file-posix: remove incorrect coroutine_fn calls
[qemu/kevin.git] / target / arm / debug_helper.c
blob8362462a07e85d9512ef606e194baa7a522f50d2
1 /*
2 * ARM debug helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8 #include "qemu/osdep.h"
9 #include "qemu/log.h"
10 #include "cpu.h"
11 #include "internals.h"
12 #include "cpregs.h"
13 #include "exec/exec-all.h"
14 #include "exec/helper-proto.h"
15 #include "sysemu/tcg.h"
17 #ifdef CONFIG_TCG
18 /* Return the Exception Level targeted by debug exceptions. */
19 static int arm_debug_target_el(CPUARMState *env)
21 bool secure = arm_is_secure(env);
22 bool route_to_el2 = false;
24 if (arm_is_el2_enabled(env)) {
25 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
26 env->cp15.mdcr_el2 & MDCR_TDE;
29 if (route_to_el2) {
30 return 2;
31 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
32 !arm_el_is_aa64(env, 3) && secure) {
33 return 3;
34 } else {
35 return 1;
40 * Raise an exception to the debug target el.
41 * Modify syndrome to indicate when origin and target EL are the same.
43 G_NORETURN static void
44 raise_exception_debug(CPUARMState *env, uint32_t excp, uint32_t syndrome)
46 int debug_el = arm_debug_target_el(env);
47 int cur_el = arm_current_el(env);
50 * If singlestep is targeting a lower EL than the current one, then
51 * DisasContext.ss_active must be false and we can never get here.
52 * Similarly for watchpoint and breakpoint matches.
54 assert(debug_el >= cur_el);
55 syndrome |= (debug_el == cur_el) << ARM_EL_EC_SHIFT;
56 raise_exception(env, excp, syndrome, debug_el);
59 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
60 static bool aa64_generate_debug_exceptions(CPUARMState *env)
62 int cur_el = arm_current_el(env);
63 int debug_el;
65 if (cur_el == 3) {
66 return false;
69 /* MDCR_EL3.SDD disables debug events from Secure state */
70 if (arm_is_secure_below_el3(env)
71 && extract32(env->cp15.mdcr_el3, 16, 1)) {
72 return false;
76 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
77 * while not masking the (D)ebug bit in DAIF.
79 debug_el = arm_debug_target_el(env);
81 if (cur_el == debug_el) {
82 return extract32(env->cp15.mdscr_el1, 13, 1)
83 && !(env->daif & PSTATE_D);
86 /* Otherwise the debug target needs to be a higher EL */
87 return debug_el > cur_el;
90 static bool aa32_generate_debug_exceptions(CPUARMState *env)
92 int el = arm_current_el(env);
94 if (el == 0 && arm_el_is_aa64(env, 1)) {
95 return aa64_generate_debug_exceptions(env);
98 if (arm_is_secure(env)) {
99 int spd;
101 if (el == 0 && (env->cp15.sder & 1)) {
103 * SDER.SUIDEN means debug exceptions from Secure EL0
104 * are always enabled. Otherwise they are controlled by
105 * SDCR.SPD like those from other Secure ELs.
107 return true;
110 spd = extract32(env->cp15.mdcr_el3, 14, 2);
111 switch (spd) {
112 case 1:
113 /* SPD == 0b01 is reserved, but behaves as 0b00. */
114 case 0:
116 * For 0b00 we return true if external secure invasive debug
117 * is enabled. On real hardware this is controlled by external
118 * signals to the core. QEMU always permits debug, and behaves
119 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
121 return true;
122 case 2:
123 return false;
124 case 3:
125 return true;
129 return el != 2;
133 * Return true if debugging exceptions are currently enabled.
134 * This corresponds to what in ARM ARM pseudocode would be
135 * if UsingAArch32() then
136 * return AArch32.GenerateDebugExceptions()
137 * else
138 * return AArch64.GenerateDebugExceptions()
139 * We choose to push the if() down into this function for clarity,
140 * since the pseudocode has it at all callsites except for the one in
141 * CheckSoftwareStep(), where it is elided because both branches would
142 * always return the same value.
144 bool arm_generate_debug_exceptions(CPUARMState *env)
146 if ((env->cp15.oslsr_el1 & 1) || (env->cp15.osdlr_el1 & 1)) {
147 return false;
149 if (is_a64(env)) {
150 return aa64_generate_debug_exceptions(env);
151 } else {
152 return aa32_generate_debug_exceptions(env);
157 * Is single-stepping active? (Note that the "is EL_D AArch64?" check
158 * implicitly means this always returns false in pre-v8 CPUs.)
