kvm: Add helper kvm_dirty_ring_init()
[qemu/kevin.git] / accel / kvm / kvm-all.c
blob5d0de9d0a8f8716de69c1cbe2cd010aba67c6bb1
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
20 #include <linux/kvm.h>
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61 * need to use the real host PAGE_SIZE, as that's what KVM will use.
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
72 //#define DEBUG_KVM
74 #ifdef DEBUG_KVM
75 #define DPRINTF(fmt, ...) \
76 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
77 #else
78 #define DPRINTF(fmt, ...) \
79 do { } while (0)
80 #endif
82 struct KVMParkedVcpu {
83 unsigned long vcpu_id;
84 int kvm_fd;
85 QLIST_ENTRY(KVMParkedVcpu) node;
88 KVMState *kvm_state;
89 bool kvm_kernel_irqchip;
90 bool kvm_split_irqchip;
91 bool kvm_async_interrupts_allowed;
92 bool kvm_halt_in_kernel_allowed;
93 bool kvm_eventfds_allowed;
94 bool kvm_irqfds_allowed;
95 bool kvm_resamplefds_allowed;
96 bool kvm_msi_via_irqfd_allowed;
97 bool kvm_gsi_routing_allowed;
98 bool kvm_gsi_direct_mapping;
99 bool kvm_allowed;
100 bool kvm_readonly_mem_allowed;
101 bool kvm_vm_attributes_allowed;
102 bool kvm_direct_msi_allowed;
103 bool kvm_ioeventfd_any_length_allowed;
104 bool kvm_msi_use_devid;
105 bool kvm_has_guest_debug;
106 static int kvm_sstep_flags;
107 static bool kvm_immediate_exit;
108 static hwaddr kvm_max_slot_size = ~0;
110 static const KVMCapabilityInfo kvm_required_capabilites[] = {
111 KVM_CAP_INFO(USER_MEMORY),
112 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
113 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
114 KVM_CAP_LAST_INFO
117 static NotifierList kvm_irqchip_change_notifiers =
118 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
120 struct KVMResampleFd {
121 int gsi;
122 EventNotifier *resample_event;
123 QLIST_ENTRY(KVMResampleFd) node;
125 typedef struct KVMResampleFd KVMResampleFd;
128 * Only used with split irqchip where we need to do the resample fd
129 * kick for the kernel from userspace.
131 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
132 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
134 static QemuMutex kml_slots_lock;
136 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
137 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
139 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
141 static inline void kvm_resample_fd_remove(int gsi)
143 KVMResampleFd *rfd;
145 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
146 if (rfd->gsi == gsi) {
147 QLIST_REMOVE(rfd, node);
148 g_free(rfd);
149 break;
154 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
156 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
158 rfd->gsi = gsi;
159 rfd->resample_event = event;
161 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
164 void kvm_resample_fd_notify(int gsi)
166 KVMResampleFd *rfd;
168 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
169 if (rfd->gsi == gsi) {
170 event_notifier_set(rfd->resample_event);
171 trace_kvm_resample_fd_notify(gsi);
172 return;
177 int kvm_get_max_memslots(void)
179 KVMState *s = KVM_STATE(current_accel());
181 return s->nr_slots;
184 /* Called with KVMMemoryListener.slots_lock held */
185 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
187 KVMState *s = kvm_state;
188 int i;
190 for (i = 0; i < s->nr_slots; i++) {
191 if (kml->slots[i].memory_size == 0) {
192 return &kml->slots[i];
196 return NULL;
199 bool kvm_has_free_slot(MachineState *ms)
201 KVMState *s = KVM_STATE(ms->accelerator);
202 bool result;
203 KVMMemoryListener *kml = &s->memory_listener;
205 kvm_slots_lock();
206 result = !!kvm_get_free_slot(kml);
207 kvm_slots_unlock();
209 return result;
212 /* Called with KVMMemoryListener.slots_lock held */
213 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
215 KVMSlot *slot = kvm_get_free_slot(kml);
217 if (slot) {
218 return slot;
221 fprintf(stderr, "%s: no free slot available\n", __func__);
222 abort();
225 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
226 hwaddr start_addr,
227 hwaddr size)
229 KVMState *s = kvm_state;
230 int i;
232 for (i = 0; i < s->nr_slots; i++) {
233 KVMSlot *mem = &kml->slots[i];
235 if (start_addr == mem->start_addr && size == mem->memory_size) {
236 return mem;
240 return NULL;
244 * Calculate and align the start address and the size of the section.
245 * Return the size. If the size is 0, the aligned section is empty.
247 static hwaddr kvm_align_section(MemoryRegionSection *section,
248 hwaddr *start)
250 hwaddr size = int128_get64(section->size);
251 hwaddr delta, aligned;
253 /* kvm works in page size chunks, but the function may be called
254 with sub-page size and unaligned start address. Pad the start
255 address to next and truncate size to previous page boundary. */
256 aligned = ROUND_UP(section->offset_within_address_space,
257 qemu_real_host_page_size());
258 delta = aligned - section->offset_within_address_space;
259 *start = aligned;
260 if (delta > size) {
261 return 0;
264 return (size - delta) & qemu_real_host_page_mask();
267 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
268 hwaddr *phys_addr)
270 KVMMemoryListener *kml = &s->memory_listener;
271 int i, ret = 0;
273 kvm_slots_lock();
274 for (i = 0; i < s->nr_slots; i++) {
275 KVMSlot *mem = &kml->slots[i];
277 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
278 *phys_addr = mem->start_addr + (ram - mem->ram);
279 ret = 1;
280 break;
283 kvm_slots_unlock();
285 return ret;
288 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
290 KVMState *s = kvm_state;
291 struct kvm_userspace_memory_region mem;
292 int ret;
294 mem.slot = slot->slot | (kml->as_id << 16);
295 mem.guest_phys_addr = slot->start_addr;
296 mem.userspace_addr = (unsigned long)slot->ram;
297 mem.flags = slot->flags;
299 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
300 /* Set the slot size to 0 before setting the slot to the desired
301 * value. This is needed based on KVM commit 75d61fbc. */
302 mem.memory_size = 0;
303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
304 if (ret < 0) {
305 goto err;
308 mem.memory_size = slot->memory_size;
309 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
310 slot->old_flags = mem.flags;
311 err:
312 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
313 mem.memory_size, mem.userspace_addr, ret);
314 if (ret < 0) {
315 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
316 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
317 __func__, mem.slot, slot->start_addr,
318 (uint64_t)mem.memory_size, strerror(errno));
320 return ret;
323 static int do_kvm_destroy_vcpu(CPUState *cpu)
325 KVMState *s = kvm_state;
326 long mmap_size;
327 struct KVMParkedVcpu *vcpu = NULL;
328 int ret = 0;
330 DPRINTF("kvm_destroy_vcpu\n");
332 ret = kvm_arch_destroy_vcpu(cpu);
333 if (ret < 0) {
334 goto err;
337 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
338 if (mmap_size < 0) {
339 ret = mmap_size;
340 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
341 goto err;
344 ret = munmap(cpu->kvm_run, mmap_size);
345 if (ret < 0) {
346 goto err;
349 if (cpu->kvm_dirty_gfns) {
350 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
351 if (ret < 0) {
352 goto err;
356 vcpu = g_malloc0(sizeof(*vcpu));
357 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
358 vcpu->kvm_fd = cpu->kvm_fd;
359 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
360 err:
361 return ret;
364 void kvm_destroy_vcpu(CPUState *cpu)
366 if (do_kvm_destroy_vcpu(cpu) < 0) {
367 error_report("kvm_destroy_vcpu failed");
368 exit(EXIT_FAILURE);
372 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
374 struct KVMParkedVcpu *cpu;
376 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
377 if (cpu->vcpu_id == vcpu_id) {
378 int kvm_fd;
380 QLIST_REMOVE(cpu, node);
381 kvm_fd = cpu->kvm_fd;
382 g_free(cpu);
383 return kvm_fd;
387 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
390 int kvm_init_vcpu(CPUState *cpu, Error **errp)
392 KVMState *s = kvm_state;
393 long mmap_size;
394 int ret;
396 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
398 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
399 if (ret < 0) {
400 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
401 kvm_arch_vcpu_id(cpu));
402 goto err;
405 cpu->kvm_fd = ret;
406 cpu->kvm_state = s;
407 cpu->vcpu_dirty = true;
408 cpu->dirty_pages = 0;
409 cpu->throttle_us_per_full = 0;
411 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
412 if (mmap_size < 0) {
413 ret = mmap_size;
414 error_setg_errno(errp, -mmap_size,
415 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
416 goto err;
419 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
420 cpu->kvm_fd, 0);
421 if (cpu->kvm_run == MAP_FAILED) {
422 ret = -errno;
423 error_setg_errno(errp, ret,
424 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
425 kvm_arch_vcpu_id(cpu));
426 goto err;
429 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
430 s->coalesced_mmio_ring =
431 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
434 if (s->kvm_dirty_ring_size) {
435 /* Use MAP_SHARED to share pages with the kernel */
436 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
437 PROT_READ | PROT_WRITE, MAP_SHARED,
438 cpu->kvm_fd,
439 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
440 if (cpu->kvm_dirty_gfns == MAP_FAILED) {
441 ret = -errno;
442 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
443 goto err;
447 ret = kvm_arch_init_vcpu(cpu);
448 if (ret < 0) {
449 error_setg_errno(errp, -ret,
450 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
451 kvm_arch_vcpu_id(cpu));
453 err:
454 return ret;
458 * dirty pages logging control
461 static int kvm_mem_flags(MemoryRegion *mr)
463 bool readonly = mr->readonly || memory_region_is_romd(mr);
464 int flags = 0;
466 if (memory_region_get_dirty_log_mask(mr) != 0) {
467 flags |= KVM_MEM_LOG_DIRTY_PAGES;
469 if (readonly && kvm_readonly_mem_allowed) {
470 flags |= KVM_MEM_READONLY;
472 return flags;
475 /* Called with KVMMemoryListener.slots_lock held */
476 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
477 MemoryRegion *mr)
479 mem->flags = kvm_mem_flags(mr);
481 /* If nothing changed effectively, no need to issue ioctl */
482 if (mem->flags == mem->old_flags) {
483 return 0;
486 kvm_slot_init_dirty_bitmap(mem);
487 return kvm_set_user_memory_region(kml, mem, false);
490 static int kvm_section_update_flags(KVMMemoryListener *kml,
491 MemoryRegionSection *section)
493 hwaddr start_addr, size, slot_size;
494 KVMSlot *mem;
495 int ret = 0;
497 size = kvm_align_section(section, &start_addr);
498 if (!size) {
499 return 0;
502 kvm_slots_lock();
504 while (size && !ret) {
505 slot_size = MIN(kvm_max_slot_size, size);
506 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
507 if (!mem) {
508 /* We don't have a slot if we want to trap every access. */
509 goto out;
512 ret = kvm_slot_update_flags(kml, mem, section->mr);
513 start_addr += slot_size;
514 size -= slot_size;
517 out:
518 kvm_slots_unlock();
519 return ret;
522 static void kvm_log_start(MemoryListener *listener,
523 MemoryRegionSection *section,
524 int old, int new)
526 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
527 int r;
529 if (old != 0) {
530 return;
533 r = kvm_section_update_flags(kml, section);
534 if (r < 0) {
535 abort();
539 static void kvm_log_stop(MemoryListener *listener,
540 MemoryRegionSection *section,
541 int old, int new)
543 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
544 int r;
546 if (new != 0) {
547 return;
550 r = kvm_section_update_flags(kml, section);
551 if (r < 0) {
552 abort();
556 /* get kvm's dirty pages bitmap and update qemu's */
557 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
559 ram_addr_t start = slot->ram_start_offset;
560 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
562 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
565 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
567 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
570 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
572 /* Allocate the dirty bitmap for a slot */
573 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
575 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
576 return;
580 * XXX bad kernel interface alert
581 * For dirty bitmap, kernel allocates array of size aligned to
582 * bits-per-long. But for case when the kernel is 64bits and
583 * the userspace is 32bits, userspace can't align to the same
584 * bits-per-long, since sizeof(long) is different between kernel
585 * and user space. This way, userspace will provide buffer which
586 * may be 4 bytes less than the kernel will use, resulting in
587 * userspace memory corruption (which is not detectable by valgrind
588 * too, in most cases).
589 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
590 * a hope that sizeof(long) won't become >8 any time soon.
592 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
593 * And mem->memory_size is aligned to it (otherwise this mem can't
594 * be registered to KVM).
