virtio-mem: Implement replay_discarded RamDiscardManager callback
[qemu/kevin.git] / target / mips / tcg / sysemu / tlb_helper.c
blob73254d19298d6add6a0957cc76f4329de3b380fb
1 /*
2 * MIPS TLB (Translation lookaside buffer) helpers.
4 * Copyright (c) 2004-2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
22 #include "cpu.h"
23 #include "internal.h"
24 #include "exec/exec-all.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/log.h"
27 #include "hw/mips/cpudevs.h"
28 #include "exec/helper-proto.h"
30 /* TLB management */
31 static void r4k_mips_tlb_flush_extra(CPUMIPSState *env, int first)
33 /* Discard entries from env->tlb[first] onwards. */
34 while (env->tlb->tlb_in_use > first) {
35 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
39 static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
41 #if defined(TARGET_MIPS64)
42 return extract64(entrylo, 6, 54);
43 #else
44 return extract64(entrylo, 6, 24) | /* PFN */
45 (extract64(entrylo, 32, 32) << 24); /* PFNX */
46 #endif
49 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
51 r4k_tlb_t *tlb;
52 uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1);
54 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
55 tlb = &env->tlb->mmu.r4k.tlb[idx];
56 if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
57 tlb->EHINV = 1;
58 return;
60 tlb->EHINV = 0;
61 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
62 #if defined(TARGET_MIPS64)
63 tlb->VPN &= env->SEGMask;
64 #endif
65 tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
66 tlb->MMID = env->CP0_MemoryMapID;
67 tlb->PageMask = env->CP0_PageMask;
68 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
69 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
70 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
71 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
72 tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
73 tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
74 tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12;
75 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
76 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
77 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
78 tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
79 tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
80 tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12;
83 static void r4k_helper_tlbinv(CPUMIPSState *env)
85 bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
86 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
87 uint32_t MMID = env->CP0_MemoryMapID;
88 uint32_t tlb_mmid;
89 r4k_tlb_t *tlb;
90 int idx;
92 MMID = mi ? MMID : (uint32_t) ASID;
93 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
94 tlb = &env->tlb->mmu.r4k.tlb[idx];
95 tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
96 if (!tlb->G && tlb_mmid == MMID) {
97 tlb->EHINV = 1;
100 cpu_mips_tlb_flush(env);
103 static void r4k_helper_tlbinvf(CPUMIPSState *env)
105 int idx;
107 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
108 env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
110 cpu_mips_tlb_flush(env);
113 static void r4k_helper_tlbwi(CPUMIPSState *env)
115 bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
116 target_ulong VPN;
117 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
118 uint32_t MMID = env->CP0_MemoryMapID;
119 uint32_t tlb_mmid;
120 bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
121 r4k_tlb_t *tlb;
122 int idx;
124 MMID = mi ? MMID : (uint32_t) ASID;
126 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
127 tlb = &env->tlb->mmu.r4k.tlb[idx];
128 VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
129 #if defined(TARGET_MIPS64)
130 VPN &= env->SEGMask;
131 #endif
132 EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
133 G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
134 V0 = (env->CP0_EntryLo0 & 2) != 0;
135 D0 = (env->CP0_EntryLo0 & 4) != 0;
136 XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
137 RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
138 V1 = (env->CP0_EntryLo1 & 2) != 0;
139 D1 = (env->CP0_EntryLo1 & 4) != 0;
140 XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
141 RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
143 tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
145 * Discard cached TLB entries, unless tlbwi is just upgrading access
146 * permissions on the current entry.
148 if (tlb->VPN != VPN || tlb_mmid != MMID || tlb->G != G ||
149 (!tlb->EHINV && EHINV) ||
150 (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
151 (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
152 (tlb->V1 && !V1) || (tlb->D1 && !D1) ||
153 (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
154 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
157 r4k_invalidate_tlb(env, idx, 0);
158 r4k_fill_tlb(env, idx);
161 static void r4k_helper_tlbwr(CPUMIPSState *env)
163 int r = cpu_mips_get_random(env);
165 r4k_invalidate_tlb(env, r, 1);
166 r4k_fill_tlb(env, r);
169 static void r4k_helper_tlbp(CPUMIPSState *env)
171 bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
172 r4k_tlb_t *tlb;
173 target_ulong mask;
174 target_ulong tag;
175 target_ulong VPN;
176 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
177 uint32_t MMID = env->CP0_MemoryMapID;
178 uint32_t tlb_mmid;
179 int i;
181 MMID = mi ? MMID : (uint32_t) ASID;
182 for (i = 0; i < env->tlb->nb_tlb; i++) {
183 tlb = &env->tlb->mmu.r4k.tlb[i];