160 bool arm_singlestep_active(CPUARMState *env)
162 return extract32(env->cp15.mdscr_el1, 0, 1)
163 && arm_el_is_aa64(env, arm_debug_target_el(env))
164 && arm_generate_debug_exceptions(env);
167 /* Return true if the linked breakpoint entry lbn passes its checks */
168 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
170 CPUARMState *env = &cpu->env;
171 uint64_t bcr = env->cp15.dbgbcr[lbn];
172 int brps = arm_num_brps(cpu);
173 int ctx_cmps = arm_num_ctx_cmps(cpu);
174 int bt;
175 uint32_t contextidr;
176 uint64_t hcr_el2;
179 * Links to unimplemented or non-context aware breakpoints are
180 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
181 * as if linked to an UNKNOWN context-aware breakpoint (in which
182 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
183 * We choose the former.
185 if (lbn >= brps || lbn < (brps - ctx_cmps)) {
186 return false;
189 bcr = env->cp15.dbgbcr[lbn];
191 if (extract64(bcr, 0, 1) == 0) {
192 /* Linked breakpoint disabled : generate no events */
193 return false;
196 bt = extract64(bcr, 20, 4);
197 hcr_el2 = arm_hcr_el2_eff(env);
199 switch (bt) {
200 case 3: /* linked context ID match */
201 switch (arm_current_el(env)) {
202 default:
203 /* Context matches never fire in AArch64 EL3 */
204 return false;
205 case 2:
206 if (!(hcr_el2 & HCR_E2H)) {
207 /* Context matches never fire in EL2 without E2H enabled. */
208 return false;
210 contextidr = env->cp15.contextidr_el[2];
211 break;
212 case 1:
213 contextidr = env->cp15.contextidr_el[1];
214 break;
215 case 0:
216 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
217 contextidr = env->cp15.contextidr_el[2];
218 } else {
219 contextidr = env->cp15.contextidr_el[1];
221 break;
223 break;
225 case 7: /* linked contextidr_el1 match */
226 contextidr = env->cp15.contextidr_el[1];
227 break;
228 case 13: /* linked contextidr_el2 match */
229 contextidr = env->cp15.contextidr_el[2];
230 break;
232 case 9: /* linked VMID match (reserved if no EL2) */
233 case 11: /* linked context ID and VMID match (reserved if no EL2) */
234 case 15: /* linked full context ID match */
235 default:
237 * Links to Unlinked context breakpoints must generate no
238 * events; we choose to do the same for reserved values too.
240 return false;
244 * We match the whole register even if this is AArch32 using the
245 * short descriptor format (in which case it holds both PROCID and ASID),
246 * since we don't implement the optional v7 context ID masking.
248 return contextidr == (uint32_t)env->cp15.dbgbvr[lbn];
251 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
253 CPUARMState *env = &cpu->env;
254 uint64_t cr;
255 int pac, hmc, ssc, wt, lbn;
257 * Note that for watchpoints the check is against the CPU security
258 * state, not the S/NS attribute on the offending data access.
260 bool is_secure = arm_is_secure(env);
261 int access_el = arm_current_el(env);
263 if (is_wp) {
264 CPUWatchpoint *wp = env->cpu_watchpoint[n];
266 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
267 return false;
269 cr = env->cp15.dbgwcr[n];
270 if (wp->hitattrs.user) {
272 * The LDRT/STRT/LDT/STT "unprivileged access" instructions should
273 * match watchpoints as if they were accesses done at EL0, even if
274 * the CPU is at EL1 or higher.
276 access_el = 0;
278 } else {
279 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
281 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
282 return false;
284 cr = env->cp15.dbgbcr[n];
287 * The WATCHPOINT_HIT flag guarantees us that the watchpoint is
288 * enabled and that the address and access type match; for breakpoints
289 * we know the address matched; check the remaining fields, including
290 * linked breakpoints. We rely on WCR and BCR having the same layout
291 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
292 * Note that some combinations of {PAC, HMC, SSC} are reserved and
293 * must act either like some valid combination or as if the watchpoint
294 * were disabled. We choose the former, and use this together with
295 * the fact that EL3 must always be Secure and EL2 must always be
296 * Non-Secure to simplify the code slightly compared to the full
297 * table in the ARM ARM.
