4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
20 #include <linux/kvm.h>
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
55 /* This check must be after config-host.h is included */
57 #include <sys/eventfd.h>
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61 * need to use the real host PAGE_SIZE, as that's what KVM will use.
66 #define PAGE_SIZE qemu_real_host_page_size()
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
75 #define DPRINTF(fmt, ...) \
76 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
78 #define DPRINTF(fmt, ...) \
82 struct KVMParkedVcpu
{
83 unsigned long vcpu_id
;
85 QLIST_ENTRY(KVMParkedVcpu
) node
;
89 bool kvm_kernel_irqchip
;
90 bool kvm_split_irqchip
;
91 bool kvm_async_interrupts_allowed
;
92 bool kvm_halt_in_kernel_allowed
;
93 bool kvm_eventfds_allowed
;
94 bool kvm_irqfds_allowed
;
95 bool kvm_resamplefds_allowed
;
96 bool kvm_msi_via_irqfd_allowed
;
97 bool kvm_gsi_routing_allowed
;
98 bool kvm_gsi_direct_mapping
;
100 bool kvm_readonly_mem_allowed
;
101 bool kvm_vm_attributes_allowed
;
102 bool kvm_direct_msi_allowed
;
103 bool kvm_ioeventfd_any_length_allowed
;
104 bool kvm_msi_use_devid
;
105 bool kvm_has_guest_debug
;
106 static int kvm_sstep_flags
;
107 static bool kvm_immediate_exit
;
108 static hwaddr kvm_max_slot_size
= ~0;
110 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
111 KVM_CAP_INFO(USER_MEMORY
),
112 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
113 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS
),
117 static NotifierList kvm_irqchip_change_notifiers
=
118 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers
);
120 struct KVMResampleFd
{
122 EventNotifier
*resample_event
;
123 QLIST_ENTRY(KVMResampleFd
) node
;
125 typedef struct KVMResampleFd KVMResampleFd
;
128 * Only used with split irqchip where we need to do the resample fd
129 * kick for the kernel from userspace.
131 static QLIST_HEAD(, KVMResampleFd
) kvm_resample_fd_list
=
132 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list
);
134 static QemuMutex kml_slots_lock
;
136 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
137 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
139 static void kvm_slot_init_dirty_bitmap(KVMSlot
*mem
);
141 static inline void kvm_resample_fd_remove(int gsi
)
145 QLIST_FOREACH(rfd
, &kvm_resample_fd_list
, node
) {
146 if (rfd
->gsi
== gsi
) {
147 QLIST_REMOVE(rfd
, node
);
154 static inline void kvm_resample_fd_insert(int gsi
, EventNotifier
*event
)
156 KVMResampleFd
*rfd
= g_new0(KVMResampleFd
, 1);
159 rfd
->resample_event
= event
;
161 QLIST_INSERT_HEAD(&kvm_resample_fd_list
, rfd
, node
);
164 void kvm_resample_fd_notify(int gsi
)
168 QLIST_FOREACH(rfd
, &kvm_resample_fd_list
, node
) {
169 if (rfd
->gsi
== gsi
) {
170 event_notifier_set(rfd
->resample_event
);
171 trace_kvm_resample_fd_notify(gsi
);
177 int kvm_get_max_memslots(void)
179 KVMState
*s
= KVM_STATE(current_accel());
184 /* Called with KVMMemoryListener.slots_lock held */
185 static KVMSlot
*kvm_get_free_slot(KVMMemoryListener
*kml
)
187 KVMState
*s
= kvm_state
;
190 for (i
= 0; i
< s
->nr_slots
; i
++) {
191 if (kml
->slots
[i
].memory_size
== 0) {
192 return &kml
->slots
[i
];
199 bool kvm_has_free_slot(MachineState
*ms
)
201 KVMState
*s
= KVM_STATE(ms
->accelerator
);
203 KVMMemoryListener
*kml
= &s
->memory_listener
;
206 result
= !!kvm_get_free_slot(kml
);
212 /* Called with KVMMemoryListener.slots_lock held */
213 static KVMSlot
*kvm_alloc_slot(KVMMemoryListener
*kml
)
215 KVMSlot
*slot
= kvm_get_free_slot(kml
);
221 fprintf(stderr
, "%s: no free slot available\n", __func__
);
225 static KVMSlot
*kvm_lookup_matching_slot(KVMMemoryListener
*kml
,
229 KVMState
*s
= kvm_state
;
232 for (i
= 0; i
< s
->nr_slots
; i
++) {
233 KVMSlot
*mem
= &kml
->slots
[i
];
235 if (start_addr
== mem
->start_addr
&& size
== mem
->memory_size
) {
244 * Calculate and align the start address and the size of the section.
245 * Return the size. If the size is 0, the aligned section is empty.
247 static hwaddr
kvm_align_section(MemoryRegionSection
*section
,
250 hwaddr size
= int128_get64(section
->size
);
251 hwaddr delta
, aligned
;
253 /* kvm works in page size chunks, but the function may be called
254 with sub-page size and unaligned start address. Pad the start
255 address to next and truncate size to previous page boundary. */
256 aligned
= ROUND_UP(section
->offset_within_address_space
,
257 qemu_real_host_page_size());
258 delta
= aligned
- section
->offset_within_address_space
;
264 return (size
- delta
) & qemu_real_host_page_mask();
267 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
270 KVMMemoryListener
*kml
= &s
->memory_listener
;
274 for (i
= 0; i
< s
->nr_slots
; i
++) {
275 KVMSlot
*mem
= &kml
->slots
[i
];
277 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
278 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
288 static int kvm_set_user_memory_region(KVMMemoryListener
*kml
, KVMSlot
*slot
, bool new)
290 KVMState
*s
= kvm_state
;
291 struct kvm_userspace_memory_region mem
;
294 mem
.slot
= slot
->slot
| (kml
->as_id
<< 16);
295 mem
.guest_phys_addr
= slot
->start_addr
;
296 mem
.userspace_addr
= (unsigned long)slot
->ram
;
297 mem
.flags
= slot
->flags
;
299 if (slot
->memory_size
&& !new && (mem
.flags
^ slot
->old_flags
) & KVM_MEM_READONLY
) {
300 /* Set the slot size to 0 before setting the slot to the desired
301 * value. This is needed based on KVM commit 75d61fbc. */
303 ret
= kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
308 mem
.memory_size
= slot
->memory_size
;
309 ret
= kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
310 slot
->old_flags
= mem
.flags
;
312 trace_kvm_set_user_memory(mem
.slot
, mem
.flags
, mem
.guest_phys_addr
,
313 mem
.memory_size
, mem
.userspace_addr
, ret
);
315 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
316 " start=0x%" PRIx64
", size=0x%" PRIx64
": %s",
317 __func__
, mem
.slot
, slot
->start_addr
,
318 (uint64_t)mem
.memory_size
, strerror(errno
));
323 static int do_kvm_destroy_vcpu(CPUState
*cpu
)
325 KVMState
*s
= kvm_state
;
327 struct KVMParkedVcpu
*vcpu
= NULL
;
330 DPRINTF("kvm_destroy_vcpu\n");
332 ret
= kvm_arch_destroy_vcpu(cpu
);
337 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
340 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
344 ret
= munmap(cpu
->kvm_run
, mmap_size
);
349 if (cpu
->kvm_dirty_gfns
) {
350 ret
= munmap(cpu
->kvm_dirty_gfns
, s
->kvm_dirty_ring_bytes
);
356 vcpu
= g_malloc0(sizeof(*vcpu
));
357 vcpu
->vcpu_id
= kvm_arch_vcpu_id(cpu
);
358 vcpu
->kvm_fd
= cpu
->kvm_fd
;
359 QLIST_INSERT_HEAD(&kvm_state
->kvm_parked_vcpus
, vcpu
, node
);
364 void kvm_destroy_vcpu(CPUState
*cpu
)
366 if (do_kvm_destroy_vcpu(cpu
) < 0) {
367 error_report("kvm_destroy_vcpu failed");
372 static int kvm_get_vcpu(KVMState
*s
, unsigned long vcpu_id
)
374 struct KVMParkedVcpu
*cpu
;
376 QLIST_FOREACH(cpu
, &s
->kvm_parked_vcpus
, node
) {
377 if (cpu
->vcpu_id
== vcpu_id
) {
380 QLIST_REMOVE(cpu
, node
);
381 kvm_fd
= cpu
->kvm_fd
;
387 return kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)vcpu_id
);
390 int kvm_init_vcpu(CPUState
*cpu
, Error
**errp
)
392 KVMState
*s
= kvm_state
;
396 trace_kvm_init_vcpu(cpu
->cpu_index
, kvm_arch_vcpu_id(cpu
));
398 ret
= kvm_get_vcpu(s
, kvm_arch_vcpu_id(cpu
));
400 error_setg_errno(errp
, -ret
, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
401 kvm_arch_vcpu_id(cpu
));
407 cpu
->vcpu_dirty
= true;
408 cpu
->dirty_pages
= 0;
409 cpu
->throttle_us_per_full
= 0;
411 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
414 error_setg_errno(errp
, -mmap_size
,
415 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
419 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
421 if (cpu
->kvm_run
== MAP_FAILED
) {
423 error_setg_errno(errp
, ret
,
424 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
425 kvm_arch_vcpu_id(cpu
));
429 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
430 s
->coalesced_mmio_ring
=
431 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
434 if (s
->kvm_dirty_ring_size
) {
435 /* Use MAP_SHARED to share pages with the kernel */
436 cpu
->kvm_dirty_gfns
= mmap(NULL
, s
->kvm_dirty_ring_bytes
,
437 PROT_READ
| PROT_WRITE
, MAP_SHARED
,
439 PAGE_SIZE
* KVM_DIRTY_LOG_PAGE_OFFSET
);
440 if (cpu
->kvm_dirty_gfns
== MAP_FAILED
) {
442 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret
);
447 ret
= kvm_arch_init_vcpu(cpu
);
449 error_setg_errno(errp
, -ret
,
450 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
451 kvm_arch_vcpu_id(cpu
));
458 * dirty pages logging control
461 static int kvm_mem_flags(MemoryRegion
*mr
)
463 bool readonly
= mr
->readonly
|| memory_region_is_romd(mr
);
466 if (memory_region_get_dirty_log_mask(mr
) != 0) {
467 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
469 if (readonly
&& kvm_readonly_mem_allowed
) {
470 flags
|= KVM_MEM_READONLY
;
475 /* Called with KVMMemoryListener.slots_lock held */
476 static int kvm_slot_update_flags(KVMMemoryListener
*kml
, KVMSlot
*mem
,
479 mem
->flags
= kvm_mem_flags(mr
);
481 /* If nothing changed effectively, no need to issue ioctl */
482 if (mem
->flags
== mem
->old_flags
) {
486 kvm_slot_init_dirty_bitmap(mem
);
487 return kvm_set_user_memory_region(kml
, mem
, false);
490 static int kvm_section_update_flags(KVMMemoryListener
*kml
,
491 MemoryRegionSection
*section
)
493 hwaddr start_addr
, size
, slot_size
;
497 size
= kvm_align_section(section
, &start_addr
);
504 while (size
&& !ret
) {
505 slot_size
= MIN(kvm_max_slot_size
, size
);
506 mem
= kvm_lookup_matching_slot(kml
, start_addr
, slot_size
);
508 /* We don't have a slot if we want to trap every access. */
512 ret
= kvm_slot_update_flags(kml
, mem
, section
->mr
);
513 start_addr
+= slot_size
;
522 static void kvm_log_start(MemoryListener
*listener
,
523 MemoryRegionSection
*section
,
526 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
533 r
= kvm_section_update_flags(kml
, section
);
539 static void kvm_log_stop(MemoryListener
*listener
,
540 MemoryRegionSection
*section
,
543 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
550 r
= kvm_section_update_flags(kml
, section
);
556 /* get kvm's dirty pages bitmap and update qemu's */
557 static void kvm_slot_sync_dirty_pages(KVMSlot
*slot
)
559 ram_addr_t start
= slot
->ram_start_offset
;
560 ram_addr_t pages
= slot
->memory_size
/ qemu_real_host_page_size();
562 cpu_physical_memory_set_dirty_lebitmap(slot
->dirty_bmap
, start
, pages
);
565 static void kvm_slot_reset_dirty_pages(KVMSlot
*slot
)
567 memset(slot
->dirty_bmap
, 0, slot
->dirty_bmap_size
);
570 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
572 /* Allocate the dirty bitmap for a slot */
573 static void kvm_slot_init_dirty_bitmap(KVMSlot
*mem
)
575 if (!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) || mem
->dirty_bmap
) {
580 * XXX bad kernel interface alert
581 * For dirty bitmap, kernel allocates array of size aligned to
582 * bits-per-long. But for case when the kernel is 64bits and
583 * the userspace is 32bits, userspace can't align to the same
584 * bits-per-long, since sizeof(long) is different between kernel
585 * and user space. This way, userspace will provide buffer which
586 * may be 4 bytes less than the kernel will use, resulting in
587 * userspace memory corruption (which is not detectable by valgrind
588 * too, in most cases).
589 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
590 * a hope that sizeof(long) won't become >8 any time soon.
592 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
593 * And mem->memory_size is aligned to it (otherwise this mem can't
594 * be registered to KVM).
