2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/exec-all.h"
23 #include "exec/memory.h"
24 #include "exec/address-spaces.h"
25 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "exec/exec-all.h"
33 #include "qemu/error-report.h"
36 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
37 /* #define DEBUG_TLB */
38 /* #define DEBUG_TLB_LOG */
41 # define DEBUG_TLB_GATE 1
43 # define DEBUG_TLB_LOG_GATE 1
45 # define DEBUG_TLB_LOG_GATE 0
48 # define DEBUG_TLB_GATE 0
49 # define DEBUG_TLB_LOG_GATE 0
52 #define tlb_debug(fmt, ...) do { \
53 if (DEBUG_TLB_LOG_GATE) { \
54 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
56 } else if (DEBUG_TLB_GATE) { \
57 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
65 * If flush_global is true (the usual case), flush all tlb entries.
66 * If flush_global is false, flush (at least) all tlb entries not
69 * Since QEMU doesn't currently implement a global/not-global flag
70 * for tlb entries, at the moment tlb_flush() will also flush all
71 * tlb entries in the flush_global == false case. This is OK because
72 * CPU architectures generally permit an implementation to drop
73 * entries from the TLB at any time, so flushing more entries than
74 * required is only an efficiency issue, not a correctness issue.
76 void tlb_flush(CPUState
*cpu
, int flush_global
)
78 CPUArchState
*env
= cpu
->env_ptr
;
80 tlb_debug("(%d)\n", flush_global
);
82 memset(env
->tlb_table
, -1, sizeof(env
->tlb_table
));
83 memset(env
->tlb_v_table
, -1, sizeof(env
->tlb_v_table
));
84 memset(cpu
->tb_jmp_cache
, 0, sizeof(cpu
->tb_jmp_cache
));
87 env
->tlb_flush_addr
= -1;
88 env
->tlb_flush_mask
= 0;
92 static inline void v_tlb_flush_by_mmuidx(CPUState
*cpu
, va_list argp
)
94 CPUArchState
*env
= cpu
->env_ptr
;
99 int mmu_idx
= va_arg(argp
, int);
105 tlb_debug("%d\n", mmu_idx
);
107 memset(env
->tlb_table
[mmu_idx
], -1, sizeof(env
->tlb_table
[0]));
108 memset(env
->tlb_v_table
[mmu_idx
], -1, sizeof(env
->tlb_v_table
[0]));
111 memset(cpu
->tb_jmp_cache
, 0, sizeof(cpu
->tb_jmp_cache
));
114 void tlb_flush_by_mmuidx(CPUState
*cpu
, ...)
118 v_tlb_flush_by_mmuidx(cpu
, argp
);
122 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
124 if (addr
== (tlb_entry
->addr_read
&
125 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
126 addr
== (tlb_entry
->addr_write
&
127 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
128 addr
== (tlb_entry
->addr_code
&
129 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
130 memset(tlb_entry
, -1, sizeof(*tlb_entry
));
134 void tlb_flush_page(CPUState
*cpu
, target_ulong addr
)
136 CPUArchState
*env
= cpu
->env_ptr
;
140 tlb_debug("page :" TARGET_FMT_lx
"\n", addr
);
142 /* Check if we need to flush due to large pages. */
143 if ((addr
& env
->tlb_flush_mask
) == env
->tlb_flush_addr
) {
144 tlb_debug("forcing full flush ("
145 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
146 env
->tlb_flush_addr
, env
->tlb_flush_mask
);
152 addr
&= TARGET_PAGE_MASK
;
153 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
154 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
155 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
158 /* check whether there are entries that need to be flushed in the vtlb */
159 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
161 for (k
= 0; k
< CPU_VTLB_SIZE
; k
++) {
162 tlb_flush_entry(&env
->tlb_v_table
[mmu_idx
][k
], addr
);
166 tb_flush_jmp_cache(cpu
, addr
);
169 void tlb_flush_page_by_mmuidx(CPUState
*cpu
, target_ulong addr
, ...)