299 pac = FIELD_EX64(cr, DBGWCR, PAC);
300 hmc = FIELD_EX64(cr, DBGWCR, HMC);
301 ssc = FIELD_EX64(cr, DBGWCR, SSC);
303 switch (ssc) {
304 case 0:
305 break;
306 case 1:
307 case 3:
308 if (is_secure) {
309 return false;
311 break;
312 case 2:
313 if (!is_secure) {
314 return false;
316 break;
319 switch (access_el) {
320 case 3:
321 case 2:
322 if (!hmc) {
323 return false;
325 break;
326 case 1:
327 if (extract32(pac, 0, 1) == 0) {
328 return false;
330 break;
331 case 0:
332 if (extract32(pac, 1, 1) == 0) {
333 return false;
335 break;
336 default:
337 g_assert_not_reached();
340 wt = FIELD_EX64(cr, DBGWCR, WT);
341 lbn = FIELD_EX64(cr, DBGWCR, LBN);
343 if (wt && !linked_bp_matches(cpu, lbn)) {
344 return false;
347 return true;
350 static bool check_watchpoints(ARMCPU *cpu)
352 CPUARMState *env = &cpu->env;
353 int n;
356 * If watchpoints are disabled globally or we can't take debug
357 * exceptions here then watchpoint firings are ignored.
359 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
360 || !arm_generate_debug_exceptions(env)) {
361 return false;
364 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
365 if (bp_wp_matches(cpu, n, true)) {
366 return true;
369 return false;
372 bool arm_debug_check_breakpoint(CPUState *cs)
374 ARMCPU *cpu = ARM_CPU(cs);
375 CPUARMState *env = &cpu->env;
376 target_ulong pc;
377 int n;
380 * If breakpoints are disabled globally or we can't take debug
381 * exceptions here then breakpoint firings are ignored.
383 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
384 || !arm_generate_debug_exceptions(env)) {
385 return false;
389 * Single-step exceptions have priority over breakpoint exceptions.
390 * If single-step state is active-pending, suppress the bp.
392 if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
393 return false;
397 * PC alignment faults have priority over breakpoint exceptions.
399 pc = is_a64(env) ? env->pc : env->regs[15];
400 if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
401 return false;
405 * Instruction aborts have priority over breakpoint exceptions.
406 * TODO: We would need to look up the page for PC and verify that
407 * it is present and executable.
410 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
411 if (bp_wp_matches(cpu, n, false)) {
412 return true;
415 return false;
418 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
421 * Called by core code when a CPU watchpoint fires; need to check if this
422 * is also an architectural watchpoint match.
424 ARMCPU *cpu = ARM_CPU(cs);
426 return check_watchpoints(cpu);
430 * Return the FSR value for a debug exception (watchpoint, hardware
431 * breakpoint or BKPT insn) targeting the specified exception level.
433 static uint32_t arm_debug_exception_fsr(CPUARMState *env)
435 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
436 int target_el = arm_debug_target_el(env);
437 bool using_lpae = false;
439 if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
440 using_lpae = true;
441 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
442 arm_feature(env, ARM_FEATURE_V8)) {
443 using_lpae = true;
444 } else {
445 if (arm_feature(env, ARM_FEATURE_LPAE) &&
446 (env->cp15.tcr_el[target_el] & TTBCR_EAE)) {
447 using_lpae = true;
451 if (using_lpae) {
452 return arm_fi_to_lfsc(&fi);
453 } else {
454 return arm_fi_to_sfsc(&fi);
458 void arm_debug_excp_handler(CPUState *cs)
461 * Called by core code when a watchpoint or breakpoint fires;
462 * need to check which one and raise the appropriate exception.
464 ARMCPU *cpu = ARM_CPU(cs);
465 CPUARMState *env = &cpu->env;
466 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
468 if (wp_hit) {
469 if (wp_hit->flags & BP_CPU) {
470 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
472 cs->watchpoint_hit = NULL;
474 env->exception.fsr = arm_debug_exception_fsr(env);
475 env->exception.vaddress = wp_hit->hitaddr;
476 raise_exception_debug(env, EXCP_DATA_ABORT,
477 syn_watchpoint(0, 0, wnr));
479 } else {
480 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
483 * (1) GDB breakpoints should be handled first.
484 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
485 * since singlestep is also done by generating a debug internal
486 * exception.
488 if (cpu_breakpoint_test(cs, pc, BP_GDB)
489 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
490 return;
493 env->exception.fsr = arm_debug_exception_fsr(env);
495 * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
496 * values to the guest that it shouldn't be able to see at its
497 * exception/security level.
499 env->exception.vaddress = 0;
500 raise_exception_debug(env, EXCP_PREFETCH_ABORT, syn_breakpoint(0));
505 * Raise an EXCP_BKPT with the specified syndrome register value,
506 * targeting the correct exception level for debug exceptions.
