_ELx
1064 * no change to exception level, execution state or stack pointer
1066 env->pstate |= PSTATE_IL;
1067 env->pc = env->elr_el[cur_el];
1068 spsr &= PSTATE_NZCV | PSTATE_DAIF;
1069 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
1070 pstate_write(env, spsr);
1071 if (!arm_singlestep_active(env)) {
1072 env->pstate &= ~PSTATE_SS;
1074 qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
1075 "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1078 /* Return true if the linked breakpoint entry lbn passes its checks */
1079 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
1081 CPUARMState *env = &cpu->env;
1082 uint64_t bcr = env->cp15.dbgbcr[lbn];
1083 int brps = extract32(cpu->dbgdidr, 24, 4);
1084 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
1085 int bt;
1086 uint32_t contextidr;
1088 /* Links to unimplemented or non-context aware breakpoints are
1089 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
1090 * as if linked to an UNKNOWN context-aware breakpoint (in which
1091 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
1092 * We choose the former.
1094 if (lbn > brps || lbn < (brps - ctx_cmps)) {
1095 return false;
1098 bcr = env->cp15.dbgbcr[lbn];
1100 if (extract64(bcr, 0, 1) == 0) {
1101 /* Linked breakpoint disabled : generate no events */
1102 return false;
1105 bt = extract64(bcr, 20, 4);
1107 /* We match the whole register even if this is AArch32 using the
1108 * short descriptor format (in which case it holds both PROCID and ASID),
1109 * since we don't implement the optional v7 context ID masking.
1111 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
1113 switch (bt) {
1114 case 3: /* linked context ID match */
1115 if (arm_current_el(env) > 1) {
1116 /* Context matches never fire in EL2 or (AArch64) EL3 */
1117 return false;
1119 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
1120 case 5: /* linked address mismatch (reserved in AArch64) */
1121 case 9: /* linked VMID match (reserved if no EL2) */
1122 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1123 default:
1124 /* Links to Unlinked context breakpoints must generate no
1125 * events; we choose to do the same for reserved values too.
1127 return false;
1130 return false;
1133 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1135 CPUARMState *env = &cpu->env;
1136 uint64_t cr;
1137 int pac, hmc, ssc, wt, lbn;
1138 /* Note that for watchpoints the check is against the CPU security
1139 * state, not the S/NS attribute on the offending data access.
1141 bool is_secure = arm_is_secure(env);
1142 int access_el = arm_current_el(env);
1144 if (is_wp) {
1145 CPUWatchpoint *wp = env->cpu_watchpoint[n];
1147 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1148 return false;
1150 cr = env->cp15.dbgwcr[n];
1151 if (wp->hitattrs.user) {
1152 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1153 * match watchpoints as if they were accesses done at EL0, even if
1154 * the CPU is at EL1 or higher.
1156 access_el = 0;
1158 } else {
1159 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1161 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
1162 return false;
1164 cr = env->cp15.dbgbcr[n];
1166 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1167 * enabled and that the address and access type match; for breakpoints
1168 * we know the address matched; check the remaining fields, including
1169 * linked breakpoints. We rely on WCR and BCR having the same layout
1170 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1171 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1172 * must act either like some valid combination or as if the watchpoint
1173 * were disabled. We choose the former, and use this together with
1174 * the fact that EL3 must always be Secure and EL2 must always be
1175 * Non-Secure to simplify the code slightly compared to the full
1176 * table in the ARM ARM.
1178 pac = extract64(cr, 1, 2);
1179 hmc = extract64(cr, 13, 1);
1180 ssc = extract64(cr, 14, 2);
1182 switch (ssc) {
1183 case 0:
1184 break;
1185 case 1:
1186 case 3:
1187 if (is_secure) {
1188 return false;
1190 break;
1191 case 2:
1192 if (!is_secure) {
1193 return false;
1195 break;
1198 switch (access_el) {
1199 case 3:
1200 case 2:
1201 if (!hmc) {
1202 return false;
1204 break;
1205 case 1:
1206 if (extract32(pac, 0, 1) == 0) {
1207 return false;
1209 break;
1210 case 0:
1211 if (extract32(pac, 1, 1) == 0) {
1212 return false;
1214 break;
1215 default:
1216 g_assert_not_reached();
1219 wt = extract64(cr, 20, 1);
1220 lbn = extract64(cr, 16, 4);
1222 if (wt && !linked_bp_matches(cpu, lbn)) {
1223 return false;
1226 return true;
1229 static bool check_watchpoints(ARMCPU *cpu)
1231 CPUARMState *env = &cpu->env;
1232 int n;
1234 /* If watchpoints are disabled globally or we can't take debug
1235 * exceptions here then watchpoint firings are ignored.