596 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
597 /*HOST_LONG_BITS*/ 64) / 8;
598 mem->dirty_bmap = g_malloc0(bitmap_size);
599 mem->dirty_bmap_size = bitmap_size;
603 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
604 * succeeded, false otherwise
606 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
608 struct kvm_dirty_log d = {};
609 int ret;
611 d.dirty_bitmap = slot->dirty_bmap;
612 d.slot = slot->slot | (slot->as_id << 16);
613 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
615 if (ret == -ENOENT) {
616 /* kernel does not have dirty bitmap in this slot */
617 ret = 0;
619 if (ret) {
620 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
621 __func__, ret);
623 return ret == 0;
626 /* Should be with all slots_lock held for the address spaces. */
627 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
628 uint32_t slot_id, uint64_t offset)
630 KVMMemoryListener *kml;
631 KVMSlot *mem;
633 if (as_id >= s->nr_as) {
634 return;
637 kml = s->as[as_id].ml;
638 mem = &kml->slots[slot_id];
640 if (!mem->memory_size || offset >=
641 (mem->memory_size / qemu_real_host_page_size())) {
642 return;
645 set_bit(offset, mem->dirty_bmap);
648 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
651 * Read the flags before the value. Pairs with barrier in
652 * KVM's kvm_dirty_ring_push() function.
654 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
657 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
660 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
661 * sees the full content of the ring:
663 * CPU0 CPU1 CPU2
664 * ------------------------------------------------------------------------------
665 * fill gfn0
666 * store-rel flags for gfn0
667 * load-acq flags for gfn0
668 * store-rel RESET for gfn0
669 * ioctl(RESET_RINGS)
670 * load-acq flags for gfn0
671 * check if flags have RESET
673 * The synchronization goes from CPU2 to CPU0 to CPU1.
675 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
679 * Should be with all slots_lock held for the address spaces. It returns the
680 * dirty page we've collected on this dirty ring.
682 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
684 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
685 uint32_t ring_size = s->kvm_dirty_ring_size;
686 uint32_t count = 0, fetch = cpu->kvm_fetch_index;
689 * It's possible that we race with vcpu creation code where the vcpu is
690 * put onto the vcpus list but not yet initialized the dirty ring
691 * structures. If so, skip it.
693 if (!cpu->created) {
694 return 0;
697 assert(dirty_gfns && ring_size);
698 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
700 while (true) {
701 cur = &dirty_gfns[fetch % ring_size];
702 if (!dirty_gfn_is_dirtied(cur)) {
703 break;
705 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
706 cur->offset);
707 dirty_gfn_set_collected(cur);
708 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
709 fetch++;
710 count++;
712 cpu->kvm_fetch_index = fetch;
713 cpu->dirty_pages += count;
715 return count;
718 /* Must be with slots_lock held */
719 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
721 int ret;
722 uint64_t total = 0;
723 int64_t stamp;
725 stamp = get_clock();
727 if (cpu) {
728 total = kvm_dirty_ring_reap_one(s, cpu);
729 } else {
730 CPU_FOREACH(cpu) {
731 total += kvm_dirty_ring_reap_one(s, cpu);
735 if (total) {
736 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
737 assert(ret == total);
740 stamp = get_clock() - stamp;
742 if (total) {
743 trace_kvm_dirty_ring_reap(total, stamp / 1000);
746 return total;
750 * Currently for simplicity, we must hold BQL before calling this. We can
751 * consider to drop the BQL if we're clear with all the race conditions.
753 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
755 uint64_t total;
758 * We need to lock all kvm slots for all address spaces here,
759 * because:
761 * (1) We need to mark dirty for dirty bitmaps in multiple slots
762 * and for tons of pages, so it's better to take the lock here
763 * once rather than once per page. And more importantly,
765 * (2) We must _NOT_ publish dirty bits to the other threads
766 * (e.g., the migration thread) via the kvm memory slot dirty
767 * bitmaps before correctly re-protect those dirtied pages.
768 * Otherwise we can have potential risk of data corruption if
769 * the page data is read in the other thread before we do
770 * reset below.
772 kvm_slots_lock();
773 total = kvm_dirty_ring_reap_locked(s, cpu);
774 kvm_slots_unlock();
776 return total;
779 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
781 /* No need to do anything */
785 * Kick all vcpus out in a synchronized way. When returned, we
786 * guarantee that every vcpu has been kicked and at least returned to
787 * userspace once.
789 static void kvm_cpu_synchronize_kick_all(void)
791 CPUState *cpu;
793 CPU_FOREACH(cpu) {
794 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
799 * Flush all the existing dirty pages to the KVM slot buffers. When
800 * this call returns, we guarantee that all the touched dirty pages
801 * before calling this function have been put into the per-kvmslot
802 * dirty bitmap.
804 * This function must be called with BQL held.
806 static void kvm_dirty_ring_flush(void)
808 trace_kvm_dirty_ring_flush(0);
810 * The function needs to be serialized. Since this function
811 * should always be with BQL held, serialization is guaranteed.
812 * However, let's be sure of it.
814 assert(qemu_mutex_iothread_locked());
816 * First make sure to flush the hardware buffers by kicking all
817 * vcpus out in a synchronous way.
819 kvm_cpu_synchronize_kick_all();
820 kvm_dirty_ring_reap(kvm_state, NULL);
821 trace_kvm_dirty_ring_flush(1);
825 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
827 * This function will first try to fetch dirty bitmap from the kernel,
828 * and then updates qemu's dirty bitmap.
830 * NOTE: caller must be with kml->slots_lock held.
832 * @kml: the KVM memory listener object
833 * @section: the memory section to sync the dirty bitmap with
835 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
836 MemoryRegionSection *section)
838 KVMState *s = kvm_state;
839 KVMSlot *mem;
840 hwaddr start_addr, size;
841 hwaddr slot_size;
843 size = kvm_align_section(section, &start_addr);
844 while (size) {
845 slot_size = MIN(kvm_max_slot_size, size);
846 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
847 if (!mem) {
848 /* We don't have a slot if we want to trap every access. */
849 return;
851 if (kvm_slot_get_dirty_log(s, mem)) {
852 kvm_slot_sync_dirty_pages(mem);
854 start_addr += slot_size;
855 size -= slot_size;
859 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
860 #define KVM_CLEAR_LOG_SHIFT 6
861 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
862 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
864 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
865 uint64_t size)
867 KVMState *s = kvm_state;
868 uint64_t end, bmap_start, start_delta, bmap_npages;
869 struct kvm_clear_dirty_log d;
870 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
871 int ret;
874 * We need to extend either the start or the size or both to
875 * satisfy the KVM interface requirement. Firstly, do the start
876 * page alignment on 64 host pages
878 bmap_start = start & KVM_CLEAR_LOG_MASK;
879 start_delta = start - bmap_start;
880 bmap_start /= psize;
883 * The kernel interface has restriction on the size too, that either:
885 * (1) the size is 64 host pages aligned (just like the start), or
886 * (2) the size fills up until the end of the KVM memslot.
888 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
889 << KVM_CLEAR_LOG_SHIFT;
890 end = mem->memory_size / psize;
891 if (bmap_npages > end - bmap_start) {
892 bmap_npages = end - bmap_start;
894 start_delta /= psize;
897 * Prepare the bitmap to clear dirty bits. Here we must guarantee
898 * that we won't clear any unknown dirty bits otherwise we might
899 * accidentally clear some set bits which are not yet synced from
900 * the kernel into QEMU's bitmap, then we'll lose track of the
901 * guest modifications upon those pages (which can directly lead
902 * to guest data loss or panic after migration).
904 * Layout of the KVMSlot.dirty_bmap:
906 * |<-------- bmap_npages -----------..>|
907 * [1]
908 * start_delta size
909 * |----------------|-------------|------------------|------------|
910 * ^ ^ ^ ^
911 * | | | |
912 * start bmap_start (start) end
913 * of memslot of memslot
915 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
918 assert(bmap_start % BITS_PER_LONG == 0);
919 /* We should never do log_clear before log_sync */
920 assert(mem->dirty_bmap);
921 if (start_delta || bmap_npages - size / psize) {
922 /* Slow path - we need to manipulate a temp bitmap */
923 bmap_clear = bitmap_new(bmap_npages);
924 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
925 bmap_start, start_delta + size / psize);
927 * We need to fill the holes at start because that was not
928 * specified by the caller and we extended the bitmap only for
929 * 64 pages alignment
931 bitmap_clear(bmap_clear, 0, start_delta);
932 d.dirty_bitmap = bmap_clear;
933 } else {
935 * Fast path - both start and size align well with BITS_PER_LONG
936 * (or the end of memory slot)
938 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
941 d.first_page = bmap_start;
942 /* It should never overflow. If it happens, say something */
943 assert(bmap_npages <= UINT32_MAX);
944 d.num_pages = bmap_npages;
945 d.slot = mem->slot | (as_id << 16);
947 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
948 if (ret < 0 && ret != -ENOENT) {
949 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
950 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
951 __func__, d.slot, (uint64_t)d.first_page,
952 (uint32_t)d.num_pages, ret);
953 } else {
954 ret = 0;
955 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
959 * After we have updated the remote dirty bitmap, we update the
960 * cached bitmap as well for the memslot, then if another user
961 * clears the same region we know we shouldn't clear it again on
962 * the remote otherwise it's data loss as well.
964 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
965 size / psize);
966 /* This handles the NULL case well */
967 g_free(bmap_clear);
968 return ret;
973 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
975 * NOTE: this will be a no-op if we haven't enabled manual dirty log
976 * protection in the host kernel because in that case this operation
977 * will be done within log_sync().
979 * @kml: the kvm memory listener
980 * @section: the memory range to clear dirty bitmap
982 static int kvm_physical_log_clear(KVMMemoryListener *kml,
983 MemoryRegionSection *section)
985 KVMState *s = kvm_state;
986 uint64_t start, size, offset, count;
987 KVMSlot *mem;
988 int ret = 0, i;
990 if (!s->manual_dirty_log_protect) {
991 /* No need to do explicit clear */
992 return ret;
995 start = section->offset_within_address_space;
996 size = int128_get64(section->size);
998 if (!size) {
999 /* Nothing more we can do... */
1000 return ret;
1003 kvm_slots_lock();
1005 for (i = 0; i < s->nr_slots; i++) {
1006 mem = &kml->slots[i];
1007 /* Discard slots that are empty or do not overlap the section */
1008 if (!mem->memory_size ||
1009 mem->start_addr > start + size - 1 ||
1010 start > mem->start_addr + mem->memory_size - 1) {
1011 continue;
1014 if (start >= mem->start_addr) {
1015 /* The slot starts before section or is aligned to it. */
1016 offset = start - mem->start_addr;
1017 count = MIN(mem->memory_size - offset, size);
1018 } else {
1019 /* The slot starts after section. */
1020 offset = 0;
1021 count = MIN(mem->memory_size, size - (mem->start_addr - start));
1023 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1024 if (ret < 0) {
1025 break;
1029 kvm_slots_unlock();
1031 return ret;
1034 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1035 MemoryRegionSection *secion,
1036 hwaddr start, hwaddr size)
1038 KVMState *s = kvm_state;
1040 if (s->coalesced_mmio) {
1041 struct kvm_coalesced_mmio_zone zone;
1043 zone.addr = start;
1044 zone.size = size;
1045 zone.pad = 0;
1047 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1051 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1052 MemoryRegionSection *secion,
1053 hwaddr start, hwaddr size)
1055 KVMState *s = kvm_state;
1057 if (s->coalesced_mmio) {
1058 struct kvm_coalesced_mmio_zone zone;
1060 zone.addr = start;
1061 zone.size = size;
1062 zone.pad = 0;
1064 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1068 static void kvm_coalesce_pio_add(MemoryListener *listener,
1069 MemoryRegionSection *section,
1070 hwaddr start, hwaddr size)
1072 KVMState *s = kvm_state;
1074 if (s->coalesced_pio) {
1075 struct kvm_coalesced_mmio_zone zone;
1077 zone.addr = start;
1078 zone.size = size;
1079 zone.pio = 1;
1081 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1085 static void kvm_coalesce_pio_del(MemoryListener *listener,
1086 MemoryRegionSection *section,
1087 hwaddr start, hwaddr size)
1089 KVMState *s = kvm_state;
1091 if (s->coalesced_pio) {
1092 struct kvm_coalesced_mmio_zone zone;
1094 zone.addr = start;
1095 zone.size = size;
1096 zone.pio = 1;
1098 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1102 static MemoryListener kvm_coalesced_pio_listener = {
1103 .name = "kvm-coalesced-pio",
1104 .coalesced_io_add = kvm_coalesce_pio_add,
1105 .coalesced_io_del = kvm_coalesce_pio_del,
1108 int kvm_check_extension(KVMState *s, unsigned int extension)
1110 int ret;
1112 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1113 if (ret < 0) {
1114 ret = 0;
1117 return ret;
1120 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1122 int ret;
1124 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1125 if (ret < 0) {
1126 /* VM wide version not implemented, use global one instead */
1127 ret = kvm_check_extension(s, extension);
1130 return ret;
1133 typedef struct HWPoisonPage {
1134 ram_addr_t ram_addr;
1135 QLIST_ENTRY(HWPoisonPage) list;
1136 } HWPoisonPage;
1138 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1139 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1141 static void kvm_unpoison_all(void *param)
1143 HWPoisonPage *page, *next_page;
1145 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1146 QLIST_REMOVE(page, list);
1147 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1148 g_free(page);
1152 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1154 HWPoisonPage *page;
1156 QLIST_FOREACH(page, &hwpoison_page_list, list) {
1157 if (page->ram_addr == ram_addr) {
1158 return;
1161 page = g_new(HWPoisonPage, 1);
1162 page->ram_addr = ram_addr;
1163 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1166 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1168 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1169 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1170 * endianness, but the memory core hands them in target endianness.