508 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
510 int debug_el = arm_debug_target_el(env);
511 int cur_el = arm_current_el(env);
513 /* FSR will only be used if the debug target EL is AArch32. */
514 env->exception.fsr = arm_debug_exception_fsr(env);
516 * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
517 * values to the guest that it shouldn't be able to see at its
518 * exception/security level.
520 env->exception.vaddress = 0;
522 * Other kinds of architectural debug exception are ignored if
523 * they target an exception level below the current one (in QEMU
524 * this is checked by arm_generate_debug_exceptions()). Breakpoint
525 * instructions are special because they always generate an exception
526 * to somewhere: if they can't go to the configured debug exception
527 * level they are taken to the current exception level.
529 if (debug_el < cur_el) {
530 debug_el = cur_el;
532 raise_exception(env, EXCP_BKPT, syndrome, debug_el);
535 void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
537 raise_exception_debug(env, EXCP_UDEF, syndrome);
540 void hw_watchpoint_update(ARMCPU *cpu, int n)
542 CPUARMState *env = &cpu->env;
543 vaddr len = 0;
544 vaddr wvr = env->cp15.dbgwvr[n];
545 uint64_t wcr = env->cp15.dbgwcr[n];
546 int mask;
547 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
549 if (env->cpu_watchpoint[n]) {
550 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
551 env->cpu_watchpoint[n] = NULL;
554 if (!FIELD_EX64(wcr, DBGWCR, E)) {
555 /* E bit clear : watchpoint disabled */
556 return;
559 switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
560 case 0:
561 /* LSC 00 is reserved and must behave as if the wp is disabled */
562 return;
563 case 1:
564 flags |= BP_MEM_READ;
565 break;
566 case 2:
567 flags |= BP_MEM_WRITE;
568 break;
569 case 3:
570 flags |= BP_MEM_ACCESS;
571 break;
575 * Attempts to use both MASK and BAS fields simultaneously are
576 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
577 * thus generating a watchpoint for every byte in the masked region.
579 mask = FIELD_EX64(wcr, DBGWCR, MASK);
580 if (mask == 1 || mask == 2) {
582 * Reserved values of MASK; we must act as if the mask value was
583 * some non-reserved value, or as if the watchpoint were disabled.
584 * We choose the latter.
586 return;
587 } else if (mask) {
588 /* Watchpoint covers an aligned area up to 2GB in size */
589 len = 1ULL << mask;
591 * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
592 * whether the watchpoint fires when the unmasked bits match; we opt
593 * to generate the exceptions.
595 wvr &= ~(len - 1);
596 } else {
597 /* Watchpoint covers bytes defined by the byte address select bits */
598 int bas = FIELD_EX64(wcr, DBGWCR, BAS);
599 int basstart;
601 if (extract64(wvr, 2, 1)) {
603 * Deprecated case of an only 4-aligned address. BAS[7:4] are
604 * ignored, and BAS[3:0] define which bytes to watch.
606 bas &= 0xf;
609 if (bas == 0) {
610 /* This must act as if the watchpoint is disabled */
611 return;
615 * The BAS bits are supposed to be programmed to indicate a contiguous
616 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
617 * we fire for each byte in the word/doubleword addressed by the WVR.
618 * We choose to ignore any non-zero bits after the first range of 1s.
620 basstart = ctz32(bas);
621 len = cto32(bas >> basstart);
622 wvr += basstart;
625 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
626 &env->cpu_watchpoint[n]);
629 void hw_watchpoint_update_all(ARMCPU *cpu)
631 int i;
632 CPUARMState *env = &cpu->env;
635 * Completely clear out existing QEMU watchpoints and our array, to
636 * avoid possible stale entries following migration load.
638 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
639 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
641 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
642 hw_watchpoint_update(cpu, i);
646 void hw_breakpoint_update(ARMCPU *cpu, int n)
648 CPUARMState *env = &cpu->env;
649 uint64_t bvr = env->cp15.dbgbvr[n];
650 uint64_t bcr = env->cp15.dbgbcr[n];
651 vaddr addr;
652 int bt;
653 int flags = BP_CPU;
655 if (env->cpu_breakpoint[n]) {
656 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
657 env->cpu_breakpoint[n] = NULL;
660 if (!extract64(bcr, 0, 1)) {
661 /* E bit clear : watchpoint disabled */
662 return;
665 bt = extract64(bcr, 20, 4);
667 switch (bt) {
668 case 4: /* unlinked address mismatch (reserved if AArch64) */
669 case 5: /* linked address mismatch (reserved if AArch64) */
670 qemu_log_mask(LOG_UNIMP,
671 "arm: address mismatch breakpoint types not implemented\n");
672 return;
673 case 0: /* unlinked address match */
674 case 1: /* linked address match */
677 * Bits [1:0] are RES0.
