2 * i386 helpers (without register variable usage)
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/exec-all.h"
23 #include "sysemu/kvm.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "sysemu/sysemu.h"
27 #include "sysemu/hw_accel.h"
28 #include "monitor/monitor.h"
29 #include "hw/i386/apic_internal.h"
32 static void cpu_x86_version(CPUX86State
*env
, int *family
, int *model
)
34 int cpuver
= env
->cpuid_version
;
36 if (family
== NULL
|| model
== NULL
) {
40 *family
= (cpuver
>> 8) & 0x0f;
41 *model
= ((cpuver
>> 12) & 0xf0) + ((cpuver
>> 4) & 0x0f);
44 /* Broadcast MCA signal for processor version 06H_EH and above */
45 int cpu_x86_support_mca_broadcast(CPUX86State
*env
)
50 cpu_x86_version(env
, &family
, &model
);
51 if ((family
== 6 && model
>= 14) || family
> 6) {
58 /***********************************************************/
61 static const char *cc_op_str
[CC_OP_NB
] = {
128 cpu_x86_dump_seg_cache(CPUX86State
*env
, FILE *f
, fprintf_function cpu_fprintf
,
129 const char *name
, struct SegmentCache
*sc
)
132 if (env
->hflags
& HF_CS64_MASK
) {
133 cpu_fprintf(f
, "%-3s=%04x %016" PRIx64
" %08x %08x", name
,
134 sc
->selector
, sc
->base
, sc
->limit
, sc
->flags
& 0x00ffff00);
138 cpu_fprintf(f
, "%-3s=%04x %08x %08x %08x", name
, sc
->selector
,
139 (uint32_t)sc
->base
, sc
->limit
, sc
->flags
& 0x00ffff00);
142 if (!(env
->hflags
& HF_PE_MASK
) || !(sc
->flags
& DESC_P_MASK
))
145 cpu_fprintf(f
, " DPL=%d ", (sc
->flags
& DESC_DPL_MASK
) >> DESC_DPL_SHIFT
);
146 if (sc
->flags
& DESC_S_MASK
) {
147 if (sc
->flags
& DESC_CS_MASK
) {
148 cpu_fprintf(f
, (sc
->flags
& DESC_L_MASK
) ? "CS64" :
149 ((sc
->flags
& DESC_B_MASK
) ? "CS32" : "CS16"));
150 cpu_fprintf(f
, " [%c%c", (sc
->flags
& DESC_C_MASK
) ? 'C' : '-',
151 (sc
->flags
& DESC_R_MASK
) ? 'R' : '-');
154 (sc
->flags
& DESC_B_MASK
|| env
->hflags
& HF_LMA_MASK
)
156 cpu_fprintf(f
, " [%c%c", (sc
->flags
& DESC_E_MASK
) ? 'E' : '-',
157 (sc
->flags
& DESC_W_MASK
) ? 'W' : '-');
159 cpu_fprintf(f
, "%c]", (sc
->flags
& DESC_A_MASK
) ? 'A' : '-');
161 static const char *sys_type_name
[2][16] = {
163 "Reserved", "TSS16-avl", "LDT", "TSS16-busy",
164 "CallGate16", "TaskGate", "IntGate16", "TrapGate16",
165 "Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
166 "CallGate32", "Reserved", "IntGate32", "TrapGate32"
169 "<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
170 "Reserved", "Reserved", "Reserved", "Reserved",
171 "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
172 "Reserved", "IntGate64", "TrapGate64"
176 sys_type_name
[(env
->hflags
& HF_LMA_MASK
) ? 1 : 0]
177 [(sc
->flags
& DESC_TYPE_MASK
)
178 >> DESC_TYPE_SHIFT
]);
181 cpu_fprintf(f
, "\n");
184 #ifndef CONFIG_USER_ONLY
186 /* ARRAY_SIZE check is not required because
187 * DeliveryMode(dm) has a size of 3 bit.
189 static inline const char *dm2str(uint32_t dm
)
191 static const char *str
[] = {
204 static void dump_apic_lvt(FILE *f
, fprintf_function cpu_fprintf
,
205 const char *name
, uint32_t lvt
, bool is_timer
)
207 uint32_t dm
= (lvt
& APIC_LVT_DELIV_MOD
) >> APIC_LVT_DELIV_MOD_SHIFT
;
209 "%s\t 0x%08x %s %-5s %-6s %-7s %-12s %-6s",
211 lvt
& APIC_LVT_INT_POLARITY
? "active-lo" : "active-hi",
212 lvt
& APIC_LVT_LEVEL_TRIGGER
? "level" : "edge",
213 lvt
& APIC_LVT_MASKED
? "masked" : "",
214 lvt
& APIC_LVT_DELIV_STS
? "pending" : "",
216 "" : lvt
& APIC_LVT_TIMER_PERIODIC
?
217 "periodic" : lvt
& APIC_LVT_TIMER_TSCDEADLINE
?
218 "tsc-deadline" : "one-shot",
220 if (dm
!= APIC_DM_NMI
) {
221 cpu_fprintf(f
, " (vec %u)\n", lvt
& APIC_VECTOR_MASK
);
223 cpu_fprintf(f
, "\n");
227 /* ARRAY_SIZE check is not required because
228 * destination shorthand has a size of 2 bit.