596 hwaddr bitmap_size
= ALIGN(mem
->memory_size
/ qemu_real_host_page_size(),
597 /*HOST_LONG_BITS*/ 64) / 8;
598 mem
->dirty_bmap
= g_malloc0(bitmap_size
);
599 mem
->dirty_bmap_size
= bitmap_size
;
603 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
604 * succeeded, false otherwise
606 static bool kvm_slot_get_dirty_log(KVMState
*s
, KVMSlot
*slot
)
608 struct kvm_dirty_log d
= {};
611 d
.dirty_bitmap
= slot
->dirty_bmap
;
612 d
.slot
= slot
->slot
| (slot
->as_id
<< 16);
613 ret
= kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
);
615 if (ret
== -ENOENT
) {
616 /* kernel does not have dirty bitmap in this slot */
620 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
626 /* Should be with all slots_lock held for the address spaces. */
627 static void kvm_dirty_ring_mark_page(KVMState
*s
, uint32_t as_id
,
628 uint32_t slot_id
, uint64_t offset
)
630 KVMMemoryListener
*kml
;
633 if (as_id
>= s
->nr_as
) {
637 kml
= s
->as
[as_id
].ml
;
638 mem
= &kml
->slots
[slot_id
];
640 if (!mem
->memory_size
|| offset
>=
641 (mem
->memory_size
/ qemu_real_host_page_size())) {
645 set_bit(offset
, mem
->dirty_bmap
);
648 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn
*gfn
)
651 * Read the flags before the value. Pairs with barrier in
652 * KVM's kvm_dirty_ring_push() function.
654 return qatomic_load_acquire(&gfn
->flags
) == KVM_DIRTY_GFN_F_DIRTY
;
657 static void dirty_gfn_set_collected(struct kvm_dirty_gfn
*gfn
)
660 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
661 * sees the full content of the ring:
664 * ------------------------------------------------------------------------------
666 * store-rel flags for gfn0
667 * load-acq flags for gfn0
668 * store-rel RESET for gfn0
670 * load-acq flags for gfn0
671 * check if flags have RESET
673 * The synchronization goes from CPU2 to CPU0 to CPU1.
675 qatomic_store_release(&gfn
->flags
, KVM_DIRTY_GFN_F_RESET
);
679 * Should be with all slots_lock held for the address spaces. It returns the
680 * dirty page we've collected on this dirty ring.
682 static uint32_t kvm_dirty_ring_reap_one(KVMState
*s
, CPUState
*cpu
)
684 struct kvm_dirty_gfn
*dirty_gfns
= cpu
->kvm_dirty_gfns
, *cur
;
685 uint32_t ring_size
= s
->kvm_dirty_ring_size
;
686 uint32_t count
= 0, fetch
= cpu
->kvm_fetch_index
;
689 * It's possible that we race with vcpu creation code where the vcpu is
690 * put onto the vcpus list but not yet initialized the dirty ring
691 * structures. If so, skip it.
697 assert(dirty_gfns
&& ring_size
);
698 trace_kvm_dirty_ring_reap_vcpu(cpu
->cpu_index
);
701 cur
= &dirty_gfns
[fetch
% ring_size
];
702 if (!dirty_gfn_is_dirtied(cur
)) {
705 kvm_dirty_ring_mark_page(s
, cur
->slot
>> 16, cur
->slot
& 0xffff,
707 dirty_gfn_set_collected(cur
);
708 trace_kvm_dirty_ring_page(cpu
->cpu_index
, fetch
, cur
->offset
);
712 cpu
->kvm_fetch_index
= fetch
;
713 cpu
->dirty_pages
+= count
;
718 /* Must be with slots_lock held */
719 static uint64_t kvm_dirty_ring_reap_locked(KVMState
*s
, CPUState
* cpu
)
728 total
= kvm_dirty_ring_reap_one(s
, cpu
);
731 total
+= kvm_dirty_ring_reap_one(s
, cpu
);
736 ret
= kvm_vm_ioctl(s
, KVM_RESET_DIRTY_RINGS
);
737 assert(ret
== total
);
740 stamp
= get_clock() - stamp
;
743 trace_kvm_dirty_ring_reap(total
, stamp
/ 1000);
750 * Currently for simplicity, we must hold BQL before calling this. We can
751 * consider to drop the BQL if we're clear with all the race conditions.
753 static uint64_t kvm_dirty_ring_reap(KVMState
*s
, CPUState
*cpu
)
758 * We need to lock all kvm slots for all address spaces here,
761 * (1) We need to mark dirty for dirty bitmaps in multiple slots
762 * and for tons of pages, so it's better to take the lock here
763 * once rather than once per page. And more importantly,
765 * (2) We must _NOT_ publish dirty bits to the other threads
766 * (e.g., the migration thread) via the kvm memory slot dirty
767 * bitmaps before correctly re-protect those dirtied pages.
768 * Otherwise we can have potential risk of data corruption if
769 * the page data is read in the other thread before we do
773 total
= kvm_dirty_ring_reap_locked(s
, cpu
);
779 static void do_kvm_cpu_synchronize_kick(CPUState
*cpu
, run_on_cpu_data arg
)
781 /* No need to do anything */
785 * Kick all vcpus out in a synchronized way. When returned, we
786 * guarantee that every vcpu has been kicked and at least returned to
789 static void kvm_cpu_synchronize_kick_all(void)
794 run_on_cpu(cpu
, do_kvm_cpu_synchronize_kick
, RUN_ON_CPU_NULL
);
799 * Flush all the existing dirty pages to the KVM slot buffers. When
800 * this call returns, we guarantee that all the touched dirty pages
801 * before calling this function have been put into the per-kvmslot
804 * This function must be called with BQL held.
806 static void kvm_dirty_ring_flush(void)
808 trace_kvm_dirty_ring_flush(0);
810 * The function needs to be serialized. Since this function
811 * should always be with BQL held, serialization is guaranteed.
812 * However, let's be sure of it.
814 assert(qemu_mutex_iothread_locked());
816 * First make sure to flush the hardware buffers by kicking all
817 * vcpus out in a synchronous way.
819 kvm_cpu_synchronize_kick_all();
820 kvm_dirty_ring_reap(kvm_state
, NULL
);
821 trace_kvm_dirty_ring_flush(1);
825 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
827 * This function will first try to fetch dirty bitmap from the kernel,
828 * and then updates qemu's dirty bitmap.
830 * NOTE: caller must be with kml->slots_lock held.
832 * @kml: the KVM memory listener object
833 * @section: the memory section to sync the dirty bitmap with
835 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener
*kml
,
836 MemoryRegionSection
*section
)
838 KVMState
*s
= kvm_state
;
840 hwaddr start_addr
, size
;
843 size
= kvm_align_section(section
, &start_addr
);
845 slot_size
= MIN(kvm_max_slot_size
, size
);
846 mem
= kvm_lookup_matching_slot(kml
, start_addr
, slot_size
);
848 /* We don't have a slot if we want to trap every access. */
851 if (kvm_slot_get_dirty_log(s
, mem
)) {
852 kvm_slot_sync_dirty_pages(mem
);
854 start_addr
+= slot_size
;
859 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
860 #define KVM_CLEAR_LOG_SHIFT 6
861 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
862 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
864 static int kvm_log_clear_one_slot(KVMSlot
*mem
, int as_id
, uint64_t start
,
867 KVMState
*s
= kvm_state
;
868 uint64_t end
, bmap_start
, start_delta
, bmap_npages
;
869 struct kvm_clear_dirty_log d
;
870 unsigned long *bmap_clear
= NULL
, psize
= qemu_real_host_page_size();
874 * We need to extend either the start or the size or both to
875 * satisfy the KVM interface requirement. Firstly, do the start
876 * page alignment on 64 host pages
878 bmap_start
= start
& KVM_CLEAR_LOG_MASK
;
879 start_delta
= start
- bmap_start
;
883 * The kernel interface has restriction on the size too, that either:
885 * (1) the size is 64 host pages aligned (just like the start), or
886 * (2) the size fills up until the end of the KVM memslot.
888 bmap_npages
= DIV_ROUND_UP(size
+ start_delta
, KVM_CLEAR_LOG_ALIGN
)
889 << KVM_CLEAR_LOG_SHIFT
;
890 end
= mem
->memory_size
/ psize
;
891 if (bmap_npages
> end
- bmap_start
) {
892 bmap_npages
= end
- bmap_start
;
894 start_delta
/= psize
;
897 * Prepare the bitmap to clear dirty bits. Here we must guarantee
898 * that we won't clear any unknown dirty bits otherwise we might
899 * accidentally clear some set bits which are not yet synced from
900 * the kernel into QEMU's bitmap, then we'll lose track of the
901 * guest modifications upon those pages (which can directly lead
902 * to guest data loss or panic after migration).
904 * Layout of the KVMSlot.dirty_bmap:
906 * |<-------- bmap_npages -----------..>|
909 * |----------------|-------------|------------------|------------|
912 * start bmap_start (start) end
913 * of memslot of memslot
915 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
918 assert(bmap_start
% BITS_PER_LONG
== 0);
919 /* We should never do log_clear before log_sync */
920 assert(mem
->dirty_bmap
);
921 if (start_delta
|| bmap_npages
- size
/ psize
) {
922 /* Slow path - we need to manipulate a temp bitmap */
923 bmap_clear
= bitmap_new(bmap_npages
);
924 bitmap_copy_with_src_offset(bmap_clear
, mem
->dirty_bmap
,
925 bmap_start
, start_delta
+ size
/ psize
);
927 * We need to fill the holes at start because that was not
928 * specified by the caller and we extended the bitmap only for
931 bitmap_clear(bmap_clear
, 0, start_delta
);
932 d
.dirty_bitmap
= bmap_clear
;
935 * Fast path - both start and size align well with BITS_PER_LONG
936 * (or the end of memory slot)
938 d
.dirty_bitmap
= mem
->dirty_bmap
+ BIT_WORD(bmap_start
);
941 d
.first_page
= bmap_start
;
942 /* It should never overflow. If it happens, say something */
943 assert(bmap_npages
<= UINT32_MAX
);
944 d
.num_pages
= bmap_npages
;
945 d
.slot
= mem
->slot
| (as_id
<< 16);
947 ret
= kvm_vm_ioctl(s
, KVM_CLEAR_DIRTY_LOG
, &d
);
948 if (ret
< 0 && ret
!= -ENOENT
) {
949 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
950 "start=0x%"PRIx64
", size=0x%"PRIx32
", errno=%d",
951 __func__
, d
.slot
, (uint64_t)d
.first_page
,
952 (uint32_t)d
.num_pages
, ret
);
955 trace_kvm_clear_dirty_log(d
.slot
, d
.first_page
, d
.num_pages
);
959 * After we have updated the remote dirty bitmap, we update the
960 * cached bitmap as well for the memslot, then if another user
961 * clears the same region we know we shouldn't clear it again on
962 * the remote otherwise it's data loss as well.
964 bitmap_clear(mem
->dirty_bmap
, bmap_start
+ start_delta
,
966 /* This handles the NULL case well */
973 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
975 * NOTE: this will be a no-op if we haven't enabled manual dirty log
976 * protection in the host kernel because in that case this operation
977 * will be done within log_sync().
979 * @kml: the kvm memory listener
980 * @section: the memory range to clear dirty bitmap
982 static int kvm_physical_log_clear(KVMMemoryListener
*kml
,
983 MemoryRegionSection
*section
)
985 KVMState
*s
= kvm_state
;
986 uint64_t start
, size
, offset
, count
;
990 if (!s
->manual_dirty_log_protect
) {
991 /* No need to do explicit clear */
995 start
= section
->offset_within_address_space
;
996 size
= int128_get64(section
->size
);
999 /* Nothing more we can do... */
1005 for (i
= 0; i
< s
->nr_slots
; i
++) {
1006 mem
= &kml
->slots
[i
];
1007 /* Discard slots that are empty or do not overlap the section */
1008 if (!mem
->memory_size
||
1009 mem
->start_addr
> start
+ size
- 1 ||
1010 start
> mem
->start_addr
+ mem
->memory_size
- 1) {
1014 if (start
>= mem
->start_addr
) {
1015 /* The slot starts before section or is aligned to it. */
1016 offset
= start
- mem
->start_addr
;
1017 count
= MIN(mem
->memory_size
- offset
, size
);
1019 /* The slot starts after section. */
1021 count
= MIN(mem
->memory_size
, size
- (mem
->start_addr
- start
));
1023 ret
= kvm_log_clear_one_slot(mem
, kml
->as_id
, offset
, count
);
1034 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
1035 MemoryRegionSection
*secion
,
1036 hwaddr start
, hwaddr size
)
1038 KVMState
*s
= kvm_state
;
1040 if (s
->coalesced_mmio
) {
1041 struct kvm_coalesced_mmio_zone zone
;
1047 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
1051 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
1052 MemoryRegionSection
*secion
,
1053 hwaddr start
, hwaddr size
)
1055 KVMState
*s
= kvm_state
;
1057 if (s
->coalesced_mmio
) {
1058 struct kvm_coalesced_mmio_zone zone
;
1064 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
1068 static void kvm_coalesce_pio_add(MemoryListener
*listener
,
1069 MemoryRegionSection
*section
,
1070 hwaddr start
, hwaddr size
)
1072 KVMState
*s
= kvm_state
;
1074 if (s
->coalesced_pio
) {
1075 struct kvm_coalesced_mmio_zone zone
;
1081 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
1085 static void kvm_coalesce_pio_del(MemoryListener
*listener
,
1086 MemoryRegionSection
*section
,
1087 hwaddr start
, hwaddr size
)
1089 KVMState
*s
= kvm_state
;
1091 if (s
->coalesced_pio
) {
1092 struct kvm_coalesced_mmio_zone zone
;
1098 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
1102 static MemoryListener kvm_coalesced_pio_listener
= {
1103 .name
= "kvm-coalesced-pio",
1104 .coalesced_io_add
= kvm_coalesce_pio_add
,
1105 .coalesced_io_del
= kvm_coalesce_pio_del
,
1108 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
1112 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
1120 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
1124 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
1126 /* VM wide version not implemented, use global one instead */
1127 ret
= kvm_check_extension(s
, extension
);
1133 typedef struct HWPoisonPage
{
1134 ram_addr_t ram_addr
;
1135 QLIST_ENTRY(HWPoisonPage
) list
;
1138 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
1139 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
1141 static void kvm_unpoison_all(void *param
)
1143 HWPoisonPage
*page
, *next_page
;
1145 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
1146 QLIST_REMOVE(page
, list
);
1147 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
1152 void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
1156 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
1157 if (page
->ram_addr
== ram_addr
) {
1161 page
= g_new(HWPoisonPage
, 1);
1162 page
->ram_addr
= ram_addr
;
1163 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
1166 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
1168 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1169 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1170 * endianness, but the memory core hands them in target endianness.