184 /* 1k pages are not supported. */
185 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
186 tag = env->CP0_EntryHi & ~mask;
187 VPN = tlb->VPN & ~mask;
188 #if defined(TARGET_MIPS64)
189 tag &= env->SEGMask;
190 #endif
191 tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
192 /* Check ASID/MMID, virtual page number & size */
193 if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
194 /* TLB match */
195 env->CP0_Index = i;
196 break;
199 if (i == env->tlb->nb_tlb) {
200 /* No match. Discard any shadow entries, if any of them match. */
201 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
202 tlb = &env->tlb->mmu.r4k.tlb[i];
203 /* 1k pages are not supported. */
204 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
205 tag = env->CP0_EntryHi & ~mask;
206 VPN = tlb->VPN & ~mask;
207 #if defined(TARGET_MIPS64)
208 tag &= env->SEGMask;
209 #endif
210 tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
211 /* Check ASID/MMID, virtual page number & size */
212 if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag) {
213 r4k_mips_tlb_flush_extra(env, i);
214 break;
218 env->CP0_Index |= 0x80000000;
222 static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
224 #if defined(TARGET_MIPS64)
225 return tlb_pfn << 6;
226 #else
227 return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
228 (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
229 #endif
232 static void r4k_helper_tlbr(CPUMIPSState *env)
234 bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
235 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
236 uint32_t MMID = env->CP0_MemoryMapID;
237 uint32_t tlb_mmid;
238 r4k_tlb_t *tlb;
239 int idx;
241 MMID = mi ? MMID : (uint32_t) ASID;
242 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
243 tlb = &env->tlb->mmu.r4k.tlb[idx];
245 tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
246 /* If this will change the current ASID/MMID, flush qemu's TLB. */
247 if (MMID != tlb_mmid) {
248 cpu_mips_tlb_flush(env);
251 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
253 if (tlb->EHINV) {
254 env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
255 env->CP0_PageMask = 0;
256 env->CP0_EntryLo0 = 0;
257 env->CP0_EntryLo1 = 0;
258 } else {
259 env->CP0_EntryHi = mi ? tlb->VPN : tlb->VPN | tlb->ASID;
260 env->CP0_MemoryMapID = tlb->MMID;
261 env->CP0_PageMask = tlb->PageMask;
262 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
263 ((uint64_t)tlb->RI0 << CP0EnLo_RI) |
264 ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
265 get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
266 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
267 ((uint64_t)tlb->RI1 << CP0EnLo_RI) |
268 ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
269 get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
273 void helper_tlbwi(CPUMIPSState *env)
275 env->tlb->helper_tlbwi(env);
278 void helper_tlbwr(CPUMIPSState *env)
280 env->tlb->helper_tlbwr(env);
283 void helper_tlbp(CPUMIPSState *env)
285 env->tlb->helper_tlbp(env);
288 void helper_tlbr(CPUMIPSState *env)
290 env->tlb->helper_tlbr(env);
293 void helper_tlbinv(CPUMIPSState *env)
295 env->tlb->helper_tlbinv(env);
298 void helper_tlbinvf(CPUMIPSState *env)
300 env->tlb->helper_tlbinvf(env);
303 static void global_invalidate_tlb(CPUMIPSState *env,
304 uint32_t invMsgVPN2,
305 uint8_t invMsgR,
306 uint32_t invMsgMMid,
307 bool invAll,
308 bool invVAMMid,
309 bool invMMid,
310 bool invVA)
313 int idx;
314 r4k_tlb_t *tlb;
315 bool VAMatch;
316 bool MMidMatch;
318 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
319 tlb = &env->tlb->mmu.r4k.tlb[idx];
320 VAMatch =
321 (((tlb->VPN & ~tlb->PageMask) == (invMsgVPN2 & ~tlb->PageMask))
322 #ifdef TARGET_MIPS64
324 (extract64(env->CP0_EntryHi, 62, 2) == invMsgR)
325 #endif
327 MMidMatch = tlb->MMID == invMsgMMid;
328 if ((invAll && (idx > env->CP0_Wired)) ||
329 (VAMatch && invVAMMid && (tlb->G || MMidMatch)) ||
330 (VAMatch && invVA) ||
331 (MMidMatch && !(tlb->G) && invMMid)) {
332 tlb->EHINV = 1;
335 cpu_mips_tlb_flush(env);
338 void helper_ginvt(CPUMIPSState *env, target_ulong arg, uint32_t type)
340 bool invAll = type == 0;
341 bool invVA = type == 1;
342 bool invMMid = type == 2;
343 bool invVAMMid = type == 3;
344 uint32_t invMsgVPN2 = arg & (TARGET_PAGE_MASK << 1);
345 uint8_t invMsgR = 0;
346 uint32_t invMsgMMid = env->CP0_MemoryMapID;
347 CPUState *other_cs = first_cpu;
349 #ifdef TARGET_MIPS64
350 invMsgR = extract64(arg, 62, 2);
351 #endif
353 CPU_FOREACH(other_cs) {
354 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
355 global_invalidate_tlb(&other_cpu->env, invMsgVPN2, invMsgR, invMsgMMid,
356 invAll, invVAMMid, invMMid, invVA);
360 /* no MMU emulation */
361 static int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
362 target_ulong address, MMUAccessType access_type)
364 *physical = address;
365 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
366 return TLBRET_MATCH;
369 /* fixed mapping MMU emulation */
370 static int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical,
371 int *prot, target_ulong address,
372 MMUAccessType access_type)
374 if (address <= (int32_t)0x7FFFFFFFUL) {
375 if (!(env->CP0_Status & (1 << CP0St_ERL))) {
376 *physical = address + 0x40000000UL;
377 } else {
378 *physical = address;
380 } else if (address <= (int32_t)0xBFFFFFFFUL) {
381 *physical = address & 0x1FFFFFFF;
382 } else {
383 *physical = address;
386 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