230 static inline const char *shorthand2str(uint32_t shorthand
)
232 const char *str
[] = {
233 "no-shorthand", "self", "all-self", "all"
235 return str
[shorthand
];
238 static inline uint8_t divider_conf(uint32_t divide_conf
)
240 uint8_t divide_val
= ((divide_conf
& 0x8) >> 1) | (divide_conf
& 0x3);
242 return divide_val
== 7 ? 1 : 2 << divide_val
;
245 static inline void mask2str(char *str
, uint32_t val
, uint8_t size
)
248 *str
++ = (val
>> size
) & 1 ? '1' : '0';
253 #define MAX_LOGICAL_APIC_ID_MASK_SIZE 16
255 static void dump_apic_icr(FILE *f
, fprintf_function cpu_fprintf
,
256 APICCommonState
*s
, CPUX86State
*env
)
258 uint32_t icr
= s
->icr
[0], icr2
= s
->icr
[1];
259 uint8_t dest_shorthand
= \
260 (icr
& APIC_ICR_DEST_SHORT
) >> APIC_ICR_DEST_SHORT_SHIFT
;
261 bool logical_mod
= icr
& APIC_ICR_DEST_MOD
;
262 char apic_id_str
[MAX_LOGICAL_APIC_ID_MASK_SIZE
+ 1];
266 cpu_fprintf(f
, "ICR\t 0x%08x %s %s %s %s\n",
268 logical_mod
? "logical" : "physical",
269 icr
& APIC_ICR_TRIGGER_MOD
? "level" : "edge",
270 icr
& APIC_ICR_LEVEL
? "assert" : "de-assert",
271 shorthand2str(dest_shorthand
));
273 cpu_fprintf(f
, "ICR2\t 0x%08x", icr2
);
274 if (dest_shorthand
!= 0) {
275 cpu_fprintf(f
, "\n");
278 x2apic
= env
->features
[FEAT_1_ECX
] & CPUID_EXT_X2APIC
;
279 dest_field
= x2apic
? icr2
: icr2
>> APIC_ICR_DEST_SHIFT
;
283 cpu_fprintf(f
, " cpu %u (X2APIC ID)\n", dest_field
);
285 cpu_fprintf(f
, " cpu %u (APIC ID)\n",
286 dest_field
& APIC_LOGDEST_XAPIC_ID
);
291 if (s
->dest_mode
== 0xf) { /* flat mode */
292 mask2str(apic_id_str
, icr2
>> APIC_ICR_DEST_SHIFT
, 8);
293 cpu_fprintf(f
, " mask %s (APIC ID)\n", apic_id_str
);
294 } else if (s
->dest_mode
== 0) { /* cluster mode */
296 mask2str(apic_id_str
, dest_field
& APIC_LOGDEST_X2APIC_ID
, 16);
297 cpu_fprintf(f
, " cluster %u mask %s (X2APIC ID)\n",
298 dest_field
>> APIC_LOGDEST_X2APIC_SHIFT
, apic_id_str
);
300 mask2str(apic_id_str
, dest_field
& APIC_LOGDEST_XAPIC_ID
, 4);
301 cpu_fprintf(f
, " cluster %u mask %s (APIC ID)\n",
302 dest_field
>> APIC_LOGDEST_XAPIC_SHIFT
, apic_id_str
);
307 static void dump_apic_interrupt(FILE *f
, fprintf_function cpu_fprintf
,
308 const char *name
, uint32_t *ireg_tab
,
313 cpu_fprintf(f
, "%s\t ", name
);
314 for (i
= 0; i
< 256; i
++) {
315 if (apic_get_bit(ireg_tab
, i
)) {
316 cpu_fprintf(f
, "%u%s ", i
,
317 apic_get_bit(tmr_tab
, i
) ? "(level)" : "");
321 cpu_fprintf(f
, "%s\n", empty
? "(none)" : "");
324 void x86_cpu_dump_local_apic_state(CPUState
*cs
, FILE *f
,
325 fprintf_function cpu_fprintf
, int flags
)
327 X86CPU
*cpu
= X86_CPU(cs
);
328 APICCommonState
*s
= APIC_COMMON(cpu
->apic_state
);
330 cpu_fprintf(f
, "local apic state not available\n");
333 uint32_t *lvt
= s
->lvt
;
335 cpu_fprintf(f
, "dumping local APIC state for CPU %-2u\n\n",
336 CPU(cpu
)->cpu_index
);
337 dump_apic_lvt(f
, cpu_fprintf
, "LVT0", lvt
[APIC_LVT_LINT0
], false);
338 dump_apic_lvt(f
, cpu_fprintf
, "LVT1", lvt
[APIC_LVT_LINT1
], false);
339 dump_apic_lvt(f
, cpu_fprintf
, "LVTPC", lvt
[APIC_LVT_PERFORM
], false);
340 dump_apic_lvt(f
, cpu_fprintf
, "LVTERR", lvt
[APIC_LVT_ERROR
], false);
341 dump_apic_lvt(f
, cpu_fprintf
, "LVTTHMR", lvt
[APIC_LVT_THERMAL
], false);
342 dump_apic_lvt(f
, cpu_fprintf
, "LVTT", lvt
[APIC_LVT_TIMER
], true);
344 cpu_fprintf(f
, "Timer\t DCR=0x%x (divide by %u) initial_count = %u\n",
345 s
->divide_conf
& APIC_DCR_MASK
,
346 divider_conf(s
->divide_conf
),
349 cpu_fprintf(f
, "SPIV\t 0x%08x APIC %s, focus=%s, spurious vec %u\n",
351 s
->spurious_vec
& APIC_SPURIO_ENABLED
? "enabled" : "disabled",
352 s
->spurious_vec
& APIC_SPURIO_FOCUS
? "on" : "off",
353 s
->spurious_vec
& APIC_VECTOR_MASK
);
355 dump_apic_icr(f
, cpu_fprintf
, s
, &cpu
->env
);
357 cpu_fprintf(f
, "ESR\t 0x%08x\n", s
->esr
);
359 dump_apic_interrupt(f
, cpu_fprintf
, "ISR", s
->isr
, s
->tmr
);
360 dump_apic_interrupt(f
, cpu_fprintf
, "IRR", s
->irr
, s
->tmr
);
362 cpu_fprintf(f
, "\nAPR 0x%02x TPR 0x%02x DFR 0x%02x LDR 0x%02x",
363 s
->arb_id
, s
->tpr
, s
->dest_mode
, s
->log_dest
);
364 if (s
->dest_mode
== 0) {
365 cpu_fprintf(f
, "(cluster %u: id %u)",
366 s
->log_dest
>> APIC_LOGDEST_XAPIC_SHIFT
,
367 s
->log_dest
& APIC_LOGDEST_XAPIC_ID
);
369 cpu_fprintf(f
, " PPR 0x%02x\n", apic_get_ppr(s
));
372 void x86_cpu_dump_local_apic_state(CPUState
*cs
, FILE *f
,
373 fprintf_function cpu_fprintf
, int flags
)
