4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include <sys/types.h>
25 #include "qemu-common.h"
30 #include "qemu/osdep.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/xen/xen.h"
34 #include "qemu/timer.h"
35 #include "qemu/config-file.h"
36 #include "qemu/error-report.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
52 #include "exec/ram_addr.h"
54 #include "qemu/range.h"
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 static bool in_migration
;
61 RAMList ram_list
= { .blocks
= QTAILQ_HEAD_INITIALIZER(ram_list
.blocks
) };
63 static MemoryRegion
*system_memory
;
64 static MemoryRegion
*system_io
;
66 AddressSpace address_space_io
;
67 AddressSpace address_space_memory
;
69 MemoryRegion io_mem_rom
, io_mem_notdirty
;
70 static MemoryRegion io_mem_unassigned
;
72 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
73 #define RAM_PREALLOC (1 << 0)
75 /* RAM is mmap-ed with MAP_SHARED */
76 #define RAM_SHARED (1 << 1)
78 /* Only a portion of RAM (used_length) is actually used, and migrated.
79 * This used_length size can change across reboots.
81 #define RAM_RESIZEABLE (1 << 2)
85 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
86 /* current CPU in the current thread. It is only valid inside
88 DEFINE_TLS(CPUState
*, current_cpu
);
89 /* 0 = Do not count executed instructions.
90 1 = Precise instruction counting.
91 2 = Adaptive rate instruction counting. */
94 #if !defined(CONFIG_USER_ONLY)
96 typedef struct PhysPageEntry PhysPageEntry
;
98 struct PhysPageEntry
{
99 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
101 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
105 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
107 /* Size of the L2 (and L3, etc) page tables. */
108 #define ADDR_SPACE_BITS 64
111 #define P_L2_SIZE (1 << P_L2_BITS)
113 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
115 typedef PhysPageEntry Node
[P_L2_SIZE
];
117 typedef struct PhysPageMap
{
118 unsigned sections_nb
;
119 unsigned sections_nb_alloc
;
121 unsigned nodes_nb_alloc
;
123 MemoryRegionSection
*sections
;
126 struct AddressSpaceDispatch
{
127 /* This is a multi-level map on the physical address space.
128 * The bottom level has pointers to MemoryRegionSections.
130 PhysPageEntry phys_map
;
135 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
136 typedef struct subpage_t
{
140 uint16_t sub_section
[TARGET_PAGE_SIZE
];
143 #define PHYS_SECTION_UNASSIGNED 0
144 #define PHYS_SECTION_NOTDIRTY 1
145 #define PHYS_SECTION_ROM 2
146 #define PHYS_SECTION_WATCH 3
148 static void io_mem_init(void);
149 static void memory_map_init(void);
150 static void tcg_commit(MemoryListener
*listener
);
152 static MemoryRegion io_mem_watch
;
155 #if !defined(CONFIG_USER_ONLY)
157 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
159 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
160 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
* 2, 16);
161 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
162 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
166 static uint32_t phys_map_node_alloc(PhysPageMap
*map
)
171 ret
= map
->nodes_nb
++;
172 assert(ret
!= PHYS_MAP_NODE_NIL
);
173 assert(ret
!= map
->nodes_nb_alloc
);
174 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
175 map
->nodes
[ret
][i
].skip
= 1;
176 map
->nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
181 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
182 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
187 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
189 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
190 lp
->ptr
= phys_map_node_alloc(map
);
191 p
= map
->nodes
[lp
->ptr
];
193 for (i
= 0; i
< P_L2_SIZE
; i
++) {
195 p
[i
].ptr
= PHYS_SECTION_UNASSIGNED
;
199 p
= map
->nodes
[lp
->ptr
];
201 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
203 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
204 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
210 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
216 static void phys_page_set(AddressSpaceDispatch
*d
,
217 hwaddr index
, hwaddr nb
,
220 /* Wildly overreserve - it doesn't matter much. */
221 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
223 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
226 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
227 * and update our entry so we can skip it and go directly to the destination.
229 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
231 unsigned valid_ptr
= P_L2_SIZE
;
236 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
241 for (i
= 0; i
< P_L2_SIZE
; i
++) {
242 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
249 phys_page_compact(&p
[i
], nodes
, compacted
);
253 /* We can only compress if there's only one child. */
258 assert(valid_ptr
< P_L2_SIZE
);
260 /* Don't compress if it won't fit in the # of bits we have. */
261 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
265 lp
->ptr
= p
[valid_ptr
].ptr
;
266 if (!p
[valid_ptr
].skip
) {
267 /* If our only child is a leaf, make this a leaf. */
268 /* By design, we should have made this node a leaf to begin with so we
269 * should never reach here.
270 * But since it's so simple to handle this, let's do it just in case we
275 lp
->skip
+= p
[valid_ptr
].skip
;
279 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
281 DECLARE_BITMAP(compacted
, nodes_nb
);
283 if (d
->phys_map
.skip
) {
284 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
288 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
289 Node
*nodes
, MemoryRegionSection
*sections
)
292 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
295 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
296 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
297 return §ions
[PHYS_SECTION_UNASSIGNED
];
300 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
303 if (sections
[lp
.ptr
].size
.hi
||
304 range_covers_byte(sections
[lp
.ptr
].offset_within_address_space
,
305 sections
[lp
.ptr
].size
.lo
, addr
)) {
306 return §ions
[lp
.ptr
];
308 return §ions
[PHYS_SECTION_UNASSIGNED
];
312 bool memory_region_is_unassigned(MemoryRegion
*mr
)
314 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
315 && mr
!= &io_mem_watch
;
318 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
320 bool resolve_subpage
)
322 MemoryRegionSection
*section
;
325 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
, d
->map
.sections
);
326 if (resolve_subpage
&& section
->mr
->subpage
) {
327 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
328 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
333 static MemoryRegionSection
*
334 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
335 hwaddr
*plen
, bool resolve_subpage
)
337 MemoryRegionSection
*section
;
340 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
341 /* Compute offset within MemoryRegionSection */