387 return TLBRET_MATCH;
390 /* MIPS32/MIPS64 R4000-style MMU emulation */
391 static int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
392 target_ulong address, MMUAccessType access_type)
394 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
395 uint32_t MMID = env->CP0_MemoryMapID;
396 bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
397 uint32_t tlb_mmid;
398 int i;
400 MMID = mi ? MMID : (uint32_t) ASID;
402 for (i = 0; i < env->tlb->tlb_in_use; i++) {
403 r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
404 /* 1k pages are not supported. */
405 target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
406 target_ulong tag = address & ~mask;
407 target_ulong VPN = tlb->VPN & ~mask;
408 #if defined(TARGET_MIPS64)
409 tag &= env->SEGMask;
410 #endif
412 /* Check ASID/MMID, virtual page number & size */
413 tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
414 if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
415 /* TLB match */
416 int n = !!(address & mask & ~(mask >> 1));
417 /* Check access rights */
418 if (!(n ? tlb->V1 : tlb->V0)) {
419 return TLBRET_INVALID;
421 if (access_type == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
422 return TLBRET_XI;
424 if (access_type == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
425 return TLBRET_RI;
427 if (access_type != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
428 *physical = tlb->PFN[n] | (address & (mask >> 1));
429 *prot = PAGE_READ;
430 if (n ? tlb->D1 : tlb->D0) {
431 *prot |= PAGE_WRITE;
433 if (!(n ? tlb->XI1 : tlb->XI0)) {
434 *prot |= PAGE_EXEC;
436 return TLBRET_MATCH;
438 return TLBRET_DIRTY;
441 return TLBRET_NOMATCH;
444 static void no_mmu_init(CPUMIPSState *env, const mips_def_t *def)
446 env->tlb->nb_tlb = 1;
447 env->tlb->map_address = &no_mmu_map_address;
450 static void fixed_mmu_init(CPUMIPSState *env, const mips_def_t *def)
452 env->tlb->nb_tlb = 1;
453 env->tlb->map_address = &fixed_mmu_map_address;
456 static void r4k_mmu_init(CPUMIPSState *env, const mips_def_t *def)
458 env->tlb->nb_tlb = 1 + ((def->CP0_Config1 >> CP0C1_MMU) & 63);
459 env->tlb->map_address = &r4k_map_address;
460 env->tlb->helper_tlbwi = r4k_helper_tlbwi;
461 env->tlb->helper_tlbwr = r4k_helper_tlbwr;
462 env->tlb->helper_tlbp = r4k_helper_tlbp;
463 env->tlb->helper_tlbr = r4k_helper_tlbr;
464 env->tlb->helper_tlbinv = r4k_helper_tlbinv;
465 env->tlb->helper_tlbinvf = r4k_helper_tlbinvf;
468 void mmu_init(CPUMIPSState *env, const mips_def_t *def)
470 env->tlb = g_malloc0(sizeof(CPUMIPSTLBContext));
472 switch (def->mmu_type) {
473 case MMU_TYPE_NONE:
474 no_mmu_init(env, def);
475 break;
476 case MMU_TYPE_R4000:
477 r4k_mmu_init(env, def);
478 break;
479 case MMU_TYPE_FMT:
480 fixed_mmu_init(env, def);
481 break;
482 case MMU_TYPE_R3000:
483 case MMU_TYPE_R6000:
484 case MMU_TYPE_R8000:
485 default:
486 cpu_abort(env_cpu(env), "MMU type not supported\n");
490 void cpu_mips_tlb_flush(CPUMIPSState *env)
492 /* Flush qemu's TLB and discard all shadowed entries. */
493 tlb_flush(env_cpu(env));
494 env->tlb->tlb_in_use = env->tlb->nb_tlb;
497 static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
498 MMUAccessType access_type, int tlb_error)
500 CPUState *cs = env_cpu(env);
501 int exception = 0, error_code = 0;
503 if (access_type == MMU_INST_FETCH) {
504 error_code |= EXCP_INST_NOTAVAIL;
507 switch (tlb_error) {
508 default:
509 case TLBRET_BADADDR:
510 /* Reference to kernel address from user mode or supervisor mode */
511 /* Reference to supervisor address from user mode */
512 if (access_type == MMU_DATA_STORE) {
513 exception = EXCP_AdES;
514 } else {
515 exception = EXCP_AdEL;
517 break;
518 case TLBRET_NOMATCH:
519 /* No TLB match for a mapped address */
520 if (access_type == MMU_DATA_STORE) {
521 exception = EXCP_TLBS;
522 } else {
523 exception = EXCP_TLBL;
525 error_code |= EXCP_TLB_NOMATCH;
526 break;
527 case TLBRET_INVALID:
528 /* TLB match with no valid bit */
529 if (access_type == MMU_DATA_STORE) {
530 exception = EXCP_TLBS;
531 } else {
532 exception = EXCP_TLBL;
534 break;
535 case TLBRET_DIRTY:
536 /* TLB match but 'D' bit is cleared */
537 exception = EXCP_LTLBL;
538 break;
539 case TLBRET_XI:
540 /* Execute-Inhibit Exception */
541 if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
542 exception = EXCP_TLBXI;
543 } else {
544 exception = EXCP_TLBL;
546 break;
547 case TLBRET_RI:
548 /* Read-Inhibit Exception */
549 if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
550 exception = EXCP_TLBRI;
551 } else {
552 exception = EXCP_TLBL;
554 break;
556 /* Raise exception */
557 if (!(env->hflags & MIPS_HFLAG_DM)) {
558 env->CP0_BadVAddr = address;
560 env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
561 ((address >> 9) & 0x007ffff0);
562 env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
563 (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
564 (address & (TARGET_PAGE_MASK << 1));
565 #if defined(TARGET_MIPS64)
566 env->CP0_EntryHi &= env->SEGMask;
567 env->CP0_XContext =
568 (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) | /* PTEBase */
569 (extract64(address, 62, 2) << (env->SEGBITS - 9)) | /* R */
570 (extract64(address, 13, env->SEGBITS - 13) << 4); /* BadVPN2 */
571 #endif
572 cs->exception_index = exception;
573 env->error_code = error_code;
576 #if !defined(TARGET_MIPS64)
579 * Perform hardware page table walk
581 * Memory accesses are performed using the KERNEL privilege level.