679 * It is IMPLEMENTATION DEFINED whether bits [63:49]
680 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
681 * of the VA field ([48] or [52] for FEAT_LVA), or whether the
682 * value is read as written. It is CONSTRAINED UNPREDICTABLE
683 * whether the RESS bits are ignored when comparing an address.
684 * Therefore we are allowed to compare the entire register, which
685 * lets us avoid considering whether FEAT_LVA is actually enabled.
687 * The BAS field is used to allow setting breakpoints on 16-bit
688 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
689 * a bp will fire if the addresses covered by the bp and the addresses
690 * covered by the insn overlap but the insn doesn't start at the
691 * start of the bp address range. We choose to require the insn and
692 * the bp to have the same address. The constraints on writing to
693 * BAS enforced in dbgbcr_write mean we have only four cases:
694 * 0b0000 => no breakpoint
695 * 0b0011 => breakpoint on addr
696 * 0b1100 => breakpoint on addr + 2
697 * 0b1111 => breakpoint on addr
698 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
700 int bas = extract64(bcr, 5, 4);
701 addr = bvr & ~3ULL;
702 if (bas == 0) {
703 return;
705 if (bas == 0xc) {
706 addr += 2;
708 break;
710 case 2: /* unlinked context ID match */
711 case 8: /* unlinked VMID match (reserved if no EL2) */
712 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
713 qemu_log_mask(LOG_UNIMP,
714 "arm: unlinked context breakpoint types not implemented\n");
715 return;
716 case 9: /* linked VMID match (reserved if no EL2) */
717 case 11: /* linked context ID and VMID match (reserved if no EL2) */
718 case 3: /* linked context ID match */
719 default:
721 * We must generate no events for Linked context matches (unless
722 * they are linked to by some other bp/wp, which is handled in
723 * updates for the linking bp/wp). We choose to also generate no events
724 * for reserved values.
726 return;
729 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
732 void hw_breakpoint_update_all(ARMCPU *cpu)
734 int i;
735 CPUARMState *env = &cpu->env;
738 * Completely clear out existing QEMU breakpoints and our array, to
739 * avoid possible stale entries following migration load.
741 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
742 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
744 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
745 hw_breakpoint_update(cpu, i);
749 #if !defined(CONFIG_USER_ONLY)
751 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
753 ARMCPU *cpu = ARM_CPU(cs);
754 CPUARMState *env = &cpu->env;
757 * In BE32 system mode, target memory is stored byteswapped (on a
758 * little-endian host system), and by the time we reach here (via an
759 * opcode helper) the addresses of subword accesses have been adjusted
760 * to account for that, which means that watchpoints will not match.
761 * Undo the adjustment here.
763 if (arm_sctlr_b(env)) {
764 if (len == 1) {
765 addr ^= 3;
766 } else if (len == 2) {
767 addr ^= 2;
771 return addr;
774 #endif /* !CONFIG_USER_ONLY */
775 #endif /* CONFIG_TCG */
778 * Check for traps to "powerdown debug" registers, which are controlled
779 * by MDCR.TDOSA
781 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
782 bool isread)
784 int el = arm_current_el(env);
785 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
786 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
787 (arm_hcr_el2_eff(env) & HCR_TGE);
789 if (el < 2 && mdcr_el2_tdosa) {
790 return CP_ACCESS_TRAP_EL2;
792 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
793 return CP_ACCESS_TRAP_EL3;
795 return CP_ACCESS_OK;
799 * Check for traps to "debug ROM" registers, which are controlled
800 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
802 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
803 bool isread)
805 int el = arm_current_el(env);
806 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
807 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
808 (arm_hcr_el2_eff(env) & HCR_TGE);
810 if (el < 2 && mdcr_el2_tdra) {
811 return CP_ACCESS_TRAP_EL2;
813 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
814 return CP_ACCESS_TRAP_EL3;
816 return CP_ACCESS_OK;
820 * Check for traps to general debug registers, which are controlled
821 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
823 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
824 bool isread)
826 int el = arm_current_el(env);
827 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
828 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
829 (arm_hcr_el2_eff(env) & HCR_TGE);
831 if (el < 2 && mdcr_el2_tda) {
832 return CP_ACCESS_TRAP_EL2;
834 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
835 return CP_ACCESS_TRAP_EL3;
837 return CP_ACCESS_OK;
841 * Check for traps to Debug Comms Channel registers. If FEAT_FGT
842 * is implemented then these are controlled by MDCR_EL2.TDCC for
843 * EL2 and MDCR_EL3.TDCC for EL3. They are also controlled by
844 * the general debug access trap bits MDCR_EL2.TDA and MDCR_EL3.TDA.