342 addr
-= section
->offset_within_address_space
;
344 /* Compute offset within MemoryRegion */
345 *xlat
= addr
+ section
->offset_within_region
;
347 diff
= int128_sub(section
->mr
->size
, int128_make64(addr
));
348 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
352 static inline bool memory_access_is_direct(MemoryRegion
*mr
, bool is_write
)
354 if (memory_region_is_ram(mr
)) {
355 return !(is_write
&& mr
->readonly
);
357 if (memory_region_is_romd(mr
)) {
364 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
365 hwaddr
*xlat
, hwaddr
*plen
,
369 MemoryRegionSection
*section
;
374 section
= address_space_translate_internal(as
->dispatch
, addr
, &addr
, plen
, true);
377 if (!mr
->iommu_ops
) {
381 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
382 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
383 | (addr
& iotlb
.addr_mask
));
384 len
= MIN(len
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
385 if (!(iotlb
.perm
& (1 << is_write
))) {
386 mr
= &io_mem_unassigned
;
390 as
= iotlb
.target_as
;
393 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
394 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
395 len
= MIN(page
, len
);
403 MemoryRegionSection
*
404 address_space_translate_for_iotlb(AddressSpace
*as
, hwaddr addr
, hwaddr
*xlat
,
407 MemoryRegionSection
*section
;
408 section
= address_space_translate_internal(as
->dispatch
, addr
, xlat
, plen
, false);
410 assert(!section
->mr
->iommu_ops
);
415 void cpu_exec_init_all(void)
417 #if !defined(CONFIG_USER_ONLY)
418 qemu_mutex_init(&ram_list
.mutex
);
424 #if !defined(CONFIG_USER_ONLY)
426 static int cpu_common_post_load(void *opaque
, int version_id
)
428 CPUState
*cpu
= opaque
;
430 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
431 version_id is increased. */
432 cpu
->interrupt_request
&= ~0x01;
438 static int cpu_common_pre_load(void *opaque
)
440 CPUState
*cpu
= opaque
;
442 cpu
->exception_index
= -1;
447 static bool cpu_common_exception_index_needed(void *opaque
)
449 CPUState
*cpu
= opaque
;
451 return tcg_enabled() && cpu
->exception_index
!= -1;
454 static const VMStateDescription vmstate_cpu_common_exception_index
= {
455 .name
= "cpu_common/exception_index",
457 .minimum_version_id
= 1,
458 .fields
= (VMStateField
[]) {
459 VMSTATE_INT32(exception_index
, CPUState
),
460 VMSTATE_END_OF_LIST()
464 const VMStateDescription vmstate_cpu_common
= {
465 .name
= "cpu_common",
467 .minimum_version_id
= 1,
468 .pre_load
= cpu_common_pre_load
,
469 .post_load
= cpu_common_post_load
,
470 .fields
= (VMStateField
[]) {
471 VMSTATE_UINT32(halted
, CPUState
),
472 VMSTATE_UINT32(interrupt_request
, CPUState
),
473 VMSTATE_END_OF_LIST()
475 .subsections
= (VMStateSubsection
[]) {
477 .vmsd
= &vmstate_cpu_common_exception_index
,
478 .needed
= cpu_common_exception_index_needed
,
487 CPUState
*qemu_get_cpu(int index
)
492 if (cpu
->cpu_index
== index
) {
500 #if !defined(CONFIG_USER_ONLY)
501 void tcg_cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
)
503 /* We only support one address space per cpu at the moment. */
504 assert(cpu
->as
== as
);
506 if (cpu
->tcg_as_listener
) {
507 memory_listener_unregister(cpu
->tcg_as_listener
);
509 cpu
->tcg_as_listener
= g_new0(MemoryListener
, 1);
511 cpu
->tcg_as_listener
->commit
= tcg_commit
;
512 memory_listener_register(cpu
->tcg_as_listener
, as
);
516 void cpu_exec_init(CPUArchState
*env
)
518 CPUState
*cpu
= ENV_GET_CPU(env
);
519 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
523 #if defined(CONFIG_USER_ONLY)
527 CPU_FOREACH(some_cpu
) {
530 cpu
->cpu_index
= cpu_index
;
532 QTAILQ_INIT(&cpu
->breakpoints
);
533 QTAILQ_INIT(&cpu
->watchpoints
);
534 #ifndef CONFIG_USER_ONLY
535 cpu
->as
= &address_space_memory
;
536 cpu
->thread_id
= qemu_get_thread_id();
538 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
539 #if defined(CONFIG_USER_ONLY)
542 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
543 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
545 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
546 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
547 cpu_save
, cpu_load
, env
);
548 assert(cc
->vmsd
== NULL
);
549 assert(qdev_get_vmsd(DEVICE(cpu
)) == NULL
);
551 if (cc
->vmsd
!= NULL
) {
552 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
556 #if defined(CONFIG_USER_ONLY)
557 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
559 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
562 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
564 hwaddr phys
= cpu_get_phys_page_debug(cpu
, pc
);
566 tb_invalidate_phys_addr(cpu
->as
,
567 phys
| (pc
& ~TARGET_PAGE_MASK
));
572 #if defined(CONFIG_USER_ONLY)
573 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
578 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
584 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
588 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
589 int flags
, CPUWatchpoint
**watchpoint
)
594 /* Add a watchpoint. */
595 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
596 int flags
, CPUWatchpoint
**watchpoint
)
600 /* forbid ranges which are empty or run off the end of the address space */
601 if (len
== 0 || (addr
+ len
- 1) < addr
) {
602 error_report("tried to set invalid watchpoint at %"
603 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
606 wp
= g_malloc(sizeof(*wp
));
612 /* keep all GDB-injected watchpoints in front */
613 if (flags
& BP_GDB
) {
614 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
616 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
619 tlb_flush_page(cpu
, addr
);
626 /* Remove a specific watchpoint. */
627 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
632 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
633 if (addr
== wp
->vaddr
&& len
== wp
->len
634 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
635 cpu_watchpoint_remove_by_ref(cpu
, wp
);
642 /* Remove a specific watchpoint by reference. */
643 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
645 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
647 tlb_flush_page(cpu
, watchpoint
->vaddr
);
652 /* Remove all matching watchpoints. */
653 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
655 CPUWatchpoint
*wp
, *next
;
657 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
658 if (wp
->flags
& mask
) {
659 cpu_watchpoint_remove_by_ref(cpu
, wp
);
664 /* Return true if this watchpoint address matches the specified
665 * access (ie the address range covered by the watchpoint overlaps
666 * partially or completely with the address range covered by the
669 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
673 /* We know the lengths are non-zero, but a little caution is
674 * required to avoid errors in the case where the range ends
675 * exactly at the top of the address space and so addr + len
676 * wraps round to zero.