582 * Synchronous exceptions detected on memory accesses cause a silent exit
583 * from page table walking, resulting in a TLB or XTLB Refill exception.
585 * Implementations are not required to support page table walk memory
586 * accesses from mapped memory regions. When an unsupported access is
587 * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
588 * exception.
590 * Note that if an exception is caused by AddressTranslation or LoadMemory
591 * functions, the exception is not taken, a silent exit is taken,
592 * resulting in a TLB or XTLB Refill exception.
595 static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
596 uint64_t *pte)
598 if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
599 return false;
601 if (entry_size == 64) {
602 *pte = cpu_ldq_code(env, vaddr);
603 } else {
604 *pte = cpu_ldl_code(env, vaddr);
606 return true;
609 static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
610 int entry_size, int ptei)
612 uint64_t result = entry;
613 uint64_t rixi;
614 if (ptei > entry_size) {
615 ptei -= 32;
617 result >>= (ptei - 2);
618 rixi = result & 3;
619 result >>= 2;
620 result |= rixi << CP0EnLo_XI;
621 return result;
624 static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
625 int directory_index, bool *huge_page, bool *hgpg_directory_hit,
626 uint64_t *pw_entrylo0, uint64_t *pw_entrylo1)
628 int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
629 int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
630 int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
631 int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
632 int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
633 int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
634 int directory_shift = (ptew > 1) ? -1 :
635 (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
636 int leaf_shift = (ptew > 1) ? -1 :
637 (ptew == 1) ? native_shift + 1 : native_shift;
638 uint32_t direntry_size = 1 << (directory_shift + 3);
639 uint32_t leafentry_size = 1 << (leaf_shift + 3);
640 uint64_t entry;
641 uint64_t paddr;
642 int prot;
643 uint64_t lsb = 0;
644 uint64_t w = 0;
646 if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
647 cpu_mmu_index(env, false)) !=
648 TLBRET_MATCH) {
649 /* wrong base address */
650 return 0;
652 if (!get_pte(env, *vaddr, direntry_size, &entry)) {
653 return 0;
656 if ((entry & (1 << psn)) && hugepg) {
657 *huge_page = true;
658 *hgpg_directory_hit = true;
659 entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
660 w = directory_index - 1;
661 if (directory_index & 0x1) {
662 /* Generate adjacent page from same PTE for odd TLB page */
663 lsb = BIT_ULL(w) >> 6;
664 *pw_entrylo0 = entry & ~lsb; /* even page */
665 *pw_entrylo1 = entry | lsb; /* odd page */
666 } else if (dph) {
667 int oddpagebit = 1 << leaf_shift;
668 uint64_t vaddr2 = *vaddr ^ oddpagebit;
669 if (*vaddr & oddpagebit) {
670 *pw_entrylo1 = entry;
671 } else {
672 *pw_entrylo0 = entry;
674 if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
675 cpu_mmu_index(env, false)) !=
676 TLBRET_MATCH) {
677 return 0;
679 if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
680 return 0;
682 entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
683 if (*vaddr & oddpagebit) {
684 *pw_entrylo0 = entry;
685 } else {
686 *pw_entrylo1 = entry;
688 } else {
689 return 0;
691 return 1;
692 } else {
693 *vaddr = entry;
694 return 2;
698 static bool page_table_walk_refill(CPUMIPSState *env, vaddr address,
699 int mmu_idx)
701 int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
702 int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
703 int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
704 int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
705 int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
707 /* Initial values */
708 bool huge_page = false;
709 bool hgpg_bdhit = false;
710 bool hgpg_gdhit = false;
711 bool hgpg_udhit = false;
712 bool hgpg_mdhit = false;
714 int32_t pw_pagemask = 0;
715 target_ulong pw_entryhi = 0;
716 uint64_t pw_entrylo0 = 0;
717 uint64_t pw_entrylo1 = 0;
719 /* Native pointer size */
720 /*For the 32-bit architectures, this bit is fixed to 0.*/
721 int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
723 /* Indices from PWField */
724 int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
725 int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
726 int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
727 int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
728 int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
730 /* Indices computed from faulting address */
731 int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
732 int uindex = (address >> pf_udw) & ((1 << udw) - 1);
733 int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
734 int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
736 /* Other HTW configs */
737 int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
739 /* HTW Shift values (depend on entry size) */