376 #endif /* !CONFIG_USER_ONLY */
378 #define DUMP_CODE_BYTES_TOTAL 50
379 #define DUMP_CODE_BYTES_BACKWARD 20
381 void x86_cpu_dump_state(CPUState
*cs
, FILE *f
, fprintf_function cpu_fprintf
,
384 X86CPU
*cpu
= X86_CPU(cs
);
385 CPUX86State
*env
= &cpu
->env
;
388 static const char *seg_name
[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
390 eflags
= cpu_compute_eflags(env
);
392 if (env
->hflags
& HF_CS64_MASK
) {
394 "RAX=%016" PRIx64
" RBX=%016" PRIx64
" RCX=%016" PRIx64
" RDX=%016" PRIx64
"\n"
395 "RSI=%016" PRIx64
" RDI=%016" PRIx64
" RBP=%016" PRIx64
" RSP=%016" PRIx64
"\n"
396 "R8 =%016" PRIx64
" R9 =%016" PRIx64
" R10=%016" PRIx64
" R11=%016" PRIx64
"\n"
397 "R12=%016" PRIx64
" R13=%016" PRIx64
" R14=%016" PRIx64
" R15=%016" PRIx64
"\n"
398 "RIP=%016" PRIx64
" RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
416 eflags
& DF_MASK
? 'D' : '-',
417 eflags
& CC_O
? 'O' : '-',
418 eflags
& CC_S
? 'S' : '-',
419 eflags
& CC_Z
? 'Z' : '-',
420 eflags
& CC_A
? 'A' : '-',
421 eflags
& CC_P
? 'P' : '-',
422 eflags
& CC_C
? 'C' : '-',
423 env
->hflags
& HF_CPL_MASK
,
424 (env
->hflags
>> HF_INHIBIT_IRQ_SHIFT
) & 1,
425 (env
->a20_mask
>> 20) & 1,
426 (env
->hflags
>> HF_SMM_SHIFT
) & 1,
431 cpu_fprintf(f
, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
432 "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
433 "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
434 (uint32_t)env
->regs
[R_EAX
],
435 (uint32_t)env
->regs
[R_EBX
],
436 (uint32_t)env
->regs
[R_ECX
],
437 (uint32_t)env
->regs
[R_EDX
],
438 (uint32_t)env
->regs
[R_ESI
],
439 (uint32_t)env
->regs
[R_EDI
],
440 (uint32_t)env
->regs
[R_EBP
],
441 (uint32_t)env
->regs
[R_ESP
],
442 (uint32_t)env
->eip
, eflags
,
443 eflags
& DF_MASK
? 'D' : '-',
444 eflags
& CC_O
? 'O' : '-',
445 eflags
& CC_S
? 'S' : '-',
446 eflags
& CC_Z
? 'Z' : '-',
447 eflags
& CC_A
? 'A' : '-',
448 eflags
& CC_P
? 'P' : '-',
449 eflags
& CC_C
? 'C' : '-',
450 env
->hflags
& HF_CPL_MASK
,
451 (env
->hflags
>> HF_INHIBIT_IRQ_SHIFT
) & 1,
452 (env
->a20_mask
>> 20) & 1,
453 (env
->hflags
>> HF_SMM_SHIFT
) & 1,
457 for(i
= 0; i
< 6; i
++) {
458 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, seg_name
[i
],
461 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, "LDT", &env
->ldt
);
462 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, "TR", &env
->tr
);
465 if (env
->hflags
& HF_LMA_MASK
) {
466 cpu_fprintf(f
, "GDT= %016" PRIx64
" %08x\n",
467 env
->gdt
.base
, env
->gdt
.limit
);
468 cpu_fprintf(f
, "IDT= %016" PRIx64
" %08x\n",
469 env
->idt
.base
, env
->idt
.limit
);
470 cpu_fprintf(f
, "CR0=%08x CR2=%016" PRIx64
" CR3=%016" PRIx64
" CR4=%08x\n",
471 (uint32_t)env
->cr
[0],
474 (uint32_t)env
->cr
[4]);
475 for(i
= 0; i
< 4; i
++)
476 cpu_fprintf(f
, "DR%d=%016" PRIx64
" ", i
, env
->dr
[i
]);
477 cpu_fprintf(f
, "\nDR6=%016" PRIx64
" DR7=%016" PRIx64
"\n",
478 env
->dr
[6], env
->dr
[7]);
482 cpu_fprintf(f
, "GDT= %08x %08x\n",
483 (uint32_t)env
->gdt
.base
, env
->gdt
.limit
);
484 cpu_fprintf(f
, "IDT= %08x %08x\n",
485 (uint32_t)env
->idt
.base
, env
->idt
.limit
);
486 cpu_fprintf(f
, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
487 (uint32_t)env
->cr
[0],
488 (uint32_t)env
->cr
[2],
489 (uint32_t)env
->cr
[3],
490 (uint32_t)env
->cr
[4]);
491 for(i
= 0; i
< 4; i
++) {
492 cpu_fprintf(f
, "DR%d=" TARGET_FMT_lx
" ", i
, env
->dr
[i
]);
494 cpu_fprintf(f
, "\nDR6=" TARGET_FMT_lx
" DR7=" TARGET_FMT_lx
"\n",
495 env
->dr
[6], env
->dr
[7]);
497 if (flags
& CPU_DUMP_CCOP
) {
498 if ((unsigned)env
->cc_op
< CC_OP_NB
)
499 snprintf(cc_op_name
, sizeof(cc_op_name
), "%s", cc_op_str
[env
->cc_op
]);
501 snprintf(cc_op_name
, sizeof(cc_op_name
), "[%d]", env
->cc_op
);
503 if (env
->hflags
& HF_CS64_MASK
) {
504 cpu_fprintf(f
, "CCS=%016" PRIx64
" CCD=%016" PRIx64
" CCO=%-8s\n",
505 env
->cc_src
, env
->cc_dst
,
510 cpu_fprintf(f
, "CCS=%08x CCD=%08x CCO=%-8s\n",
511 (uint32_t)env
->cc_src
, (uint32_t)env
->cc_dst
,
515 cpu_fprintf(f
, "EFER=%016" PRIx64
"\n", env
->efer
);
516 if (flags
& CPU_DUMP_FPU
) {
519 for(i
= 0; i
< 8; i
++) {
520 fptag
|= ((!env
->fptags
[i
]) << i
);
522 cpu_fprintf(f
, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
524 (env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11,
530 u
.d
= env
->fpregs
[i
].d
;
531 cpu_fprintf(f
, "FPR%d=%016" PRIx64
" %04x",
532 i
, u
.l
.lower
, u
.l
.upper
);
534 cpu_fprintf(f