1171 * For example, PPC is always treated as big-endian even if running
1172 * on KVM and on PPC64LE. Correct here.
1186 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
1187 bool assign
, uint32_t size
, bool datamatch
)
1190 struct kvm_ioeventfd iofd
= {
1191 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
1198 trace_kvm_set_ioeventfd_mmio(fd
, (uint64_t)addr
, val
, assign
, size
,
1200 if (!kvm_enabled()) {
1205 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1208 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1211 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
1220 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
1221 bool assign
, uint32_t size
, bool datamatch
)
1223 struct kvm_ioeventfd kick
= {
1224 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
1226 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
1231 trace_kvm_set_ioeventfd_pio(fd
, addr
, val
, assign
, size
, datamatch
);
1232 if (!kvm_enabled()) {
1236 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1239 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1241 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
1249 static int kvm_check_many_ioeventfds(void)
1251 /* Userspace can use ioeventfd for io notification. This requires a host
1252 * that supports eventfd(2) and an I/O thread; since eventfd does not
1253 * support SIGIO it cannot interrupt the vcpu.
1255 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1256 * can avoid creating too many ioeventfds.
1258 #if defined(CONFIG_EVENTFD)
1261 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
1262 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
1263 if (ioeventfds
[i
] < 0) {
1266 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
1268 close(ioeventfds
[i
]);
1273 /* Decide whether many devices are supported or not */
1274 ret
= i
== ARRAY_SIZE(ioeventfds
);
1277 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
1278 close(ioeventfds
[i
]);
1286 static const KVMCapabilityInfo
*
1287 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
1289 while (list
->name
) {
1290 if (!kvm_check_extension(s
, list
->value
)) {
1298 void kvm_set_max_memslot_size(hwaddr max_slot_size
)
1301 ROUND_UP(max_slot_size
, qemu_real_host_page_size()) == max_slot_size
1303 kvm_max_slot_size
= max_slot_size
;
1306 /* Called with KVMMemoryListener.slots_lock held */
1307 static void kvm_set_phys_mem(KVMMemoryListener
*kml
,
1308 MemoryRegionSection
*section
, bool add
)
1312 MemoryRegion
*mr
= section
->mr
;
1313 bool writable
= !mr
->readonly
&& !mr
->rom_device
;
1314 hwaddr start_addr
, size
, slot_size
, mr_offset
;
1315 ram_addr_t ram_start_offset
;
1318 if (!memory_region_is_ram(mr
)) {
1319 if (writable
|| !kvm_readonly_mem_allowed
) {
1321 } else if (!mr
->romd_mode
) {
1322 /* If the memory device is not in romd_mode, then we actually want
1323 * to remove the kvm memory slot so all accesses will trap. */
1328 size
= kvm_align_section(section
, &start_addr
);
1333 /* The offset of the kvmslot within the memory region */
1334 mr_offset
= section
->offset_within_region
+ start_addr
-
1335 section
->offset_within_address_space
;
1337 /* use aligned delta to align the ram address and offset */
1338 ram
= memory_region_get_ram_ptr(mr
) + mr_offset
;
1339 ram_start_offset
= memory_region_get_ram_addr(mr
) + mr_offset
;
1343 slot_size
= MIN(kvm_max_slot_size
, size
);
1344 mem
= kvm_lookup_matching_slot(kml
, start_addr
, slot_size
);
1348 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
1350 * NOTE: We should be aware of the fact that here we're only
1351 * doing a best effort to sync dirty bits. No matter whether
1352 * we're using dirty log or dirty ring, we ignored two facts:
1354 * (1) dirty bits can reside in hardware buffers (PML)
1356 * (2) after we collected dirty bits here, pages can be dirtied
1357 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1360 * Not easy. Let's cross the fingers until it's fixed.
1362 if (kvm_state
->kvm_dirty_ring_size
) {
1363 kvm_dirty_ring_reap_locked(kvm_state
, NULL
);
1364 if (kvm_state
->kvm_dirty_ring_with_bitmap
) {
1365 kvm_slot_sync_dirty_pages(mem
);
1366 kvm_slot_get_dirty_log(kvm_state
, mem
);
1369 kvm_slot_get_dirty_log(kvm_state
, mem
);
1371 kvm_slot_sync_dirty_pages(mem
);
1374 /* unregister the slot */
1375 g_free(mem
->dirty_bmap
);
1376 mem
->dirty_bmap
= NULL
;
1377 mem
->memory_size
= 0;
1379 err
= kvm_set_user_memory_region(kml
, mem
, false);
1381 fprintf(stderr
, "%s: error unregistering slot: %s\n",
1382 __func__
, strerror(-err
));
1385 start_addr
+= slot_size
;
1391 /* register the new slot */
1393 slot_size
= MIN(kvm_max_slot_size
, size
);
1394 mem
= kvm_alloc_slot(kml
);
1395 mem
->as_id
= kml
->as_id
;
1396 mem
->memory_size
= slot_size
;
1397 mem
->start_addr
= start_addr
;
1398 mem
->ram_start_offset
= ram_start_offset
;
1400 mem
->flags
= kvm_mem_flags(mr
);
1401 kvm_slot_init_dirty_bitmap(mem
);
1402 err
= kvm_set_user_memory_region(kml
, mem
, true);
1404 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
1408 start_addr
+= slot_size
;
1409 ram_start_offset
+= slot_size
;
1415 static void *kvm_dirty_ring_reaper_thread(void *data
)
1418 struct KVMDirtyRingReaper
*r
= &s
->reaper
;
1420 rcu_register_thread();
1422 trace_kvm_dirty_ring_reaper("init");
1425 r
->reaper_state
= KVM_DIRTY_RING_REAPER_WAIT
;
1426 trace_kvm_dirty_ring_reaper("wait");
1428 * TODO: provide a smarter timeout rather than a constant?
1432 /* keep sleeping so that dirtylimit not be interfered by reaper */
1433 if (dirtylimit_in_service()) {
1437 trace_kvm_dirty_ring_reaper("wakeup");
1438 r
->reaper_state
= KVM_DIRTY_RING_REAPER_REAPING
;
1440 qemu_mutex_lock_iothread();
1441 kvm_dirty_ring_reap(s
, NULL
);
1442 qemu_mutex_unlock_iothread();
1444 r
->reaper_iteration
++;
1447 trace_kvm_dirty_ring_reaper("exit");
1449 rcu_unregister_thread();
1454 static int kvm_dirty_ring_reaper_init(KVMState
*s
)
1456 struct KVMDirtyRingReaper
*r
= &s
->reaper
;
1458 qemu_thread_create(&r
->reaper_thr
, "kvm-reaper",
1459 kvm_dirty_ring_reaper_thread
,
1460 s
, QEMU_THREAD_JOINABLE
);
1465 static int kvm_dirty_ring_init(KVMState
*s
)
1467 uint32_t ring_size
= s
->kvm_dirty_ring_size
;
1468 uint64_t ring_bytes
= ring_size
* sizeof(struct kvm_dirty_gfn
);
1471 s
->kvm_dirty_ring_size
= 0;
1472 s
->kvm_dirty_ring_bytes
= 0;
1474 /* Bail if the dirty ring size isn't specified */
1480 * Read the max supported pages. Fall back to dirty logging mode
1481 * if the dirty ring isn't supported.
1483 ret
= kvm_vm_check_extension(s
, KVM_CAP_DIRTY_LOG_RING
);
1485 warn_report("KVM dirty ring not available, using bitmap method");
1489 if (ring_bytes
> ret
) {
1490 error_report("KVM dirty ring size %" PRIu32
" too big "
1491 "(maximum is %ld). Please use a smaller value.",
1492 ring_size
, (long)ret
/ sizeof(struct kvm_dirty_gfn
));
1496 ret
= kvm_vm_enable_cap(s
, KVM_CAP_DIRTY_LOG_RING
, 0, ring_bytes
);
1498 error_report("Enabling of KVM dirty ring failed: %s. "
1499 "Suggested minimum value is 1024.", strerror(-ret
));
1503 s
->kvm_dirty_ring_size
= ring_size
;
1504 s
->kvm_dirty_ring_bytes
= ring_bytes
;
1509 static void kvm_region_add(MemoryListener
*listener
,
1510 MemoryRegionSection
*section
)
1512 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1513 KVMMemoryUpdate
*update
;
1515 update
= g_new0(KVMMemoryUpdate
, 1);
1516 update
->section
= *section
;
1518 QSIMPLEQ_INSERT_TAIL(&kml
->transaction_add
, update
, next
);
1521 static void kvm_region_del(MemoryListener
*listener
,
1522 MemoryRegionSection
*section
)
1524 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1525 KVMMemoryUpdate
*update
;
1527 update
= g_new0(KVMMemoryUpdate
, 1);
1528 update
->section
= *section
;
1530 QSIMPLEQ_INSERT_TAIL(&kml
->transaction_del
, update
, next
);
1533 static void kvm_region_commit(MemoryListener
*listener
)
1535 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
,
1537 KVMMemoryUpdate
*u1
, *u2
;
1538 bool need_inhibit
= false;
1540 if (QSIMPLEQ_EMPTY(&kml
->transaction_add
) &&
1541 QSIMPLEQ_EMPTY(&kml
->transaction_del
)) {
1546 * We have to be careful when regions to add overlap with ranges to remove.
1547 * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1548 * is currently active.
1550 * The lists are order by addresses, so it's easy to find overlaps.
1552 u1
= QSIMPLEQ_FIRST(&kml
->transaction_del
);
1553 u2
= QSIMPLEQ_FIRST(&kml
->transaction_add
);
1557 range_init_nofail(&r1
, u1
->section
.offset_within_address_space
,
1558 int128_get64(u1
->section
.size
));
1559 range_init_nofail(&r2
, u2
->section
.offset_within_address_space
,
1560 int128_get64(u2
->section
.size
));
1562 if (range_overlaps_range(&r1
, &r2
)) {
1563 need_inhibit
= true;
1566 if (range_lob(&r1
) < range_lob(&r2
)) {
1567 u1
= QSIMPLEQ_NEXT(u1
, next
);
1569 u2
= QSIMPLEQ_NEXT(u2
, next
);
1575 accel_ioctl_inhibit_begin();
1578 /* Remove all memslots before adding the new ones. */
1579 while (!QSIMPLEQ_EMPTY(&kml
->transaction_del
)) {
1580 u1
= QSIMPLEQ_FIRST(&kml
->transaction_del
);
1581 QSIMPLEQ_REMOVE_HEAD(&kml
->transaction_del
, next
);
1583 kvm_set_phys_mem(kml
, &u1
->section
, false);
1584 memory_region_unref(u1
->section
.mr
);
1588 while (!QSIMPLEQ_EMPTY(&kml
->transaction_add
)) {
1589 u1
= QSIMPLEQ_FIRST(&kml
->transaction_add
);
1590 QSIMPLEQ_REMOVE_HEAD(&kml
->transaction_add
, next
);
1592 memory_region_ref(u1
->section
.mr
);
1593 kvm_set_phys_mem(kml
, &u1
->section
, true);
1599 accel_ioctl_inhibit_end();
1604 static void kvm_log_sync(MemoryListener
*listener
,
1605 MemoryRegionSection
*section
)
1607 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1610 kvm_physical_sync_dirty_bitmap(kml
, section
);
1614 static void kvm_log_sync_global(MemoryListener
*l
, bool last_stage
)
1616 KVMMemoryListener
*kml
= container_of(l
, KVMMemoryListener
, listener
);
1617 KVMState
*s
= kvm_state
;
1621 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1622 kvm_dirty_ring_flush();
1625 * TODO: make this faster when nr_slots is big while there are
1626 * only a few used slots (small VMs).