740 int directory_shift = (ptew > 1) ? -1 :
741 (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
742 int leaf_shift = (ptew > 1) ? -1 :
743 (ptew == 1) ? native_shift + 1 : native_shift;
745 /* Offsets into tables */
746 int goffset = gindex << directory_shift;
747 int uoffset = uindex << directory_shift;
748 int moffset = mindex << directory_shift;
749 int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
750 int ptoffset1 = ptoffset0 | (1 << (leaf_shift));
752 uint32_t leafentry_size = 1 << (leaf_shift + 3);
754 /* Starting address - Page Table Base */
755 uint64_t vaddr = env->CP0_PWBase;
757 uint64_t dir_entry;
758 uint64_t paddr;
759 int prot;
760 int m;
762 if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
763 /* walker is unimplemented */
764 return false;
766 if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
767 /* walker is disabled */
768 return false;
770 if (!(gdw > 0 || udw > 0 || mdw > 0)) {
771 /* no structure to walk */
772 return false;
774 if ((directory_shift == -1) || (leaf_shift == -1)) {
775 return false;
778 /* Global Directory */
779 if (gdw > 0) {
780 vaddr |= goffset;
781 switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
782 &pw_entrylo0, &pw_entrylo1))
784 case 0:
785 return false;
786 case 1:
787 goto refill;
788 case 2:
789 default:
790 break;
794 /* Upper directory */
795 if (udw > 0) {
796 vaddr |= uoffset;
797 switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
798 &pw_entrylo0, &pw_entrylo1))
800 case 0:
801 return false;
802 case 1:
803 goto refill;
804 case 2:
805 default:
806 break;
810 /* Middle directory */
811 if (mdw > 0) {
812 vaddr |= moffset;
813 switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
814 &pw_entrylo0, &pw_entrylo1))
816 case 0:
817 return false;
818 case 1:
819 goto refill;
820 case 2:
821 default:
822 break;
826 /* Leaf Level Page Table - First half of PTE pair */
827 vaddr |= ptoffset0;
828 if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
829 cpu_mmu_index(env, false)) !=
830 TLBRET_MATCH) {
831 return false;
833 if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
834 return false;
836 dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
837 pw_entrylo0 = dir_entry;
839 /* Leaf Level Page Table - Second half of PTE pair */
840 vaddr |= ptoffset1;
841 if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
842 cpu_mmu_index(env, false)) !=
843 TLBRET_MATCH) {
844 return false;
846 if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
847 return false;
849 dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
850 pw_entrylo1 = dir_entry;
852 refill:
854 m = (1 << pf_ptw) - 1;
856 if (huge_page) {
857 switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
858 hgpg_mdhit)
860 case 4:
861 m = (1 << pf_gdw) - 1;
862 if (pf_gdw & 1) {
863 m >>= 1;
865 break;
866 case 2:
867 m = (1 << pf_udw) - 1;
868 if (pf_udw & 1) {
869 m >>= 1;
871 break;
872 case 1:
873 m = (1 << pf_mdw) - 1;
874 if (pf_mdw & 1) {
875 m >>= 1;
877 break;
880 pw_pagemask = m >> TARGET_PAGE_BITS_MIN;
881 update_pagemask(env, pw_pagemask << CP0PM_MASK, &pw_pagemask);
882 pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
884 target_ulong tmp_entryhi = env->CP0_EntryHi;
885 int32_t tmp_pagemask = env->CP0_PageMask;
886 uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
887 uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
889 env->CP0_EntryHi = pw_entryhi;
890 env->CP0_PageMask = pw_pagemask;
891 env->CP0_EntryLo0 = pw_entrylo0;
892 env->CP0_EntryLo1 = pw_entrylo1;
895 * The hardware page walker inserts a page into the TLB in a manner
896 * identical to a TLBWR instruction as executed by the software refill
897 * handler.
899 r4k_helper_tlbwr(env);
901 env->CP0_EntryHi = tmp_entryhi;
902 env->CP0_PageMask = tmp_pagemask;
903 env->CP0_EntryLo0 = tmp_entrylo0;
904 env->CP0_EntryLo1 = tmp_entrylo1;
906 return true;
908 #endif
910 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
911 MMUAccessType access_type, int mmu_idx,
912 bool probe, uintptr_t retaddr)
914 MIPSCPU *cpu = MIPS_CPU(cs);
915 CPUMIPSState *env = &cpu->env;
916 hwaddr physical;
917 int prot;
918 int ret = TLBRET_BADADDR;
920 /* data access */
921 /* XXX: put correct access by using cpu_restore_state() correctly */
922 ret = get_physical_address(env, &physical, &prot, address,
923 access_type, mmu_idx);
924 switch (ret) {
925 case TLBRET_MATCH:
926 qemu_log_mask(CPU_LOG_MMU,
927 "%s address=%" VADDR_PRIx " physical " TARGET_FMT_plx
928 " prot %d\n", __func__, address, physical, prot);
929 break;
930 default:
931 qemu_log_mask(CPU_LOG_MMU,
932 "%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
933 ret);
934 break;
936 if (ret == TLBRET_MATCH) {
937 tlb_set_page(cs, address & TARGET_PAGE_MASK,
938 physical & TARGET_PAGE_MASK, prot,
939 mmu_idx, TARGET_PAGE_SIZE);
940 return true;
942 #if !defined(TARGET_MIPS64)
943 if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
945 * Memory reads during hardware page table walking are performed
946 * as if they were kernel-mode load instructions.
