hw/i386: changes towards enabling -Wshadow=local for x86 machines
[qemu/kevin.git] / hw / intc / arm_gicv3_cpuif.c
blobd07b13eb270688786c1e5d9be82ccc54a6e5df86
1 /*
2 * ARM Generic Interrupt Controller v3 (emulation)
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/log.h"
18 #include "qemu/main-loop.h"
19 #include "trace.h"
20 #include "gicv3_internal.h"
21 #include "hw/irq.h"
22 #include "cpu.h"
23 #include "target/arm/cpregs.h"
24 #include "sysemu/tcg.h"
25 #include "sysemu/qtest.h"
28 * Special case return value from hppvi_index(); must be larger than
29 * the architecturally maximum possible list register index (which is 15)
31 #define HPPVI_INDEX_VLPI 16
33 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
35 return env->gicv3state;
38 static bool gicv3_use_ns_bank(CPUARMState *env)
40 /* Return true if we should use the NonSecure bank for a banked GIC
41 * CPU interface register. Note that this differs from the
42 * access_secure_reg() function because GICv3 banked registers are
43 * banked even for AArch64, unlike the other CPU system registers.
45 return !arm_is_secure_below_el3(env);
48 /* The minimum BPR for the virtual interface is a configurable property */
49 static inline int icv_min_vbpr(GICv3CPUState *cs)
51 return 7 - cs->vprebits;
54 static inline int ich_num_aprs(GICv3CPUState *cs)
56 /* Return the number of virtual APR registers (1, 2, or 4) */
57 int aprmax = 1 << (cs->vprebits - 5);
58 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
59 return aprmax;
62 /* Simple accessor functions for LR fields */
63 static uint32_t ich_lr_vintid(uint64_t lr)
65 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
68 static uint32_t ich_lr_pintid(uint64_t lr)
70 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
73 static uint32_t ich_lr_prio(uint64_t lr)
75 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
78 static int ich_lr_state(uint64_t lr)
80 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
83 static bool icv_access(CPUARMState *env, int hcr_flags)
85 /* Return true if this ICC_ register access should really be
86 * directed to an ICV_ access. hcr_flags is a mask of
87 * HCR_EL2 bits to check: we treat this as an ICV_ access
88 * if we are in NS EL1 and at least one of the specified
89 * HCR_EL2 bits is set.
91 * ICV registers fall into four categories:
92 * * access if NS EL1 and HCR_EL2.FMO == 1:
93 * all ICV regs with '0' in their name
94 * * access if NS EL1 and HCR_EL2.IMO == 1:
95 * all ICV regs with '1' in their name
96 * * access if NS EL1 and either IMO or FMO == 1:
97 * CTLR, DIR, PMR, RPR
99 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
100 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
102 return flagmatch && arm_current_el(env) == 1
103 && !arm_is_secure_below_el3(env);
106 static int read_vbpr(GICv3CPUState *cs, int grp)
108 /* Read VBPR value out of the VMCR field (caller must handle
109 * VCBPR effects if required)
111 if (grp == GICV3_G0) {
112 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
113 ICH_VMCR_EL2_VBPR0_LENGTH);
114 } else {
115 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
116 ICH_VMCR_EL2_VBPR1_LENGTH);
120 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
122 /* Write new VBPR1 value, handling the "writing a value less than
123 * the minimum sets it to the minimum" semantics.
125 int min = icv_min_vbpr(cs);
127 if (grp != GICV3_G0) {
128 min++;
131 value = MAX(value, min);
133 if (grp == GICV3_G0) {
134 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
135 ICH_VMCR_EL2_VBPR0_LENGTH, value);
136 } else {
137 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
138 ICH_VMCR_EL2_VBPR1_LENGTH, value);
142 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
144 /* Return a mask word which clears the unimplemented priority bits
145 * from a priority value for a virtual interrupt. (Not to be confused
146 * with the group priority, whose mask depends on the value of VBPR
147 * for the interrupt group.)
149 return ~0U << (8 - cs->vpribits);
152 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
154 /* Calculate the current running priority based on the set bits
155 * in the ICH Active Priority Registers.
157 int i;
158 int aprmax = ich_num_aprs(cs);
160 for (i = 0; i < aprmax; i++) {
161 uint32_t apr = cs->ich_apr[GICV3_G0][i] |
162 cs->ich_apr[GICV3_G1NS][i];
164 if (!apr) {
165 continue;
167 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
169 /* No current active interrupts: return idle priority */
170 return 0xff;
173 static int hppvi_index(GICv3CPUState *cs)
176 * Return the list register index of the highest priority pending
177 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
178 * pseudocode. If no pending virtual interrupts, return -1.
179 * If the highest priority pending virtual interrupt is a vLPI,
180 * return HPPVI_INDEX_VLPI.
181 * (The pseudocode handles checking whether the vLPI is higher
182 * priority than the highest priority list register at every
183 * callsite of HighestPriorityVirtualInterrupt; we check it here.)