171 CPUArchState
*env
= cpu
->env_ptr
;
175 va_start(argp
, addr
);
177 tlb_debug("addr "TARGET_FMT_lx
"\n", addr
);
179 /* Check if we need to flush due to large pages. */
180 if ((addr
& env
->tlb_flush_mask
) == env
->tlb_flush_addr
) {
181 tlb_debug("forced full flush ("
182 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
183 env
->tlb_flush_addr
, env
->tlb_flush_mask
);
185 v_tlb_flush_by_mmuidx(cpu
, argp
);
190 addr
&= TARGET_PAGE_MASK
;
191 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
194 int mmu_idx
= va_arg(argp
, int);
200 tlb_debug("idx %d\n", mmu_idx
);
202 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
204 /* check whether there are vltb entries that need to be flushed */
205 for (k
= 0; k
< CPU_VTLB_SIZE
; k
++) {
206 tlb_flush_entry(&env
->tlb_v_table
[mmu_idx
][k
], addr
);
211 tb_flush_jmp_cache(cpu
, addr
);
214 /* update the TLBs so that writes to code in the virtual page 'addr'
216 void tlb_protect_code(ram_addr_t ram_addr
)
218 cpu_physical_memory_test_and_clear_dirty(ram_addr
, TARGET_PAGE_SIZE
,
222 /* update the TLB so that writes in physical page 'phys_addr' are no longer
223 tested for self modifying code */
224 void tlb_unprotect_code(ram_addr_t ram_addr
)
226 cpu_physical_memory_set_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
);
229 static bool tlb_is_dirty_ram(CPUTLBEntry
*tlbe
)
231 return (tlbe
->addr_write
& (TLB_INVALID_MASK
|TLB_MMIO
|TLB_NOTDIRTY
)) == 0;
234 void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
, uintptr_t start
,
239 if (tlb_is_dirty_ram(tlb_entry
)) {
240 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
241 if ((addr
- start
) < length
) {
242 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
247 static inline ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
251 ram_addr
= qemu_ram_addr_from_host(ptr
);
252 if (ram_addr
== RAM_ADDR_INVALID
) {
253 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
259 void tlb_reset_dirty(CPUState
*cpu
, ram_addr_t start1
, ram_addr_t length
)
266 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
269 for (i
= 0; i
< CPU_TLB_SIZE
; i
++) {
270 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
274 for (i
= 0; i
< CPU_VTLB_SIZE
; i
++) {
275 tlb_reset_dirty_range(&env
->tlb_v_table
[mmu_idx
][i
],
281 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
283 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
)) {
284 tlb_entry
->addr_write
= vaddr
;
288 /* update the TLB corresponding to virtual page vaddr
289 so that it is no longer dirty */
290 void tlb_set_dirty(CPUState
*cpu
, target_ulong vaddr
)
292 CPUArchState
*env
= cpu
->env_ptr
;
296 vaddr
&= TARGET_PAGE_MASK
;
297 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
298 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
299 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
302 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
304 for (k
= 0; k
< CPU_VTLB_SIZE
; k
++) {
305 tlb_set_dirty1(&env
->tlb_v_table
[mmu_idx
][k
], vaddr
);
310 /* Our TLB does not support large pages, so remember the area covered by
311 large pages and trigger a full TLB flush if these are invalidated. */
312 static void tlb_add_large_page(CPUArchState
*env
, target_ulong vaddr
,
315 target_ulong mask
= ~(size
- 1);
317 if (env
->tlb_flush_addr
== (target_ulong
)-1) {
318 env
->tlb_flush_addr
= vaddr
& mask
;
319 env
->tlb_flush_mask
= mask
;
322 /* Extend the existing region to include the new page.
323 This is a compromise between unnecessary flushes and the cost
324 of maintaining a full variable size TLB. */
325 mask
&= env
->tlb_flush_mask
;
326 while (((env
->tlb_flush_addr
^ vaddr
) & mask
) != 0) {
329 env
->tlb_flush_addr
&= mask
;
330 env
->tlb_flush_mask
= mask
;
333 /* Add a new TLB entry. At most one entry for a given virtual address
334 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
335 * supplied size is only used by tlb_flush_page.
337 * Called from TCG-generated code, which is under an RCU read-side
340 void tlb_set_page_with_attrs(CPUState
*cpu
, target_ulong vaddr
,
341 hwaddr paddr
, MemTxAttrs attrs
, int prot
,
342 int mmu_idx
, target_ulong size
)
344 CPUArchState
*env
= cpu
->env_ptr
;
345 MemoryRegionSection
*section
;
347 target_ulong address
;
348 target_ulong code_address
;
351 hwaddr iotlb
, xlat
, sz
;
352 unsigned vidx
= env
->vtlb_index
++ % CPU_VTLB_SIZE
;
353 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
355 assert(size
>= TARGET_PAGE_SIZE
);
356 if (size
!= TARGET_PAGE_SIZE
) {
357 tlb_add_large_page(env
, vaddr
, size
);
361 section
= address_space_translate_for_iotlb(cpu
, asidx
, paddr
, &xlat
, &sz
);
362 assert(sz
>= TARGET_PAGE_SIZE
);
364 tlb_debug("vaddr=" TARGET_FMT_lx
" paddr=0x" TARGET_FMT_plx
366 vaddr
, paddr
, prot
, mmu_idx
);
369 if (!memory_region_is_ram(section
->mr
) && !memory_region_is_romd(section
->mr
)) {
374 /* TLB_MMIO for rom/romd handled below */
375 addend
= (uintptr_t)memory_region_get_ram_ptr(section
->mr
) + xlat
;
378 code_address
= address
;
379 iotlb
= memory_region_section_get_iotlb(cpu
, section
, vaddr
, paddr
, xlat
,
382 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
383 te
= &env
->tlb_table
[mmu_idx
][index
];
385 /* do not discard the translation in te, evict it into a victim tlb */
386 env
->tlb_v_table
[mmu_idx
][vidx
] = *te
;
387 env
->iotlb_v
[mmu_idx
][vidx
] = env
->iotlb
[mmu_idx
][index
];
390 env
->iotlb
[mmu_idx
][index
].addr
= iotlb
- vaddr
;
391 env
->iotlb
[mmu_idx
][index
].attrs
= attrs
;
392 te
->addend
= addend
- vaddr
;
393 if (prot
& PAGE_READ
) {
394 te
->addr_read
= address
;
399 if (prot
& PAGE_EXEC
) {
400 te
->addr_code
= code_address
;
404 if (prot
& PAGE_WRITE
) {
405 if ((memory_region_is_ram(section
->mr
) && section
->readonly
)
406 || memory_region_is_romd(section
->mr
)) {
407 /* Write access calls the I/O callback. */
408 te
->addr_write
= address
| TLB_MMIO
;
409 } else if (memory_region_is_ram(section
->mr
)
410 && cpu_physical_memory_is_clean(
411 memory_region_get_ram_addr(section
->mr
) + xlat
)) {
412 te
->addr_write
= address
| TLB_NOTDIRTY
;
414 te
->addr_write
= address
;
421 /* Add a new TLB entry, but without specifying the memory
422 * transaction attributes to be used.