948 int mode = (env->hflags & MIPS_HFLAG_KSU);
949 bool ret_walker;
950 env->hflags &= ~MIPS_HFLAG_KSU;
951 ret_walker = page_table_walk_refill(env, address, mmu_idx);
952 env->hflags |= mode;
953 if (ret_walker) {
954 ret = get_physical_address(env, &physical, &prot, address,
955 access_type, mmu_idx);
956 if (ret == TLBRET_MATCH) {
957 tlb_set_page(cs, address & TARGET_PAGE_MASK,
958 physical & TARGET_PAGE_MASK, prot,
959 mmu_idx, TARGET_PAGE_SIZE);
960 return true;
964 #endif
965 if (probe) {
966 return false;
969 raise_mmu_exception(env, address, access_type, ret);
970 do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
973 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
974 MMUAccessType access_type, uintptr_t retaddr)
976 hwaddr physical;
977 int prot;
978 int ret = 0;
979 CPUState *cs = env_cpu(env);
981 /* data access */
982 ret = get_physical_address(env, &physical, &prot, address, access_type,
983 cpu_mmu_index(env, false));
984 if (ret == TLBRET_MATCH) {
985 return physical;
988 raise_mmu_exception(env, address, access_type, ret);
989 cpu_loop_exit_restore(cs, retaddr);
992 static void set_hflags_for_handler(CPUMIPSState *env)
994 /* Exception handlers are entered in 32-bit mode. */
995 env->hflags &= ~(MIPS_HFLAG_M16);
996 /* ...except that microMIPS lets you choose. */
997 if (env->insn_flags & ASE_MICROMIPS) {
998 env->hflags |= (!!(env->CP0_Config3 &
999 (1 << CP0C3_ISA_ON_EXC))
1000 << MIPS_HFLAG_M16_SHIFT);
1004 static inline void set_badinstr_registers(CPUMIPSState *env)
1006 if (env->insn_flags & ISA_NANOMIPS32) {
1007 if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1008 uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
1009 if ((instr & 0x10000000) == 0) {
1010 instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
1012 env->CP0_BadInstr = instr;
1014 if ((instr & 0xFC000000) == 0x60000000) {
1015 instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
1016 env->CP0_BadInstrX = instr;
1019 return;
1022 if (env->hflags & MIPS_HFLAG_M16) {
1023 /* TODO: add BadInstr support for microMIPS */
1024 return;
1026 if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1027 env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
1029 if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
1030 (env->hflags & MIPS_HFLAG_BMASK)) {
1031 env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
1035 void mips_cpu_do_interrupt(CPUState *cs)
1037 MIPSCPU *cpu = MIPS_CPU(cs);
1038 CPUMIPSState *env = &cpu->env;
1039 bool update_badinstr = 0;
1040 target_ulong offset;
1041 int cause = -1;
1043 if (qemu_loglevel_mask(CPU_LOG_INT)
1044 && cs->exception_index != EXCP_EXT_INTERRUPT) {
1045 qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
1046 " %s exception\n",
1047 __func__, env->active_tc.PC, env->CP0_EPC,
1048 mips_exception_name(cs->exception_index));
1050 if (cs->exception_index == EXCP_EXT_INTERRUPT &&
1051 (env->hflags & MIPS_HFLAG_DM)) {
1052 cs->exception_index = EXCP_DINT;
1054 offset = 0x180;
1055 switch (cs->exception_index) {
1056 case EXCP_DSS:
1057 env->CP0_Debug |= 1 << CP0DB_DSS;
1059 * Debug single step cannot be raised inside a delay slot and
1060 * resume will always occur on the next instruction
1061 * (but we assume the pc has always been updated during
1062 * code translation).