845 * For EL0, they are also controlled by MDSCR_EL1.TDCC.
847 static CPAccessResult access_tdcc(CPUARMState *env, const ARMCPRegInfo *ri,
848 bool isread)
850 int el = arm_current_el(env);
851 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
852 bool mdscr_el1_tdcc = extract32(env->cp15.mdscr_el1, 12, 1);
853 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
854 (arm_hcr_el2_eff(env) & HCR_TGE);
855 bool mdcr_el2_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
856 (mdcr_el2 & MDCR_TDCC);
857 bool mdcr_el3_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
858 (env->cp15.mdcr_el3 & MDCR_TDCC);
860 if (el < 1 && mdscr_el1_tdcc) {
861 return CP_ACCESS_TRAP;
863 if (el < 2 && (mdcr_el2_tda || mdcr_el2_tdcc)) {
864 return CP_ACCESS_TRAP_EL2;
866 if (el < 3 && ((env->cp15.mdcr_el3 & MDCR_TDA) || mdcr_el3_tdcc)) {
867 return CP_ACCESS_TRAP_EL3;
869 return CP_ACCESS_OK;
872 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
873 uint64_t value)
876 * Writes to OSLAR_EL1 may update the OS lock status, which can be
877 * read via a bit in OSLSR_EL1.
879 int oslock;
881 if (ri->state == ARM_CP_STATE_AA32) {
882 oslock = (value == 0xC5ACCE55);
883 } else {
884 oslock = value & 1;
887 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
890 static void osdlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
891 uint64_t value)
893 ARMCPU *cpu = env_archcpu(env);
895 * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
896 * implemented this is RAZ/WI.
898 if(arm_feature(env, ARM_FEATURE_AARCH64)
899 ? cpu_isar_feature(aa64_doublelock, cpu)
900 : cpu_isar_feature(aa32_doublelock, cpu)) {
901 env->cp15.osdlr_el1 = value & 1;
905 static void dbgclaimset_write(CPUARMState *env, const ARMCPRegInfo *ri,
906 uint64_t value)
908 env->cp15.dbgclaim |= (value & 0xFF);
911 static uint64_t dbgclaimset_read(CPUARMState *env, const ARMCPRegInfo *ri)
913 /* CLAIM bits are RAO */
914 return 0xFF;
917 static void dbgclaimclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
918 uint64_t value)
920 env->cp15.dbgclaim &= ~(value & 0xFF);
923 static const ARMCPRegInfo debug_cp_reginfo[] = {
925 * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
926 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
927 * unlike DBGDRAR it is never accessible from EL0.
928 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
929 * accessor.
931 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
932 .access = PL0_R, .accessfn = access_tdra,
933 .type = ARM_CP_CONST, .resetvalue = 0 },
934 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
935 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
936 .access = PL1_R, .accessfn = access_tdra,
937 .type = ARM_CP_CONST, .resetvalue = 0 },
938 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
939 .access = PL0_R, .accessfn = access_tdra,
940 .type = ARM_CP_CONST, .resetvalue = 0 },
941 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
942 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
943 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
944 .access = PL1_RW, .accessfn = access_tda,
945 .fgt = FGT_MDSCR_EL1,
946 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
947 .resetvalue = 0 },
949 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external
950 * Debug Communication Channel is not implemented.
952 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
953 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
954 .access = PL0_R, .accessfn = access_tdcc,
955 .type = ARM_CP_CONST, .resetvalue = 0 },
957 * These registers belong to the Debug Communications Channel,
958 * which is not implemented. However we implement RAZ/WI behaviour
959 * with trapping to prevent spurious SIGILLs if the guest OS does
960 * access them as the support cannot be probed for.