1171 * For example, PPC is always treated as big-endian even if running
1172 * on KVM and on PPC64LE. Correct here.
1174 switch (size) {
1175 case 2:
1176 val = bswap16(val);
1177 break;
1178 case 4:
1179 val = bswap32(val);
1180 break;
1182 #endif
1183 return val;
1186 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1187 bool assign, uint32_t size, bool datamatch)
1189 int ret;
1190 struct kvm_ioeventfd iofd = {
1191 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1192 .addr = addr,
1193 .len = size,
1194 .flags = 0,
1195 .fd = fd,
1198 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1199 datamatch);
1200 if (!kvm_enabled()) {
1201 return -ENOSYS;
1204 if (datamatch) {
1205 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1207 if (!assign) {
1208 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1211 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1213 if (ret < 0) {
1214 return -errno;
1217 return 0;
1220 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1221 bool assign, uint32_t size, bool datamatch)
1223 struct kvm_ioeventfd kick = {
1224 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1225 .addr = addr,
1226 .flags = KVM_IOEVENTFD_FLAG_PIO,
1227 .len = size,
1228 .fd = fd,
1230 int r;
1231 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1232 if (!kvm_enabled()) {
1233 return -ENOSYS;
1235 if (datamatch) {
1236 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1238 if (!assign) {
1239 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1241 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1242 if (r < 0) {
1243 return r;
1245 return 0;
1249 static int kvm_check_many_ioeventfds(void)
1251 /* Userspace can use ioeventfd for io notification. This requires a host
1252 * that supports eventfd(2) and an I/O thread; since eventfd does not
1253 * support SIGIO it cannot interrupt the vcpu.
1255 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1256 * can avoid creating too many ioeventfds.
1258 #if defined(CONFIG_EVENTFD)
1259 int ioeventfds[7];
1260 int i, ret = 0;
1261 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1262 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1263 if (ioeventfds[i] < 0) {
1264 break;
1266 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1267 if (ret < 0) {
1268 close(ioeventfds[i]);
1269 break;
1273 /* Decide whether many devices are supported or not */
1274 ret = i == ARRAY_SIZE(ioeventfds);
1276 while (i-- > 0) {
1277 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1278 close(ioeventfds[i]);
1280 return ret;
1281 #else
1282 return 0;
1283 #endif
1286 static const KVMCapabilityInfo *
1287 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1289 while (list->name) {
1290 if (!kvm_check_extension(s, list->value)) {
1291 return list;
1293 list++;
1295 return NULL;
1298 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1300 g_assert(
1301 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1303 kvm_max_slot_size = max_slot_size;
1306 /* Called with KVMMemoryListener.slots_lock held */
1307 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1308 MemoryRegionSection *section, bool add)
1310 KVMSlot *mem;
1311 int err;
1312 MemoryRegion *mr = section->mr;
1313 bool writable = !mr->readonly && !mr->rom_device;
1314 hwaddr start_addr, size, slot_size, mr_offset;
1315 ram_addr_t ram_start_offset;
1316 void *ram;
1318 if (!memory_region_is_ram(mr)) {
1319 if (writable || !kvm_readonly_mem_allowed) {
1320 return;
1321 } else if (!mr->romd_mode) {
1322 /* If the memory device is not in romd_mode, then we actually want
1323 * to remove the kvm memory slot so all accesses will trap. */
1324 add = false;
1328 size = kvm_align_section(section, &start_addr);
1329 if (!size) {
1330 return;
1333 /* The offset of the kvmslot within the memory region */
1334 mr_offset = section->offset_within_region + start_addr -
1335 section->offset_within_address_space;
1337 /* use aligned delta to align the ram address and offset */
1338 ram = memory_region_get_ram_ptr(mr) + mr_offset;
1339 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1341 if (!add) {
1342 do {
1343 slot_size = MIN(kvm_max_slot_size, size);
1344 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1345 if (!mem) {
1346 return;
1348 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1350 * NOTE: We should be aware of the fact that here we're only
1351 * doing a best effort to sync dirty bits. No matter whether
1352 * we're using dirty log or dirty ring, we ignored two facts:
1354 * (1) dirty bits can reside in hardware buffers (PML)
1356 * (2) after we collected dirty bits here, pages can be dirtied
1357 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1358 * remove the slot.
1360 * Not easy. Let's cross the fingers until it's fixed.
1362 if (kvm_state->kvm_dirty_ring_size) {
1363 kvm_dirty_ring_reap_locked(kvm_state, NULL);
1364 if (kvm_state->kvm_dirty_ring_with_bitmap) {
1365 kvm_slot_sync_dirty_pages(mem);
1366 kvm_slot_get_dirty_log(kvm_state, mem);
1368 } else {
1369 kvm_slot_get_dirty_log(kvm_state, mem);
1371 kvm_slot_sync_dirty_pages(mem);
1374 /* unregister the slot */
1375 g_free(mem->dirty_bmap);
1376 mem->dirty_bmap = NULL;
1377 mem->memory_size = 0;
1378 mem->flags = 0;
1379 err = kvm_set_user_memory_region(kml, mem, false);
1380 if (err) {
1381 fprintf(stderr, "%s: error unregistering slot: %s\n",
1382 __func__, strerror(-err));
1383 abort();
1385 start_addr += slot_size;
1386 size -= slot_size;
1387 } while (size);
1388 return;
1391 /* register the new slot */
1392 do {
1393 slot_size = MIN(kvm_max_slot_size, size);
1394 mem = kvm_alloc_slot(kml);
1395 mem->as_id = kml->as_id;
1396 mem->memory_size = slot_size;
1397 mem->start_addr = start_addr;
1398 mem->ram_start_offset = ram_start_offset;
1399 mem->ram = ram;
1400 mem->flags = kvm_mem_flags(mr);
1401 kvm_slot_init_dirty_bitmap(mem);
1402 err = kvm_set_user_memory_region(kml, mem, true);
1403 if (err) {
1404 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1405 strerror(-err));
1406 abort();
1408 start_addr += slot_size;
1409 ram_start_offset += slot_size;
1410 ram += slot_size;
1411 size -= slot_size;
1412 } while (size);
1415 static void *kvm_dirty_ring_reaper_thread(void *data)
1417 KVMState *s = data;
1418 struct KVMDirtyRingReaper *r = &s->reaper;
1420 rcu_register_thread();
1422 trace_kvm_dirty_ring_reaper("init");
1424 while (true) {
1425 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1426 trace_kvm_dirty_ring_reaper("wait");
1428 * TODO: provide a smarter timeout rather than a constant?
1430 sleep(1);
1432 /* keep sleeping so that dirtylimit not be interfered by reaper */
1433 if (dirtylimit_in_service()) {
1434 continue;
1437 trace_kvm_dirty_ring_reaper("wakeup");
1438 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1440 qemu_mutex_lock_iothread();
1441 kvm_dirty_ring_reap(s, NULL);
1442 qemu_mutex_unlock_iothread();
1444 r->reaper_iteration++;
1447 trace_kvm_dirty_ring_reaper("exit");
1449 rcu_unregister_thread();
1451 return NULL;
1454 static int kvm_dirty_ring_reaper_init(KVMState *s)
1456 struct KVMDirtyRingReaper *r = &s->reaper;
1458 qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1459 kvm_dirty_ring_reaper_thread,
1460 s, QEMU_THREAD_JOINABLE);
1462 return 0;
1465 static int kvm_dirty_ring_init(KVMState *s)
1467 uint32_t ring_size = s->kvm_dirty_ring_size;
1468 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1469 int ret;
1471 s->kvm_dirty_ring_size = 0;
1472 s->kvm_dirty_ring_bytes = 0;
1474 /* Bail if the dirty ring size isn't specified */
1475 if (!ring_size) {
1476 return 0;
1480 * Read the max supported pages. Fall back to dirty logging mode
1481 * if the dirty ring isn't supported.
1483 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
1484 if (ret <= 0) {
1485 warn_report("KVM dirty ring not available, using bitmap method");
1486 return 0;
1489 if (ring_bytes > ret) {
1490 error_report("KVM dirty ring size %" PRIu32 " too big "
1491 "(maximum is %ld). Please use a smaller value.",
1492 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1493 return -EINVAL;
1496 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
1497 if (ret) {
1498 error_report("Enabling of KVM dirty ring failed: %s. "
1499 "Suggested minimum value is 1024.", strerror(-ret));
1500 return -EIO;
1503 s->kvm_dirty_ring_size = ring_size;
1504 s->kvm_dirty_ring_bytes = ring_bytes;
1506 return 0;
1509 static void kvm_region_add(MemoryListener *listener,
1510 MemoryRegionSection *section)
1512 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1513 KVMMemoryUpdate *update;
1515 update = g_new0(KVMMemoryUpdate, 1);
1516 update->section = *section;
1518 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1521 static void kvm_region_del(MemoryListener *listener,
1522 MemoryRegionSection *section)
1524 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1525 KVMMemoryUpdate *update;
1527 update = g_new0(KVMMemoryUpdate, 1);
1528 update->section = *section;
1530 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1533 static void kvm_region_commit(MemoryListener *listener)
1535 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1536 listener);
1537 KVMMemoryUpdate *u1, *u2;
1538 bool need_inhibit = false;
1540 if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1541 QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1542 return;
1546 * We have to be careful when regions to add overlap with ranges to remove.
1547 * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1548 * is currently active.
1550 * The lists are order by addresses, so it's easy to find overlaps.
1552 u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1553 u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1554 while (u1 && u2) {
1555 Range r1, r2;
1557 range_init_nofail(&r1, u1->section.offset_within_address_space,
1558 int128_get64(u1->section.size));
1559 range_init_nofail(&r2, u2->section.offset_within_address_space,
1560 int128_get64(u2->section.size));
1562 if (range_overlaps_range(&r1, &r2)) {
1563 need_inhibit = true;
1564 break;
1566 if (range_lob(&r1) < range_lob(&r2)) {
1567 u1 = QSIMPLEQ_NEXT(u1, next);
1568 } else {
1569 u2 = QSIMPLEQ_NEXT(u2, next);
1573 kvm_slots_lock();
1574 if (need_inhibit) {
1575 accel_ioctl_inhibit_begin();
1578 /* Remove all memslots before adding the new ones. */
1579 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1580 u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1581 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1583 kvm_set_phys_mem(kml, &u1->section, false);
1584 memory_region_unref(u1->section.mr);
1586 g_free(u1);
1588 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1589 u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1590 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1592 memory_region_ref(u1->section.mr);
1593 kvm_set_phys_mem(kml, &u1->section, true);
1595 g_free(u1);
1598 if (need_inhibit) {
1599 accel_ioctl_inhibit_end();
1601 kvm_slots_unlock();
1604 static void kvm_log_sync(MemoryListener *listener,
1605 MemoryRegionSection *section)
1607 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1609 kvm_slots_lock();
1610 kvm_physical_sync_dirty_bitmap(kml, section);
1611 kvm_slots_unlock();
1614 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1616 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1617 KVMState *s = kvm_state;
1618 KVMSlot *mem;
1619 int i;
1621 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1622 kvm_dirty_ring_flush();
1625 * TODO: make this faster when nr_slots is big while there are
1626 * only a few used slots (small VMs).