1064 env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
1065 goto enter_debug_mode;
1066 case EXCP_DINT:
1067 env->CP0_Debug |= 1 << CP0DB_DINT;
1068 goto set_DEPC;
1069 case EXCP_DIB:
1070 env->CP0_Debug |= 1 << CP0DB_DIB;
1071 goto set_DEPC;
1072 case EXCP_DBp:
1073 env->CP0_Debug |= 1 << CP0DB_DBp;
1074 /* Setup DExcCode - SDBBP instruction */
1075 env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) |
1076 (9 << CP0DB_DEC);
1077 goto set_DEPC;
1078 case EXCP_DDBS:
1079 env->CP0_Debug |= 1 << CP0DB_DDBS;
1080 goto set_DEPC;
1081 case EXCP_DDBL:
1082 env->CP0_Debug |= 1 << CP0DB_DDBL;
1083 set_DEPC:
1084 env->CP0_DEPC = exception_resume_pc(env);
1085 env->hflags &= ~MIPS_HFLAG_BMASK;
1086 enter_debug_mode:
1087 if (env->insn_flags & ISA_MIPS3) {
1088 env->hflags |= MIPS_HFLAG_64;
1089 if (!(env->insn_flags & ISA_MIPS_R6) ||
1090 env->CP0_Status & (1 << CP0St_KX)) {
1091 env->hflags &= ~MIPS_HFLAG_AWRAP;
1094 env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
1095 env->hflags &= ~(MIPS_HFLAG_KSU);
1096 /* EJTAG probe trap enable is not implemented... */
1097 if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1098 env->CP0_Cause &= ~(1U << CP0Ca_BD);
1100 env->active_tc.PC = env->exception_base + 0x480;
1101 set_hflags_for_handler(env);
1102 break;
1103 case EXCP_RESET:
1104 cpu_reset(CPU(cpu));
1105 break;
1106 case EXCP_SRESET:
1107 env->CP0_Status |= (1 << CP0St_SR);
1108 memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
1109 goto set_error_EPC;
1110 case EXCP_NMI:
1111 env->CP0_Status |= (1 << CP0St_NMI);
1112 set_error_EPC:
1113 env->CP0_ErrorEPC = exception_resume_pc(env);
1114 env->hflags &= ~MIPS_HFLAG_BMASK;
1115 env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
1116 if (env->insn_flags & ISA_MIPS3) {
1117 env->hflags |= MIPS_HFLAG_64;
1118 if (!(env->insn_flags & ISA_MIPS_R6) ||
1119 env->CP0_Status & (1 << CP0St_KX)) {
1120 env->hflags &= ~MIPS_HFLAG_AWRAP;
1123 env->hflags |= MIPS_HFLAG_CP0;
1124 env->hflags &= ~(MIPS_HFLAG_KSU);
1125 if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1126 env->CP0_Cause &= ~(1U << CP0Ca_BD);
1128 env->active_tc.PC = env->exception_base;
1129 set_hflags_for_handler(env);
1130 break;
1131 case EXCP_EXT_INTERRUPT:
1132 cause = 0;
1133 if (env->CP0_Cause & (1 << CP0Ca_IV)) {
1134 uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
1136 if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
1137 offset = 0x200;
1138 } else {
1139 uint32_t vector = 0;
1140 uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
1142 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
1144 * For VEIC mode, the external interrupt controller feeds
1145 * the vector through the CP0Cause IP lines.
1147 vector = pending;
1148 } else {
1150 * Vectored Interrupts
1151 * Mask with Status.IM7-IM0 to get enabled interrupts.
1153 pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
1154 /* Find the highest-priority interrupt. */
1155 while (pending >>= 1) {
1156 vector++;
1159 offset = 0x200 + (vector * (spacing << 5));
1162 goto set_EPC;
1163 case EXCP_LTLBL:
1164 cause = 1;
1165 update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1166 goto set_EPC;
1167 case EXCP_TLBL:
1168 cause = 2;
1169 update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1170 if ((env->error_code & EXCP_TLB_NOMATCH) &&
1171 !(env->CP0_Status & (1 << CP0St_EXL))) {
1172 #if defined(TARGET_MIPS64)
1173 int R = env->CP0_BadVAddr >> 62;
1174 int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1175 int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1177 if ((R != 0 || UX) && (R != 3 || KX) &&
1178 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1179 offset = 0x080;
1180 } else {
1181 #endif
1182 offset = 0x000;
1183 #if defined(TARGET_MIPS64)
1185 #endif
1187 goto set_EPC;
1188 case EXCP_TLBS:
1189 cause = 3;
1190 update_badinstr = 1;
1191 if ((env->error_code & EXCP_TLB_NOMATCH) &&
1192 !(env->CP0_Status & (1 << CP0St_EXL))) {
1193 #if defined(TARGET_MIPS64)
1194 int R = env->CP0_BadVAddr >> 62;
1195 int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1196 int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1198 if ((R != 0 || UX) && (R != 3 || KX) &&
1199 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1200 offset = 0x080;
1201 } else {
1202 #endif
1203 offset = 0x000;
1204 #if defined(TARGET_MIPS64)
1206 #endif
1208 goto set_EPC;
1209 case EXCP_AdEL:
1210 cause = 4;
1211 update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1212 goto set_EPC;
1213 case EXCP_AdES:
1214 cause = 5;
1215 update_badinstr = 1;
1216 goto set_EPC;
1217 case EXCP_IBE:
1218 cause = 6;
1219 goto set_EPC;
1220 case EXCP_DBE:
1221 cause = 7;
1222 goto set_EPC;
1223 case EXCP_SYSCALL:
1224 cause = 8;
1225 update_badinstr = 1;
1226 goto set_EPC;
1227 case EXCP_BREAK:
1228 cause = 9;
1229 update_badinstr = 1;
1230 goto set_EPC;
1231 case EXCP_RI:
1232 cause = 10;
1233 update_badinstr = 1;
1234 goto set_EPC;
1235 case EXCP_CpU:
1236 cause = 11;