1629 for (i
= 0; i
< s
->nr_slots
; i
++) {
1630 mem
= &kml
->slots
[i
];
1631 if (mem
->memory_size
&& mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
1632 kvm_slot_sync_dirty_pages(mem
);
1634 if (s
->kvm_dirty_ring_with_bitmap
&& last_stage
&&
1635 kvm_slot_get_dirty_log(s
, mem
)) {
1636 kvm_slot_sync_dirty_pages(mem
);
1640 * This is not needed by KVM_GET_DIRTY_LOG because the
1641 * ioctl will unconditionally overwrite the whole region.
1642 * However kvm dirty ring has no such side effect.
1644 kvm_slot_reset_dirty_pages(mem
);
1650 static void kvm_log_clear(MemoryListener
*listener
,
1651 MemoryRegionSection
*section
)
1653 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1656 r
= kvm_physical_log_clear(kml
, section
);
1658 error_report_once("%s: kvm log clear failed: mr=%s "
1659 "offset=%"HWADDR_PRIx
" size=%"PRIx64
, __func__
,
1660 section
->mr
->name
, section
->offset_within_region
,
1661 int128_get64(section
->size
));
1666 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
1667 MemoryRegionSection
*section
,
1668 bool match_data
, uint64_t data
,
1671 int fd
= event_notifier_get_fd(e
);
1674 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
1675 data
, true, int128_get64(section
->size
),
1678 fprintf(stderr
, "%s: error adding ioeventfd: %s (%d)\n",
1679 __func__
, strerror(-r
), -r
);
1684 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
1685 MemoryRegionSection
*section
,
1686 bool match_data
, uint64_t data
,
1689 int fd
= event_notifier_get_fd(e
);
1692 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
1693 data
, false, int128_get64(section
->size
),
1696 fprintf(stderr
, "%s: error deleting ioeventfd: %s (%d)\n",
1697 __func__
, strerror(-r
), -r
);
1702 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
1703 MemoryRegionSection
*section
,
1704 bool match_data
, uint64_t data
,
1707 int fd
= event_notifier_get_fd(e
);
1710 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
1711 data
, true, int128_get64(section
->size
),
1714 fprintf(stderr
, "%s: error adding ioeventfd: %s (%d)\n",
1715 __func__
, strerror(-r
), -r
);
1720 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
1721 MemoryRegionSection
*section
,
1722 bool match_data
, uint64_t data
,
1726 int fd
= event_notifier_get_fd(e
);
1729 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
1730 data
, false, int128_get64(section
->size
),
1733 fprintf(stderr
, "%s: error deleting ioeventfd: %s (%d)\n",
1734 __func__
, strerror(-r
), -r
);
1739 void kvm_memory_listener_register(KVMState
*s
, KVMMemoryListener
*kml
,
1740 AddressSpace
*as
, int as_id
, const char *name
)
1744 kml
->slots
= g_new0(KVMSlot
, s
->nr_slots
);
1747 for (i
= 0; i
< s
->nr_slots
; i
++) {
1748 kml
->slots
[i
].slot
= i
;
1751 QSIMPLEQ_INIT(&kml
->transaction_add
);
1752 QSIMPLEQ_INIT(&kml
->transaction_del
);
1754 kml
->listener
.region_add
= kvm_region_add
;
1755 kml
->listener
.region_del
= kvm_region_del
;
1756 kml
->listener
.commit
= kvm_region_commit
;
1757 kml
->listener
.log_start
= kvm_log_start
;
1758 kml
->listener
.log_stop
= kvm_log_stop
;
1759 kml
->listener
.priority
= 10;
1760 kml
->listener
.name
= name
;
1762 if (s
->kvm_dirty_ring_size
) {
1763 kml
->listener
.log_sync_global
= kvm_log_sync_global
;
1765 kml
->listener
.log_sync
= kvm_log_sync
;
1766 kml
->listener
.log_clear
= kvm_log_clear
;
1769 memory_listener_register(&kml
->listener
, as
);
1771 for (i
= 0; i
< s
->nr_as
; ++i
) {
1780 static MemoryListener kvm_io_listener
= {
1782 .eventfd_add
= kvm_io_ioeventfd_add
,
1783 .eventfd_del
= kvm_io_ioeventfd_del
,
1787 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
1789 struct kvm_irq_level event
;
1792 assert(kvm_async_interrupts_enabled());
1794 event
.level
= level
;
1796 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
1798 perror("kvm_set_irq");
1802 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
1805 #ifdef KVM_CAP_IRQ_ROUTING
1806 typedef struct KVMMSIRoute
{
1807 struct kvm_irq_routing_entry kroute
;
1808 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
1811 static void set_gsi(KVMState
*s
, unsigned int gsi
)
1813 set_bit(gsi
, s
->used_gsi_bitmap
);
1816 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
1818 clear_bit(gsi
, s
->used_gsi_bitmap
);
1821 void kvm_init_irq_routing(KVMState
*s
)
1825 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
1826 if (gsi_count
> 0) {
1827 /* Round up so we can search ints using ffs */
1828 s
->used_gsi_bitmap
= bitmap_new(gsi_count
);
1829 s
->gsi_count
= gsi_count
;
1832 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
1833 s
->nr_allocated_irq_routes
= 0;
1835 if (!kvm_direct_msi_allowed
) {
1836 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
1837 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
1841 kvm_arch_init_irq_routing(s
);
1844 void kvm_irqchip_commit_routes(KVMState
*s
)
1848 if (kvm_gsi_direct_mapping()) {
1852 if (!kvm_gsi_routing_enabled()) {
1856 s
->irq_routes
->flags
= 0;
1857 trace_kvm_irqchip_commit_routes();
1858 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1862 static void kvm_add_routing_entry(KVMState
*s
,
1863 struct kvm_irq_routing_entry
*entry
)
1865 struct kvm_irq_routing_entry
*new;
1868 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1869 n
= s
->nr_allocated_irq_routes
* 2;
1873 size
= sizeof(struct kvm_irq_routing
);
1874 size
+= n
* sizeof(*new);
1875 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1876 s
->nr_allocated_irq_routes
= n
;
1878 n
= s
->irq_routes
->nr
++;
1879 new = &s
->irq_routes
->entries
[n
];
1883 set_gsi(s
, entry
->gsi
);
1886 static int kvm_update_routing_entry(KVMState
*s
,
1887 struct kvm_irq_routing_entry
*new_entry
)
1889 struct kvm_irq_routing_entry
*entry
;
1892 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1893 entry
= &s
->irq_routes
->entries
[n
];
1894 if (entry
->gsi
!= new_entry
->gsi
) {
1898 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1902 *entry
= *new_entry
;
1910 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1912 struct kvm_irq_routing_entry e
= {};
1914 assert(pin
< s
->gsi_count
);
1917 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1919 e
.u
.irqchip
.irqchip
= irqchip
;
1920 e
.u
.irqchip
.pin
= pin
;
1921 kvm_add_routing_entry(s
, &e
);
1924 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1926 struct kvm_irq_routing_entry
*e
;
1929 if (kvm_gsi_direct_mapping()) {
1933 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1934 e
= &s
->irq_routes
->entries
[i
];
1935 if (e
->gsi
== virq
) {
1936 s
->irq_routes
->nr
--;
1937 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1941 kvm_arch_release_virq_post(virq
);
1942 trace_kvm_irqchip_release_virq(virq
);
1945 void kvm_irqchip_add_change_notifier(Notifier
*n
)
1947 notifier_list_add(&kvm_irqchip_change_notifiers
, n
);
1950 void kvm_irqchip_remove_change_notifier(Notifier
*n
)
1955 void kvm_irqchip_change_notify(void)
1957 notifier_list_notify(&kvm_irqchip_change_notifiers
, NULL
);
1960 static unsigned int kvm_hash_msi(uint32_t data
)
1962 /* This is optimized for IA32 MSI layout. However, no other arch shall
1963 * repeat the mistake of not providing a direct MSI injection API. */
1967 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1969 KVMMSIRoute
*route
, *next
;
1972 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1973 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1974 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1975 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1981 static int kvm_irqchip_get_virq(KVMState
*s
)
1986 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1987 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1988 * number can succeed even though a new route entry cannot be added.
1989 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1991 if (!kvm_direct_msi_allowed
&& s
->irq_routes
->nr
== s
->gsi_count
) {
1992 kvm_flush_dynamic_msi_routes(s
);
1995 /* Return the lowest unused GSI in the bitmap */
1996 next_virq
= find_first_zero_bit(s
->used_gsi_bitmap
, s
->gsi_count
);
1997 if (next_virq
>= s
->gsi_count
) {
2004 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
2006 unsigned int hash
= kvm_hash_msi(msg
.data
);
2009 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
2010 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
2011 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
2012 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
2019 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
2024 if (kvm_direct_msi_allowed
) {
2025 msi
.address_lo
= (uint32_t)msg
.address
;
2026 msi
.address_hi
= msg
.address
>> 32;
2027 msi
.data
= le32_to_cpu(msg
.data
);
2029 memset(msi
.pad
, 0, sizeof(msi
.pad
));
2031 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
2034 route
= kvm_lookup_msi_route(s
, msg
);
2038 virq
= kvm_irqchip_get_virq(s
);
2043 route
= g_new0(KVMMSIRoute
, 1);
2044 route
->kroute
.gsi
= virq
;
2045 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
2046 route
->kroute
.flags
= 0;
2047 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
2048 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
2049 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
2051 kvm_add_routing_entry(s
, &route
->kroute
);
2052 kvm_irqchip_commit_routes(s
);
2054 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
2058 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
2060 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
2063 int kvm_irqchip_add_msi_route(KVMRouteChange
*c
, int vector
, PCIDevice
*dev
)
2065 struct kvm_irq_routing_entry kroute
= {};
2068 MSIMessage msg
= {0, 0};
2070 if (pci_available
&& dev
) {
2071 msg
= pci_get_msi_message(dev
, vector
);
2074 if (kvm_gsi_direct_mapping()) {
2075 return kvm_arch_msi_data_to_gsi(msg
.data
);
2078 if (!kvm_gsi_routing_enabled()) {
2082 virq
= kvm_irqchip_get_virq(s
);
2088 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
2090 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
2091 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
2092 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
2093 if (pci_available
&& kvm_msi_devid_required()) {
2094 kroute
.flags
= KVM_MSI_VALID_DEVID
;
2095 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
2097 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
2098 kvm_irqchip_release_virq(s
, virq
);
2102 trace_kvm_irqchip_add_msi_route(dev
? dev
->name
: (char *)"N/A",
2105 kvm_add_routing_entry(s
, &kroute
);
2106 kvm_arch_add_msi_route_post(&kroute
, vector
, dev
);
2112 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
,
2115 struct kvm_irq_routing_entry kroute
= {};
2117 if (kvm_gsi_direct_mapping()) {
2121 if (!kvm_irqchip_in_kernel()) {
2126 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
2128 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
2129 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
2130 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
2131 if (pci_available
&& kvm_msi_devid_required()) {
2132 kroute
.flags
= KVM_MSI_VALID_DEVID
;
2133 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
2135 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
2139 trace_kvm_irqchip_update_msi_route(virq
);
2141 return kvm_update_routing_entry(s
, &kroute
);
2144 static int kvm_irqchip_assign_irqfd(KVMState
*s
, EventNotifier
*event
,
2145 EventNotifier
*resample
, int virq
,
2148 int fd
= event_notifier_get_fd(event
);
2149 int rfd
= resample
? event_notifier_get_fd(resample
) : -1;
2151 struct kvm_irqfd irqfd
= {
2154 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
2159 if (kvm_irqchip_is_split()) {
2161 * When the slow irqchip (e.g. IOAPIC) is in the
2162 * userspace, KVM kernel resamplefd will not work because
2163 * the EOI of the interrupt will be delivered to userspace
2164 * instead, so the KVM kernel resamplefd kick will be
2165 * skipped. The userspace here mimics what the kernel
2166 * provides with resamplefd, remember the resamplefd and
2167 * kick it when we receive EOI of this IRQ.
2169 * This is hackery because IOAPIC is mostly bypassed
2170 * (except EOI broadcasts) when irqfd is used. However
2171 * this can bring much performance back for split irqchip
2172 * with INTx IRQs (for VFIO, this gives 93% perf of the
2173 * full fast path, which is 46% perf boost comparing to
2174 * the INTx slow path).