678 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
679 vaddr addrend
= addr
+ len
- 1;
681 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
686 /* Add a breakpoint. */
687 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
688 CPUBreakpoint
**breakpoint
)
692 bp
= g_malloc(sizeof(*bp
));
697 /* keep all GDB-injected breakpoints in front */
698 if (flags
& BP_GDB
) {
699 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
701 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
704 breakpoint_invalidate(cpu
, pc
);
712 /* Remove a specific breakpoint. */
713 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
717 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
718 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
719 cpu_breakpoint_remove_by_ref(cpu
, bp
);
726 /* Remove a specific breakpoint by reference. */
727 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
729 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
731 breakpoint_invalidate(cpu
, breakpoint
->pc
);
736 /* Remove all matching breakpoints. */
737 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
739 CPUBreakpoint
*bp
, *next
;
741 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
742 if (bp
->flags
& mask
) {
743 cpu_breakpoint_remove_by_ref(cpu
, bp
);
748 /* enable or disable single step mode. EXCP_DEBUG is returned by the
749 CPU loop after each instruction */
750 void cpu_single_step(CPUState
*cpu
, int enabled
)
752 if (cpu
->singlestep_enabled
!= enabled
) {
753 cpu
->singlestep_enabled
= enabled
;
755 kvm_update_guest_debug(cpu
, 0);
757 /* must flush all the translated code to avoid inconsistencies */
758 /* XXX: only flush what is necessary */
759 CPUArchState
*env
= cpu
->env_ptr
;
765 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
772 fprintf(stderr
, "qemu: fatal: ");
773 vfprintf(stderr
, fmt
, ap
);
774 fprintf(stderr
, "\n");
775 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
776 if (qemu_log_enabled()) {
777 qemu_log("qemu: fatal: ");
778 qemu_log_vprintf(fmt
, ap2
);
780 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
786 #if defined(CONFIG_USER_ONLY)
788 struct sigaction act
;
789 sigfillset(&act
.sa_mask
);
790 act
.sa_handler
= SIG_DFL
;
791 sigaction(SIGABRT
, &act
, NULL
);
797 #if !defined(CONFIG_USER_ONLY)
798 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
802 /* The list is protected by the iothread lock here. */
803 block
= ram_list
.mru_block
;
804 if (block
&& addr
- block
->offset
< block
->max_length
) {
807 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
808 if (addr
- block
->offset
< block
->max_length
) {
813 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
817 ram_list
.mru_block
= block
;
821 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
827 end
= TARGET_PAGE_ALIGN(start
+ length
);
828 start
&= TARGET_PAGE_MASK
;
830 block
= qemu_get_ram_block(start
);
831 assert(block
== qemu_get_ram_block(end
- 1));
832 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
833 cpu_tlb_reset_dirty_all(start1
, length
);
836 /* Note: start and end must be within the same ram block. */
837 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t length
,
842 cpu_physical_memory_clear_dirty_range_type(start
, length
, client
);
845 tlb_reset_dirty_range_all(start
, length
);
849 static void cpu_physical_memory_set_dirty_tracking(bool enable
)
851 in_migration
= enable
;
854 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
855 MemoryRegionSection
*section
,
857 hwaddr paddr
, hwaddr xlat
,
859 target_ulong
*address
)
864 if (memory_region_is_ram(section
->mr
)) {
866 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
868 if (!section
->readonly
) {
869 iotlb
|= PHYS_SECTION_NOTDIRTY
;
871 iotlb
|= PHYS_SECTION_ROM
;
874 iotlb
= section
- section
->address_space
->dispatch
->map
.sections
;
878 /* Make accesses to pages with watchpoints go via the
879 watchpoint trap routines. */
880 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
881 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
882 /* Avoid trapping reads of pages with a write breakpoint. */
883 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
884 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
885 *address
|= TLB_MMIO
;
893 #endif /* defined(CONFIG_USER_ONLY) */
895 #if !defined(CONFIG_USER_ONLY)
897 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
899 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
901 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
905 * Set a custom physical guest memory alloator.
906 * Accelerators with unusual needs may need this. Hopefully, we can
907 * get rid of it eventually.
909 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
911 phys_mem_alloc
= alloc
;
914 static uint16_t phys_section_add(PhysPageMap
*map
,
915 MemoryRegionSection
*section
)
917 /* The physical section number is ORed with a page-aligned
918 * pointer to produce the iotlb entries. Thus it should
919 * never overflow into the page-aligned value.
921 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
923 if (map
->sections_nb
== map
->sections_nb_alloc
) {
924 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
925 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
926 map
->sections_nb_alloc
);
928 map
->sections
[map
->sections_nb
] = *section
;
929 memory_region_ref(section
->mr
);
930 return map
->sections_nb
++;
933 static void phys_section_destroy(MemoryRegion
*mr
)
935 memory_region_unref(mr
);
938 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
939 object_unref(OBJECT(&subpage
->iomem
));
944 static void phys_sections_free(PhysPageMap
*map
)
946 while (map
->sections_nb
> 0) {
947 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
948 phys_section_destroy(section
->mr
);
950 g_free(map
->sections
);
954 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
957 hwaddr base
= section
->offset_within_address_space
959 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
960 d
->map
.nodes
, d
->map
.sections
);
961 MemoryRegionSection subsection
= {
962 .offset_within_address_space
= base
,
963 .size
= int128_make64(TARGET_PAGE_SIZE
),
967 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
969 if (!(existing
->mr
->subpage
)) {
970 subpage
= subpage_init(d
->as
, base
);
971 subsection
.address_space
= d
->as
;
972 subsection
.mr
= &subpage
->iomem
;
973 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
974 phys_section_add(&d
->map
, &subsection
));
976 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
978 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
979 end
= start
+ int128_get64(section
->size
) - 1;
980 subpage_register(subpage
, start
, end
,
981 phys_section_add(&d
->map
, section
));
985 static void register_multipage(AddressSpaceDispatch
*d
,
986 MemoryRegionSection
*section
)
988 hwaddr start_addr
= section
->offset_within_address_space
;
989 uint16_t section_index
= phys_section_add(&d
->map
, section
);
990 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
994 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
997 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
999 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1000 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1001 MemoryRegionSection now
= *section
, remain
= *section
;
1002 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1004 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1005 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1006 - now
.offset_within_address_space
;
1008 now
.size
= int128_min(int128_make64(left
), now
.size
);
1009 register_subpage(d
, &now
);
1011 now
.size
= int128_zero();
1013 while (int128_ne(remain
.size
, now
.size
)) {
1014 remain
.size
= int128_sub(remain
.size
, now
.size
);
1015 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1016 remain
.offset_within_region
+= int128_get64(now
.size
);
1018 if (int128_lt(remain
.size
, page_size
)) {
1019 register_subpage(d
, &now
);
1020 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1021 now
.size
= page_size
;
1022 register_subpage(d
, &now
);
1024 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1025 register_multipage(d
, &now
);
1030 void qemu_flush_coalesced_mmio_buffer(void)
1033 kvm_flush_coalesced_mmio_buffer();
1036 void qemu_mutex_lock_ramlist(void)
1038 qemu_mutex_lock(&ram_list
.mutex
);
1041 void qemu_mutex_unlock_ramlist(void)
1043 qemu_mutex_unlock(&ram_list
.mutex
);
1048 #include <sys/vfs.h>
1050 #define HUGETLBFS_MAGIC 0x958458f6
1052 static long gethugepagesize(const char *path
, Error
**errp
)
1058 ret
= statfs(path
, &fs
);
1059 } while (ret
!= 0 && errno
== EINTR
);
1062 error_setg_errno(errp
, errno
, "failed to get page size of file %s",
1067 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
1068 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
1073 static void *file_ram_alloc(RAMBlock
*block
,
1079 char *sanitized_name
;
1084 Error
*local_err
= NULL
;
1086 hpagesize
= gethugepagesize(path
, &local_err
);
1088 error_propagate(errp
, local_err
);
1091 block
->mr
->align
= hpagesize
;
1093 if (memory
< hpagesize
) {
1094 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1095 "or larger than huge page size 0x%" PRIx64
,
1100 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1102 "host lacks kvm mmu notifiers, -mem-path unsupported");
1106 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1107 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1108 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1113 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1115 g_free(sanitized_name
);
1117 fd
= mkstemp(filename
);
1119 error_setg_errno(errp
, errno
,
1120 "unable to create backing store for hugepages");
1127 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
1130 * ftruncate is not supported by hugetlbfs in older
1131 * hosts, so don't bother bailing out on errors.