1628 kvm_slots_lock();
1629 for (i = 0; i < s->nr_slots; i++) {
1630 mem = &kml->slots[i];
1631 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1632 kvm_slot_sync_dirty_pages(mem);
1634 if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1635 kvm_slot_get_dirty_log(s, mem)) {
1636 kvm_slot_sync_dirty_pages(mem);
1640 * This is not needed by KVM_GET_DIRTY_LOG because the
1641 * ioctl will unconditionally overwrite the whole region.
1642 * However kvm dirty ring has no such side effect.
1644 kvm_slot_reset_dirty_pages(mem);
1647 kvm_slots_unlock();
1650 static void kvm_log_clear(MemoryListener *listener,
1651 MemoryRegionSection *section)
1653 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1654 int r;
1656 r = kvm_physical_log_clear(kml, section);
1657 if (r < 0) {
1658 error_report_once("%s: kvm log clear failed: mr=%s "
1659 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1660 section->mr->name, section->offset_within_region,
1661 int128_get64(section->size));
1662 abort();
1666 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1667 MemoryRegionSection *section,
1668 bool match_data, uint64_t data,
1669 EventNotifier *e)
1671 int fd = event_notifier_get_fd(e);
1672 int r;
1674 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1675 data, true, int128_get64(section->size),
1676 match_data);
1677 if (r < 0) {
1678 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1679 __func__, strerror(-r), -r);
1680 abort();
1684 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1685 MemoryRegionSection *section,
1686 bool match_data, uint64_t data,
1687 EventNotifier *e)
1689 int fd = event_notifier_get_fd(e);
1690 int r;
1692 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1693 data, false, int128_get64(section->size),
1694 match_data);
1695 if (r < 0) {
1696 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1697 __func__, strerror(-r), -r);
1698 abort();
1702 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1703 MemoryRegionSection *section,
1704 bool match_data, uint64_t data,
1705 EventNotifier *e)
1707 int fd = event_notifier_get_fd(e);
1708 int r;
1710 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1711 data, true, int128_get64(section->size),
1712 match_data);
1713 if (r < 0) {
1714 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1715 __func__, strerror(-r), -r);
1716 abort();
1720 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1721 MemoryRegionSection *section,
1722 bool match_data, uint64_t data,
1723 EventNotifier *e)
1726 int fd = event_notifier_get_fd(e);
1727 int r;
1729 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1730 data, false, int128_get64(section->size),
1731 match_data);
1732 if (r < 0) {
1733 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1734 __func__, strerror(-r), -r);
1735 abort();
1739 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1740 AddressSpace *as, int as_id, const char *name)
1742 int i;
1744 kml->slots = g_new0(KVMSlot, s->nr_slots);
1745 kml->as_id = as_id;
1747 for (i = 0; i < s->nr_slots; i++) {
1748 kml->slots[i].slot = i;
1751 QSIMPLEQ_INIT(&kml->transaction_add);
1752 QSIMPLEQ_INIT(&kml->transaction_del);
1754 kml->listener.region_add = kvm_region_add;
1755 kml->listener.region_del = kvm_region_del;
1756 kml->listener.commit = kvm_region_commit;
1757 kml->listener.log_start = kvm_log_start;
1758 kml->listener.log_stop = kvm_log_stop;
1759 kml->listener.priority = 10;
1760 kml->listener.name = name;
1762 if (s->kvm_dirty_ring_size) {
1763 kml->listener.log_sync_global = kvm_log_sync_global;
1764 } else {
1765 kml->listener.log_sync = kvm_log_sync;
1766 kml->listener.log_clear = kvm_log_clear;
1769 memory_listener_register(&kml->listener, as);
1771 for (i = 0; i < s->nr_as; ++i) {
1772 if (!s->as[i].as) {
1773 s->as[i].as = as;
1774 s->as[i].ml = kml;
1775 break;
1780 static MemoryListener kvm_io_listener = {
1781 .name = "kvm-io",
1782 .eventfd_add = kvm_io_ioeventfd_add,
1783 .eventfd_del = kvm_io_ioeventfd_del,
1784 .priority = 10,
1787 int kvm_set_irq(KVMState *s, int irq, int level)
1789 struct kvm_irq_level event;
1790 int ret;
1792 assert(kvm_async_interrupts_enabled());
1794 event.level = level;
1795 event.irq = irq;
1796 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1797 if (ret < 0) {
1798 perror("kvm_set_irq");
1799 abort();
1802 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1805 #ifdef KVM_CAP_IRQ_ROUTING
1806 typedef struct KVMMSIRoute {
1807 struct kvm_irq_routing_entry kroute;
1808 QTAILQ_ENTRY(KVMMSIRoute) entry;
1809 } KVMMSIRoute;
1811 static void set_gsi(KVMState *s, unsigned int gsi)
1813 set_bit(gsi, s->used_gsi_bitmap);
1816 static void clear_gsi(KVMState *s, unsigned int gsi)
1818 clear_bit(gsi, s->used_gsi_bitmap);
1821 void kvm_init_irq_routing(KVMState *s)
1823 int gsi_count, i;
1825 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1826 if (gsi_count > 0) {
1827 /* Round up so we can search ints using ffs */
1828 s->used_gsi_bitmap = bitmap_new(gsi_count);
1829 s->gsi_count = gsi_count;
1832 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1833 s->nr_allocated_irq_routes = 0;
1835 if (!kvm_direct_msi_allowed) {
1836 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1837 QTAILQ_INIT(&s->msi_hashtab[i]);
1841 kvm_arch_init_irq_routing(s);
1844 void kvm_irqchip_commit_routes(KVMState *s)
1846 int ret;
1848 if (kvm_gsi_direct_mapping()) {
1849 return;
1852 if (!kvm_gsi_routing_enabled()) {
1853 return;
1856 s->irq_routes->flags = 0;
1857 trace_kvm_irqchip_commit_routes();
1858 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1859 assert(ret == 0);
1862 static void kvm_add_routing_entry(KVMState *s,
1863 struct kvm_irq_routing_entry *entry)
1865 struct kvm_irq_routing_entry *new;
1866 int n, size;
1868 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1869 n = s->nr_allocated_irq_routes * 2;
1870 if (n < 64) {
1871 n = 64;
1873 size = sizeof(struct kvm_irq_routing);
1874 size += n * sizeof(*new);
1875 s->irq_routes = g_realloc(s->irq_routes, size);
1876 s->nr_allocated_irq_routes = n;
1878 n = s->irq_routes->nr++;
1879 new = &s->irq_routes->entries[n];
1881 *new = *entry;
1883 set_gsi(s, entry->gsi);
1886 static int kvm_update_routing_entry(KVMState *s,
1887 struct kvm_irq_routing_entry *new_entry)
1889 struct kvm_irq_routing_entry *entry;
1890 int n;
1892 for (n = 0; n < s->irq_routes->nr; n++) {
1893 entry = &s->irq_routes->entries[n];
1894 if (entry->gsi != new_entry->gsi) {
1895 continue;
1898 if(!memcmp(entry, new_entry, sizeof *entry)) {
1899 return 0;
1902 *entry = *new_entry;
1904 return 0;
1907 return -ESRCH;
1910 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1912 struct kvm_irq_routing_entry e = {};
1914 assert(pin < s->gsi_count);
1916 e.gsi = irq;
1917 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1918 e.flags = 0;
1919 e.u.irqchip.irqchip = irqchip;
1920 e.u.irqchip.pin = pin;
1921 kvm_add_routing_entry(s, &e);
1924 void kvm_irqchip_release_virq(KVMState *s, int virq)
1926 struct kvm_irq_routing_entry *e;
1927 int i;
1929 if (kvm_gsi_direct_mapping()) {
1930 return;
1933 for (i = 0; i < s->irq_routes->nr; i++) {
1934 e = &s->irq_routes->entries[i];
1935 if (e->gsi == virq) {
1936 s->irq_routes->nr--;
1937 *e = s->irq_routes->entries[s->irq_routes->nr];
1940 clear_gsi(s, virq);
1941 kvm_arch_release_virq_post(virq);
1942 trace_kvm_irqchip_release_virq(virq);
1945 void kvm_irqchip_add_change_notifier(Notifier *n)
1947 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1950 void kvm_irqchip_remove_change_notifier(Notifier *n)
1952 notifier_remove(n);
1955 void kvm_irqchip_change_notify(void)
1957 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1960 static unsigned int kvm_hash_msi(uint32_t data)
1962 /* This is optimized for IA32 MSI layout. However, no other arch shall
1963 * repeat the mistake of not providing a direct MSI injection API. */
1964 return data & 0xff;
1967 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1969 KVMMSIRoute *route, *next;
1970 unsigned int hash;
1972 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1973 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1974 kvm_irqchip_release_virq(s, route->kroute.gsi);
1975 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1976 g_free(route);
1981 static int kvm_irqchip_get_virq(KVMState *s)
1983 int next_virq;
1986 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1987 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1988 * number can succeed even though a new route entry cannot be added.
1989 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1991 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1992 kvm_flush_dynamic_msi_routes(s);
1995 /* Return the lowest unused GSI in the bitmap */
1996 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1997 if (next_virq >= s->gsi_count) {
1998 return -ENOSPC;
1999 } else {
2000 return next_virq;
2004 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
2006 unsigned int hash = kvm_hash_msi(msg.data);
2007 KVMMSIRoute *route;
2009 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
2010 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
2011 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
2012 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
2013 return route;
2016 return NULL;
2019 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2021 struct kvm_msi msi;
2022 KVMMSIRoute *route;
2024 if (kvm_direct_msi_allowed) {
2025 msi.address_lo = (uint32_t)msg.address;
2026 msi.address_hi = msg.address >> 32;
2027 msi.data = le32_to_cpu(msg.data);
2028 msi.flags = 0;
2029 memset(msi.pad, 0, sizeof(msi.pad));
2031 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
2034 route = kvm_lookup_msi_route(s, msg);
2035 if (!route) {
2036 int virq;
2038 virq = kvm_irqchip_get_virq(s);
2039 if (virq < 0) {
2040 return virq;
2043 route = g_new0(KVMMSIRoute, 1);
2044 route->kroute.gsi = virq;
2045 route->kroute.type = KVM_IRQ_ROUTING_MSI;
2046 route->kroute.flags = 0;
2047 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
2048 route->kroute.u.msi.address_hi = msg.address >> 32;
2049 route->kroute.u.msi.data = le32_to_cpu(msg.data);
2051 kvm_add_routing_entry(s, &route->kroute);
2052 kvm_irqchip_commit_routes(s);
2054 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
2055 entry);
2058 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
2060 return kvm_set_irq(s, route->kroute.gsi, 1);
2063 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2065 struct kvm_irq_routing_entry kroute = {};
2066 int virq;
2067 KVMState *s = c->s;
2068 MSIMessage msg = {0, 0};
2070 if (pci_available && dev) {
2071 msg = pci_get_msi_message(dev, vector);
2074 if (kvm_gsi_direct_mapping()) {
2075 return kvm_arch_msi_data_to_gsi(msg.data);
2078 if (!kvm_gsi_routing_enabled()) {
2079 return -ENOSYS;
2082 virq = kvm_irqchip_get_virq(s);
2083 if (virq < 0) {
2084 return virq;
2087 kroute.gsi = virq;
2088 kroute.type = KVM_IRQ_ROUTING_MSI;
2089 kroute.flags = 0;
2090 kroute.u.msi.address_lo = (uint32_t)msg.address;
2091 kroute.u.msi.address_hi = msg.address >> 32;
2092 kroute.u.msi.data = le32_to_cpu(msg.data);
2093 if (pci_available && kvm_msi_devid_required()) {
2094 kroute.flags = KVM_MSI_VALID_DEVID;
2095 kroute.u.msi.devid = pci_requester_id(dev);
2097 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2098 kvm_irqchip_release_virq(s, virq);
2099 return -EINVAL;
2102 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2103 vector, virq);
2105 kvm_add_routing_entry(s, &kroute);
2106 kvm_arch_add_msi_route_post(&kroute, vector, dev);
2107 c->changes++;
2109 return virq;
2112 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2113 PCIDevice *dev)
2115 struct kvm_irq_routing_entry kroute = {};
2117 if (kvm_gsi_direct_mapping()) {
2118 return 0;
2121 if (!kvm_irqchip_in_kernel()) {
2122 return -ENOSYS;
2125 kroute.gsi = virq;
2126 kroute.type = KVM_IRQ_ROUTING_MSI;
2127 kroute.flags = 0;
2128 kroute.u.msi.address_lo = (uint32_t)msg.address;
2129 kroute.u.msi.address_hi = msg.address >> 32;
2130 kroute.u.msi.data = le32_to_cpu(msg.data);
2131 if (pci_available && kvm_msi_devid_required()) {
2132 kroute.flags = KVM_MSI_VALID_DEVID;
2133 kroute.u.msi.devid = pci_requester_id(dev);
2135 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2136 return -EINVAL;
2139 trace_kvm_irqchip_update_msi_route(virq);
2141 return kvm_update_routing_entry(s, &kroute);
2144 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2145 EventNotifier *resample, int virq,
2146 bool assign)
2148 int fd = event_notifier_get_fd(event);
2149 int rfd = resample ? event_notifier_get_fd(resample) : -1;
2151 struct kvm_irqfd irqfd = {
2152 .fd = fd,
2153 .gsi = virq,
2154 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2157 if (rfd != -1) {
2158 assert(assign);
2159 if (kvm_irqchip_is_split()) {
2161 * When the slow irqchip (e.g. IOAPIC) is in the
2162 * userspace, KVM kernel resamplefd will not work because
2163 * the EOI of the interrupt will be delivered to userspace
2164 * instead, so the KVM kernel resamplefd kick will be
2165 * skipped. The userspace here mimics what the kernel
2166 * provides with resamplefd, remember the resamplefd and
2167 * kick it when we receive EOI of this IRQ.