2176 kvm_resample_fd_insert(virq
, resample
);
2178 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
2179 irqfd
.resamplefd
= rfd
;
2181 } else if (!assign
) {
2182 if (kvm_irqchip_is_split()) {
2183 kvm_resample_fd_remove(virq
);
2187 if (!kvm_irqfds_enabled()) {
2191 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
2194 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
2196 struct kvm_irq_routing_entry kroute
= {};
2199 if (!kvm_gsi_routing_enabled()) {
2203 virq
= kvm_irqchip_get_virq(s
);
2209 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
2211 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
2212 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
2213 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
2214 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
2215 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
2217 kvm_add_routing_entry(s
, &kroute
);
2222 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
2224 struct kvm_irq_routing_entry kroute
= {};
2227 if (!kvm_gsi_routing_enabled()) {
2230 if (!kvm_check_extension(s
, KVM_CAP_HYPERV_SYNIC
)) {
2233 virq
= kvm_irqchip_get_virq(s
);
2239 kroute
.type
= KVM_IRQ_ROUTING_HV_SINT
;
2241 kroute
.u
.hv_sint
.vcpu
= vcpu
;
2242 kroute
.u
.hv_sint
.sint
= sint
;
2244 kvm_add_routing_entry(s
, &kroute
);
2245 kvm_irqchip_commit_routes(s
);
2250 #else /* !KVM_CAP_IRQ_ROUTING */
2252 void kvm_init_irq_routing(KVMState
*s
)
2256 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
2260 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
2265 int kvm_irqchip_add_msi_route(KVMRouteChange
*c
, int vector
, PCIDevice
*dev
)
2270 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
2275 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
2280 static int kvm_irqchip_assign_irqfd(KVMState
*s
, EventNotifier
*event
,
2281 EventNotifier
*resample
, int virq
,
2287 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
2291 #endif /* !KVM_CAP_IRQ_ROUTING */
2293 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
2294 EventNotifier
*rn
, int virq
)
2296 return kvm_irqchip_assign_irqfd(s
, n
, rn
, virq
, true);
2299 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
2302 return kvm_irqchip_assign_irqfd(s
, n
, NULL
, virq
, false);
2305 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
2306 EventNotifier
*rn
, qemu_irq irq
)
2309 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
2314 return kvm_irqchip_add_irqfd_notifier_gsi(s
, n
, rn
, GPOINTER_TO_INT(gsi
));
2317 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
2321 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
2326 return kvm_irqchip_remove_irqfd_notifier_gsi(s
, n
, GPOINTER_TO_INT(gsi
));
2329 void kvm_irqchip_set_qemuirq_gsi(KVMState
*s
, qemu_irq irq
, int gsi
)
2331 g_hash_table_insert(s
->gsimap
, irq
, GINT_TO_POINTER(gsi
));
2334 static void kvm_irqchip_create(KVMState
*s
)
2338 assert(s
->kernel_irqchip_split
!= ON_OFF_AUTO_AUTO
);
2339 if (kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
2341 } else if (kvm_check_extension(s
, KVM_CAP_S390_IRQCHIP
)) {
2342 ret
= kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0);
2344 fprintf(stderr
, "Enable kernel irqchip failed: %s\n", strerror(-ret
));
2351 /* First probe and see if there's a arch-specific hook to create the
2352 * in-kernel irqchip for us */
2353 ret
= kvm_arch_irqchip_create(s
);
2355 if (s
->kernel_irqchip_split
== ON_OFF_AUTO_ON
) {
2356 error_report("Split IRQ chip mode not supported.");
2359 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
2363 fprintf(stderr
, "Create kernel irqchip failed: %s\n", strerror(-ret
));
2367 kvm_kernel_irqchip
= true;
2368 /* If we have an in-kernel IRQ chip then we must have asynchronous
2369 * interrupt delivery (though the reverse is not necessarily true)
2371 kvm_async_interrupts_allowed
= true;
2372 kvm_halt_in_kernel_allowed
= true;
2374 kvm_init_irq_routing(s
);
2376 s
->gsimap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2379 /* Find number of supported CPUs using the recommended
2380 * procedure from the kernel API documentation to cope with
2381 * older kernels that may be missing capabilities.
2383 static int kvm_recommended_vcpus(KVMState
*s
)
2385 int ret
= kvm_vm_check_extension(s
, KVM_CAP_NR_VCPUS
);
2386 return (ret
) ? ret
: 4;
2389 static int kvm_max_vcpus(KVMState
*s
)
2391 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
2392 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
2395 static int kvm_max_vcpu_id(KVMState
*s
)
2397 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPU_ID
);
2398 return (ret
) ? ret
: kvm_max_vcpus(s
);
2401 bool kvm_vcpu_id_is_valid(int vcpu_id
)
2403 KVMState
*s
= KVM_STATE(current_accel());
2404 return vcpu_id
>= 0 && vcpu_id
< kvm_max_vcpu_id(s
);
2407 bool kvm_dirty_ring_enabled(void)
2409 return kvm_state
->kvm_dirty_ring_size
? true : false;
2412 static void query_stats_cb(StatsResultList
**result
, StatsTarget target
,
2413 strList
*names
, strList
*targets
, Error
**errp
);
2414 static void query_stats_schemas_cb(StatsSchemaList
**result
, Error
**errp
);
2416 uint32_t kvm_dirty_ring_size(void)
2418 return kvm_state
->kvm_dirty_ring_size
;
2421 static int kvm_init(MachineState
*ms
)
2423 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
2424 static const char upgrade_note
[] =
2425 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2426 "(see http://sourceforge.net/projects/kvm).\n";
2431 { "SMP", ms
->smp
.cpus
},
2432 { "hotpluggable", ms
->smp
.max_cpus
},
2433 { /* end of list */ }
2435 int soft_vcpus_limit
, hard_vcpus_limit
;
2437 const KVMCapabilityInfo
*missing_cap
;
2440 uint64_t dirty_log_manual_caps
;
2442 qemu_mutex_init(&kml_slots_lock
);
2444 s
= KVM_STATE(ms
->accelerator
);
2447 * On systems where the kernel can support different base page
2448 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2449 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2450 * page size for the system though.
2452 assert(TARGET_PAGE_SIZE
<= qemu_real_host_page_size());
2455 accel_blocker_init();
2457 #ifdef KVM_CAP_SET_GUEST_DEBUG
2458 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
2460 QLIST_INIT(&s
->kvm_parked_vcpus
);
2461 s
->fd
= qemu_open_old("/dev/kvm", O_RDWR
);
2463 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
2468 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
2469 if (ret
< KVM_API_VERSION
) {
2473 fprintf(stderr
, "kvm version too old\n");
2477 if (ret
> KVM_API_VERSION
) {
2479 fprintf(stderr
, "kvm version not supported\n");
2483 kvm_immediate_exit
= kvm_check_extension(s
, KVM_CAP_IMMEDIATE_EXIT
);
2484 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
2486 /* If unspecified, use the default value */
2491 s
->nr_as
= kvm_check_extension(s
, KVM_CAP_MULTI_ADDRESS_SPACE
);
2492 if (s
->nr_as
<= 1) {
2495 s
->as
= g_new0(struct KVMAs
, s
->nr_as
);
2497 if (object_property_find(OBJECT(current_machine
), "kvm-type")) {
2498 g_autofree
char *kvm_type
= object_property_get_str(OBJECT(current_machine
),
2501 type
= mc
->kvm_type(ms
, kvm_type
);
2502 } else if (mc
->kvm_type
) {
2503 type
= mc
->kvm_type(ms
, NULL
);
2507 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
2508 } while (ret
== -EINTR
);
2511 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
2515 if (ret
== -EINVAL
) {
2517 "Host kernel setup problem detected. Please verify:\n");
2518 fprintf(stderr
, "- for kernels supporting the switch_amode or"
2519 " user_mode parameters, whether\n");
2521 " user space is running in primary address space\n");
2523 "- for kernels supporting the vm.allocate_pgste sysctl, "
2524 "whether it is enabled\n");
2526 #elif defined(TARGET_PPC)
2527 if (ret
== -EINVAL
) {
2529 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2530 (type
== 2) ? "pr" : "hv");
2538 /* check the vcpu limits */
2539 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
2540 hard_vcpus_limit
= kvm_max_vcpus(s
);
2543 if (nc
->num
> soft_vcpus_limit
) {
2544 warn_report("Number of %s cpus requested (%d) exceeds "
2545 "the recommended cpus supported by KVM (%d)",
2546 nc
->name
, nc
->num
, soft_vcpus_limit
);
2548 if (nc
->num
> hard_vcpus_limit
) {
2549 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
2550 "the maximum cpus supported by KVM (%d)\n",
2551 nc
->name
, nc
->num
, hard_vcpus_limit
);
2558 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
2561 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
2565 fprintf(stderr
, "kvm does not support %s\n%s",
2566 missing_cap
->name
, upgrade_note
);
2570 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
2571 s
->coalesced_pio
= s
->coalesced_mmio
&&
2572 kvm_check_extension(s
, KVM_CAP_COALESCED_PIO
);
2575 * Enable KVM dirty ring if supported, otherwise fall back to
2576 * dirty logging mode
2578 ret
= kvm_dirty_ring_init(s
);
2584 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2585 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2586 * page is wr-protected initially, which is against how kvm dirty ring is
2587 * usage - kvm dirty ring requires all pages are wr-protected at the very
2588 * beginning. Enabling this feature for dirty ring causes data corruption.
2590 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2591 * we may expect a higher stall time when starting the migration. In the
2592 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2593 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2596 if (!s
->kvm_dirty_ring_size
) {
2597 dirty_log_manual_caps
=
2598 kvm_check_extension(s
, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
);
2599 dirty_log_manual_caps
&= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
|
2600 KVM_DIRTY_LOG_INITIALLY_SET
);
2601 s
->manual_dirty_log_protect
= dirty_log_manual_caps
;
2602 if (dirty_log_manual_caps
) {
2603 ret
= kvm_vm_enable_cap(s
, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
, 0,
2604 dirty_log_manual_caps
);
2606 warn_report("Trying to enable capability %"PRIu64
" of "
2607 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2608 "Falling back to the legacy mode. ",
2609 dirty_log_manual_caps
);
2610 s
->manual_dirty_log_protect
= 0;
2615 #ifdef KVM_CAP_VCPU_EVENTS
2616 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
2619 s
->robust_singlestep
=
2620 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
2622 #ifdef KVM_CAP_DEBUGREGS
2623 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
2626 s
->max_nested_state_len
= kvm_check_extension(s
, KVM_CAP_NESTED_STATE
);
2628 #ifdef KVM_CAP_IRQ_ROUTING
2629 kvm_direct_msi_allowed
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
2632 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
2634 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
2635 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
2636 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
2639 kvm_readonly_mem_allowed
=
2640 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
2642 kvm_eventfds_allowed
=
2643 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
2645 kvm_irqfds_allowed
=
2646 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
2648 kvm_resamplefds_allowed
=
2649 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
2651 kvm_vm_attributes_allowed
=
2652 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
2654 kvm_ioeventfd_any_length_allowed
=
2655 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD_ANY_LENGTH
) > 0);
2657 #ifdef KVM_CAP_SET_GUEST_DEBUG
2658 kvm_has_guest_debug
=
2659 (kvm_check_extension(s
, KVM_CAP_SET_GUEST_DEBUG
) > 0);
2662 kvm_sstep_flags
= 0;
2663 if (kvm_has_guest_debug
) {
2664 kvm_sstep_flags
= SSTEP_ENABLE
;
2666 #if defined KVM_CAP_SET_GUEST_DEBUG2
2667 int guest_debug_flags
=
2668 kvm_check_extension(s
, KVM_CAP_SET_GUEST_DEBUG2
);
2670 if (guest_debug_flags
& KVM_GUESTDBG_BLOCKIRQ
) {
2671 kvm_sstep_flags
|= SSTEP_NOIRQ
;
2678 ret
= kvm_arch_init(ms
, s
);
2683 if (s
->kernel_irqchip_split
== ON_OFF_AUTO_AUTO
) {
2684 s
->kernel_irqchip_split
= mc
->default_kernel_irqchip_split
? ON_OFF_AUTO_ON
: ON_OFF_AUTO_OFF
;
2687 qemu_register_reset(kvm_unpoison_all
, NULL
);
2689 if (s
->kernel_irqchip_allowed
) {
2690 kvm_irqchip_create(s
);
2693 if (kvm_eventfds_allowed
) {
2694 s
->memory_listener
.listener
.eventfd_add
= kvm_mem_ioeventfd_add
;
2695 s
->memory_listener
.listener
.eventfd_del
= kvm_mem_ioeventfd_del
;
2697 s
->memory_listener
.listener
.coalesced_io_add
= kvm_coalesce_mmio_region
;
2698 s
->memory_listener
.listener
.coalesced_io_del
= kvm_uncoalesce_mmio_region
;
2700 kvm_memory_listener_register(s
, &s
->memory_listener
,
2701 &address_space_memory
, 0, "kvm-memory");
2702 if (kvm_eventfds_allowed
) {
2703 memory_listener_register(&kvm_io_listener
,
2706 memory_listener_register(&kvm_coalesced_pio_listener
,
2709 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
2711 s
->sync_mmu
= !!kvm_vm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
2713 ret
= ram_block_discard_disable(true);
2717 if (s
->kvm_dirty_ring_size
) {
2718 ret
= kvm_dirty_ring_reaper_init(s
);
2724 if (kvm_check_extension(kvm_state
, KVM_CAP_BINARY_STATS_FD
)) {
2725 add_stats_callbacks(STATS_PROVIDER_KVM
, query_stats_cb
,
2726 query_stats_schemas_cb
);
2739 g_free(s
->memory_listener
.slots
);
2744 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
2746 s
->sigmask_len
= sigmask_len
;
2749 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
2750 int size
, uint32_t count
)
2753 uint8_t *ptr
= data
;
2755 for (i
= 0; i
< count
; i
++) {
2756 address_space_rw(&address_space_io
, port
, attrs
,
2758 direction
== KVM_EXIT_IO_OUT
);
2763 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
2765 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
2766 run
->internal
.suberror
);
2768 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
2771 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
2772 fprintf(stderr
, "extra data[%d]: 0x%016"PRIx64
"\n",
2773 i
, (uint64_t)run
->internal
.data
[i
]);
2776 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
2777 fprintf(stderr
, "emulation failure\n");
2778 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
2779 cpu_dump_state(cpu
, stderr
, CPU_DUMP_CODE
);
2780 return EXCP_INTERRUPT
;
2783 /* FIXME: Should trigger a qmp message to let management know
2784 * something went wrong.