1132 * If anything goes wrong with it under other filesystems,
1135 if (ftruncate(fd
, memory
)) {
1136 perror("ftruncate");
1139 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
,
1140 (block
->flags
& RAM_SHARED
? MAP_SHARED
: MAP_PRIVATE
),
1142 if (area
== MAP_FAILED
) {
1143 error_setg_errno(errp
, errno
,
1144 "unable to map backing store for hugepages");
1150 os_mem_prealloc(fd
, area
, memory
);
1158 error_report("%s\n", error_get_pretty(*errp
));
1165 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1167 RAMBlock
*block
, *next_block
;
1168 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1170 assert(size
!= 0); /* it would hand out same offset multiple times */
1172 if (QTAILQ_EMPTY(&ram_list
.blocks
))
1175 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1176 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1178 end
= block
->offset
+ block
->max_length
;
1180 QTAILQ_FOREACH(next_block
, &ram_list
.blocks
, next
) {
1181 if (next_block
->offset
>= end
) {
1182 next
= MIN(next
, next_block
->offset
);
1185 if (next
- end
>= size
&& next
- end
< mingap
) {
1187 mingap
= next
- end
;
1191 if (offset
== RAM_ADDR_MAX
) {
1192 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1200 ram_addr_t
last_ram_offset(void)
1203 ram_addr_t last
= 0;
1205 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
)
1206 last
= MAX(last
, block
->offset
+ block
->max_length
);
1211 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1215 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1216 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1217 "dump-guest-core", true)) {
1218 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1220 perror("qemu_madvise");
1221 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1222 "but dump_guest_core=off specified\n");
1227 static RAMBlock
*find_ram_block(ram_addr_t addr
)
1231 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1232 if (block
->offset
== addr
) {
1240 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1242 RAMBlock
*new_block
= find_ram_block(addr
);
1246 assert(!new_block
->idstr
[0]);
1249 char *id
= qdev_get_dev_path(dev
);
1251 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1255 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1257 /* This assumes the iothread lock is taken here too. */
1258 qemu_mutex_lock_ramlist();
1259 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1260 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1261 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1266 qemu_mutex_unlock_ramlist();
1269 void qemu_ram_unset_idstr(ram_addr_t addr
)
1271 RAMBlock
*block
= find_ram_block(addr
);
1274 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1278 static int memory_try_enable_merging(void *addr
, size_t len
)
1280 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1281 /* disabled by the user */
1285 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1288 /* Only legal before guest might have detected the memory size: e.g. on
1289 * incoming migration, or right after reset.
1291 * As memory core doesn't know how is memory accessed, it is up to
1292 * resize callback to update device state and/or add assertions to detect
1293 * misuse, if necessary.
1295 int qemu_ram_resize(ram_addr_t base
, ram_addr_t newsize
, Error
**errp
)
1297 RAMBlock
*block
= find_ram_block(base
);
1301 if (block
->used_length
== newsize
) {
1305 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1306 error_setg_errno(errp
, EINVAL
,
1307 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1308 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1309 newsize
, block
->used_length
);
1313 if (block
->max_length
< newsize
) {
1314 error_setg_errno(errp
, EINVAL
,
1315 "Length too large: %s: 0x" RAM_ADDR_FMT
1316 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1317 newsize
, block
->max_length
);
1321 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1322 block
->used_length
= newsize
;
1323 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
);
1324 memory_region_set_size(block
->mr
, newsize
);
1325 if (block
->resized
) {
1326 block
->resized(block
->idstr
, newsize
, block
->host
);
1331 static ram_addr_t
ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1334 ram_addr_t old_ram_size
, new_ram_size
;
1336 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1338 /* This assumes the iothread lock is taken here too. */
1339 qemu_mutex_lock_ramlist();
1340 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1342 if (!new_block
->host
) {
1343 if (xen_enabled()) {
1344 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1347 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1348 &new_block
->mr
->align
);
1349 if (!new_block
->host
) {
1350 error_setg_errno(errp
, errno
,
1351 "cannot set up guest memory '%s'",
1352 memory_region_name(new_block
->mr
));
1353 qemu_mutex_unlock_ramlist();
1356 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1360 /* Keep the list sorted from biggest to smallest block. */
1361 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1362 if (block
->max_length
< new_block
->max_length
) {
1367 QTAILQ_INSERT_BEFORE(block
, new_block
, next
);
1369 QTAILQ_INSERT_TAIL(&ram_list
.blocks
, new_block
, next
);
1371 ram_list
.mru_block
= NULL
;
1374 qemu_mutex_unlock_ramlist();
1376 new_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1378 if (new_ram_size
> old_ram_size
) {
1380 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1381 ram_list
.dirty_memory
[i
] =
1382 bitmap_zero_extend(ram_list
.dirty_memory
[i
],
1383 old_ram_size
, new_ram_size
);
1386 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1387 new_block
->used_length
);
1389 if (new_block
->host
) {
1390 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1391 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1392 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1393 if (kvm_enabled()) {
1394 kvm_setup_guest_memory(new_block
->host
, new_block
->max_length
);
1398 return new_block
->offset
;
1402 ram_addr_t
qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1403 bool share
, const char *mem_path
,
1406 RAMBlock
*new_block
;
1408 Error
*local_err
= NULL
;
1410 if (xen_enabled()) {
1411 error_setg(errp
, "-mem-path not supported with Xen");
1415 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1417 * file_ram_alloc() needs to allocate just like
1418 * phys_mem_alloc, but we haven't bothered to provide
1422 "-mem-path not supported with this accelerator");
1426 size
= TARGET_PAGE_ALIGN(size
);
1427 new_block
= g_malloc0(sizeof(*new_block
));
1429 new_block
->used_length
= size
;
1430 new_block
->max_length
= size
;
1431 new_block
->flags
= share
? RAM_SHARED
: 0;
1432 new_block
->host
= file_ram_alloc(new_block
, size
,
1434 if (!new_block
->host
) {
1439 addr
= ram_block_add(new_block
, &local_err
);
1442 error_propagate(errp
, local_err
);
1450 ram_addr_t
qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1451 void (*resized
)(const char*,
1454 void *host
, bool resizeable
,
1455 MemoryRegion
*mr
, Error
**errp
)
1457 RAMBlock
*new_block
;
1459 Error
*local_err
= NULL
;
1461 size
= TARGET_PAGE_ALIGN(size
);
1462 max_size
= TARGET_PAGE_ALIGN(max_size
);
1463 new_block
= g_malloc0(sizeof(*new_block
));
1465 new_block
->resized
= resized
;
1466 new_block
->used_length
= size
;
1467 new_block
->max_length
= max_size
;
1468 assert(max_size
>= size
);
1470 new_block
->host
= host
;
1472 new_block
->flags
|= RAM_PREALLOC
;
1475 new_block
->flags
|= RAM_RESIZEABLE
;
1477 addr
= ram_block_add(new_block
, &local_err
);
1480 error_propagate(errp
, local_err
);
1486 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1487 MemoryRegion
*mr
, Error
**errp
)
1489 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1492 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1494 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1497 ram_addr_t
qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1498 void (*resized
)(const char*,
1501 MemoryRegion
*mr
, Error
**errp
)
1503 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1506 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1510 /* This assumes the iothread lock is taken here too. */
1511 qemu_mutex_lock_ramlist();
1512 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1513 if (addr
== block
->offset
) {
1514 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1515 ram_list
.mru_block
= NULL
;
1521 qemu_mutex_unlock_ramlist();
1524 void qemu_ram_free(ram_addr_t addr
)
1528 /* This assumes the iothread lock is taken here too. */
1529 qemu_mutex_lock_ramlist();
1530 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1531 if (addr
== block
->offset
) {
1532 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1533 ram_list
.mru_block
= NULL
;
1535 if (block
->flags
& RAM_PREALLOC
) {
1537 } else if (xen_enabled()) {
1538 xen_invalidate_map_cache_entry(block
->host
);
1540 } else if (block
->fd
>= 0) {
1541 munmap(block
->host
, block
->max_length
);
1545 qemu_anon_ram_free(block
->host
, block
->max_length
);
1551 qemu_mutex_unlock_ramlist();
1556 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1563 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1564 offset
= addr
- block
->offset
;
1565 if (offset
< block
->max_length
) {
1566 vaddr
= ramblock_ptr(block
, offset
);
1567 if (block
->flags
& RAM_PREALLOC
) {
1569 } else if (xen_enabled()) {
1573 munmap(vaddr
, length
);
1574 if (block
->fd
>= 0) {
1575 flags
|= (block
->flags
& RAM_SHARED
?