2169 * This is hackery because IOAPIC is mostly bypassed
2170 * (except EOI broadcasts) when irqfd is used. However
2171 * this can bring much performance back for split irqchip
2172 * with INTx IRQs (for VFIO, this gives 93% perf of the
2173 * full fast path, which is 46% perf boost comparing to
2174 * the INTx slow path).
2176 kvm_resample_fd_insert(virq, resample);
2177 } else {
2178 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2179 irqfd.resamplefd = rfd;
2181 } else if (!assign) {
2182 if (kvm_irqchip_is_split()) {
2183 kvm_resample_fd_remove(virq);
2187 if (!kvm_irqfds_enabled()) {
2188 return -ENOSYS;
2191 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2194 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2196 struct kvm_irq_routing_entry kroute = {};
2197 int virq;
2199 if (!kvm_gsi_routing_enabled()) {
2200 return -ENOSYS;
2203 virq = kvm_irqchip_get_virq(s);
2204 if (virq < 0) {
2205 return virq;
2208 kroute.gsi = virq;
2209 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2210 kroute.flags = 0;
2211 kroute.u.adapter.summary_addr = adapter->summary_addr;
2212 kroute.u.adapter.ind_addr = adapter->ind_addr;
2213 kroute.u.adapter.summary_offset = adapter->summary_offset;
2214 kroute.u.adapter.ind_offset = adapter->ind_offset;
2215 kroute.u.adapter.adapter_id = adapter->adapter_id;
2217 kvm_add_routing_entry(s, &kroute);
2219 return virq;
2222 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2224 struct kvm_irq_routing_entry kroute = {};
2225 int virq;
2227 if (!kvm_gsi_routing_enabled()) {
2228 return -ENOSYS;
2230 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2231 return -ENOSYS;
2233 virq = kvm_irqchip_get_virq(s);
2234 if (virq < 0) {
2235 return virq;
2238 kroute.gsi = virq;
2239 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2240 kroute.flags = 0;
2241 kroute.u.hv_sint.vcpu = vcpu;
2242 kroute.u.hv_sint.sint = sint;
2244 kvm_add_routing_entry(s, &kroute);
2245 kvm_irqchip_commit_routes(s);
2247 return virq;
2250 #else /* !KVM_CAP_IRQ_ROUTING */
2252 void kvm_init_irq_routing(KVMState *s)
2256 void kvm_irqchip_release_virq(KVMState *s, int virq)
2260 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2262 abort();
2265 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2267 return -ENOSYS;
2270 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2272 return -ENOSYS;
2275 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2277 return -ENOSYS;
2280 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2281 EventNotifier *resample, int virq,
2282 bool assign)
2284 abort();
2287 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2289 return -ENOSYS;
2291 #endif /* !KVM_CAP_IRQ_ROUTING */
2293 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2294 EventNotifier *rn, int virq)
2296 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2299 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2300 int virq)
2302 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2305 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2306 EventNotifier *rn, qemu_irq irq)
2308 gpointer key, gsi;
2309 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2311 if (!found) {
2312 return -ENXIO;
2314 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2317 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2318 qemu_irq irq)
2320 gpointer key, gsi;
2321 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2323 if (!found) {
2324 return -ENXIO;
2326 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2329 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2331 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2334 static void kvm_irqchip_create(KVMState *s)
2336 int ret;
2338 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2339 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2341 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2342 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2343 if (ret < 0) {
2344 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2345 exit(1);
2347 } else {
2348 return;
2351 /* First probe and see if there's a arch-specific hook to create the
2352 * in-kernel irqchip for us */
2353 ret = kvm_arch_irqchip_create(s);
2354 if (ret == 0) {
2355 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2356 error_report("Split IRQ chip mode not supported.");
2357 exit(1);
2358 } else {
2359 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2362 if (ret < 0) {
2363 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2364 exit(1);
2367 kvm_kernel_irqchip = true;
2368 /* If we have an in-kernel IRQ chip then we must have asynchronous
2369 * interrupt delivery (though the reverse is not necessarily true)
2371 kvm_async_interrupts_allowed = true;
2372 kvm_halt_in_kernel_allowed = true;
2374 kvm_init_irq_routing(s);
2376 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2379 /* Find number of supported CPUs using the recommended
2380 * procedure from the kernel API documentation to cope with
2381 * older kernels that may be missing capabilities.
2383 static int kvm_recommended_vcpus(KVMState *s)
2385 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2386 return (ret) ? ret : 4;
2389 static int kvm_max_vcpus(KVMState *s)
2391 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2392 return (ret) ? ret : kvm_recommended_vcpus(s);
2395 static int kvm_max_vcpu_id(KVMState *s)
2397 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2398 return (ret) ? ret : kvm_max_vcpus(s);
2401 bool kvm_vcpu_id_is_valid(int vcpu_id)
2403 KVMState *s = KVM_STATE(current_accel());
2404 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2407 bool kvm_dirty_ring_enabled(void)
2409 return kvm_state->kvm_dirty_ring_size ? true : false;
2412 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2413 strList *names, strList *targets, Error **errp);
2414 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2416 uint32_t kvm_dirty_ring_size(void)
2418 return kvm_state->kvm_dirty_ring_size;
2421 static int kvm_init(MachineState *ms)
2423 MachineClass *mc = MACHINE_GET_CLASS(ms);
2424 static const char upgrade_note[] =
2425 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2426 "(see http://sourceforge.net/projects/kvm).\n";
2427 const struct {
2428 const char *name;
2429 int num;
2430 } num_cpus[] = {
2431 { "SMP", ms->smp.cpus },
2432 { "hotpluggable", ms->smp.max_cpus },
2433 { /* end of list */ }
2434 }, *nc = num_cpus;
2435 int soft_vcpus_limit, hard_vcpus_limit;
2436 KVMState *s;
2437 const KVMCapabilityInfo *missing_cap;
2438 int ret;
2439 int type = 0;
2440 uint64_t dirty_log_manual_caps;
2442 qemu_mutex_init(&kml_slots_lock);
2444 s = KVM_STATE(ms->accelerator);
2447 * On systems where the kernel can support different base page
2448 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2449 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2450 * page size for the system though.
2452 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2454 s->sigmask_len = 8;
2455 accel_blocker_init();
2457 #ifdef KVM_CAP_SET_GUEST_DEBUG
2458 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2459 #endif
2460 QLIST_INIT(&s->kvm_parked_vcpus);
2461 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2462 if (s->fd == -1) {
2463 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2464 ret = -errno;
2465 goto err;
2468 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2469 if (ret < KVM_API_VERSION) {
2470 if (ret >= 0) {
2471 ret = -EINVAL;
2473 fprintf(stderr, "kvm version too old\n");
2474 goto err;
2477 if (ret > KVM_API_VERSION) {
2478 ret = -EINVAL;
2479 fprintf(stderr, "kvm version not supported\n");
2480 goto err;
2483 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2484 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2486 /* If unspecified, use the default value */
2487 if (!s->nr_slots) {
2488 s->nr_slots = 32;
2491 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2492 if (s->nr_as <= 1) {
2493 s->nr_as = 1;
2495 s->as = g_new0(struct KVMAs, s->nr_as);
2497 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2498 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2499 "kvm-type",
2500 &error_abort);
2501 type = mc->kvm_type(ms, kvm_type);
2502 } else if (mc->kvm_type) {
2503 type = mc->kvm_type(ms, NULL);
2506 do {
2507 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2508 } while (ret == -EINTR);
2510 if (ret < 0) {
2511 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2512 strerror(-ret));
2514 #ifdef TARGET_S390X
2515 if (ret == -EINVAL) {
2516 fprintf(stderr,
2517 "Host kernel setup problem detected. Please verify:\n");
2518 fprintf(stderr, "- for kernels supporting the switch_amode or"
2519 " user_mode parameters, whether\n");
2520 fprintf(stderr,
2521 " user space is running in primary address space\n");
2522 fprintf(stderr,
2523 "- for kernels supporting the vm.allocate_pgste sysctl, "
2524 "whether it is enabled\n");
2526 #elif defined(TARGET_PPC)
2527 if (ret == -EINVAL) {
2528 fprintf(stderr,
2529 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2530 (type == 2) ? "pr" : "hv");
2532 #endif
2533 goto err;
2536 s->vmfd = ret;
2538 /* check the vcpu limits */
2539 soft_vcpus_limit = kvm_recommended_vcpus(s);
2540 hard_vcpus_limit = kvm_max_vcpus(s);
2542 while (nc->name) {
2543 if (nc->num > soft_vcpus_limit) {
2544 warn_report("Number of %s cpus requested (%d) exceeds "
2545 "the recommended cpus supported by KVM (%d)",
2546 nc->name, nc->num, soft_vcpus_limit);
2548 if (nc->num > hard_vcpus_limit) {
2549 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2550 "the maximum cpus supported by KVM (%d)\n",
2551 nc->name, nc->num, hard_vcpus_limit);
2552 exit(1);
2555 nc++;
2558 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2559 if (!missing_cap) {
2560 missing_cap =
2561 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2563 if (missing_cap) {
2564 ret = -EINVAL;
2565 fprintf(stderr, "kvm does not support %s\n%s",
2566 missing_cap->name, upgrade_note);
2567 goto err;
2570 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2571 s->coalesced_pio = s->coalesced_mmio &&
2572 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2575 * Enable KVM dirty ring if supported, otherwise fall back to
2576 * dirty logging mode
2578 ret = kvm_dirty_ring_init(s);
2579 if (ret < 0) {
2580 goto err;
2584 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2585 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2586 * page is wr-protected initially, which is against how kvm dirty ring is
2587 * usage - kvm dirty ring requires all pages are wr-protected at the very
2588 * beginning. Enabling this feature for dirty ring causes data corruption.
2590 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2591 * we may expect a higher stall time when starting the migration. In the
2592 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2593 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2594 * guest pages.