2789 void kvm_flush_coalesced_mmio_buffer(void)
2791 KVMState
*s
= kvm_state
;
2793 if (s
->coalesced_flush_in_progress
) {
2797 s
->coalesced_flush_in_progress
= true;
2799 if (s
->coalesced_mmio_ring
) {
2800 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
2801 while (ring
->first
!= ring
->last
) {
2802 struct kvm_coalesced_mmio
*ent
;
2804 ent
= &ring
->coalesced_mmio
[ring
->first
];
2806 if (ent
->pio
== 1) {
2807 address_space_write(&address_space_io
, ent
->phys_addr
,
2808 MEMTXATTRS_UNSPECIFIED
, ent
->data
,
2811 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
2814 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
2818 s
->coalesced_flush_in_progress
= false;
2821 bool kvm_cpu_check_are_resettable(void)
2823 return kvm_arch_cpu_check_are_resettable();
2826 static void do_kvm_cpu_synchronize_state(CPUState
*cpu
, run_on_cpu_data arg
)
2828 if (!cpu
->vcpu_dirty
) {
2829 kvm_arch_get_registers(cpu
);
2830 cpu
->vcpu_dirty
= true;
2834 void kvm_cpu_synchronize_state(CPUState
*cpu
)
2836 if (!cpu
->vcpu_dirty
) {
2837 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, RUN_ON_CPU_NULL
);
2841 static void do_kvm_cpu_synchronize_post_reset(CPUState
*cpu
, run_on_cpu_data arg
)
2843 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
2844 cpu
->vcpu_dirty
= false;
2847 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
2849 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, RUN_ON_CPU_NULL
);
2852 static void do_kvm_cpu_synchronize_post_init(CPUState
*cpu
, run_on_cpu_data arg
)
2854 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
2855 cpu
->vcpu_dirty
= false;
2858 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
2860 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, RUN_ON_CPU_NULL
);
2863 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
, run_on_cpu_data arg
)
2865 cpu
->vcpu_dirty
= true;
2868 void kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
)
2870 run_on_cpu(cpu
, do_kvm_cpu_synchronize_pre_loadvm
, RUN_ON_CPU_NULL
);
2873 #ifdef KVM_HAVE_MCE_INJECTION
2874 static __thread
void *pending_sigbus_addr
;
2875 static __thread
int pending_sigbus_code
;
2876 static __thread
bool have_sigbus_pending
;
2879 static void kvm_cpu_kick(CPUState
*cpu
)
2881 qatomic_set(&cpu
->kvm_run
->immediate_exit
, 1);
2884 static void kvm_cpu_kick_self(void)
2886 if (kvm_immediate_exit
) {
2887 kvm_cpu_kick(current_cpu
);
2889 qemu_cpu_kick_self();
2893 static void kvm_eat_signals(CPUState
*cpu
)
2895 struct timespec ts
= { 0, 0 };
2901 if (kvm_immediate_exit
) {
2902 qatomic_set(&cpu
->kvm_run
->immediate_exit
, 0);
2903 /* Write kvm_run->immediate_exit before the cpu->exit_request
2904 * write in kvm_cpu_exec.
2910 sigemptyset(&waitset
);
2911 sigaddset(&waitset
, SIG_IPI
);
2914 r
= sigtimedwait(&waitset
, &siginfo
, &ts
);
2915 if (r
== -1 && !(errno
== EAGAIN
|| errno
== EINTR
)) {
2916 perror("sigtimedwait");
2920 r
= sigpending(&chkset
);
2922 perror("sigpending");
2925 } while (sigismember(&chkset
, SIG_IPI
));
2928 int kvm_cpu_exec(CPUState
*cpu
)
2930 struct kvm_run
*run
= cpu
->kvm_run
;
2933 DPRINTF("kvm_cpu_exec()\n");
2935 if (kvm_arch_process_async_events(cpu
)) {
2936 qatomic_set(&cpu
->exit_request
, 0);
2940 qemu_mutex_unlock_iothread();
2941 cpu_exec_start(cpu
);
2946 if (cpu
->vcpu_dirty
) {
2947 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
2948 cpu
->vcpu_dirty
= false;
2951 kvm_arch_pre_run(cpu
, run
);
2952 if (qatomic_read(&cpu
->exit_request
)) {
2953 DPRINTF("interrupt exit requested\n");
2955 * KVM requires us to reenter the kernel after IO exits to complete
2956 * instruction emulation. This self-signal will ensure that we
2959 kvm_cpu_kick_self();
2962 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2963 * Matching barrier in kvm_eat_signals.
2967 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
2969 attrs
= kvm_arch_post_run(cpu
, run
);
2971 #ifdef KVM_HAVE_MCE_INJECTION
2972 if (unlikely(have_sigbus_pending
)) {
2973 qemu_mutex_lock_iothread();
2974 kvm_arch_on_sigbus_vcpu(cpu
, pending_sigbus_code
,
2975 pending_sigbus_addr
);
2976 have_sigbus_pending
= false;
2977 qemu_mutex_unlock_iothread();
2982 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
2983 DPRINTF("io window exit\n");
2984 kvm_eat_signals(cpu
);
2985 ret
= EXCP_INTERRUPT
;
2988 fprintf(stderr
, "error: kvm run failed %s\n",
2989 strerror(-run_ret
));
2991 if (run_ret
== -EBUSY
) {
2993 "This is probably because your SMT is enabled.\n"
2994 "VCPU can only run on primary threads with all "
2995 "secondary threads offline.\n");
3002 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
3003 switch (run
->exit_reason
) {
3005 DPRINTF("handle_io\n");
3006 /* Called outside BQL */
3007 kvm_handle_io(run
->io
.port
, attrs
,
3008 (uint8_t *)run
+ run
->io
.data_offset
,
3015 DPRINTF("handle_mmio\n");
3016 /* Called outside BQL */
3017 address_space_rw(&address_space_memory
,
3018 run
->mmio
.phys_addr
, attrs
,
3021 run
->mmio
.is_write
);
3024 case KVM_EXIT_IRQ_WINDOW_OPEN
:
3025 DPRINTF("irq_window_open\n");
3026 ret
= EXCP_INTERRUPT
;
3028 case KVM_EXIT_SHUTDOWN
:
3029 DPRINTF("shutdown\n");
3030 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
3031 ret
= EXCP_INTERRUPT
;
3033 case KVM_EXIT_UNKNOWN
:
3034 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
3035 (uint64_t)run
->hw
.hardware_exit_reason
);
3038 case KVM_EXIT_INTERNAL_ERROR
:
3039 ret
= kvm_handle_internal_error(cpu
, run
);
3041 case KVM_EXIT_DIRTY_RING_FULL
:
3043 * We shouldn't continue if the dirty ring of this vcpu is
3044 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
3046 trace_kvm_dirty_ring_full(cpu
->cpu_index
);
3047 qemu_mutex_lock_iothread();
3049 * We throttle vCPU by making it sleep once it exit from kernel
3050 * due to dirty ring full. In the dirtylimit scenario, reaping
3051 * all vCPUs after a single vCPU dirty ring get full result in
3052 * the miss of sleep, so just reap the ring-fulled vCPU.
3054 if (dirtylimit_in_service()) {
3055 kvm_dirty_ring_reap(kvm_state
, cpu
);
3057 kvm_dirty_ring_reap(kvm_state
, NULL
);
3059 qemu_mutex_unlock_iothread();
3060 dirtylimit_vcpu_execute(cpu
);
3063 case KVM_EXIT_SYSTEM_EVENT
:
3064 switch (run
->system_event
.type
) {
3065 case KVM_SYSTEM_EVENT_SHUTDOWN
:
3066 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN
);
3067 ret
= EXCP_INTERRUPT
;
3069 case KVM_SYSTEM_EVENT_RESET
:
3070 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
3071 ret
= EXCP_INTERRUPT
;
3073 case KVM_SYSTEM_EVENT_CRASH
:
3074 kvm_cpu_synchronize_state(cpu
);
3075 qemu_mutex_lock_iothread();
3076 qemu_system_guest_panicked(cpu_get_crash_info(cpu
));
3077 qemu_mutex_unlock_iothread();
3081 DPRINTF("kvm_arch_handle_exit\n");
3082 ret
= kvm_arch_handle_exit(cpu
, run
);
3087 DPRINTF("kvm_arch_handle_exit\n");
3088 ret
= kvm_arch_handle_exit(cpu
, run
);
3094 qemu_mutex_lock_iothread();
3097 cpu_dump_state(cpu
, stderr
, CPU_DUMP_CODE
);
3098 vm_stop(RUN_STATE_INTERNAL_ERROR
);
3101 qatomic_set(&cpu
->exit_request
, 0);
3105 int kvm_ioctl(KVMState
*s
, int type
, ...)
3112 arg
= va_arg(ap
, void *);
3115 trace_kvm_ioctl(type
, arg
);
3116 ret
= ioctl(s
->fd
, type
, arg
);
3123 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
3130 arg
= va_arg(ap
, void *);
3133 trace_kvm_vm_ioctl(type
, arg
);
3134 accel_ioctl_begin();
3135 ret
= ioctl(s
->vmfd
, type
, arg
);
3143 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
3150 arg
= va_arg(ap
, void *);
3153 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
3154 accel_cpu_ioctl_begin(cpu
);
3155 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
3156 accel_cpu_ioctl_end(cpu
);
3163 int kvm_device_ioctl(int fd
, int type
, ...)