1576 MAP_SHARED
: MAP_PRIVATE
);
1577 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1578 flags
, block
->fd
, offset
);
1581 * Remap needs to match alloc. Accelerators that
1582 * set phys_mem_alloc never remap. If they did,
1583 * we'd need a remap hook here.
1585 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1587 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1588 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1591 if (area
!= vaddr
) {
1592 fprintf(stderr
, "Could not remap addr: "
1593 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1597 memory_try_enable_merging(vaddr
, length
);
1598 qemu_ram_setup_dump(vaddr
, length
);
1604 #endif /* !_WIN32 */
1606 int qemu_get_ram_fd(ram_addr_t addr
)
1608 RAMBlock
*block
= qemu_get_ram_block(addr
);
1613 void *qemu_get_ram_block_host_ptr(ram_addr_t addr
)
1615 RAMBlock
*block
= qemu_get_ram_block(addr
);
1617 return ramblock_ptr(block
, 0);
1620 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1621 With the exception of the softmmu code in this file, this should
1622 only be used for local memory (e.g. video ram) that the device owns,
1623 and knows it isn't going to access beyond the end of the block.
1625 It should not be used for general purpose DMA.
1626 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1628 void *qemu_get_ram_ptr(ram_addr_t addr
)
1630 RAMBlock
*block
= qemu_get_ram_block(addr
);
1632 if (xen_enabled()) {
1633 /* We need to check if the requested address is in the RAM
1634 * because we don't want to map the entire memory in QEMU.
1635 * In that case just map until the end of the page.
1637 if (block
->offset
== 0) {
1638 return xen_map_cache(addr
, 0, 0);
1639 } else if (block
->host
== NULL
) {
1641 xen_map_cache(block
->offset
, block
->max_length
, 1);
1644 return ramblock_ptr(block
, addr
- block
->offset
);
1647 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1648 * but takes a size argument */
1649 static void *qemu_ram_ptr_length(ram_addr_t addr
, hwaddr
*size
)
1654 if (xen_enabled()) {
1655 return xen_map_cache(addr
, *size
, 1);
1659 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1660 if (addr
- block
->offset
< block
->max_length
) {
1661 if (addr
- block
->offset
+ *size
> block
->max_length
)
1662 *size
= block
->max_length
- addr
+ block
->offset
;
1663 return ramblock_ptr(block
, addr
- block
->offset
);
1667 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1672 /* Some of the softmmu routines need to translate from a host pointer
1673 (typically a TLB entry) back to a ram offset. */
1674 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1677 uint8_t *host
= ptr
;
1679 if (xen_enabled()) {
1680 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1681 return qemu_get_ram_block(*ram_addr
)->mr
;
1684 block
= ram_list
.mru_block
;
1685 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1689 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1690 /* This case append when the block is not mapped. */
1691 if (block
->host
== NULL
) {
1694 if (host
- block
->host
< block
->max_length
) {
1702 *ram_addr
= block
->offset
+ (host
- block
->host
);
1706 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1707 uint64_t val
, unsigned size
)
1709 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
1710 tb_invalidate_phys_page_fast(ram_addr
, size
);
1714 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1717 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1720 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1725 cpu_physical_memory_set_dirty_range_nocode(ram_addr
, size
);
1726 /* we remove the notdirty callback only if the code has been
1728 if (!cpu_physical_memory_is_clean(ram_addr
)) {
1729 CPUArchState
*env
= current_cpu
->env_ptr
;
1730 tlb_set_dirty(env
, current_cpu
->mem_io_vaddr
);
1734 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
1735 unsigned size
, bool is_write
)
1740 static const MemoryRegionOps notdirty_mem_ops
= {
1741 .write
= notdirty_mem_write
,
1742 .valid
.accepts
= notdirty_mem_accepts
,
1743 .endianness
= DEVICE_NATIVE_ENDIAN
,
1746 /* Generate a debug exception if a watchpoint has been hit. */
1747 static void check_watchpoint(int offset
, int len
, int flags
)
1749 CPUState
*cpu
= current_cpu
;
1750 CPUArchState
*env
= cpu
->env_ptr
;
1751 target_ulong pc
, cs_base
;
1756 if (cpu
->watchpoint_hit
) {
1757 /* We re-entered the check after replacing the TB. Now raise
1758 * the debug interrupt so that is will trigger after the
1759 * current instruction. */
1760 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
1763 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1764 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1765 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
1766 && (wp
->flags
& flags
)) {
1767 if (flags
== BP_MEM_READ
) {
1768 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
1770 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
1772 wp
->hitaddr
= vaddr
;
1773 if (!cpu
->watchpoint_hit
) {
1774 cpu
->watchpoint_hit
= wp
;
1775 tb_check_watchpoint(cpu
);
1776 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
1777 cpu
->exception_index
= EXCP_DEBUG
;
1780 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
1781 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
1782 cpu_resume_from_signal(cpu
, NULL
);
1786 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
1791 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1792 so these check for a hit then pass through to the normal out-of-line
1794 static uint64_t watch_mem_read(void *opaque
, hwaddr addr
,
1797 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, BP_MEM_READ
);
1799 case 1: return ldub_phys(&address_space_memory
, addr
);
1800 case 2: return lduw_phys(&address_space_memory
, addr
);
1801 case 4: return ldl_phys(&address_space_memory
, addr
);
1806 static void watch_mem_write(void *opaque
, hwaddr addr
,
1807 uint64_t val
, unsigned size
)
1809 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, BP_MEM_WRITE
);
1812 stb_phys(&address_space_memory
, addr
, val
);
1815 stw_phys(&address_space_memory
, addr
, val
);
1818 stl_phys(&address_space_memory
, addr
, val
);
1824 static const MemoryRegionOps watch_mem_ops
= {
1825 .read
= watch_mem_read
,
1826 .write
= watch_mem_write
,
1827 .endianness
= DEVICE_NATIVE_ENDIAN
,
1830 static uint64_t subpage_read(void *opaque
, hwaddr addr