, "\n");
538 if (env
->hflags
& HF_CS64_MASK
)
543 cpu_fprintf(f
, "XMM%02d=%08x%08x%08x%08x",
545 env
->xmm_regs
[i
].ZMM_L(3),
546 env
->xmm_regs
[i
].ZMM_L(2),
547 env
->xmm_regs
[i
].ZMM_L(1),
548 env
->xmm_regs
[i
].ZMM_L(0));
550 cpu_fprintf(f
, "\n");
555 if (flags
& CPU_DUMP_CODE
) {
556 target_ulong base
= env
->segs
[R_CS
].base
+ env
->eip
;
557 target_ulong offs
= MIN(env
->eip
, DUMP_CODE_BYTES_BACKWARD
);
561 cpu_fprintf(f
, "Code=");
562 for (i
= 0; i
< DUMP_CODE_BYTES_TOTAL
; i
++) {
563 if (cpu_memory_rw_debug(cs
, base
- offs
+ i
, &code
, 1, 0) == 0) {
564 snprintf(codestr
, sizeof(codestr
), "%02x", code
);
566 snprintf(codestr
, sizeof(codestr
), "??");
568 cpu_fprintf(f
, "%s%s%s%s", i
> 0 ? " " : "",
569 i
== offs
? "<" : "", codestr
, i
== offs
? ">" : "");
571 cpu_fprintf(f
, "\n");
575 /***********************************************************/
577 /* XXX: add PGE support */
579 void x86_cpu_set_a20(X86CPU
*cpu
, int a20_state
)
581 CPUX86State
*env
= &cpu
->env
;
583 a20_state
= (a20_state
!= 0);
584 if (a20_state
!= ((env
->a20_mask
>> 20) & 1)) {
585 CPUState
*cs
= CPU(cpu
);
587 qemu_log_mask(CPU_LOG_MMU
, "A20 update: a20=%d\n", a20_state
);
588 /* if the cpu is currently executing code, we must unlink it and
589 all the potentially executing TB */
590 cpu_interrupt(cs
, CPU_INTERRUPT_EXITTB
);
592 /* when a20 is changed, all the MMU mappings are invalid, so
593 we must flush everything */
595 env
->a20_mask
= ~(1 << 20) | (a20_state
<< 20);
599 void cpu_x86_update_cr0(CPUX86State
*env
, uint32_t new_cr0
)
601 X86CPU
*cpu
= x86_env_get_cpu(env
);
604 qemu_log_mask(CPU_LOG_MMU
, "CR0 update: CR0=0x%08x\n", new_cr0
);
605 if ((new_cr0
& (CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
)) !=
606 (env
->cr
[0] & (CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
))) {
611 if (!(env
->cr
[0] & CR0_PG_MASK
) && (new_cr0
& CR0_PG_MASK
) &&
612 (env
->efer
& MSR_EFER_LME
)) {
613 /* enter in long mode */
614 /* XXX: generate an exception */
615 if (!(env
->cr
[4] & CR4_PAE_MASK
))
617 env
->efer
|= MSR_EFER_LMA
;
618 env
->hflags
|= HF_LMA_MASK
;
619 } else if ((env
->cr
[0] & CR0_PG_MASK
) && !(new_cr0
& CR0_PG_MASK
) &&
620 (env
->efer
& MSR_EFER_LMA
)) {
622 env
->efer
&= ~MSR_EFER_LMA
;
623 env
->hflags
&= ~(HF_LMA_MASK
| HF_CS64_MASK
);
624 env
->eip
&= 0xffffffff;
627 env
->cr
[0] = new_cr0
| CR0_ET_MASK
;
629 /* update PE flag in hidden flags */
630 pe_state
= (env
->cr
[0] & CR0_PE_MASK
);
631 env
->hflags
= (env
->hflags
& ~HF_PE_MASK
) | (pe_state
<< HF_PE_SHIFT
);
632 /* ensure that ADDSEG is always set in real mode */
633 env
->hflags
|= ((pe_state
^ 1) << HF_ADDSEG_SHIFT
);
634 /* update FPU flags */
635 env
->hflags
= (env
->hflags
& ~(HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
)) |
636 ((new_cr0
<< (HF_MP_SHIFT
- 1)) & (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
));
639 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
641 void cpu_x86_update_cr3(CPUX86State
*env
, target_ulong new_cr3
)
643 X86CPU
*cpu
= x86_env_get_cpu(env
);
645 env
->cr
[3] = new_cr3
;
646 if (env
->cr
[0] & CR0_PG_MASK
) {
647 qemu_log_mask(CPU_LOG_MMU
,
648 "CR3 update: CR3=" TARGET_FMT_lx
"\n", new_cr3
);
653 void cpu_x86_update_cr4(CPUX86State
*env
, uint32_t new_cr4
)
655 X86CPU
*cpu
= x86_env_get_cpu(env
);
658 #if defined(DEBUG_MMU)
659 printf("CR4 update: %08x -> %08x\n", (uint32_t)env
->cr
[4], new_cr4
);
661 if ((new_cr4
^ env
->cr
[4]) &
662 (CR4_PGE_MASK
| CR4_PAE_MASK
| CR4_PSE_MASK
|
663 CR4_SMEP_MASK
| CR4_SMAP_MASK
| CR4_LA57_MASK
)) {
667 /* Clear bits we're going to recompute. */
668 hflags
= env
->hflags
& ~(HF_OSFXSR_MASK
| HF_SMAP_MASK
);
671 if (!(env
->features
[FEAT_1_EDX
] & CPUID_SSE
)) {
672 new_cr4
&= ~CR4_OSFXSR_MASK
;
674 if (new_cr4
& CR4_OSFXSR_MASK
) {
675 hflags
|= HF_OSFXSR_MASK
;
678 if (!(env
->features
[FEAT_7_0_EBX
] & CPUID_7_0_EBX_SMAP
)) {
679 new_cr4
&= ~CR4_SMAP_MASK
;
681 if (new_cr4
& CR4_SMAP_MASK
) {
682 hflags
|= HF_SMAP_MASK
;
685 if (!(env
->features
[FEAT_7_0_ECX
] & CPUID_7_0_ECX_PKU
)) {
686 new_cr4
&= ~CR4_PKE_MASK
;
689 env
->cr
[4] = new_cr4
;
690 env
->hflags
= hflags
;
692 cpu_sync_bndcs_hflags(env
);
695 #if defined(CONFIG_USER_ONLY)
697 int x86_cpu_handle_mmu_fault(CPUState
*cs
, vaddr addr
,
698 int is_write
, int mmu_idx
)
700 X86CPU
*cpu
= X86_CPU(cs
);
701 CPUX86State
*env
= &cpu
->env
;