962 { .name = "OSDTRRX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
963 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 2,
964 .access = PL1_RW, .accessfn = access_tdcc,
965 .type = ARM_CP_CONST, .resetvalue = 0 },
966 { .name = "OSDTRTX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
967 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
968 .access = PL1_RW, .accessfn = access_tdcc,
969 .type = ARM_CP_CONST, .resetvalue = 0 },
970 /* DBGDTRTX_EL0/DBGDTRRX_EL0 depend on direction */
971 { .name = "DBGDTR_EL0", .state = ARM_CP_STATE_BOTH, .cp = 14,
972 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 5, .opc2 = 0,
973 .access = PL0_RW, .accessfn = access_tdcc,
974 .type = ARM_CP_CONST, .resetvalue = 0 },
976 * OSECCR_EL1 provides a mechanism for an operating system
977 * to access the contents of EDECCR. EDECCR is not implemented though,
978 * as is the rest of external device mechanism.
980 { .name = "OSECCR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
981 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
982 .access = PL1_RW, .accessfn = access_tda,
983 .fgt = FGT_OSECCR_EL1,
984 .type = ARM_CP_CONST, .resetvalue = 0 },
986 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as
987 * it is unlikely a guest will care.
988 * We don't implement the configurable EL0 access.
990 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
991 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
992 .type = ARM_CP_ALIAS,
993 .access = PL1_R, .accessfn = access_tda,
994 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
995 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
996 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
997 .access = PL1_W, .type = ARM_CP_NO_RAW,
998 .accessfn = access_tdosa,
999 .fgt = FGT_OSLAR_EL1,
1000 .writefn = oslar_write },
1001 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
1002 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
1003 .access = PL1_R, .resetvalue = 10,
1004 .accessfn = access_tdosa,
1005 .fgt = FGT_OSLSR_EL1,
1006 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
1007 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
1008 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
1009 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
1010 .access = PL1_RW, .accessfn = access_tdosa,
1011 .fgt = FGT_OSDLR_EL1,
1012 .writefn = osdlr_write,
1013 .fieldoffset = offsetof(CPUARMState, cp15.osdlr_el1) },
1015 * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
1016 * implement vector catch debug events yet.
1018 { .name = "DBGVCR",
1019 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
1020 .access = PL1_RW, .accessfn = access_tda,
1021 .type = ARM_CP_NOP },
1023 * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
1024 * to save and restore a 32-bit guest's DBGVCR)
1026 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
1027 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
1028 .access = PL2_RW, .accessfn = access_tda,
1029 .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
1031 * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
1032 * Channel but Linux may try to access this register. The 32-bit
1033 * alias is DBGDCCINT.
1035 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
1036 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
1037 .access = PL1_RW, .accessfn = access_tdcc,
1038 .type = ARM_CP_NOP },
1040 * Dummy DBGCLAIM registers.
1041 * "The architecture does not define any functionality for the CLAIM tag bits.",
1042 * so we only keep the raw bits
1044 { .name = "DBGCLAIMSET_EL1", .state = ARM_CP_STATE_BOTH,
1045 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 6,
1046 .type = ARM_CP_ALIAS,
1047 .access = PL1_RW, .accessfn = access_tda,
1048 .fgt = FGT_DBGCLAIM,
1049 .writefn = dbgclaimset_write, .readfn = dbgclaimset_read },
1050 { .name = "DBGCLAIMCLR_EL1", .state = ARM_CP_STATE_BOTH,
1051 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 6,
1052 .access = PL1_RW, .accessfn = access_tda,
1053 .fgt = FGT_DBGCLAIM,
1054 .writefn = dbgclaimclr_write, .raw_writefn = raw_write,
1055 .fieldoffset = offsetof(CPUARMState, cp15.dbgclaim) },
1058 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
1059 /* 64 bit access versions of the (dummy) debug registers */
1060 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1061 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
1062 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1063 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
1066 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1067 uint64_t value)
1069 ARMCPU *cpu = env_archcpu(env);
1070 int i = ri->crm;
1073 * Bits [1:0] are RES0.
1075 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
1076 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
1077 * they contain the value written. It is CONSTRAINED UNPREDICTABLE
1078 * whether the RESS bits are ignored when comparing an address.
1080 * Therefore we are allowed to compare the entire register, which lets
1081 * us avoid considering whether or not FEAT_LVA is actually enabled.
1083 value &= ~3ULL;
1085 raw_write(env, ri, value);
1086 if (tcg_enabled()) {
1087 hw_watchpoint_update(cpu, i);
1091 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1092 uint64_t value)
1094 ARMCPU *cpu = env_archcpu(env);
1095 int i = ri->crm;
1097 raw_write(env, ri, value);
1098 if (tcg_enabled()) {
1099 hw_watchpoint_update(cpu, i);
1103 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104 uint64_t value)
1106 ARMCPU *cpu = env_archcpu(env);
1107 int i = ri->crm;
1109 raw_write(env, ri, value);
1110 if (tcg_enabled()) {
1111 hw_breakpoint_update(cpu, i);
1115 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1116 uint64_t value)
1118 ARMCPU *cpu = env_archcpu(env);
1119 int i = ri->crm;
1122 * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
1123 * copy of BAS[0].