3170 arg
= va_arg(ap
, void *);
3173 trace_kvm_device_ioctl(fd
, type
, arg
);
3174 accel_ioctl_begin();
3175 ret
= ioctl(fd
, type
, arg
);
3183 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
3186 struct kvm_device_attr attribute
= {
3191 if (!kvm_vm_attributes_allowed
) {
3195 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
3196 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3200 int kvm_device_check_attr(int dev_fd
, uint32_t group
, uint64_t attr
)
3202 struct kvm_device_attr attribute
= {
3208 return kvm_device_ioctl(dev_fd
, KVM_HAS_DEVICE_ATTR
, &attribute
) ? 0 : 1;
3211 int kvm_device_access(int fd
, int group
, uint64_t attr
,
3212 void *val
, bool write
, Error
**errp
)
3214 struct kvm_device_attr kvmattr
;
3218 kvmattr
.group
= group
;
3219 kvmattr
.attr
= attr
;
3220 kvmattr
.addr
= (uintptr_t)val
;
3222 err
= kvm_device_ioctl(fd
,
3223 write
? KVM_SET_DEVICE_ATTR
: KVM_GET_DEVICE_ATTR
,
3226 error_setg_errno(errp
, -err
,
3227 "KVM_%s_DEVICE_ATTR failed: Group %d "
3228 "attr 0x%016" PRIx64
,
3229 write
? "SET" : "GET", group
, attr
);
3234 bool kvm_has_sync_mmu(void)
3236 return kvm_state
->sync_mmu
;
3239 int kvm_has_vcpu_events(void)
3241 return kvm_state
->vcpu_events
;
3244 int kvm_has_robust_singlestep(void)
3246 return kvm_state
->robust_singlestep
;
3249 int kvm_has_debugregs(void)
3251 return kvm_state
->debugregs
;
3254 int kvm_max_nested_state_length(void)
3256 return kvm_state
->max_nested_state_len
;
3259 int kvm_has_many_ioeventfds(void)
3261 if (!kvm_enabled()) {
3264 return kvm_state
->many_ioeventfds
;
3267 int kvm_has_gsi_routing(void)
3269 #ifdef KVM_CAP_IRQ_ROUTING
3270 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
3276 int kvm_has_intx_set_mask(void)
3278 return kvm_state
->intx_set_mask
;
3281 bool kvm_arm_supports_user_irq(void)
3283 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_USER_IRQ
);
3286 #ifdef KVM_CAP_SET_GUEST_DEBUG
3287 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
3290 struct kvm_sw_breakpoint
*bp
;
3292 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
3300 int kvm_sw_breakpoints_active(CPUState
*cpu
)
3302 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
3305 struct kvm_set_guest_debug_data
{
3306 struct kvm_guest_debug dbg
;
3310 static void kvm_invoke_set_guest_debug(CPUState
*cpu
, run_on_cpu_data data
)
3312 struct kvm_set_guest_debug_data
*dbg_data
=
3313 (struct kvm_set_guest_debug_data
*) data
.host_ptr
;
3315 dbg_data
->err
= kvm_vcpu_ioctl(cpu
, KVM_SET_GUEST_DEBUG
,
3319 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
3321 struct kvm_set_guest_debug_data data
;
3323 data
.dbg
.control
= reinject_trap
;
3325 if (cpu
->singlestep_enabled
) {
3326 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
3328 if (cpu
->singlestep_enabled
& SSTEP_NOIRQ
) {
3329 data
.dbg
.control
|= KVM_GUESTDBG_BLOCKIRQ
;
3332 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
3334 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
,
3335 RUN_ON_CPU_HOST_PTR(&data
));
3339 bool kvm_supports_guest_debug(void)
3341 /* probed during kvm_init() */
3342 return kvm_has_guest_debug
;
3345 int kvm_insert_breakpoint(CPUState
*cpu
, int type
, vaddr addr
, vaddr len
)
3347 struct kvm_sw_breakpoint
*bp
;
3350 if (type
== GDB_BREAKPOINT_SW
) {
3351 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
3357 bp
= g_new(struct kvm_sw_breakpoint
, 1);
3360 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
3366 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
3368 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
3375 err
= kvm_update_guest_debug(cpu
, 0);
3383 int kvm_remove_breakpoint(CPUState
*cpu
, int type
, vaddr addr
, vaddr len
)
3385 struct kvm_sw_breakpoint
*bp
;
3388 if (type
== GDB_BREAKPOINT_SW
) {
3389 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
3394 if (bp
->use_count
> 1) {
3399 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
3404 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
3407 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
3414 err
= kvm_update_guest_debug(cpu
, 0);
3422 void kvm_remove_all_breakpoints(CPUState
*cpu
)
3424 struct kvm_sw_breakpoint
*bp
, *next
;
3425 KVMState
*s
= cpu
->kvm_state
;
3428 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
3429 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
3430 /* Try harder to find a CPU that currently sees the breakpoint. */
3431 CPU_FOREACH(tmpcpu
) {
3432 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
3437 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
3440 kvm_arch_remove_all_hw_breakpoints();
3443 kvm_update_guest_debug(cpu
, 0);
3447 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3449 static int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
3451 KVMState
*s
= kvm_state
;
3452 struct kvm_signal_mask
*sigmask
;
3455 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
3457 sigmask
->len
= s
->sigmask_len
;
3458 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
3459 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
3465 static void kvm_ipi_signal(int sig
)
3468 assert(kvm_immediate_exit
);
3469 kvm_cpu_kick(current_cpu
);
3473 void kvm_init_cpu_signals(CPUState
*cpu
)
3477 struct sigaction sigact
;
3479 memset(&sigact
, 0, sizeof(sigact
));
3480 sigact
.sa_handler
= kvm_ipi_signal
;
3481 sigaction(SIG_IPI
, &sigact
, NULL
);
3483 pthread_sigmask(SIG_BLOCK
, NULL
, &set
);
3484 #if defined KVM_HAVE_MCE_INJECTION
3485 sigdelset(&set
, SIGBUS
);
3486 pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
3488 sigdelset(&set
, SIG_IPI
);
3489 if (kvm_immediate_exit
) {
3490 r
= pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
3492 r
= kvm_set_signal_mask(cpu
, &set
);
3495 fprintf(stderr
, "kvm_set_signal_mask: %s\n", strerror(-r
));
3500 /* Called asynchronously in VCPU thread. */
3501 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
3503 #ifdef KVM_HAVE_MCE_INJECTION
3504 if (have_sigbus_pending
) {
3507 have_sigbus_pending
= true;
3508 pending_sigbus_addr
= addr
;
3509 pending_sigbus_code
= code
;
3510 qatomic_set(&cpu
->exit_request
, 1);
3517 /* Called synchronously (via signalfd) in main thread. */
3518 int kvm_on_sigbus(int code
, void *addr
)
3520 #ifdef KVM_HAVE_MCE_INJECTION
3521 /* Action required MCE kills the process if SIGBUS is blocked. Because
3522 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3523 * we can only get action optional here.
3525 assert(code
!= BUS_MCEERR_AR
);
3526 kvm_arch_on_sigbus_vcpu(first_cpu
, code
, addr
);
3533 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
3536 struct kvm_create_device create_dev
;
3538 create_dev
.type
= type
;
3540 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
3542 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
3546 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
3551 return test
? 0 : create_dev
.fd
;
3554 bool kvm_device_supported(int vmfd
, uint64_t type
)
3556 struct kvm_create_device create_dev
= {
3559 .flags
= KVM_CREATE_DEVICE_TEST
,
3562 if (ioctl(vmfd
, KVM_CHECK_EXTENSION
, KVM_CAP_DEVICE_CTRL
) <= 0) {
3566 return (ioctl(vmfd
, KVM_CREATE_DEVICE
, &create_dev
) >= 0);
3569 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
3571 struct kvm_one_reg reg
;
3575 reg
.addr
= (uintptr_t) source
;
3576 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
3578 trace_kvm_failed_reg_set(id
, strerror(-r
));
3583 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
3585 struct kvm_one_reg reg
;
3589 reg
.addr
= (uintptr_t) target
;
3590 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
3592 trace_kvm_failed_reg_get(id
, strerror(-r
));
3597 static bool kvm_accel_has_memory(MachineState
*ms
, AddressSpace
*as
,
3598 hwaddr start_addr
, hwaddr size
)
3600 KVMState
*kvm
= KVM_STATE(ms
->accelerator
);
3603 for (i
= 0; i
< kvm
->nr_as
; ++i
) {
3604 if (kvm
->as
[i
].as
== as
&& kvm
->as
[i
].ml
) {
3605 size
= MIN(kvm_max_slot_size
, size
);
3606 return NULL
!= kvm_lookup_matching_slot(kvm
->as
[i
].ml
,
3614 static void kvm_get_kvm_shadow_mem(Object
*obj
, Visitor
*v
,
3615 const char *name
, void *opaque
,
3618 KVMState
*s
= KVM_STATE(obj
);
3619 int64_t value
= s
->kvm_shadow_mem
;
3621 visit_type_int(v
, name
, &value
, errp
);
3624 static void kvm_set_kvm_shadow_mem(Object
*obj
, Visitor
*v
,
3625 const char *name
, void *opaque
,
3628 KVMState
*s
= KVM_STATE(obj
);
3632 error_setg(errp
, "Cannot set properties after the accelerator has been initialized");
3636 if (!visit_type_int(v
, name
, &value
, errp
)) {
3640 s
->kvm_shadow_mem
= value
;
3643 static void kvm_set_kernel_irqchip(Object
*obj
, Visitor
*v
,
3644 const char *name
, void *opaque
,
3647 KVMState
*s
= KVM_STATE(obj
);
3651 error_setg(errp
, "Cannot set properties after the accelerator has been initialized");
3655 if (!visit_type_OnOffSplit(v
, name
, &mode
, errp
)) {
3659 case ON_OFF_SPLIT_ON
:
3660 s
->kernel_irqchip_allowed
= true;
3661 s
->kernel_irqchip_required
= true;
3662 s
->kernel_irqchip_split
= ON_OFF_AUTO_OFF
;
3664 case ON_OFF_SPLIT_OFF
:
3665 s
->kernel_irqchip_allowed
= false;
3666 s
->kernel_irqchip_required
= false;
3667 s
->kernel_irqchip_split
= ON_OFF_AUTO_OFF
;
3669 case ON_OFF_SPLIT_SPLIT
:
3670 s
->kernel_irqchip_allowed
= true;
3671 s
->kernel_irqchip_required
= true;
3672 s
->kernel_irqchip_split
= ON_OFF_AUTO_ON
;
3675 /* The value was checked in visit_type_OnOffSplit() above. If
3676 * we get here, then something is wrong in QEMU.
3682 bool kvm_kernel_irqchip_allowed(void)
3684 return kvm_state
->kernel_irqchip_allowed
;
3687 bool kvm_kernel_irqchip_required(void)
3689 return kvm_state
->kernel_irqchip_required
;
3692 bool kvm_kernel_irqchip_split(void)
3694 return kvm_state
->kernel_irqchip_split
== ON_OFF_AUTO_ON
;
3697 static void kvm_get_dirty_ring_size(Object
*obj
, Visitor
*v
,
3698 const char *name
, void *opaque
,
3701 KVMState
*s
= KVM_STATE(obj
);
3702 uint32_t value
= s
->kvm_dirty_ring_size
;
3704 visit_type_uint32(v
, name
, &value
, errp
);
3707 static void kvm_set_dirty_ring_size(Object
*obj
, Visitor
*v
,
3708 const char *name
, void *opaque
,
3711 KVMState
*s
= KVM_STATE(obj
);
3715 error_setg(errp
, "Cannot set properties after the accelerator has been initialized");
3719 if (!visit_type_uint32(v
, name
, &value
, errp
)) {
3722 if (value
& (value
- 1)) {
3723 error_setg(errp
, "dirty-ring-size must be a power of two.");
3727 s
->kvm_dirty_ring_size
= value
;
3730 static void kvm_accel_instance_init(Object
*obj
)
3732 KVMState
*s
= KVM_STATE(obj
);
3736 s
->kvm_shadow_mem
= -1;
3737 s
->kernel_irqchip_allowed
= true;
3738 s
->kernel_irqchip_split
= ON_OFF_AUTO_AUTO
;
3739 /* KVM dirty ring is by default off */
3740 s
->kvm_dirty_ring_size
= 0;
3741 s
->kvm_dirty_ring_with_bitmap
= false;
3742 s
->notify_vmexit
= NOTIFY_VMEXIT_OPTION_RUN
;
3743 s
->notify_window
= 0;
3745 s
->xen_gnttab_max_frames
= 64;
3746 s
->xen_evtchn_max_pirq
= 256;
3750 * kvm_gdbstub_sstep_flags():
3752 * Returns: SSTEP_* flags that KVM supports for guest debug. The
3753 * support is probed during kvm_init()
3755 static int kvm_gdbstub_sstep_flags(void)
3757 return kvm_sstep_flags
;
3760 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
3762 AccelClass
*ac
= ACCEL_CLASS(oc
);
3764 ac
->init_machine
= kvm_init
;
3765 ac
->has_memory
= kvm_accel_has_memory
;
3766 ac
->allowed
= &kvm_allowed
;
3767 ac
->gdbstub_supported_sstep_flags
= kvm_gdbstub_sstep_flags
;
3769 object_class_property_add(oc
, "kernel-irqchip", "on|off|split",
3770 NULL
, kvm_set_kernel_irqchip
,
3772 object_class_property_set_description(oc