1237 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1238 || !arm_generate_debug_exceptions(env)) {
1239 return false;
1242 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1243 if (bp_wp_matches(cpu, n, true)) {
1244 return true;
1247 return false;
1250 static bool check_breakpoints(ARMCPU *cpu)
1252 CPUARMState *env = &cpu->env;
1253 int n;
1255 /* If breakpoints are disabled globally or we can't take debug
1256 * exceptions here then breakpoint firings are ignored.
1258 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1259 || !arm_generate_debug_exceptions(env)) {
1260 return false;
1263 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
1264 if (bp_wp_matches(cpu, n, false)) {
1265 return true;
1268 return false;
1271 void HELPER(check_breakpoints)(CPUARMState *env)
1273 ARMCPU *cpu = arm_env_get_cpu(env);
1275 if (check_breakpoints(cpu)) {
1276 HELPER(exception_internal(env, EXCP_DEBUG));
1280 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
1282 /* Called by core code when a CPU watchpoint fires; need to check if this
1283 * is also an architectural watchpoint match.
1285 ARMCPU *cpu = ARM_CPU(cs);
1287 return check_watchpoints(cpu);
1290 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
1292 ARMCPU *cpu = ARM_CPU(cs);
1293 CPUARMState *env = &cpu->env;
1295 /* In BE32 system mode, target memory is stored byteswapped (on a
1296 * little-endian host system), and by the time we reach here (via an
1297 * opcode helper) the addresses of subword accesses have been adjusted
1298 * to account for that, which means that watchpoints will not match.
1299 * Undo the adjustment here.
1301 if (arm_sctlr_b(env)) {
1302 if (len == 1) {
1303 addr ^= 3;
1304 } else if (len == 2) {
1305 addr ^= 2;
1309 return addr;
1312 void arm_debug_excp_handler(CPUState *cs)
1314 /* Called by core code when a watchpoint or breakpoint fires;
1315 * need to check which one and raise the appropriate exception.
1317 ARMCPU *cpu = ARM_CPU(cs);
1318 CPUARMState *env = &cpu->env;
1319 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
1321 if (wp_hit) {
1322 if (wp_hit->flags & BP_CPU) {
1323 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
1324 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
1326 cs->watchpoint_hit = NULL;
1328 if (extended_addresses_enabled(env)) {
1329 env->exception.fsr = (1 << 9) | 0x22;
1330 } else {
1331 env->exception.fsr = 0x2;
1333 env->exception.vaddress = wp_hit->hitaddr;
1334 raise_exception(env, EXCP_DATA_ABORT,
1335 syn_watchpoint(same_el, 0, wnr),
1336 arm_debug_target_el(env));
1338 } else {
1339 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1340 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1342 /* (1) GDB breakpoints should be handled first.
1343 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1344 * since singlestep is also done by generating a debug internal
1345 * exception.
1347 if (cpu_breakpoint_test(cs, pc, BP_GDB)
1348 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1349 return;
1352 if (extended_addresses_enabled(env)) {
1353 env->exception.fsr = (1 << 9) | 0x22;
1354 } else {
1355 env->exception.fsr = 0x2;
1357 /* FAR is UNKNOWN, so doesn't need setting */
1358 raise_exception(env, EXCP_PREFETCH_ABORT,
1359 syn_breakpoint(same_el),
1360 arm_debug_target_el(env));
1364 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1365 The only way to do that in TCG is a conditional branch, which clobbers
1366 all our temporaries. For now implement these as helper functions. */
1368 /* Similarly for variable shift instructions. */
1370 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1372 int shift = i & 0xff;
1373 if (shift >= 32) {
1374 if (shift == 32)
1375 env->CF = x & 1;
1376 else
1377 env->CF = 0;
1378 return 0;
1379 } else if (shift != 0) {
1380 env->CF = (x >> (32 - shift)) & 1;
1381 return x << shift;
1383 return x;
1386 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1388 int shift = i & 0xff;
1389 if (shift >= 32) {
1390 if (shift == 32)
1391 env->CF = (x >> 31) & 1;
1392 else
1393 env->CF = 0;
1394 return 0;
1395 } else if (shift != 0) {
1396 env->CF = (x >> (shift - 1)) & 1;
1397 return x >> shift;
1399 return x;
1402 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1404 int shift = i & 0xff;
1405 if (shift >= 32) {
1406 env->CF = (x >> 31) & 1;
1407 return (int32_t)x >> 31;
1408 } else if (shift != 0) {
1409 env->CF = (x >> (shift - 1)) & 1;
1410 return (int32_t)x >> shift;
1412 return x;
1415 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1417 int shift1, shift;
1418 shift1 = i & 0xff;
1419 shift = shift1 & 0x1f;
1420 if (shift == 0) {
1421 if (shift1 != 0)
1422 env->CF = (x >> 31) & 1;
1423 return x;
1424 } else {
1425 env->CF = (x >> (shift - 1)) & 1;
1426 return ((uint32_t)x >> shift) | (x << (32 - shift));