703 /* user mode only emulation */
706 env
->error_code
= (is_write
<< PG_ERROR_W_BIT
);
707 env
->error_code
|= PG_ERROR_U_MASK
;
708 cs
->exception_index
= EXCP0E_PAGE
;
709 env
->exception_is_int
= 0;
710 env
->exception_next_eip
= -1;
717 * -1 = cannot handle fault
718 * 0 = nothing more to do
719 * 1 = generate PF fault
721 int x86_cpu_handle_mmu_fault(CPUState
*cs
, vaddr addr
,
722 int is_write1
, int mmu_idx
)
724 X86CPU
*cpu
= X86_CPU(cs
);
725 CPUX86State
*env
= &cpu
->env
;
728 target_ulong pde_addr
, pte_addr
;
730 int is_dirty
, prot
, page_size
, is_write
, is_user
;
732 uint64_t rsvd_mask
= PG_HI_RSVD_MASK
;
733 uint32_t page_offset
;
736 is_user
= mmu_idx
== MMU_USER_IDX
;
737 #if defined(DEBUG_MMU)
738 printf("MMU fault: addr=%" VADDR_PRIx
" w=%d u=%d eip=" TARGET_FMT_lx
"\n",
739 addr
, is_write1
, is_user
, env
->eip
);
741 is_write
= is_write1
& 1;
743 a20_mask
= x86_get_a20_mask(env
);
744 if (!(env
->cr
[0] & CR0_PG_MASK
)) {
747 if (!(env
->hflags
& HF_LMA_MASK
)) {
748 /* Without long mode we can only address 32bits in real mode */
752 prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
757 if (!(env
->efer
& MSR_EFER_NXE
)) {
758 rsvd_mask
|= PG_NX_MASK
;
761 if (env
->cr
[4] & CR4_PAE_MASK
) {
763 target_ulong pdpe_addr
;
766 if (env
->hflags
& HF_LMA_MASK
) {
767 bool la57
= env
->cr
[4] & CR4_LA57_MASK
;
768 uint64_t pml5e_addr
, pml5e
;
769 uint64_t pml4e_addr
, pml4e
;
772 /* test virtual address sign extension */
773 sext
= la57
? (int64_t)addr
>> 56 : (int64_t)addr
>> 47;
774 if (sext
!= 0 && sext
!= -1) {
776 cs
->exception_index
= EXCP0D_GPF
;
781 pml5e_addr
= ((env
->cr
[3] & ~0xfff) +
782 (((addr
>> 48) & 0x1ff) << 3)) & a20_mask
;
783 pml5e
= x86_ldq_phys(cs
, pml5e_addr
);
784 if (!(pml5e
& PG_PRESENT_MASK
)) {
787 if (pml5e
& (rsvd_mask
| PG_PSE_MASK
)) {
790 if (!(pml5e
& PG_ACCESSED_MASK
)) {
791 pml5e
|= PG_ACCESSED_MASK
;
792 x86_stl_phys_notdirty(cs
, pml5e_addr
, pml5e
);
794 ptep
= pml5e
^ PG_NX_MASK
;
797 ptep
= PG_NX_MASK
| PG_USER_MASK
| PG_RW_MASK
;
800 pml4e_addr
= ((pml5e
& PG_ADDRESS_MASK
) +
801 (((addr
>> 39) & 0x1ff) << 3)) & a20_mask
;
802 pml4e
= x86_ldq_phys(cs
, pml4e_addr
);
803 if (!(pml4e
& PG_PRESENT_MASK
)) {
806 if (pml4e
& (rsvd_mask
| PG_PSE_MASK
)) {
809 if (!(pml4e
& PG_ACCESSED_MASK
)) {
810 pml4e
|= PG_ACCESSED_MASK
;
811 x86_stl_phys_notdirty(cs
, pml4e_addr
, pml4e
);
813 ptep
&= pml4e
^ PG_NX_MASK
;
814 pdpe_addr
= ((pml4e
& PG_ADDRESS_MASK
) + (((addr
>> 30) & 0x1ff) << 3)) &
816 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
817 if (!(pdpe
& PG_PRESENT_MASK
)) {
820 if (pdpe
& rsvd_mask
) {
823 ptep
&= pdpe
^ PG_NX_MASK
;
824 if (!(pdpe
& PG_ACCESSED_MASK
)) {
825 pdpe
|= PG_ACCESSED_MASK
;
826 x86_stl_phys_notdirty(cs
, pdpe_addr
, pdpe
);
828 if (pdpe
& PG_PSE_MASK
) {
830 page_size
= 1024 * 1024 * 1024;
831 pte_addr
= pdpe_addr
;
833 goto do_check_protect
;
838 /* XXX: load them when cr3 is loaded ? */
839 pdpe_addr
= ((env
->cr
[3] & ~0x1f) + ((addr
>> 27) & 0x18)) &
841 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
842 if (!(pdpe
& PG_PRESENT_MASK
)) {
845 rsvd_mask
|= PG_HI_USER_MASK
;
846 if (pdpe
& (rsvd_mask
| PG_NX_MASK
)) {
849 ptep
= PG_NX_MASK
| PG_USER_MASK
| PG_RW_MASK
;
852 pde_addr
= ((pdpe
& PG_ADDRESS_MASK
) + (((addr
>> 21) & 0x1ff) << 3)) &
854 pde
= x86_ldq_phys(cs
, pde_addr
);
855 if (!(pde
& PG_PRESENT_MASK
)) {
858 if (pde
& rsvd_mask
) {
861 ptep
&= pde
^ PG_NX_MASK
;
862 if (pde
& PG_PSE_MASK
) {
864 page_size
= 2048 * 1024;
867 goto do_check_protect
;
870 if (!(pde
& PG_ACCESSED_MASK
)) {
871 pde
|= PG_ACCESSED_MASK
;
872 x86_stl_phys_notdirty(cs
, pde_addr
, pde
);
874 pte_addr
= ((pde
& PG_ADDRESS_MASK
) + (((addr
>> 12) & 0x1ff) << 3)) &
876 pte
= x86_ldq_phys(cs
, pte_addr
);
877 if (!(pte
& PG_PRESENT_MASK
)) {
880 if (pte
& rsvd_mask
) {
883 /* combine pde and pte nx, user and rw protections */
884 ptep
&= pte
^ PG_NX_MASK
;
889 /* page directory entry */
890 pde_addr
= ((env
->cr
[3] & ~0xfff) + ((addr
>> 20) & 0xffc)) &
892 pde
= x86_ldl_phys(cs
, pde_addr
);
893 if (!(pde
& PG_PRESENT_MASK
)) {
896 ptep
= pde
| PG_NX_MASK
;
898 /* if PSE bit is set, then we use a 4MB page */
899 if ((pde
& PG_PSE_MASK
) && (env
->cr
[4] & CR4_PSE_MASK
)) {
900 page_size
= 4096 * 1024;
903 /* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
904 * Leave bits 20-13 in place for setting accessed/dirty bits below.