1125 value = deposit64(value, 6, 1, extract64(value, 5, 1));
1126 value = deposit64(value, 8, 1, extract64(value, 7, 1));
1128 raw_write(env, ri, value);
1129 if (tcg_enabled()) {
1130 hw_breakpoint_update(cpu, i);
1134 void define_debug_regs(ARMCPU *cpu)
1137 * Define v7 and v8 architectural debug registers.
1138 * These are just dummy implementations for now.
1140 int i;
1141 int wrps, brps, ctx_cmps;
1144 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
1145 * use AArch32. Given that bit 15 is RES1, if the value is 0 then
1146 * the register must not exist for this cpu.
1148 if (cpu->isar.dbgdidr != 0) {
1149 ARMCPRegInfo dbgdidr = {
1150 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
1151 .opc1 = 0, .opc2 = 0,
1152 .access = PL0_R, .accessfn = access_tda,
1153 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
1155 define_one_arm_cp_reg(cpu, &dbgdidr);
1159 * DBGDEVID is present in the v7 debug architecture if
1160 * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
1161 * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
1162 * from v7.1 of the debug architecture. Because no fields have yet
1163 * been defined in DBGDEVID2 (and quite possibly none will ever
1164 * be) we don't define an ARMISARegisters field for it.
1165 * These registers exist only if EL1 can use AArch32, but that
1166 * happens naturally because they are only PL1 accessible anyway.
1168 if (extract32(cpu->isar.dbgdidr, 15, 1)) {
1169 ARMCPRegInfo dbgdevid = {
1170 .name = "DBGDEVID",
1171 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 2, .crn = 7,
1172 .access = PL1_R, .accessfn = access_tda,
1173 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid,
1175 define_one_arm_cp_reg(cpu, &dbgdevid);
1177 if (cpu_isar_feature(aa32_debugv7p1, cpu)) {
1178 ARMCPRegInfo dbgdevid12[] = {
1180 .name = "DBGDEVID1",
1181 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 1, .crn = 7,
1182 .access = PL1_R, .accessfn = access_tda,
1183 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid1,
1184 }, {
1185 .name = "DBGDEVID2",
1186 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 0, .crn = 7,
1187 .access = PL1_R, .accessfn = access_tda,
1188 .type = ARM_CP_CONST, .resetvalue = 0,
1191 define_arm_cp_regs(cpu, dbgdevid12);
1194 brps = arm_num_brps(cpu);
1195 wrps = arm_num_wrps(cpu);
1196 ctx_cmps = arm_num_ctx_cmps(cpu);
1198 assert(ctx_cmps <= brps);
1200 define_arm_cp_regs(cpu, debug_cp_reginfo);
1202 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
1203 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
1206 for (i = 0; i < brps; i++) {
1207 char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
1208 char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
1209 ARMCPRegInfo dbgregs[] = {
1210 { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
1211 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1212 .access = PL1_RW, .accessfn = access_tda,
1213 .fgt = FGT_DBGBVRN_EL1,
1214 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
1215 .writefn = dbgbvr_write, .raw_writefn = raw_write
1217 { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
1218 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1219 .access = PL1_RW, .accessfn = access_tda,
1220 .fgt = FGT_DBGBCRN_EL1,
1221 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
1222 .writefn = dbgbcr_write, .raw_writefn = raw_write
1225 define_arm_cp_regs(cpu, dbgregs);
1226 g_free(dbgbvr_el1_name);
1227 g_free(dbgbcr_el1_name);
1230 for (i = 0; i < wrps; i++) {
1231 char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
1232 char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
1233 ARMCPRegInfo dbgregs[] = {
1234 { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
1235 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1236 .access = PL1_RW, .accessfn = access_tda,
1237 .fgt = FGT_DBGWVRN_EL1,
1238 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
1239 .writefn = dbgwvr_write, .raw_writefn = raw_write
1241 { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
1242 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1243 .access = PL1_RW, .accessfn = access_tda,
1244 .fgt = FGT_DBGWCRN_EL1,
1245 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
1246 .writefn = dbgwcr_write, .raw_writefn = raw_write
1249 define_arm_cp_regs(cpu, dbgregs);
1250 g_free(dbgwvr_el1_name);
1251 g_free(dbgwcr_el1_name);