424 void tlb_set_page(CPUState
*cpu
, target_ulong vaddr
,
425 hwaddr paddr
, int prot
,
426 int mmu_idx
, target_ulong size
)
428 tlb_set_page_with_attrs(cpu
, vaddr
, paddr
, MEMTXATTRS_UNSPECIFIED
,
429 prot
, mmu_idx
, size
);
432 static void report_bad_exec(CPUState
*cpu
, target_ulong addr
)
434 /* Accidentally executing outside RAM or ROM is quite common for
435 * several user-error situations, so report it in a way that
436 * makes it clear that this isn't a QEMU bug and provide suggestions
437 * about what a user could do to fix things.
439 error_report("Trying to execute code outside RAM or ROM at 0x"
440 TARGET_FMT_lx
, addr
);
441 error_printf("This usually means one of the following happened:\n\n"
442 "(1) You told QEMU to execute a kernel for the wrong machine "
443 "type, and it crashed on startup (eg trying to run a "
444 "raspberry pi kernel on a versatilepb QEMU machine)\n"
445 "(2) You didn't give QEMU a kernel or BIOS filename at all, "
446 "and QEMU executed a ROM full of no-op instructions until "
447 "it fell off the end\n"
448 "(3) Your guest kernel has a bug and crashed by jumping "
449 "off into nowhere\n\n"
450 "This is almost always one of the first two, so check your "
451 "command line and that you are using the right type of kernel "
452 "for this machine.\n"
453 "If you think option (3) is likely then you can try debugging "
454 "your guest with the -d debug options; in particular "
455 "-d guest_errors will cause the log to include a dump of the "
456 "guest register state at this point.\n\n"
457 "Execution cannot continue; stopping here.\n\n");
459 /* Report also to the logs, with more detail including register dump */
460 qemu_log_mask(LOG_GUEST_ERROR
, "qemu: fatal: Trying to execute code "
461 "outside RAM or ROM at 0x" TARGET_FMT_lx
"\n", addr
);
462 log_cpu_state_mask(LOG_GUEST_ERROR
, cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
465 /* NOTE: this function can trigger an exception */
466 /* NOTE2: the returned address is not exactly the physical address: it
467 * is actually a ram_addr_t (in system mode; the user mode emulation
468 * version of this function returns a guest virtual address).
470 tb_page_addr_t
get_page_addr_code(CPUArchState
*env1
, target_ulong addr
)
472 int mmu_idx
, page_index
, pd
;
475 CPUState
*cpu
= ENV_GET_CPU(env1
);
476 CPUIOTLBEntry
*iotlbentry
;
478 page_index
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
479 mmu_idx
= cpu_mmu_index(env1
, true);
480 if (unlikely(env1
->tlb_table
[mmu_idx
][page_index
].addr_code
!=
481 (addr
& TARGET_PAGE_MASK
))) {
482 cpu_ldub_code(env1
, addr
);
484 iotlbentry
= &env1
->iotlb
[mmu_idx
][page_index
];
485 pd
= iotlbentry
->addr
& ~TARGET_PAGE_MASK
;
486 mr
= iotlb_to_region(cpu
, pd
, iotlbentry
->attrs
);
487 if (memory_region_is_unassigned(mr
)) {
488 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
490 if (cc
->do_unassigned_access
) {
491 cc
->do_unassigned_access(cpu
, addr
, false, true, 0, 4);
493 report_bad_exec(cpu
, addr
);
497 p
= (void *)((uintptr_t)addr
+ env1
->tlb_table
[mmu_idx
][page_index
].addend
);
498 return qemu_ram_addr_from_host_nofail(p
);
501 #define MMUSUFFIX _mmu
504 #include "softmmu_template.h"
507 #include "softmmu_template.h"
510 #include "softmmu_template.h"
513 #include "softmmu_template.h"
516 #define MMUSUFFIX _cmmu
520 #define GETRA() ((uintptr_t)0)
521 #define SOFTMMU_CODE_ACCESS
524 #include "softmmu_template.h"
527 #include "softmmu_template.h"
530 #include "softmmu_template.h"
533 #include "softmmu_template.h"