2596 if (!s->kvm_dirty_ring_size) {
2597 dirty_log_manual_caps =
2598 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2599 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2600 KVM_DIRTY_LOG_INITIALLY_SET);
2601 s->manual_dirty_log_protect = dirty_log_manual_caps;
2602 if (dirty_log_manual_caps) {
2603 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2604 dirty_log_manual_caps);
2605 if (ret) {
2606 warn_report("Trying to enable capability %"PRIu64" of "
2607 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2608 "Falling back to the legacy mode. ",
2609 dirty_log_manual_caps);
2610 s->manual_dirty_log_protect = 0;
2615 #ifdef KVM_CAP_VCPU_EVENTS
2616 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2617 #endif
2619 s->robust_singlestep =
2620 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2622 #ifdef KVM_CAP_DEBUGREGS
2623 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2624 #endif
2626 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2628 #ifdef KVM_CAP_IRQ_ROUTING
2629 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2630 #endif
2632 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2634 s->irq_set_ioctl = KVM_IRQ_LINE;
2635 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2636 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2639 kvm_readonly_mem_allowed =
2640 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2642 kvm_eventfds_allowed =
2643 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2645 kvm_irqfds_allowed =
2646 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2648 kvm_resamplefds_allowed =
2649 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2651 kvm_vm_attributes_allowed =
2652 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2654 kvm_ioeventfd_any_length_allowed =
2655 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2657 #ifdef KVM_CAP_SET_GUEST_DEBUG
2658 kvm_has_guest_debug =
2659 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2660 #endif
2662 kvm_sstep_flags = 0;
2663 if (kvm_has_guest_debug) {
2664 kvm_sstep_flags = SSTEP_ENABLE;
2666 #if defined KVM_CAP_SET_GUEST_DEBUG2
2667 int guest_debug_flags =
2668 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2670 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2671 kvm_sstep_flags |= SSTEP_NOIRQ;
2673 #endif
2676 kvm_state = s;
2678 ret = kvm_arch_init(ms, s);
2679 if (ret < 0) {
2680 goto err;
2683 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2684 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2687 qemu_register_reset(kvm_unpoison_all, NULL);
2689 if (s->kernel_irqchip_allowed) {
2690 kvm_irqchip_create(s);
2693 if (kvm_eventfds_allowed) {
2694 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2695 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2697 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2698 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2700 kvm_memory_listener_register(s, &s->memory_listener,
2701 &address_space_memory, 0, "kvm-memory");
2702 if (kvm_eventfds_allowed) {
2703 memory_listener_register(&kvm_io_listener,
2704 &address_space_io);
2706 memory_listener_register(&kvm_coalesced_pio_listener,
2707 &address_space_io);
2709 s->many_ioeventfds = kvm_check_many_ioeventfds();
2711 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2712 if (!s->sync_mmu) {
2713 ret = ram_block_discard_disable(true);
2714 assert(!ret);
2717 if (s->kvm_dirty_ring_size) {
2718 ret = kvm_dirty_ring_reaper_init(s);
2719 if (ret) {
2720 goto err;
2724 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2725 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2726 query_stats_schemas_cb);
2729 return 0;
2731 err:
2732 assert(ret < 0);
2733 if (s->vmfd >= 0) {
2734 close(s->vmfd);
2736 if (s->fd != -1) {
2737 close(s->fd);
2739 g_free(s->memory_listener.slots);
2741 return ret;
2744 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2746 s->sigmask_len = sigmask_len;
2749 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2750 int size, uint32_t count)
2752 int i;
2753 uint8_t *ptr = data;
2755 for (i = 0; i < count; i++) {
2756 address_space_rw(&address_space_io, port, attrs,
2757 ptr, size,
2758 direction == KVM_EXIT_IO_OUT);
2759 ptr += size;
2763 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2765 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2766 run->internal.suberror);
2768 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2769 int i;
2771 for (i = 0; i < run->internal.ndata; ++i) {
2772 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2773 i, (uint64_t)run->internal.data[i]);
2776 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2777 fprintf(stderr, "emulation failure\n");
2778 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2779 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2780 return EXCP_INTERRUPT;
2783 /* FIXME: Should trigger a qmp message to let management know
2784 * something went wrong.
2786 return -1;
2789 void kvm_flush_coalesced_mmio_buffer(void)
2791 KVMState *s = kvm_state;
2793 if (s->coalesced_flush_in_progress) {
2794 return;
2797 s->coalesced_flush_in_progress = true;
2799 if (s->coalesced_mmio_ring) {
2800 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2801 while (ring->first != ring->last) {
2802 struct kvm_coalesced_mmio *ent;
2804 ent = &ring->coalesced_mmio[ring->first];
2806 if (ent->pio == 1) {
2807 address_space_write(&address_space_io, ent->phys_addr,
2808 MEMTXATTRS_UNSPECIFIED, ent->data,
2809 ent->len);
2810 } else {
2811 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2813 smp_wmb();
2814 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2818 s->coalesced_flush_in_progress = false;
2821 bool kvm_cpu_check_are_resettable(void)
2823 return kvm_arch_cpu_check_are_resettable();
2826 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2828 if (!cpu->vcpu_dirty) {
2829 kvm_arch_get_registers(cpu);
2830 cpu->vcpu_dirty = true;
2834 void kvm_cpu_synchronize_state(CPUState *cpu)
2836 if (!cpu->vcpu_dirty) {
2837 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2841 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2843 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2844 cpu->vcpu_dirty = false;
2847 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2849 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2852 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2854 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2855 cpu->vcpu_dirty = false;
2858 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2860 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2863 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2865 cpu->vcpu_dirty = true;
2868 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2870 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2873 #ifdef KVM_HAVE_MCE_INJECTION
2874 static __thread void *pending_sigbus_addr;
2875 static __thread int pending_sigbus_code;
2876 static __thread bool have_sigbus_pending;
2877 #endif
2879 static void kvm_cpu_kick(CPUState *cpu)
2881 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2884 static void kvm_cpu_kick_self(void)
2886 if (kvm_immediate_exit) {
2887 kvm_cpu_kick(current_cpu);
2888 } else {
2889 qemu_cpu_kick_self();
2893 static void kvm_eat_signals(CPUState *cpu)
2895 struct timespec ts = { 0, 0 };
2896 siginfo_t siginfo;
2897 sigset_t waitset;
2898 sigset_t chkset;
2899 int r;
2901 if (kvm_immediate_exit) {
2902 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2903 /* Write kvm_run->immediate_exit before the cpu->exit_request
2904 * write in kvm_cpu_exec.
2906 smp_wmb();
2907 return;
2910 sigemptyset(&waitset);
2911 sigaddset(&waitset, SIG_IPI);
2913 do {
2914 r = sigtimedwait(&waitset, &siginfo, &ts);
2915 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2916 perror("sigtimedwait");
2917 exit(1);
2920 r = sigpending(&chkset);
2921 if (r == -1) {
2922 perror("sigpending");
2923 exit(1);
2925 } while (sigismember(&chkset, SIG_IPI));
2928 int kvm_cpu_exec(CPUState *cpu)
2930 struct kvm_run *run = cpu->kvm_run;
2931 int ret, run_ret;
2933 DPRINTF("kvm_cpu_exec()\n");
2935 if (kvm_arch_process_async_events(cpu)) {
2936 qatomic_set(&cpu->exit_request, 0);
2937 return EXCP_HLT;
2940 qemu_mutex_unlock_iothread();
2941 cpu_exec_start(cpu);
2943 do {
2944 MemTxAttrs attrs;
2946 if (cpu->vcpu_dirty) {
2947 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2948 cpu->vcpu_dirty = false;
2951 kvm_arch_pre_run(cpu, run);
2952 if (qatomic_read(&cpu->exit_request)) {
2953 DPRINTF("interrupt exit requested\n");
2955 * KVM requires us to reenter the kernel after IO exits to complete
2956 * instruction emulation. This self-signal will ensure that we
2957 * leave ASAP again.
2959 kvm_cpu_kick_self();
2962 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2963 * Matching barrier in kvm_eat_signals.
2965 smp_rmb();
2967 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2969 attrs = kvm_arch_post_run(cpu, run);
2971 #ifdef KVM_HAVE_MCE_INJECTION
2972 if (unlikely(have_sigbus_pending)) {
2973 qemu_mutex_lock_iothread();
2974 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2975 pending_sigbus_addr);
2976 have_sigbus_pending = false;
2977 qemu_mutex_unlock_iothread();
2979 #endif
2981 if (run_ret < 0) {
2982 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2983 DPRINTF("io window exit\n");
2984 kvm_eat_signals(cpu);
2985 ret = EXCP_INTERRUPT;
2986 break;
2988 fprintf(stderr, "error: kvm run failed %s\n",
2989 strerror(-run_ret));
2990 #ifdef TARGET_PPC
2991 if (run_ret == -EBUSY) {
2992 fprintf(stderr,
2993 "This is probably because your SMT is enabled.\n"
2994 "VCPU can only run on primary threads with all "
2995 "secondary threads offline.\n");
2997 #endif
2998 ret = -1;
2999 break;
3002 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
3003 switch (run->exit_reason) {
3004 case KVM_EXIT_IO:
3005 DPRINTF("handle_io\n");
3006 /* Called outside BQL */
3007 kvm_handle_io(run->io.port, attrs,
3008 (uint8_t *)run + run->io.data_offset,
3009 run->io.direction,
3010 run->io.size,
3011 run->io.count);
3012 ret = 0;
3013 break;
3014 case KVM_EXIT_MMIO:
3015 DPRINTF("handle_mmio\n");
3016 /* Called outside BQL */
3017 address_space_rw(&address_space_memory,
3018 run->mmio.phys_addr, attrs,
3019 run->mmio.data,
3020 run->mmio.len,
3021 run->mmio.is_write);
3022 ret = 0;
3023 break;
3024 case KVM_EXIT_IRQ_WINDOW_OPEN:
3025 DPRINTF("irq_window_open\n");
3026 ret = EXCP_INTERRUPT;
3027 break;
3028 case KVM_EXIT_SHUTDOWN:
3029 DPRINTF("shutdown\n");
3030 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3031 ret = EXCP_INTERRUPT;
3032 break;
3033 case KVM_EXIT_UNKNOWN:
3034 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
3035 (uint64_t)run->hw.hardware_exit_reason);
3036 ret = -1;
3037 break;
3038 case KVM_EXIT_INTERNAL_ERROR:
3039 ret = kvm_handle_internal_error(cpu, run);
3040 break;
3041 case KVM_EXIT_DIRTY_RING_FULL:
3043 * We shouldn't continue if the dirty ring of this vcpu is
3044 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
3046 trace_kvm_dirty_ring_full(cpu->cpu_index);
3047 qemu_mutex_lock_iothread();
3049 * We throttle vCPU by making it sleep once it exit from kernel
3050 * due to dirty ring full. In the dirtylimit scenario, reaping
3051 * all vCPUs after a single vCPU dirty ring get full result in
3052 * the miss of sleep, so just reap the ring-fulled vCPU.
3054 if (dirtylimit_in_service()) {
3055 kvm_dirty_ring_reap(kvm_state, cpu);
3056 } else {
3057 kvm_dirty_ring_reap(kvm_state, NULL);
3059 qemu_mutex_unlock_iothread();
3060 dirtylimit_vcpu_execute(cpu);
3061 ret = 0;
3062 break;
3063 case KVM_EXIT_SYSTEM_EVENT:
3064 switch (run->system_event.type) {
3065 case KVM_SYSTEM_EVENT_SHUTDOWN:
3066 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3067 ret = EXCP_INTERRUPT;
3068 break;
3069 case KVM_SYSTEM_EVENT_RESET:
3070 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3071 ret = EXCP_INTERRUPT;
3072 break;
3073 case KVM_SYSTEM_EVENT_CRASH:
3074 kvm_cpu_synchronize_state(cpu);
3075 qemu_mutex_lock_iothread();
3076 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3077 qemu_mutex_unlock_iothread();
3078 ret = 0;
3079 break;
3080 default:
3081 DPRINTF("kvm_arch_handle_exit\n");
3082 ret = kvm_arch_handle_exit(cpu, run);
3083 break;
3085 break;
3086 default:
3087 DPRINTF("kvm_arch_handle_exit\n");
3088 ret = kvm_arch_handle_exit(cpu, run);
3089 break;
3091 } while (ret == 0);
3093 cpu_exec_end(cpu);
3094 qemu_mutex_lock_iothread();
3096 if (ret < 0) {
3097 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3098 vm_stop(RUN_STATE_INTERNAL_ERROR);
3101 qatomic_set(&cpu->exit_request, 0);
3102 return ret;
3105 int kvm_ioctl(KVMState *s, int type, ...)
3107 int ret;
3108 void *arg;
3109 va_list ap;
3111 va_start(ap, type);
3112 arg = va_arg(ap, void *);
3113 va_end(ap);
3115 trace_kvm_ioctl(type, arg);
3116 ret = ioctl(s->fd, type, arg);
3117 if (ret == -1) {
3118 ret = -errno;
3120 return ret;
3123 int kvm_vm_ioctl(KVMState *s, int type, ...)
3125 int ret;
3126 void *arg;
3127 va_list ap;
3129 va_start(ap, type);
3130 arg = va_arg(ap, void *);
3131 va_end(ap);
3133 trace_kvm_vm_ioctl(type, arg);
3134 accel_ioctl_begin();
3135 ret = ioctl(s->vmfd, type, arg);
3136 accel_ioctl_end();
3137 if (ret == -1) {
3138 ret = -errno;
3140 return ret;
3143 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3145 int ret;
3146 void *arg;
3147 va_list ap;
3149 va_start(ap, type);
3150 arg = va_arg(ap, void *);
3151 va_end(ap);
3153 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3154 accel_cpu_ioctl_begin(cpu);
3155 ret = ioctl(cpu->kvm_fd, type, arg);
3156 accel_cpu_ioctl_end(cpu);
3157 if (ret == -1) {
3158 ret = -errno;
3160 return ret;
3163 int kvm_device_ioctl(int fd, int type, ...)