906 pte
= pde
| ((pde
& 0x1fe000LL
) << (32 - 13));
907 rsvd_mask
= 0x200000;
908 goto do_check_protect_pse36
;
911 if (!(pde
& PG_ACCESSED_MASK
)) {
912 pde
|= PG_ACCESSED_MASK
;
913 x86_stl_phys_notdirty(cs
, pde_addr
, pde
);
916 /* page directory entry */
917 pte_addr
= ((pde
& ~0xfff) + ((addr
>> 10) & 0xffc)) &
919 pte
= x86_ldl_phys(cs
, pte_addr
);
920 if (!(pte
& PG_PRESENT_MASK
)) {
923 /* combine pde and pte user and rw protections */
924 ptep
&= pte
| PG_NX_MASK
;
930 rsvd_mask
|= (page_size
- 1) & PG_ADDRESS_MASK
& ~PG_PSE_PAT_MASK
;
931 do_check_protect_pse36
:
932 if (pte
& rsvd_mask
) {
937 /* can the page can be put in the TLB? prot will tell us */
938 if (is_user
&& !(ptep
& PG_USER_MASK
)) {
939 goto do_fault_protect
;
943 if (mmu_idx
!= MMU_KSMAP_IDX
|| !(ptep
& PG_USER_MASK
)) {
945 if ((ptep
& PG_RW_MASK
) || (!is_user
&& !(env
->cr
[0] & CR0_WP_MASK
))) {
949 if (!(ptep
& PG_NX_MASK
) &&
950 (mmu_idx
== MMU_USER_IDX
||
951 !((env
->cr
[4] & CR4_SMEP_MASK
) && (ptep
& PG_USER_MASK
)))) {
954 if ((env
->cr
[4] & CR4_PKE_MASK
) && (env
->hflags
& HF_LMA_MASK
) &&
955 (ptep
& PG_USER_MASK
) && env
->pkru
) {
956 uint32_t pk
= (pte
& PG_PKRU_MASK
) >> PG_PKRU_BIT
;
957 uint32_t pkru_ad
= (env
->pkru
>> pk
* 2) & 1;
958 uint32_t pkru_wd
= (env
->pkru
>> pk
* 2) & 2;
959 uint32_t pkru_prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
962 pkru_prot
&= ~(PAGE_READ
| PAGE_WRITE
);
963 } else if (pkru_wd
&& (is_user
|| env
->cr
[0] & CR0_WP_MASK
)) {
964 pkru_prot
&= ~PAGE_WRITE
;
968 if ((pkru_prot
& (1 << is_write1
)) == 0) {
969 assert(is_write1
!= 2);
970 error_code
|= PG_ERROR_PK_MASK
;
971 goto do_fault_protect
;
975 if ((prot
& (1 << is_write1
)) == 0) {
976 goto do_fault_protect
;
980 is_dirty
= is_write
&& !(pte
& PG_DIRTY_MASK
);
981 if (!(pte
& PG_ACCESSED_MASK
) || is_dirty
) {
982 pte
|= PG_ACCESSED_MASK
;
984 pte
|= PG_DIRTY_MASK
;
986 x86_stl_phys_notdirty(cs
, pte_addr
, pte
);
989 if (!(pte
& PG_DIRTY_MASK
)) {
990 /* only set write access if already dirty... otherwise wait
997 pte
= pte
& a20_mask
;
999 /* align to page_size */
1000 pte
&= PG_ADDRESS_MASK
& ~(page_size
- 1);
1002 /* Even if 4MB pages, we map only one 4KB page in the cache to
1003 avoid filling it too fast */
1004 vaddr
= addr
& TARGET_PAGE_MASK
;
1005 page_offset
= vaddr
& (page_size
- 1);
1006 paddr
= pte
+ page_offset
;
1008 assert(prot
& (1 << is_write1
));
1009 tlb_set_page_with_attrs(cs
, vaddr
, paddr
, cpu_get_mem_attrs(env
),
1010 prot
, mmu_idx
, page_size
);
1013 error_code
|= PG_ERROR_RSVD_MASK
;
1015 error_code
|= PG_ERROR_P_MASK
;
1017 error_code
|= (is_write
<< PG_ERROR_W_BIT
);
1019 error_code
|= PG_ERROR_U_MASK
;
1020 if (is_write1
== 2 &&
1021 (((env
->efer
& MSR_EFER_NXE
) &&
1022 (env
->cr
[4] & CR4_PAE_MASK
)) ||
1023 (env
->cr
[4] & CR4_SMEP_MASK
)))
1024 error_code
|= PG_ERROR_I_D_MASK
;
1025 if (env
->intercept_exceptions
& (1 << EXCP0E_PAGE
)) {
1026 /* cr2 is not modified in case of exceptions */
1028 env
->vm_vmcb
+ offsetof(struct vmcb
, control
.exit_info_2
),
1033 env
->error_code
= error_code
;
1034 cs
->exception_index
= EXCP0E_PAGE
;
1038 hwaddr
x86_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
1040 X86CPU
*cpu
= X86_CPU(cs
);
1041 CPUX86State
*env
= &cpu
->env
;
1042 target_ulong pde_addr
, pte_addr
;
1045 uint32_t page_offset
;
1048 a20_mask
= x86_get_a20_mask(env
);
1049 if (!(env
->cr
[0] & CR0_PG_MASK
)) {
1050 pte
= addr
& a20_mask
;
1052 } else if (env
->cr
[4] & CR4_PAE_MASK
) {
1053 target_ulong pdpe_addr
;
1056 #ifdef TARGET_X86_64
1057 if (env
->hflags
& HF_LMA_MASK
) {
1058 bool la57
= env
->cr
[4] & CR4_LA57_MASK
;
1059 uint64_t pml5e_addr
, pml5e
;
1060 uint64_t pml4e_addr
, pml4e
;
1063 /* test virtual address sign extension */
1064 sext
= la57
? (int64_t)addr
>> 56 : (int64_t)addr
>> 47;
1065 if (sext
!= 0 && sext
!= -1) {
1070 pml5e_addr
= ((env
->cr
[3] & ~0xfff) +
1071 (((addr
>> 48) & 0x1ff) << 3)) & a20_mask
;
1072 pml5e
= x86_ldq_phys(cs
, pml5e_addr
);
1073 if (!(pml5e
& PG_PRESENT_MASK
)) {
1080 pml4e_addr
= ((pml5e
& PG_ADDRESS_MASK
) +
1081 (((addr
>> 39) & 0x1ff) << 3)) & a20_mask
;
1082 pml4e
= x86_ldq_phys(cs
, pml4e_addr
);
1083 if (!(pml4e
& PG_PRESENT_MASK
)) {
1086 pdpe_addr
= ((pml4e
& PG_ADDRESS_MASK
) +
1087 (((addr
>> 30) & 0x1ff) << 3)) & a20_mask
;
1088 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
1089 if (!(pdpe
& PG_PRESENT_MASK
)) {
1092 if (pdpe
& PG_PSE_MASK
) {
1093 page_size
= 1024 * 1024 * 1024;
1101 pdpe_addr
= ((env
->cr
[3] & ~0x1f) + ((addr
>> 27) & 0x18)) &
1103 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
1104 if (!(pdpe
& PG_PRESENT_MASK
))
1108 pde_addr
= ((pdpe
& PG_ADDRESS_MASK
) +
1109 (((addr