,
1833 subpage_t
*subpage
= opaque
;
1836 #if defined(DEBUG_SUBPAGE)
1837 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
1838 subpage
, len
, addr
);
1840 address_space_read(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1855 static void subpage_write(void *opaque
, hwaddr addr
,
1856 uint64_t value
, unsigned len
)
1858 subpage_t
*subpage
= opaque
;
1861 #if defined(DEBUG_SUBPAGE)
1862 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
1863 " value %"PRIx64
"\n",
1864 __func__
, subpage
, len
, addr
, value
);
1882 address_space_write(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1885 static bool subpage_accepts(void *opaque
, hwaddr addr
,
1886 unsigned len
, bool is_write
)
1888 subpage_t
*subpage
= opaque
;
1889 #if defined(DEBUG_SUBPAGE)
1890 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
1891 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
1894 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
1898 static const MemoryRegionOps subpage_ops
= {
1899 .read
= subpage_read
,
1900 .write
= subpage_write
,
1901 .impl
.min_access_size
= 1,
1902 .impl
.max_access_size
= 8,
1903 .valid
.min_access_size
= 1,
1904 .valid
.max_access_size
= 8,
1905 .valid
.accepts
= subpage_accepts
,
1906 .endianness
= DEVICE_NATIVE_ENDIAN
,
1909 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1914 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
1916 idx
= SUBPAGE_IDX(start
);
1917 eidx
= SUBPAGE_IDX(end
);
1918 #if defined(DEBUG_SUBPAGE)
1919 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1920 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
1922 for (; idx
<= eidx
; idx
++) {
1923 mmio
->sub_section
[idx
] = section
;
1929 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
1933 mmio
= g_malloc0(sizeof(subpage_t
));
1937 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
1938 NULL
, TARGET_PAGE_SIZE
);
1939 mmio
->iomem
.subpage
= true;
1940 #if defined(DEBUG_SUBPAGE)
1941 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
1942 mmio
, base
, TARGET_PAGE_SIZE
);
1944 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
1949 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
1953 MemoryRegionSection section
= {
1954 .address_space
= as
,
1956 .offset_within_address_space
= 0,
1957 .offset_within_region
= 0,
1958 .size
= int128_2_64(),
1961 return phys_section_add(map
, §ion
);
1964 MemoryRegion
*iotlb_to_region(AddressSpace
*as
, hwaddr index
)
1966 return as
->dispatch
->map
.sections
[index
& ~TARGET_PAGE_MASK
].mr
;
1969 static void io_mem_init(void)
1971 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
1972 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
1974 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
1976 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
1980 static void mem_begin(MemoryListener
*listener
)
1982 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1983 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
1986 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
1987 assert(n
== PHYS_SECTION_UNASSIGNED
);
1988 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
1989 assert(n
== PHYS_SECTION_NOTDIRTY
);
1990 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
1991 assert(n
== PHYS_SECTION_ROM
);
1992 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
1993 assert(n
== PHYS_SECTION_WATCH
);
1995 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
1997 as
->next_dispatch
= d
;
2000 static void mem_commit(MemoryListener
*listener
)
2002 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2003 AddressSpaceDispatch
*cur
= as
->dispatch
;
2004 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2006 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2008 as
->dispatch
= next
;
2011 phys_sections_free(&cur
->map
);
2016 static void tcg_commit(MemoryListener
*listener
)
2020 /* since each CPU stores ram addresses in its TLB cache, we must
2021 reset the modified entries */
2024 /* FIXME: Disentangle the cpu.h circular files deps so we can
2025 directly get the right CPU from listener. */
2026 if (cpu
->tcg_as_listener
!= listener
) {
2033 static void core_log_global_start(MemoryListener
*listener
)
2035 cpu_physical_memory_set_dirty_tracking(true);
2038 static void core_log_global_stop(MemoryListener
*listener
)
2040 cpu_physical_memory_set_dirty_tracking(false);
2043 static MemoryListener core_memory_listener
= {
2044 .log_global_start
= core_log_global_start
,
2045 .log_global_stop
= core_log_global_stop
,
2049 void address_space_init_dispatch(AddressSpace
*as
)
2051 as
->dispatch
= NULL
;
2052 as
->dispatch_listener
= (MemoryListener
) {
2054 .commit
= mem_commit
,
2055 .region_add
= mem_add
,
2056 .region_nop
= mem_add
,
2059 memory_listener_register(&as
->dispatch_listener
, as
);
2062 void address_space_destroy_dispatch(AddressSpace
*as
)
2064 AddressSpaceDispatch
*d
= as
->dispatch
;
2066 memory_listener_unregister(&as
->dispatch_listener
);
2068 as
->dispatch
= NULL
;
2071 static void memory_map_init(void)
2073 system_memory
= g_malloc(sizeof(*system_memory
));
2075 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2076 address_space_init(&address_space_memory
, system_memory
, "memory");
2078 system_io
= g_malloc(sizeof(*system_io
));
2079 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2081 address_space_init(&address_space_io
, system_io
, "I/O");
2083 memory_listener_register(&core_memory_listener
, &address_space_memory
);
2086 MemoryRegion
*get_system_memory(void)
2088 return system_memory
;
2091 MemoryRegion
*get_system_io(void)
2096 #endif /* !defined(CONFIG_USER_ONLY) */
2098 /* physical memory access (slow version, mainly for debug) */
2099 #if defined(CONFIG_USER_ONLY)
2100 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2101 uint8_t *buf
, int len
, int is_write
)
2108 page
= addr
& TARGET_PAGE_MASK
;
2109 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2112 flags
= page_get_flags(page
);
2113 if (!(flags
& PAGE_VALID
))
2116 if (!(flags
& PAGE_WRITE
))
2118 /* XXX: this code should not depend on lock_user */
2119 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2122 unlock_user(p
, addr
, l
);
2124 if (!(flags
& PAGE_READ
))
2126 /* XXX: this code should not depend on lock_user */
2127 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2130 unlock_user(p
, addr
, 0);
2141 static void invalidate_and_set_dirty(hwaddr addr