3165 int ret;
3166 void *arg;
3167 va_list ap;
3169 va_start(ap, type);
3170 arg = va_arg(ap, void *);
3171 va_end(ap);
3173 trace_kvm_device_ioctl(fd, type, arg);
3174 accel_ioctl_begin();
3175 ret = ioctl(fd, type, arg);
3176 accel_ioctl_end();
3177 if (ret == -1) {
3178 ret = -errno;
3180 return ret;
3183 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3185 int ret;
3186 struct kvm_device_attr attribute = {
3187 .group = group,
3188 .attr = attr,
3191 if (!kvm_vm_attributes_allowed) {
3192 return 0;
3195 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3196 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3197 return ret ? 0 : 1;
3200 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3202 struct kvm_device_attr attribute = {
3203 .group = group,
3204 .attr = attr,
3205 .flags = 0,
3208 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3211 int kvm_device_access(int fd, int group, uint64_t attr,
3212 void *val, bool write, Error **errp)
3214 struct kvm_device_attr kvmattr;
3215 int err;
3217 kvmattr.flags = 0;
3218 kvmattr.group = group;
3219 kvmattr.attr = attr;
3220 kvmattr.addr = (uintptr_t)val;
3222 err = kvm_device_ioctl(fd,
3223 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3224 &kvmattr);
3225 if (err < 0) {
3226 error_setg_errno(errp, -err,
3227 "KVM_%s_DEVICE_ATTR failed: Group %d "
3228 "attr 0x%016" PRIx64,
3229 write ? "SET" : "GET", group, attr);
3231 return err;
3234 bool kvm_has_sync_mmu(void)
3236 return kvm_state->sync_mmu;
3239 int kvm_has_vcpu_events(void)
3241 return kvm_state->vcpu_events;
3244 int kvm_has_robust_singlestep(void)
3246 return kvm_state->robust_singlestep;
3249 int kvm_has_debugregs(void)
3251 return kvm_state->debugregs;
3254 int kvm_max_nested_state_length(void)
3256 return kvm_state->max_nested_state_len;
3259 int kvm_has_many_ioeventfds(void)
3261 if (!kvm_enabled()) {
3262 return 0;
3264 return kvm_state->many_ioeventfds;
3267 int kvm_has_gsi_routing(void)
3269 #ifdef KVM_CAP_IRQ_ROUTING
3270 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3271 #else
3272 return false;
3273 #endif
3276 int kvm_has_intx_set_mask(void)
3278 return kvm_state->intx_set_mask;
3281 bool kvm_arm_supports_user_irq(void)
3283 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3286 #ifdef KVM_CAP_SET_GUEST_DEBUG
3287 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3288 target_ulong pc)
3290 struct kvm_sw_breakpoint *bp;
3292 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3293 if (bp->pc == pc) {
3294 return bp;
3297 return NULL;
3300 int kvm_sw_breakpoints_active(CPUState *cpu)
3302 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3305 struct kvm_set_guest_debug_data {
3306 struct kvm_guest_debug dbg;
3307 int err;
3310 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3312 struct kvm_set_guest_debug_data *dbg_data =
3313 (struct kvm_set_guest_debug_data *) data.host_ptr;
3315 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3316 &dbg_data->dbg);
3319 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3321 struct kvm_set_guest_debug_data data;
3323 data.dbg.control = reinject_trap;
3325 if (cpu->singlestep_enabled) {
3326 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3328 if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3329 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3332 kvm_arch_update_guest_debug(cpu, &data.dbg);
3334 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3335 RUN_ON_CPU_HOST_PTR(&data));
3336 return data.err;
3339 bool kvm_supports_guest_debug(void)
3341 /* probed during kvm_init() */
3342 return kvm_has_guest_debug;
3345 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3347 struct kvm_sw_breakpoint *bp;
3348 int err;
3350 if (type == GDB_BREAKPOINT_SW) {
3351 bp = kvm_find_sw_breakpoint(cpu, addr);
3352 if (bp) {
3353 bp->use_count++;
3354 return 0;
3357 bp = g_new(struct kvm_sw_breakpoint, 1);
3358 bp->pc = addr;
3359 bp->use_count = 1;
3360 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3361 if (err) {
3362 g_free(bp);
3363 return err;
3366 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3367 } else {
3368 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3369 if (err) {
3370 return err;
3374 CPU_FOREACH(cpu) {
3375 err = kvm_update_guest_debug(cpu, 0);
3376 if (err) {
3377 return err;
3380 return 0;
3383 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3385 struct kvm_sw_breakpoint *bp;
3386 int err;
3388 if (type == GDB_BREAKPOINT_SW) {
3389 bp = kvm_find_sw_breakpoint(cpu, addr);
3390 if (!bp) {
3391 return -ENOENT;
3394 if (bp->use_count > 1) {
3395 bp->use_count--;
3396 return 0;
3399 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3400 if (err) {
3401 return err;
3404 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3405 g_free(bp);
3406 } else {
3407 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3408 if (err) {
3409 return err;
3413 CPU_FOREACH(cpu) {
3414 err = kvm_update_guest_debug(cpu, 0);
3415 if (err) {
3416 return err;
3419 return 0;
3422 void kvm_remove_all_breakpoints(CPUState *cpu)
3424 struct kvm_sw_breakpoint *bp, *next;
3425 KVMState *s = cpu->kvm_state;
3426 CPUState *tmpcpu;
3428 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3429 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3430 /* Try harder to find a CPU that currently sees the breakpoint. */
3431 CPU_FOREACH(tmpcpu) {
3432 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3433 break;
3437 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3438 g_free(bp);
3440 kvm_arch_remove_all_hw_breakpoints();
3442 CPU_FOREACH(cpu) {
3443 kvm_update_guest_debug(cpu, 0);
3447 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3449 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3451 KVMState *s = kvm_state;
3452 struct kvm_signal_mask *sigmask;
3453 int r;
3455 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3457 sigmask->len = s->sigmask_len;
3458 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3459 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3460 g_free(sigmask);
3462 return r;
3465 static void kvm_ipi_signal(int sig)
3467 if (current_cpu) {
3468 assert(kvm_immediate_exit);
3469 kvm_cpu_kick(current_cpu);
3473 void kvm_init_cpu_signals(CPUState *cpu)
3475 int r;
3476 sigset_t set;
3477 struct sigaction sigact;
3479 memset(&sigact, 0, sizeof(sigact));
3480 sigact.sa_handler = kvm_ipi_signal;
3481 sigaction(SIG_IPI, &sigact, NULL);
3483 pthread_sigmask(SIG_BLOCK, NULL, &set);
3484 #if defined KVM_HAVE_MCE_INJECTION
3485 sigdelset(&set, SIGBUS);
3486 pthread_sigmask(SIG_SETMASK, &set, NULL);
3487 #endif
3488 sigdelset(&set, SIG_IPI);
3489 if (kvm_immediate_exit) {
3490 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3491 } else {
3492 r = kvm_set_signal_mask(cpu, &set);
3494 if (r) {
3495 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3496 exit(1);
3500 /* Called asynchronously in VCPU thread. */
3501 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3503 #ifdef KVM_HAVE_MCE_INJECTION
3504 if (have_sigbus_pending) {
3505 return 1;
3507 have_sigbus_pending = true;
3508 pending_sigbus_addr = addr;
3509 pending_sigbus_code = code;
3510 qatomic_set(&cpu->exit_request, 1);
3511 return 0;
3512 #else
3513 return 1;
3514 #endif
3517 /* Called synchronously (via signalfd) in main thread. */
3518 int kvm_on_sigbus(int code, void *addr)
3520 #ifdef KVM_HAVE_MCE_INJECTION
3521 /* Action required MCE kills the process if SIGBUS is blocked. Because
3522 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3523 * we can only get action optional here.
3525 assert(code != BUS_MCEERR_AR);
3526 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3527 return 0;
3528 #else
3529 return 1;
3530 #endif
3533 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3535 int ret;
3536 struct kvm_create_device create_dev;
3538 create_dev.type = type;
3539 create_dev.fd = -1;
3540 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3542 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3543 return -ENOTSUP;
3546 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3547 if (ret) {
3548 return ret;
3551 return test ? 0 : create_dev.fd;
3554 bool kvm_device_supported(int vmfd, uint64_t type)
3556 struct kvm_create_device create_dev = {
3557 .type = type,
3558 .fd = -1,
3559 .flags = KVM_CREATE_DEVICE_TEST,
3562 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3563 return false;
3566 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3569 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3571 struct kvm_one_reg reg;
3572 int r;
3574 reg.id = id;
3575 reg.addr = (uintptr_t) source;
3576 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3577 if (r) {
3578 trace_kvm_failed_reg_set(id, strerror(-r));
3580 return r;
3583 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3585 struct kvm_one_reg reg;
3586 int r;
3588 reg.id = id;
3589 reg.addr = (uintptr_t) target;
3590 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3591 if (r) {
3592 trace_kvm_failed_reg_get(id, strerror(-r));
3594 return r;
3597 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3598 hwaddr start_addr, hwaddr size)
3600 KVMState *kvm = KVM_STATE(ms->accelerator);
3601 int i;
3603 for (i = 0; i < kvm->nr_as; ++i) {
3604 if (kvm->as[i].as == as && kvm->as[i].ml) {
3605 size = MIN(kvm_max_slot_size, size);
3606 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3607 start_addr, size);
3611 return false;
3614 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3615 const char *name, void *opaque,
3616 Error **errp)
3618 KVMState *s = KVM_STATE(obj);
3619 int64_t value = s->kvm_shadow_mem;
3621 visit_type_int(v, name, &value, errp);
3624 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3625 const char *name, void *opaque,
3626 Error **errp)
3628 KVMState *s = KVM_STATE(obj);
3629 int64_t value;
3631 if (s->fd != -1) {
3632 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3633 return;
3636 if (!visit_type_int(v, name, &value, errp)) {
3637 return;
3640 s->kvm_shadow_mem = value;
3643 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3644 const char *name, void *opaque,
3645 Error **errp)
3647 KVMState *s = KVM_STATE(obj);
3648 OnOffSplit mode;
3650 if (s->fd != -1) {
3651 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3652 return;
3655 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3656 return;
3658 switch (mode) {
3659 case ON_OFF_SPLIT_ON:
3660 s->kernel_irqchip_allowed = true;
3661 s->kernel_irqchip_required = true;
3662 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3663 break;
3664 case ON_OFF_SPLIT_OFF:
3665 s->kernel_irqchip_allowed = false;
3666 s->kernel_irqchip_required = false;
3667 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3668 break;
3669 case ON_OFF_SPLIT_SPLIT:
3670 s->kernel_irqchip_allowed = true;
3671 s->kernel_irqchip_required = true;
3672 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3673 break;
3674 default:
3675 /* The value was checked in visit_type_OnOffSplit() above. If
3676 * we get here, then something is wrong in QEMU.