>> 21) & 0x1ff) << 3)) & a20_mask
;
1110 pde
= x86_ldq_phys(cs
, pde_addr
);
1111 if (!(pde
& PG_PRESENT_MASK
)) {
1114 if (pde
& PG_PSE_MASK
) {
1116 page_size
= 2048 * 1024;
1120 pte_addr
= ((pde
& PG_ADDRESS_MASK
) +
1121 (((addr
>> 12) & 0x1ff) << 3)) & a20_mask
;
1123 pte
= x86_ldq_phys(cs
, pte_addr
);
1125 if (!(pte
& PG_PRESENT_MASK
)) {
1131 /* page directory entry */
1132 pde_addr
= ((env
->cr
[3] & ~0xfff) + ((addr
>> 20) & 0xffc)) & a20_mask
;
1133 pde
= x86_ldl_phys(cs
, pde_addr
);
1134 if (!(pde
& PG_PRESENT_MASK
))
1136 if ((pde
& PG_PSE_MASK
) && (env
->cr
[4] & CR4_PSE_MASK
)) {
1137 pte
= pde
| ((pde
& 0x1fe000LL
) << (32 - 13));
1138 page_size
= 4096 * 1024;
1140 /* page directory entry */
1141 pte_addr
= ((pde
& ~0xfff) + ((addr
>> 10) & 0xffc)) & a20_mask
;
1142 pte
= x86_ldl_phys(cs
, pte_addr
);
1143 if (!(pte
& PG_PRESENT_MASK
)) {
1148 pte
= pte
& a20_mask
;
1151 #ifdef TARGET_X86_64
1154 pte
&= PG_ADDRESS_MASK
& ~(page_size
- 1);
1155 page_offset
= (addr
& TARGET_PAGE_MASK
) & (page_size
- 1);
1156 return pte
| page_offset
;
1159 typedef struct MCEInjectionParams
{
1163 uint64_t mcg_status
;
1167 } MCEInjectionParams
;
1169 static void do_inject_x86_mce(CPUState
*cs
, run_on_cpu_data data
)
1171 MCEInjectionParams
*params
= data
.host_ptr
;
1172 X86CPU
*cpu
= X86_CPU(cs
);
1173 CPUX86State
*cenv
= &cpu
->env
;
1174 uint64_t *banks
= cenv
->mce_banks
+ 4 * params
->bank
;
1176 cpu_synchronize_state(cs
);
1179 * If there is an MCE exception being processed, ignore this SRAO MCE
1180 * unless unconditional injection was requested.
1182 if (!(params
->flags
& MCE_INJECT_UNCOND_AO
)
1183 && !(params
->status
& MCI_STATUS_AR
)
1184 && (cenv
->mcg_status
& MCG_STATUS_MCIP
)) {
1188 if (params
->status
& MCI_STATUS_UC
) {
1190 * if MSR_MCG_CTL is not all 1s, the uncorrected error
1191 * reporting is disabled
1193 if ((cenv
->mcg_cap
& MCG_CTL_P
) && cenv
->mcg_ctl
!= ~(uint64_t)0) {
1194 monitor_printf(params
->mon
,
1195 "CPU %d: Uncorrected error reporting disabled\n",
1201 * if MSR_MCi_CTL is not all 1s, the uncorrected error
1202 * reporting is disabled for the bank
1204 if (banks
[0] != ~(uint64_t)0) {
1205 monitor_printf(params
->mon
,
1206 "CPU %d: Uncorrected error reporting disabled for"
1208 cs
->cpu_index
, params
->bank
);
1212 if ((cenv
->mcg_status
& MCG_STATUS_MCIP
) ||
1213 !(cenv
->cr
[4] & CR4_MCE_MASK
)) {
1214 monitor_printf(params
->mon
,
1215 "CPU %d: Previous MCE still in progress, raising"
1218 qemu_log_mask(CPU_LOG_RESET
, "Triple fault\n");
1219 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
1222 if (banks
[1] & MCI_STATUS_VAL
) {
1223 params
->status
|= MCI_STATUS_OVER
;
1225 banks
[2] = params
->addr
;
1226 banks
[3] = params
->misc
;
1227 cenv
->mcg_status
= params
->mcg_status
;
1228 banks
[1] = params
->status
;
1229 cpu_interrupt(cs
, CPU_INTERRUPT_MCE
);
1230 } else if (!(banks
[1] & MCI_STATUS_VAL
)
1231 || !(banks
[1] & MCI_STATUS_UC
)) {
1232 if (banks
[1] & MCI_STATUS_VAL
) {
1233 params
->status
|= MCI_STATUS_OVER
;
1235 banks
[2] = params
->addr
;
1236 banks
[3] = params
->misc
;
1237 banks
[1] = params
->status
;
1239 banks
[1] |= MCI_STATUS_OVER
;
1243 void cpu_x86_inject_mce(Monitor
*mon
, X86CPU
*cpu
, int bank
,
1244 uint64_t status
, uint64_t mcg_status
, uint64_t addr
,
1245 uint64_t misc
, int flags
)
1247 CPUState
*cs
= CPU(cpu
);
1248 CPUX86State
*cenv
= &cpu
->env
;
1249 MCEInjectionParams params
= {
1253 .mcg_status
= mcg_status
,
1258 unsigned bank_num
= cenv
->mcg_cap
& 0xff;
1260 if (!cenv
->mcg_cap
) {
1261 monitor_printf(mon
, "MCE injection not supported\n");
1264 if (bank
>= bank_num
) {
1265 monitor_printf(mon
, "Invalid MCE bank number\n");
1268 if (!(status
& MCI_STATUS_VAL
)) {
1269 monitor_printf(mon
, "Invalid MCE status code\n");
1272 if ((flags
& MCE_INJECT_BROADCAST
)
1273 && !cpu_x86_support_mca_broadcast(cenv
)) {
1274 monitor_printf(mon
, "Guest CPU does not support MCA broadcast\n");
1278 run_on_cpu(cs
, do_inject_x86_mce
, RUN_ON_CPU_HOST_PTR(¶ms
));
1279 if (flags
& MCE_INJECT_BROADCAST
) {
1283 params
.status
= MCI_STATUS_VAL
| MCI_STATUS_UC
;
1284 params
.mcg_status
= MCG_STATUS_MCIP
| MCG_STATUS_RIPV
;
1287 CPU_FOREACH(other_cs
) {
1288 if (other_cs
== cs
) {
1291 run_on_cpu(other_cs
, do_inject_x86_mce
, RUN_ON_CPU_HOST_PTR(¶ms
));
1296 void cpu_report_tpr_access(CPUX86State
*env
, TPRAccess access
)
1298 X86CPU
*cpu
= x86_env_get_cpu(env
);
1299 CPUState
*cs
= CPU(cpu
);
1301 if (kvm_enabled()) {
1302 env
->tpr_access_type
= access
;
1304 cpu_interrupt(cs
, CPU_INTERRUPT_TPR
);
1306 cpu_restore_state(cs
, cs
->mem_io_pc
);
1308 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
, access
);
1311 #endif /* !CONFIG_USER_ONLY */