, "kernel-irqchip",
3773 "Configure KVM in-kernel irqchip");
3775 object_class_property_add(oc
, "kvm-shadow-mem", "int",
3776 kvm_get_kvm_shadow_mem
, kvm_set_kvm_shadow_mem
,
3778 object_class_property_set_description(oc
, "kvm-shadow-mem",
3779 "KVM shadow MMU size");
3781 object_class_property_add(oc
, "dirty-ring-size", "uint32",
3782 kvm_get_dirty_ring_size
, kvm_set_dirty_ring_size
,
3784 object_class_property_set_description(oc
, "dirty-ring-size",
3785 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3787 kvm_arch_accel_class_init(oc
);
3790 static const TypeInfo kvm_accel_type
= {
3791 .name
= TYPE_KVM_ACCEL
,
3792 .parent
= TYPE_ACCEL
,
3793 .instance_init
= kvm_accel_instance_init
,
3794 .class_init
= kvm_accel_class_init
,
3795 .instance_size
= sizeof(KVMState
),
3798 static void kvm_type_init(void)
3800 type_register_static(&kvm_accel_type
);
3803 type_init(kvm_type_init
);
3805 typedef struct StatsArgs
{
3806 union StatsResultsType
{
3807 StatsResultList
**stats
;
3808 StatsSchemaList
**schema
;
3814 static StatsList
*add_kvmstat_entry(struct kvm_stats_desc
*pdesc
,
3815 uint64_t *stats_data
,
3816 StatsList
*stats_list
,
3821 uint64List
*val_list
= NULL
;
3823 /* Only add stats that we understand. */
3824 switch (pdesc
->flags
& KVM_STATS_TYPE_MASK
) {
3825 case KVM_STATS_TYPE_CUMULATIVE
:
3826 case KVM_STATS_TYPE_INSTANT
:
3827 case KVM_STATS_TYPE_PEAK
:
3828 case KVM_STATS_TYPE_LINEAR_HIST
:
3829 case KVM_STATS_TYPE_LOG_HIST
:
3835 switch (pdesc
->flags
& KVM_STATS_UNIT_MASK
) {
3836 case KVM_STATS_UNIT_NONE
:
3837 case KVM_STATS_UNIT_BYTES
:
3838 case KVM_STATS_UNIT_CYCLES
:
3839 case KVM_STATS_UNIT_SECONDS
:
3840 case KVM_STATS_UNIT_BOOLEAN
:
3846 switch (pdesc
->flags
& KVM_STATS_BASE_MASK
) {
3847 case KVM_STATS_BASE_POW10
:
3848 case KVM_STATS_BASE_POW2
:
3854 /* Alloc and populate data list */
3855 stats
= g_new0(Stats
, 1);
3856 stats
->name
= g_strdup(pdesc
->name
);
3857 stats
->value
= g_new0(StatsValue
, 1);;
3859 if ((pdesc
->flags
& KVM_STATS_UNIT_MASK
) == KVM_STATS_UNIT_BOOLEAN
) {
3860 stats
->value
->u
.boolean
= *stats_data
;
3861 stats
->value
->type
= QTYPE_QBOOL
;
3862 } else if (pdesc
->size
== 1) {
3863 stats
->value
->u
.scalar
= *stats_data
;
3864 stats
->value
->type
= QTYPE_QNUM
;
3867 for (i
= 0; i
< pdesc
->size
; i
++) {
3868 QAPI_LIST_PREPEND(val_list
, stats_data
[i
]);
3870 stats
->value
->u
.list
= val_list
;
3871 stats
->value
->type
= QTYPE_QLIST
;
3874 QAPI_LIST_PREPEND(stats_list
, stats
);
3878 static StatsSchemaValueList
*add_kvmschema_entry(struct kvm_stats_desc
*pdesc
,
3879 StatsSchemaValueList
*list
,
3882 StatsSchemaValueList
*schema_entry
= g_new0(StatsSchemaValueList
, 1);
3883 schema_entry
->value
= g_new0(StatsSchemaValue
, 1);
3885 switch (pdesc
->flags
& KVM_STATS_TYPE_MASK
) {
3886 case KVM_STATS_TYPE_CUMULATIVE
:
3887 schema_entry
->value
->type
= STATS_TYPE_CUMULATIVE
;
3889 case KVM_STATS_TYPE_INSTANT
:
3890 schema_entry
->value
->type
= STATS_TYPE_INSTANT
;
3892 case KVM_STATS_TYPE_PEAK
:
3893 schema_entry
->value
->type
= STATS_TYPE_PEAK
;
3895 case KVM_STATS_TYPE_LINEAR_HIST
:
3896 schema_entry
->value
->type
= STATS_TYPE_LINEAR_HISTOGRAM
;
3897 schema_entry
->value
->bucket_size
= pdesc
->bucket_size
;
3898 schema_entry
->value
->has_bucket_size
= true;
3900 case KVM_STATS_TYPE_LOG_HIST
:
3901 schema_entry
->value
->type
= STATS_TYPE_LOG2_HISTOGRAM
;
3907 switch (pdesc
->flags
& KVM_STATS_UNIT_MASK
) {
3908 case KVM_STATS_UNIT_NONE
:
3910 case KVM_STATS_UNIT_BOOLEAN
:
3911 schema_entry
->value
->has_unit
= true;
3912 schema_entry
->value
->unit
= STATS_UNIT_BOOLEAN
;
3914 case KVM_STATS_UNIT_BYTES
:
3915 schema_entry
->value
->has_unit
= true;
3916 schema_entry
->value
->unit
= STATS_UNIT_BYTES
;
3918 case KVM_STATS_UNIT_CYCLES
:
3919 schema_entry
->value
->has_unit
= true;
3920 schema_entry
->value
->unit
= STATS_UNIT_CYCLES
;
3922 case KVM_STATS_UNIT_SECONDS
:
3923 schema_entry
->value
->has_unit
= true;
3924 schema_entry
->value
->unit
= STATS_UNIT_SECONDS
;
3930 schema_entry
->value
->exponent
= pdesc
->exponent
;
3931 if (pdesc
->exponent
) {
3932 switch (pdesc
->flags
& KVM_STATS_BASE_MASK
) {
3933 case KVM_STATS_BASE_POW10
:
3934 schema_entry
->value
->has_base
= true;
3935 schema_entry
->value
->base
= 10;
3937 case KVM_STATS_BASE_POW2
:
3938 schema_entry
->value
->has_base
= true;
3939 schema_entry
->value
->base
= 2;
3946 schema_entry
->value
->name
= g_strdup(pdesc
->name
);
3947 schema_entry
->next
= list
;
3948 return schema_entry
;
3950 g_free(schema_entry
->value
);
3951 g_free(schema_entry
);
3955 /* Cached stats descriptors */
3956 typedef struct StatsDescriptors
{
3957 const char *ident
; /* cache key, currently the StatsTarget */
3958 struct kvm_stats_desc
*kvm_stats_desc
;
3959 struct kvm_stats_header kvm_stats_header
;
3960 QTAILQ_ENTRY(StatsDescriptors
) next
;
3963 static QTAILQ_HEAD(, StatsDescriptors
) stats_descriptors
=
3964 QTAILQ_HEAD_INITIALIZER(stats_descriptors
);
3967 * Return the descriptors for 'target', that either have already been read
3968 * or are retrieved from 'stats_fd'.
3970 static StatsDescriptors
*find_stats_descriptors(StatsTarget target
, int stats_fd
,
3973 StatsDescriptors
*descriptors
;
3975 struct kvm_stats_desc
*kvm_stats_desc
;
3976 struct kvm_stats_header
*kvm_stats_header
;
3980 ident
= StatsTarget_str(target
);
3981 QTAILQ_FOREACH(descriptors
, &stats_descriptors
, next
) {
3982 if (g_str_equal(descriptors
->ident
, ident
)) {
3987 descriptors
= g_new0(StatsDescriptors
, 1);
3989 /* Read stats header */
3990 kvm_stats_header
= &descriptors
->kvm_stats_header
;
3991 ret
= read(stats_fd
, kvm_stats_header
, sizeof(*kvm_stats_header
));
3992 if (ret
!= sizeof(*kvm_stats_header
)) {
3993 error_setg(errp
, "KVM stats: failed to read stats header: "
3994 "expected %zu actual %zu",
3995 sizeof(*kvm_stats_header
), ret
);
3996 g_free(descriptors
);
3999 size_desc
= sizeof(*kvm_stats_desc
) + kvm_stats_header
->name_size
;
4001 /* Read stats descriptors */
4002 kvm_stats_desc
= g_malloc0_n(kvm_stats_header
->num_desc
, size_desc
);
4003 ret
= pread(stats_fd
, kvm_stats_desc
,
4004 size_desc
* kvm_stats_header
->num_desc
,
4005 kvm_stats_header
->desc_offset
);
4007 if (ret
!= size_desc
* kvm_stats_header
->num_desc
) {
4008 error_setg(errp
, "KVM stats: failed to read stats descriptors: "
4009 "expected %zu actual %zu",
4010 size_desc
* kvm_stats_header
->num_desc
, ret
);
4011 g_free(descriptors
);
4012 g_free(kvm_stats_desc
);
4015 descriptors
->kvm_stats_desc
= kvm_stats_desc
;
4016 descriptors
->ident
= ident
;
4017 QTAILQ_INSERT_TAIL(&stats_descriptors
, descriptors
, next
);
4021 static void query_stats(StatsResultList
**result
, StatsTarget target
,
4022 strList
*names
, int stats_fd
, Error
**errp
)
4024 struct kvm_stats_desc
*kvm_stats_desc
;
4025 struct kvm_stats_header
*kvm_stats_header
;
4026 StatsDescriptors
*descriptors
;
4027 g_autofree
uint64_t *stats_data
= NULL
;
4028 struct kvm_stats_desc
*pdesc
;
4029 StatsList
*stats_list
= NULL
;
4030 size_t size_desc
, size_data
= 0;
4034 descriptors
= find_stats_descriptors(target
, stats_fd
, errp
);
4039 kvm_stats_header
= &descriptors
->kvm_stats_header
;
4040 kvm_stats_desc
= descriptors
->kvm_stats_desc
;
4041 size_desc
= sizeof(*kvm_stats_desc
) + kvm_stats_header
->name_size
;
4043 /* Tally the total data size; read schema data */
4044 for (i
= 0; i
< kvm_stats_header
->num_desc
; ++i
) {
4045 pdesc
= (void *)kvm_stats_desc
+ i
* size_desc
;
4046 size_data
+= pdesc
->size
* sizeof(*stats_data
);
4049 stats_data
= g_malloc0(size_data
);
4050 ret
= pread(stats_fd
, stats_data
, size_data
, kvm_stats_header
->data_offset
);
4052 if (ret
!= size_data
) {
4053 error_setg(errp
, "KVM stats: failed to read data: "
4054 "expected %zu actual %zu", size_data
, ret
);
4058 for (i
= 0; i
< kvm_stats_header
->num_desc
; ++i
) {
4060 pdesc
= (void *)kvm_stats_desc
+ i
* size_desc
;
4062 /* Add entry to the list */
4063 stats
= (void *)stats_data
+ pdesc
->offset
;
4064 if (!apply_str_list_filter(pdesc
->name
, names
)) {
4067 stats_list
= add_kvmstat_entry(pdesc
, stats
, stats_list
, errp
);
4075 case STATS_TARGET_VM
:
4076 add_stats_entry(result
, STATS_PROVIDER_KVM
, NULL
, stats_list
);
4078 case STATS_TARGET_VCPU
:
4079 add_stats_entry(result
, STATS_PROVIDER_KVM
,
4080 current_cpu
->parent_obj
.canonical_path
,
4084 g_assert_not_reached();
4088 static void query_stats_schema(StatsSchemaList
**result
, StatsTarget target
,
4089 int stats_fd
, Error
**errp
)
4091 struct kvm_stats_desc
*kvm_stats_desc
;
4092 struct kvm_stats_header
*kvm_stats_header
;
4093 StatsDescriptors
*descriptors
;
4094 struct kvm_stats_desc
*pdesc
;
4095 StatsSchemaValueList
*stats_list
= NULL
;
4099 descriptors
= find_stats_descriptors(target
, stats_fd
, errp
);
4104 kvm_stats_header
= &descriptors
->kvm_stats_header
;
4105 kvm_stats_desc
= descriptors
->kvm_stats_desc
;
4106 size_desc
= sizeof(*kvm_stats_desc
) + kvm_stats_header
->name_size
;
4108 /* Tally the total data size; read schema data */
4109 for (i
= 0; i
< kvm_stats_header
->num_desc
; ++i
) {
4110 pdesc
= (void *)kvm_stats_desc
+ i
* size_desc
;
4111 stats_list
= add_kvmschema_entry(pdesc
, stats_list
, errp
);
4114 add_stats_schema(result
, STATS_PROVIDER_KVM
, target
, stats_list
);
4117 static void query_stats_vcpu(CPUState
*cpu
, run_on_cpu_data data
)
4119 StatsArgs
*kvm_stats_args
= (StatsArgs
*) data
.host_ptr
;
4120 int stats_fd
= kvm_vcpu_ioctl(cpu
, KVM_GET_STATS_FD
, NULL
);
4121 Error
*local_err
= NULL
;
4123 if (stats_fd
== -1) {
4124 error_setg_errno(&local_err
, errno
, "KVM stats: ioctl failed");
4125 error_propagate(kvm_stats_args
->errp
, local_err
);
4128 query_stats(kvm_stats_args
->result
.stats
, STATS_TARGET_VCPU
,
4129 kvm_stats_args
->names
, stats_fd
, kvm_stats_args
->errp
);
4133 static void query_stats_schema_vcpu(CPUState
*cpu
, run_on_cpu_data data
)
4135 StatsArgs
*kvm_stats_args
= (StatsArgs
*) data
.host_ptr
;
4136 int stats_fd
= kvm_vcpu_ioctl(cpu
, KVM_GET_STATS_FD
, NULL
);
4137 Error
*local_err
= NULL
;
4139 if (stats_fd
== -1) {
4140 error_setg_errno(&local_err
, errno
, "KVM stats: ioctl failed");
4141 error_propagate(kvm_stats_args
->errp
, local_err
);
4144 query_stats_schema(kvm_stats_args
->result
.schema
, STATS_TARGET_VCPU
, stats_fd
,
4145 kvm_stats_args
->errp
);
4149 static void query_stats_cb(StatsResultList
**result
, StatsTarget target
,
4150 strList
*names
, strList
*targets
, Error
**errp
)
4152 KVMState
*s
= kvm_state
;
4157 case STATS_TARGET_VM
:
4159 stats_fd
= kvm_vm_ioctl(s
, KVM_GET_STATS_FD
, NULL
);
4160 if (stats_fd
== -1) {
4161 error_setg_errno(errp
, errno
, "KVM stats: ioctl failed");
4164 query_stats(result
, target
, names
, stats_fd
, errp
);
4168 case STATS_TARGET_VCPU
:
4170 StatsArgs stats_args
;
4171 stats_args
.result
.stats
= result
;
4172 stats_args
.names
= names
;
4173 stats_args
.errp
= errp
;
4175 if (!apply_str_list_filter(cpu
->parent_obj
.canonical_path
, targets
)) {
4178 run_on_cpu(cpu
, query_stats_vcpu
, RUN_ON_CPU_HOST_PTR(&stats_args
));
4187 void query_stats_schemas_cb(StatsSchemaList
**result
, Error
**errp
)
4189 StatsArgs stats_args
;
4190 KVMState
*s
= kvm_state
;
4193 stats_fd
= kvm_vm_ioctl(s
, KVM_GET_STATS_FD
, NULL
);
4194 if (stats_fd
== -1) {
4195 error_setg_errno(errp
, errno
, "KVM stats: ioctl failed");
4198 query_stats_schema(result
, STATS_TARGET_VM
, stats_fd
, errp
);
4202 stats_args
.result
.schema
= result
;
4203 stats_args
.errp
= errp
;
4204 run_on_cpu(first_cpu
, query_stats_schema_vcpu
, RUN_ON_CPU_HOST_PTR(&stats_args
));