3678 abort();
3682 bool kvm_kernel_irqchip_allowed(void)
3684 return kvm_state->kernel_irqchip_allowed;
3687 bool kvm_kernel_irqchip_required(void)
3689 return kvm_state->kernel_irqchip_required;
3692 bool kvm_kernel_irqchip_split(void)
3694 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3697 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3698 const char *name, void *opaque,
3699 Error **errp)
3701 KVMState *s = KVM_STATE(obj);
3702 uint32_t value = s->kvm_dirty_ring_size;
3704 visit_type_uint32(v, name, &value, errp);
3707 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3708 const char *name, void *opaque,
3709 Error **errp)
3711 KVMState *s = KVM_STATE(obj);
3712 uint32_t value;
3714 if (s->fd != -1) {
3715 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3716 return;
3719 if (!visit_type_uint32(v, name, &value, errp)) {
3720 return;
3722 if (value & (value - 1)) {
3723 error_setg(errp, "dirty-ring-size must be a power of two.");
3724 return;
3727 s->kvm_dirty_ring_size = value;
3730 static void kvm_accel_instance_init(Object *obj)
3732 KVMState *s = KVM_STATE(obj);
3734 s->fd = -1;
3735 s->vmfd = -1;
3736 s->kvm_shadow_mem = -1;
3737 s->kernel_irqchip_allowed = true;
3738 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3739 /* KVM dirty ring is by default off */
3740 s->kvm_dirty_ring_size = 0;
3741 s->kvm_dirty_ring_with_bitmap = false;
3742 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3743 s->notify_window = 0;
3744 s->xen_version = 0;
3745 s->xen_gnttab_max_frames = 64;
3746 s->xen_evtchn_max_pirq = 256;
3750 * kvm_gdbstub_sstep_flags():
3752 * Returns: SSTEP_* flags that KVM supports for guest debug. The
3753 * support is probed during kvm_init()
3755 static int kvm_gdbstub_sstep_flags(void)
3757 return kvm_sstep_flags;
3760 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3762 AccelClass *ac = ACCEL_CLASS(oc);
3763 ac->name = "KVM";
3764 ac->init_machine = kvm_init;
3765 ac->has_memory = kvm_accel_has_memory;
3766 ac->allowed = &kvm_allowed;
3767 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3769 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3770 NULL, kvm_set_kernel_irqchip,
3771 NULL, NULL);
3772 object_class_property_set_description(oc, "kernel-irqchip",
3773 "Configure KVM in-kernel irqchip");
3775 object_class_property_add(oc, "kvm-shadow-mem", "int",
3776 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3777 NULL, NULL);
3778 object_class_property_set_description(oc, "kvm-shadow-mem",
3779 "KVM shadow MMU size");
3781 object_class_property_add(oc, "dirty-ring-size", "uint32",
3782 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3783 NULL, NULL);
3784 object_class_property_set_description(oc, "dirty-ring-size",
3785 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3787 kvm_arch_accel_class_init(oc);
3790 static const TypeInfo kvm_accel_type = {
3791 .name = TYPE_KVM_ACCEL,
3792 .parent = TYPE_ACCEL,
3793 .instance_init = kvm_accel_instance_init,
3794 .class_init = kvm_accel_class_init,
3795 .instance_size = sizeof(KVMState),
3798 static void kvm_type_init(void)
3800 type_register_static(&kvm_accel_type);
3803 type_init(kvm_type_init);
3805 typedef struct StatsArgs {
3806 union StatsResultsType {
3807 StatsResultList **stats;
3808 StatsSchemaList **schema;
3809 } result;
3810 strList *names;
3811 Error **errp;
3812 } StatsArgs;
3814 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3815 uint64_t *stats_data,
3816 StatsList *stats_list,
3817 Error **errp)
3820 Stats *stats;
3821 uint64List *val_list = NULL;
3823 /* Only add stats that we understand. */
3824 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3825 case KVM_STATS_TYPE_CUMULATIVE:
3826 case KVM_STATS_TYPE_INSTANT:
3827 case KVM_STATS_TYPE_PEAK:
3828 case KVM_STATS_TYPE_LINEAR_HIST:
3829 case KVM_STATS_TYPE_LOG_HIST:
3830 break;
3831 default:
3832 return stats_list;
3835 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3836 case KVM_STATS_UNIT_NONE:
3837 case KVM_STATS_UNIT_BYTES:
3838 case KVM_STATS_UNIT_CYCLES:
3839 case KVM_STATS_UNIT_SECONDS:
3840 case KVM_STATS_UNIT_BOOLEAN:
3841 break;
3842 default:
3843 return stats_list;
3846 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3847 case KVM_STATS_BASE_POW10:
3848 case KVM_STATS_BASE_POW2:
3849 break;
3850 default:
3851 return stats_list;
3854 /* Alloc and populate data list */
3855 stats = g_new0(Stats, 1);
3856 stats->name = g_strdup(pdesc->name);
3857 stats->value = g_new0(StatsValue, 1);;
3859 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3860 stats->value->u.boolean = *stats_data;
3861 stats->value->type = QTYPE_QBOOL;
3862 } else if (pdesc->size == 1) {
3863 stats->value->u.scalar = *stats_data;
3864 stats->value->type = QTYPE_QNUM;
3865 } else {
3866 int i;
3867 for (i = 0; i < pdesc->size; i++) {
3868 QAPI_LIST_PREPEND(val_list, stats_data[i]);
3870 stats->value->u.list = val_list;
3871 stats->value->type = QTYPE_QLIST;
3874 QAPI_LIST_PREPEND(stats_list, stats);
3875 return stats_list;
3878 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3879 StatsSchemaValueList *list,
3880 Error **errp)
3882 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3883 schema_entry->value = g_new0(StatsSchemaValue, 1);
3885 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3886 case KVM_STATS_TYPE_CUMULATIVE:
3887 schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3888 break;
3889 case KVM_STATS_TYPE_INSTANT:
3890 schema_entry->value->type = STATS_TYPE_INSTANT;
3891 break;
3892 case KVM_STATS_TYPE_PEAK:
3893 schema_entry->value->type = STATS_TYPE_PEAK;
3894 break;
3895 case KVM_STATS_TYPE_LINEAR_HIST:
3896 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3897 schema_entry->value->bucket_size = pdesc->bucket_size;
3898 schema_entry->value->has_bucket_size = true;
3899 break;
3900 case KVM_STATS_TYPE_LOG_HIST:
3901 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3902 break;
3903 default:
3904 goto exit;
3907 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3908 case KVM_STATS_UNIT_NONE:
3909 break;
3910 case KVM_STATS_UNIT_BOOLEAN:
3911 schema_entry->value->has_unit = true;
3912 schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3913 break;
3914 case KVM_STATS_UNIT_BYTES:
3915 schema_entry->value->has_unit = true;
3916 schema_entry->value->unit = STATS_UNIT_BYTES;
3917 break;
3918 case KVM_STATS_UNIT_CYCLES:
3919 schema_entry->value->has_unit = true;
3920 schema_entry->value->unit = STATS_UNIT_CYCLES;
3921 break;
3922 case KVM_STATS_UNIT_SECONDS:
3923 schema_entry->value->has_unit = true;
3924 schema_entry->value->unit = STATS_UNIT_SECONDS;
3925 break;
3926 default:
3927 goto exit;
3930 schema_entry->value->exponent = pdesc->exponent;
3931 if (pdesc->exponent) {
3932 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3933 case KVM_STATS_BASE_POW10:
3934 schema_entry->value->has_base = true;
3935 schema_entry->value->base = 10;
3936 break;
3937 case KVM_STATS_BASE_POW2:
3938 schema_entry->value->has_base = true;
3939 schema_entry->value->base = 2;
3940 break;
3941 default:
3942 goto exit;
3946 schema_entry->value->name = g_strdup(pdesc->name);
3947 schema_entry->next = list;
3948 return schema_entry;
3949 exit:
3950 g_free(schema_entry->value);
3951 g_free(schema_entry);
3952 return list;
3955 /* Cached stats descriptors */
3956 typedef struct StatsDescriptors {
3957 const char *ident; /* cache key, currently the StatsTarget */
3958 struct kvm_stats_desc *kvm_stats_desc;
3959 struct kvm_stats_header kvm_stats_header;
3960 QTAILQ_ENTRY(StatsDescriptors) next;
3961 } StatsDescriptors;
3963 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3964 QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3967 * Return the descriptors for 'target', that either have already been read
3968 * or are retrieved from 'stats_fd'.
3970 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3971 Error **errp)
3973 StatsDescriptors *descriptors;
3974 const char *ident;
3975 struct kvm_stats_desc *kvm_stats_desc;
3976 struct kvm_stats_header *kvm_stats_header;
3977 size_t size_desc;
3978 ssize_t ret;
3980 ident = StatsTarget_str(target);
3981 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3982 if (g_str_equal(descriptors->ident, ident)) {
3983 return descriptors;
3987 descriptors = g_new0(StatsDescriptors, 1);
3989 /* Read stats header */
3990 kvm_stats_header = &descriptors->kvm_stats_header;
3991 ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header));
3992 if (ret != sizeof(*kvm_stats_header)) {
3993 error_setg(errp, "KVM stats: failed to read stats header: "
3994 "expected %zu actual %zu",
3995 sizeof(*kvm_stats_header), ret);
3996 g_free(descriptors);
3997 return NULL;
3999 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4001 /* Read stats descriptors */
4002 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
4003 ret = pread(stats_fd, kvm_stats_desc,
4004 size_desc * kvm_stats_header->num_desc,
4005 kvm_stats_header->desc_offset);
4007 if (ret != size_desc * kvm_stats_header->num_desc) {
4008 error_setg(errp, "KVM stats: failed to read stats descriptors: "
4009 "expected %zu actual %zu",
4010 size_desc * kvm_stats_header->num_desc, ret);
4011 g_free(descriptors);
4012 g_free(kvm_stats_desc);
4013 return NULL;
4015 descriptors->kvm_stats_desc = kvm_stats_desc;
4016 descriptors->ident = ident;
4017 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
4018 return descriptors;
4021 static void query_stats(StatsResultList **result, StatsTarget target,
4022 strList *names, int stats_fd, Error **errp)
4024 struct kvm_stats_desc *kvm_stats_desc;
4025 struct kvm_stats_header *kvm_stats_header;
4026 StatsDescriptors *descriptors;
4027 g_autofree uint64_t *stats_data = NULL;
4028 struct kvm_stats_desc *pdesc;
4029 StatsList *stats_list = NULL;
4030 size_t size_desc, size_data = 0;
4031 ssize_t ret;
4032 int i;
4034 descriptors = find_stats_descriptors(target, stats_fd, errp);
4035 if (!descriptors) {
4036 return;
4039 kvm_stats_header = &descriptors->kvm_stats_header;
4040 kvm_stats_desc = descriptors->kvm_stats_desc;
4041 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4043 /* Tally the total data size; read schema data */
4044 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4045 pdesc = (void *)kvm_stats_desc + i * size_desc;
4046 size_data += pdesc->size * sizeof(*stats_data);
4049 stats_data = g_malloc0(size_data);
4050 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4052 if (ret != size_data) {
4053 error_setg(errp, "KVM stats: failed to read data: "
4054 "expected %zu actual %zu", size_data, ret);
4055 return;
4058 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4059 uint64_t *stats;
4060 pdesc = (void *)kvm_stats_desc + i * size_desc;
4062 /* Add entry to the list */
4063 stats = (void *)stats_data + pdesc->offset;
4064 if (!apply_str_list_filter(pdesc->name, names)) {
4065 continue;
4067 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4070 if (!stats_list) {
4071 return;
4074 switch (target) {
4075 case STATS_TARGET_VM:
4076 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4077 break;
4078 case STATS_TARGET_VCPU:
4079 add_stats_entry(result, STATS_PROVIDER_KVM,
4080 current_cpu->parent_obj.canonical_path,
4081 stats_list);
4082 break;
4083 default:
4084 g_assert_not_reached();
4088 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4089 int stats_fd, Error **errp)
4091 struct kvm_stats_desc *kvm_stats_desc;
4092 struct kvm_stats_header *kvm_stats_header;
4093 StatsDescriptors *descriptors;
4094 struct kvm_stats_desc *pdesc;
4095 StatsSchemaValueList *stats_list = NULL;
4096 size_t size_desc;
4097 int i;
4099 descriptors = find_stats_descriptors(target, stats_fd, errp);
4100 if (!descriptors) {
4101 return;
4104 kvm_stats_header = &descriptors->kvm_stats_header;
4105 kvm_stats_desc = descriptors->kvm_stats_desc;
4106 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4108 /* Tally the total data size; read schema data */
4109 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4110 pdesc = (void *)kvm_stats_desc + i * size_desc;
4111 stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4114 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4117 static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data)
4119 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4120 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4121 Error *local_err = NULL;
4123 if (stats_fd == -1) {
4124 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4125 error_propagate(kvm_stats_args->errp, local_err);
4126 return;
4128 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4129 kvm_stats_args->names, stats_fd, kvm_stats_args->errp);
4130 close(stats_fd);
4133 static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data)
4135 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4136 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4137 Error *local_err = NULL;
4139 if (stats_fd == -1) {
4140 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4141 error_propagate(kvm_stats_args->errp, local_err);
4142 return;
4144 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4145 kvm_stats_args->errp);
4146 close(stats_fd);
4149 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4150 strList *names, strList *targets, Error **errp)
4152 KVMState *s = kvm_state;
4153 CPUState *cpu;
4154 int stats_fd;
4156 switch (target) {
4157 case STATS_TARGET_VM:
4159 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4160 if (stats_fd == -1) {
4161 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4162 return;
4164 query_stats(result, target, names, stats_fd, errp);
4165 close(stats_fd);
4166 break;
4168 case STATS_TARGET_VCPU:
4170 StatsArgs stats_args;
4171 stats_args.result.stats = result;
4172 stats_args.names = names;
4173 stats_args.errp = errp;
4174 CPU_FOREACH(cpu) {
4175 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4176 continue;
4178 run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
4180 break;
4182 default:
4183 break;
4187 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4189 StatsArgs stats_args;
4190 KVMState *s = kvm_state;
4191 int stats_fd;
4193 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4194 if (stats_fd == -1) {
4195 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4196 return;
4198 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4199 close(stats_fd);
4201 if (first_cpu) {
4202 stats_args.result.schema = result;
4203 stats_args.errp = errp;
4204 run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));