1237 update_badinstr = 1;
1238 env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
1239 (env->error_code << CP0Ca_CE);
1240 goto set_EPC;
1241 case EXCP_OVERFLOW:
1242 cause = 12;
1243 update_badinstr = 1;
1244 goto set_EPC;
1245 case EXCP_TRAP:
1246 cause = 13;
1247 update_badinstr = 1;
1248 goto set_EPC;
1249 case EXCP_MSAFPE:
1250 cause = 14;
1251 update_badinstr = 1;
1252 goto set_EPC;
1253 case EXCP_FPE:
1254 cause = 15;
1255 update_badinstr = 1;
1256 goto set_EPC;
1257 case EXCP_C2E:
1258 cause = 18;
1259 goto set_EPC;
1260 case EXCP_TLBRI:
1261 cause = 19;
1262 update_badinstr = 1;
1263 goto set_EPC;
1264 case EXCP_TLBXI:
1265 cause = 20;
1266 goto set_EPC;
1267 case EXCP_MSADIS:
1268 cause = 21;
1269 update_badinstr = 1;
1270 goto set_EPC;
1271 case EXCP_MDMX:
1272 cause = 22;
1273 goto set_EPC;
1274 case EXCP_DWATCH:
1275 cause = 23;
1276 /* XXX: TODO: manage deferred watch exceptions */
1277 goto set_EPC;
1278 case EXCP_MCHECK:
1279 cause = 24;
1280 goto set_EPC;
1281 case EXCP_THREAD:
1282 cause = 25;
1283 goto set_EPC;
1284 case EXCP_DSPDIS:
1285 cause = 26;
1286 goto set_EPC;
1287 case EXCP_CACHE:
1288 cause = 30;
1289 offset = 0x100;
1290 set_EPC:
1291 if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1292 env->CP0_EPC = exception_resume_pc(env);
1293 if (update_badinstr) {
1294 set_badinstr_registers(env);
1296 if (env->hflags & MIPS_HFLAG_BMASK) {
1297 env->CP0_Cause |= (1U << CP0Ca_BD);
1298 } else {
1299 env->CP0_Cause &= ~(1U << CP0Ca_BD);
1301 env->CP0_Status |= (1 << CP0St_EXL);
1302 if (env->insn_flags & ISA_MIPS3) {
1303 env->hflags |= MIPS_HFLAG_64;
1304 if (!(env->insn_flags & ISA_MIPS_R6) ||
1305 env->CP0_Status & (1 << CP0St_KX)) {
1306 env->hflags &= ~MIPS_HFLAG_AWRAP;
1309 env->hflags |= MIPS_HFLAG_CP0;
1310 env->hflags &= ~(MIPS_HFLAG_KSU);
1312 env->hflags &= ~MIPS_HFLAG_BMASK;
1313 if (env->CP0_Status & (1 << CP0St_BEV)) {
1314 env->active_tc.PC = env->exception_base + 0x200;
1315 } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
1316 env->CP0_Config5 & (1 << CP0C5_CV))) {
1317 /* Force KSeg1 for cache errors */
1318 env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
1319 } else {
1320 env->active_tc.PC = env->CP0_EBase & ~0xfff;
1323 env->active_tc.PC += offset;
1324 set_hflags_for_handler(env);
1325 env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) |
1326 (cause << CP0Ca_EC);
1327 break;
1328 default:
1329 abort();
1331 if (qemu_loglevel_mask(CPU_LOG_INT)
1332 && cs->exception_index != EXCP_EXT_INTERRUPT) {
1333 qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
1334 " S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
1335 __func__, env->active_tc.PC, env->CP0_EPC, cause,
1336 env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
1337 env->CP0_DEPC);
1339 cs->exception_index = EXCP_NONE;
1342 bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
1344 if (interrupt_request & CPU_INTERRUPT_HARD) {
1345 MIPSCPU *cpu = MIPS_CPU(cs);
1346 CPUMIPSState *env = &cpu->env;
1348 if (cpu_mips_hw_interrupts_enabled(env) &&
1349 cpu_mips_hw_interrupts_pending(env)) {
1350 /* Raise it */
1351 cs->exception_index = EXCP_EXT_INTERRUPT;
1352 env->error_code = 0;
1353 mips_cpu_do_interrupt(cs);
1354 return true;
1357 return false;
1360 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra)
1362 CPUState *cs = env_cpu(env);
1363 r4k_tlb_t *tlb;
1364 target_ulong addr;
1365 target_ulong end;
1366 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
1367 uint32_t MMID = env->CP0_MemoryMapID;
1368 bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
1369 uint32_t tlb_mmid;
1370 target_ulong mask;
1372 MMID = mi ? MMID : (uint32_t) ASID;
1374 tlb = &env->tlb->mmu.r4k.tlb[idx];
1376 * The qemu TLB is flushed when the ASID/MMID changes, so no need to
1377 * flush these entries again.
1379 tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
1380 if (tlb->G == 0 && tlb_mmid != MMID) {
1381 return;
1384 if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
1386 * For tlbwr, we can shadow the discarded entry into
1387 * a new (fake) TLB entry, as long as the guest can not
1388 * tell that it's there.
1390 env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
1391 env->tlb->tlb_in_use++;
1392 return;
1395 /* 1k pages are not supported. */
1396 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1397 if (tlb->V0) {
1398 addr = tlb->VPN & ~mask;
1399 #if defined(TARGET_MIPS64)
1400 if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1401 addr |= 0x3FFFFF0000000000ULL;
1403 #endif
1404 end = addr | (mask >> 1);
1405 while (addr < end) {
1406 tlb_flush_page(cs, addr);
1407 addr += TARGET_PAGE_SIZE;
1410 if (tlb->V1) {
1411 addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
1412 #if defined(TARGET_MIPS64)
1413 if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1414 addr |= 0x3FFFFF0000000000ULL;
1416 #endif
1417 end = addr | mask;
1418 while (addr - 1 < end) {
1419 tlb_flush_page(cs, addr);
1420 addr += TARGET_PAGE_SIZE;