,
2144 if (cpu_physical_memory_range_includes_clean(addr
, length
)) {
2145 tb_invalidate_phys_range(addr
, addr
+ length
, 0);
2146 cpu_physical_memory_set_dirty_range_nocode(addr
, length
);
2148 xen_modified_memory(addr
, length
);
2151 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2153 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2155 /* Regions are assumed to support 1-4 byte accesses unless
2156 otherwise specified. */
2157 if (access_size_max
== 0) {
2158 access_size_max
= 4;
2161 /* Bound the maximum access by the alignment of the address. */
2162 if (!mr
->ops
->impl
.unaligned
) {
2163 unsigned align_size_max
= addr
& -addr
;
2164 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2165 access_size_max
= align_size_max
;
2169 /* Don't attempt accesses larger than the maximum. */
2170 if (l
> access_size_max
) {
2171 l
= access_size_max
;
2174 l
= 1 << (qemu_fls(l
) - 1);
2180 bool address_space_rw(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
,
2181 int len
, bool is_write
)
2192 mr
= address_space_translate(as
, addr
, &addr1
, &l
, is_write
);
2195 if (!memory_access_is_direct(mr
, is_write
)) {
2196 l
= memory_access_size(mr
, l
, addr1
);
2197 /* XXX: could force current_cpu to NULL to avoid
2201 /* 64 bit write access */
2203 error
|= io_mem_write(mr
, addr1
, val
, 8);
2206 /* 32 bit write access */
2208 error
|= io_mem_write(mr
, addr1
, val
, 4);
2211 /* 16 bit write access */
2213 error
|= io_mem_write(mr
, addr1
, val
, 2);
2216 /* 8 bit write access */
2218 error
|= io_mem_write(mr
, addr1
, val
, 1);
2224 addr1
+= memory_region_get_ram_addr(mr
);
2226 ptr
= qemu_get_ram_ptr(addr1
);
2227 memcpy(ptr
, buf
, l
);
2228 invalidate_and_set_dirty(addr1
, l
);
2231 if (!memory_access_is_direct(mr
, is_write
)) {
2233 l
= memory_access_size(mr
, l
, addr1
);
2236 /* 64 bit read access */
2237 error
|= io_mem_read(mr
, addr1
, &val
, 8);
2241 /* 32 bit read access */
2242 error
|= io_mem_read(mr
, addr1
, &val
, 4);
2246 /* 16 bit read access */
2247 error
|= io_mem_read(mr
, addr1
, &val
, 2);
2251 /* 8 bit read access */
2252 error
|= io_mem_read(mr
, addr1
, &val
, 1);
2260 ptr
= qemu_get_ram_ptr(mr
->ram_addr
+ addr1
);
2261 memcpy(buf
, ptr
, l
);
2272 bool address_space_write(AddressSpace
*as
, hwaddr addr
,
2273 const uint8_t *buf
, int len
)
2275 return address_space_rw(as
, addr
, (uint8_t *)buf
, len
, true);
2278 bool address_space_read(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
, int len
)
2280 return address_space_rw(as
, addr
, buf
, len
, false);
2284 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2285 int len
, int is_write
)
2287 address_space_rw(&address_space_memory
, addr
, buf
, len
, is_write
);
2290 enum write_rom_type
{
2295 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2296 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2305 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2307 if (!(memory_region_is_ram(mr
) ||
2308 memory_region_is_romd(mr
))) {
2311 addr1
+= memory_region_get_ram_addr(mr
);
2313 ptr
= qemu_get_ram_ptr(addr1
);
2316 memcpy(ptr
, buf
, l
);
2317 invalidate_and_set_dirty(addr1
, l
);
2320 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2330 /* used for ROM loading : can write in RAM and ROM */
2331 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2332 const uint8_t *buf
, int len
)
2334 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2337 void cpu_flush_icache_range(hwaddr start
, int len
)
2340 * This function should do the same thing as an icache flush that was
2341 * triggered from within the guest. For TCG we are always cache coherent,
2342 * so there is no need to flush anything. For KVM / Xen we need to flush
2343 * the host's instruction cache at least.
2345 if (tcg_enabled()) {
2349 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2350 start
, NULL
, len
, FLUSH_CACHE
);
2360 static BounceBuffer bounce
;
2362 typedef struct MapClient
{
2364 void (*callback
)(void *opaque
);
2365 QLIST_ENTRY(MapClient
) link
;
2368 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2369 = QLIST_HEAD_INITIALIZER(map_client_list
);
2371 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
2373 MapClient
*client
= g_malloc(sizeof(*client
));
2375 client
->opaque
= opaque
;
2376 client
->callback
= callback
;
2377 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2381 static void cpu_unregister_map_client(void *_client
)
2383 MapClient
*client
= (MapClient
*)_client
;
2385 QLIST_REMOVE(client
, link
);
2389 static void cpu_notify_map_clients(void)
2393 while (!QLIST_EMPTY(&map_client_list
)) {
2394 client
= QLIST_FIRST(&map_client_list
);
2395 client
->callback(client
->opaque
);
2396 cpu_unregister_map_client(client
);
2400 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2407 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2408 if (!memory_access_is_direct(mr
, is_write
)) {
2409 l
= memory_access_size(mr
, l
, addr
);
2410 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2421 /* Map a physical memory region into a host virtual address.
2422 * May map a subset of the requested range, given by and returned in *plen.
2423 * May return NULL if resources needed to perform the mapping are exhausted.
2424 * Use only for reads OR writes - not for read-modify-write operations.
2425 * Use cpu_register_map_client() to know when retrying the map operation is
2426 * likely to succeed.
2428 void *address_space_map(AddressSpace
*as
,
2435 hwaddr l
, xlat
, base
;
2436 MemoryRegion
*mr
, *this_mr
;
2444 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2445 if (!memory_access_is_direct(mr
, is_write
)) {
2446 if (bounce
.buffer
) {
2449 /* Avoid unbounded allocations */
2450 l
= MIN(l
, TARGET_PAGE_SIZE
);
2451 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2455 memory_region_ref(mr
);
2458 address_space_read(as
, addr
, bounce
.buffer
, l
);
2462 return bounce
.buffer
;
2466 raddr
= memory_region_get_ram_addr(mr
);
2477 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2478 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2483 memory_region_ref(mr
);
2485 return qemu_ram_ptr_length(raddr
+ base
, plen
);
2488 /* Unmaps a memory region previously mapped by address_space_map().
2489 * Will also mark the memory as dirty if is_write == 1. access_len gives
2490 * the amount of memory that was actually read or written by the caller.