1313 int cpu_x86_get_descr_debug(CPUX86State
*env
, unsigned int selector
,
1314 target_ulong
*base
, unsigned int *limit
,
1315 unsigned int *flags
)
1317 X86CPU
*cpu
= x86_env_get_cpu(env
);
1318 CPUState
*cs
= CPU(cpu
);
1328 index
= selector
& ~7;
1329 ptr
= dt
->base
+ index
;
1330 if ((index
+ 7) > dt
->limit
1331 || cpu_memory_rw_debug(cs
, ptr
, (uint8_t *)&e1
, sizeof(e1
), 0) != 0
1332 || cpu_memory_rw_debug(cs
, ptr
+4, (uint8_t *)&e2
, sizeof(e2
), 0) != 0)
1335 *base
= ((e1
>> 16) | ((e2
& 0xff) << 16) | (e2
& 0xff000000));
1336 *limit
= (e1
& 0xffff) | (e2
& 0x000f0000);
1337 if (e2
& DESC_G_MASK
)
1338 *limit
= (*limit
<< 12) | 0xfff;
1344 #if !defined(CONFIG_USER_ONLY)
1345 void do_cpu_init(X86CPU
*cpu
)
1347 CPUState
*cs
= CPU(cpu
);
1348 CPUX86State
*env
= &cpu
->env
;
1349 CPUX86State
*save
= g_new(CPUX86State
, 1);
1350 int sipi
= cs
->interrupt_request
& CPU_INTERRUPT_SIPI
;
1355 cs
->interrupt_request
= sipi
;
1356 memcpy(&env
->start_init_save
, &save
->start_init_save
,
1357 offsetof(CPUX86State
, end_init_save
) -
1358 offsetof(CPUX86State
, start_init_save
));
1361 if (kvm_enabled()) {
1362 kvm_arch_do_init_vcpu(cpu
);
1364 apic_init_reset(cpu
->apic_state
);
1367 void do_cpu_sipi(X86CPU
*cpu
)
1369 apic_sipi(cpu
->apic_state
);
1372 void do_cpu_init(X86CPU
*cpu
)
1375 void do_cpu_sipi(X86CPU
*cpu
)
1380 /* Frob eflags into and out of the CPU temporary format. */
1382 void x86_cpu_exec_enter(CPUState
*cs
)
1384 X86CPU
*cpu
= X86_CPU(cs
);
1385 CPUX86State
*env
= &cpu
->env
;
1387 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
1388 env
->df
= 1 - (2 * ((env
->eflags
>> 10) & 1));
1389 CC_OP
= CC_OP_EFLAGS
;
1390 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
1393 void x86_cpu_exec_exit(CPUState
*cs
)
1395 X86CPU
*cpu
= X86_CPU(cs
);
1396 CPUX86State
*env
= &cpu
->env
;
1398 env
->eflags
= cpu_compute_eflags(env
);
1401 #ifndef CONFIG_USER_ONLY
1402 uint8_t x86_ldub_phys(CPUState
*cs
, hwaddr addr
)
1404 X86CPU
*cpu
= X86_CPU(cs
);
1405 CPUX86State
*env
= &cpu
->env
;
1406 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1407 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1409 return address_space_ldub(as
, addr
, attrs
, NULL
);
1412 uint32_t x86_lduw_phys(CPUState
*cs
, hwaddr addr
)
1414 X86CPU
*cpu
= X86_CPU(cs
);
1415 CPUX86State
*env
= &cpu
->env
;
1416 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1417 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1419 return address_space_lduw(as
, addr
, attrs
, NULL
);
1422 uint32_t x86_ldl_phys(CPUState
*cs
, hwaddr addr
)
1424 X86CPU
*cpu
= X86_CPU(cs
);
1425 CPUX86State
*env
= &cpu
->env
;
1426 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1427 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1429 return address_space_ldl(as
, addr
, attrs
, NULL
);
1432 uint64_t x86_ldq_phys(CPUState
*cs
, hwaddr addr
)
1434 X86CPU
*cpu
= X86_CPU(cs
);
1435 CPUX86State
*env
= &cpu
->env
;
1436 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1437 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1439 return address_space_ldq(as
, addr
, attrs
, NULL
);
1442 void x86_stb_phys(CPUState
*cs
, hwaddr addr
, uint8_t val
)
1444 X86CPU
*cpu
= X86_CPU(cs
);
1445 CPUX86State
*env
= &cpu
->env
;
1446 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1447 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1449 address_space_stb(as
, addr
, val
, attrs
, NULL
);
1452 void x86_stl_phys_notdirty(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1454 X86CPU
*cpu
= X86_CPU(cs
);
1455 CPUX86State
*env
= &cpu
->env
;
1456 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1457 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1459 address_space_stl_notdirty(as
, addr
, val
, attrs
, NULL
);
1462 void x86_stw_phys(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1464 X86CPU
*cpu
= X86_CPU(cs
);
1465 CPUX86State
*env
= &cpu
->env
;
1466 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1467 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1469 address_space_stw(as
, addr
, val
, attrs
, NULL
);
1472 void x86_stl_phys(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1474 X86CPU
*cpu
= X86_CPU(cs
);
1475 CPUX86State
*env
= &cpu
->env
;
1476 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1477 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1479 address_space_stl(as
, addr
, val
, attrs
, NULL
);
1482 void x86_stq_phys(CPUState
*cs
, hwaddr addr
, uint64_t val
)
1484 X86CPU
*cpu
= X86_CPU(cs
);
1485 CPUX86State
*env
= &cpu
->env
;
1486 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1487 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1489 address_space_stq(as
, addr
, val
, attrs
, NULL
);