2492 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2493 int is_write
, hwaddr access_len
)
2495 if (buffer
!= bounce
.buffer
) {
2499 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
2502 invalidate_and_set_dirty(addr1
, access_len
);
2504 if (xen_enabled()) {
2505 xen_invalidate_map_cache_entry(buffer
);
2507 memory_region_unref(mr
);
2511 address_space_write(as
, bounce
.addr
, bounce
.buffer
, access_len
);
2513 qemu_vfree(bounce
.buffer
);
2514 bounce
.buffer
= NULL
;
2515 memory_region_unref(bounce
.mr
);
2516 cpu_notify_map_clients();
2519 void *cpu_physical_memory_map(hwaddr addr
,
2523 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2526 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2527 int is_write
, hwaddr access_len
)
2529 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2532 /* warning: addr must be aligned */
2533 static inline uint32_t ldl_phys_internal(AddressSpace
*as
, hwaddr addr
,
2534 enum device_endian endian
)
2542 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2543 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
2545 io_mem_read(mr
, addr1
, &val
, 4);
2546 #if defined(TARGET_WORDS_BIGENDIAN)
2547 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2551 if (endian
== DEVICE_BIG_ENDIAN
) {
2557 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2561 case DEVICE_LITTLE_ENDIAN
:
2562 val
= ldl_le_p(ptr
);
2564 case DEVICE_BIG_ENDIAN
:
2565 val
= ldl_be_p(ptr
);
2575 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
2577 return ldl_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2580 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
2582 return ldl_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2585 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
2587 return ldl_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2590 /* warning: addr must be aligned */
2591 static inline uint64_t ldq_phys_internal(AddressSpace
*as
, hwaddr addr
,
2592 enum device_endian endian
)
2600 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2602 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
2604 io_mem_read(mr
, addr1
, &val
, 8);
2605 #if defined(TARGET_WORDS_BIGENDIAN)
2606 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2610 if (endian
== DEVICE_BIG_ENDIAN
) {
2616 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2620 case DEVICE_LITTLE_ENDIAN
:
2621 val
= ldq_le_p(ptr
);
2623 case DEVICE_BIG_ENDIAN
:
2624 val
= ldq_be_p(ptr
);
2634 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
2636 return ldq_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2639 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
2641 return ldq_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2644 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
2646 return ldq_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2650 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
2653 address_space_rw(as
, addr
, &val
, 1, 0);
2657 /* warning: addr must be aligned */
2658 static inline uint32_t lduw_phys_internal(AddressSpace
*as
, hwaddr addr
,
2659 enum device_endian endian
)
2667 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2669 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
2671 io_mem_read(mr
, addr1
, &val
, 2);
2672 #if defined(TARGET_WORDS_BIGENDIAN)
2673 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2677 if (endian
== DEVICE_BIG_ENDIAN
) {
2683 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2687 case DEVICE_LITTLE_ENDIAN
:
2688 val
= lduw_le_p(ptr
);
2690 case DEVICE_BIG_ENDIAN
:
2691 val
= lduw_be_p(ptr
);
2701 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
2703 return lduw_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2706 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
2708 return lduw_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2711 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
2713 return lduw_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2716 /* warning: addr must be aligned. The ram page is not masked as dirty
2717 and the code inside is not invalidated. It is useful if the dirty
2718 bits are used to track modified PTEs */
2719 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2726 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2728 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2729 io_mem_write(mr
, addr1
, val
, 4);
2731 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2732 ptr
= qemu_get_ram_ptr(addr1
);
2735 if (unlikely(in_migration
)) {
2736 if (cpu_physical_memory_is_clean(addr1
)) {
2737 /* invalidate code */
2738 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2740 cpu_physical_memory_set_dirty_range_nocode(addr1
, 4);
2746 /* warning: addr must be aligned */
2747 static inline void stl_phys_internal(AddressSpace
*as
,
2748 hwaddr addr
, uint32_t val
,
2749 enum device_endian endian
)
2756 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2758 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2759 #if defined(TARGET_WORDS_BIGENDIAN)
2760 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2764 if (endian
== DEVICE_BIG_ENDIAN
) {
2768 io_mem_write(mr
, addr1
, val
, 4);
2771 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2772 ptr
= qemu_get_ram_ptr(addr1
);
2774 case DEVICE_LITTLE_ENDIAN
:
2777 case DEVICE_BIG_ENDIAN
:
2784 invalidate_and_set_dirty(addr1
, 4);
2788 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2790 stl_phys_internal(as
, addr
, val
, DEVICE_NATIVE_ENDIAN
);
2793 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2795 stl_phys_internal(as
, addr
, val
, DEVICE_LITTLE_ENDIAN
);
2798 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2800 stl_phys_internal(as
, addr
, val
, DEVICE_BIG_ENDIAN
);
2804 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2807 address_space_rw(as
, addr
, &v
, 1, 1);
2810 /* warning: addr must be aligned */
2811 static inline void stw_phys_internal(AddressSpace
*as
,
2812 hwaddr addr
, uint32_t val
,
2813 enum device_endian endian
)
2820 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2821 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
2822 #if defined(TARGET_WORDS_BIGENDIAN)
2823 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2827 if (endian
== DEVICE_BIG_ENDIAN
) {
2831 io_mem_write(mr
, addr1
, val
, 2);
2834 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2835 ptr
= qemu_get_ram_ptr(addr1
);
2837 case DEVICE_LITTLE_ENDIAN
:
2840 case DEVICE_BIG_ENDIAN
:
2847 invalidate_and_set_dirty(addr1
, 2);
2851 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2853 stw_phys_internal(as
, addr
, val
, DEVICE_NATIVE_ENDIAN
);
2856 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2858 stw_phys_internal(as
, addr
, val
, DEVICE_LITTLE_ENDIAN
);
2861 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2863 stw_phys_internal(as
, addr
, val
, DEVICE_BIG_ENDIAN
);
2867 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2870 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2873 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2875 val
= cpu_to_le64(val
);
2876 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2879 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2881 val
= cpu_to_be64(val
);
2882 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2885 /* virtual memory access for debug (includes writing to ROM) */
2886 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2887 uint8_t *buf
, int len
, int is_write
)
2894 page
= addr
& TARGET_PAGE_MASK
;
2895 phys_addr
= cpu_get_phys_page_debug(cpu
, page
);
2896 /* if no physical page mapped, return an error */
2897 if (phys_addr
== -1)
2899 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2902 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
2904 cpu_physical_memory_write_rom(cpu
->as
, phys_addr
, buf
, l
);
2906 address_space_rw(cpu
->as
, phys_addr
, buf
, l
, 0);
2917 * A helper function for the _utterly broken_ virtio device model to find out if
2918 * it's running on a big endian machine. Don't do this at home kids!
2920 bool target_words_bigendian(void);
2921 bool target_words_bigendian(void)
2923 #if defined(TARGET_WORDS_BIGENDIAN)
2930 #ifndef CONFIG_USER_ONLY
2931 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
2936 mr
= address_space_translate(&address_space_memory
,
2937 phys_addr
, &phys_addr
, &l
, false);
2939 return !(memory_region_is_ram(mr
) ||
2940 memory_region_is_romd(mr
));
2943 void qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
2947 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
2948 func(block
->host
, block
->offset
, block
->used_length
, opaque
);