185 ARMCPU *cpu = ARM_CPU(cs->cpu);
186 CPUARMState *env = &cpu->env;
187 int idx = -1;
188 int i;
189 /* Note that a list register entry with a priority of 0xff will
190 * never be reported by this function; this is the architecturally
191 * correct behaviour.
193 int prio = 0xff;
195 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
196 /* Both groups disabled, definitely nothing to do */
197 return idx;
200 for (i = 0; i < cs->num_list_regs; i++) {
201 uint64_t lr = cs->ich_lr_el2[i];
202 int thisprio;
204 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
205 /* Not Pending */
206 continue;
209 /* Ignore interrupts if relevant group enable not set */
210 if (lr & ICH_LR_EL2_GROUP) {
211 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
212 continue;
214 } else {
215 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
216 continue;
220 thisprio = ich_lr_prio(lr);
222 if (thisprio < prio) {
223 prio = thisprio;
224 idx = i;
229 * "no pending vLPI" is indicated with prio = 0xff, which always
230 * fails the priority check here. vLPIs are only considered
231 * when we are in Non-Secure state.
233 if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) {
234 if (cs->hppvlpi.grp == GICV3_G0) {
235 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) {
236 return HPPVI_INDEX_VLPI;
238 } else {
239 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) {
240 return HPPVI_INDEX_VLPI;
245 return idx;
248 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
250 /* Return a mask word which clears the subpriority bits from
251 * a priority value for a virtual interrupt in the specified group.
252 * This depends on the VBPR value.
253 * If using VBPR0 then:
254 * a BPR of 0 means the group priority bits are [7:1];
255 * a BPR of 1 means they are [7:2], and so on down to
256 * a BPR of 7 meaning no group priority bits at all.
257 * If using VBPR1 then:
258 * a BPR of 0 is impossible (the minimum value is 1)
259 * a BPR of 1 means the group priority bits are [7:1];
260 * a BPR of 2 means they are [7:2], and so on down to
261 * a BPR of 7 meaning the group priority is [7].
263 * Which BPR to use depends on the group of the interrupt and
264 * the current ICH_VMCR_EL2.VCBPR settings.
266 * This corresponds to the VGroupBits() pseudocode.
268 int bpr;
270 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
271 group = GICV3_G0;
274 bpr = read_vbpr(cs, group);
275 if (group == GICV3_G1NS) {
276 assert(bpr > 0);
277 bpr--;
280 return ~0U << (bpr + 1);
283 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
285 /* Return true if we can signal this virtual interrupt defined by
286 * the given list register value; see the pseudocode functions
287 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
288 * Compare also icc_hppi_can_preempt() which is the non-virtual
289 * equivalent of these checks.
291 int grp;
292 uint32_t mask, prio, rprio, vpmr;
294 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
295 /* Virtual interface disabled */
296 return false;
299 /* We don't need to check that this LR is in Pending state because
300 * that has already been done in hppvi_index().
303 prio = ich_lr_prio(lr);
304 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
305 ICH_VMCR_EL2_VPMR_LENGTH);
307 if (prio >= vpmr) {
308 /* Priority mask masks this interrupt */
309 return false;
312 rprio = ich_highest_active_virt_prio(cs);
313 if (rprio == 0xff) {
314 /* No running interrupt so we can preempt */
315 return true;
318 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
320 mask = icv_gprio_mask(cs, grp);
322 /* We only preempt a running interrupt if the pending interrupt's
323 * group priority is sufficient (the subpriorities are not considered).
325 if ((prio & mask) < (rprio & mask)) {
326 return true;
329 return false;
332 static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs)
335 * Return true if we can signal the highest priority pending vLPI.
336 * We can assume we're Non-secure because hppvi_index() already
337 * tested for that.
339 uint32_t mask, rprio, vpmr;
341 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
342 /* Virtual interface disabled */
343 return false;
346 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
347 ICH_VMCR_EL2_VPMR_LENGTH);
349 if (cs->hppvlpi.prio >= vpmr) {
350 /* Priority mask masks this interrupt */
351 return false;
354 rprio = ich_highest_active_virt_prio(cs);
355 if (rprio == 0xff) {
356 /* No running interrupt so we can preempt */
357 return true;
360 mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
363 * We only preempt a running interrupt if the pending interrupt's
364 * group priority is sufficient (the subpriorities are not considered).
366 if ((cs->hppvlpi.prio & mask) < (rprio & mask)) {
367 return true;
370 return false;
373 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
374 uint32_t *misr)
376 /* Return a set of bits indicating the EOI maintenance interrupt status
377 * for each list register. The EOI maintenance interrupt status is
378 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
379 * (see the GICv3 spec for the ICH_EISR_EL2 register).
380 * If misr is not NULL then we should also collect the information
381 * about the MISR.EOI, MISR.NP and MISR.U bits.
383 uint32_t value = 0;
384 int validcount = 0;
385 bool seenpending = false;
386 int i;
388 for (i = 0; i < cs->num_list_regs; i++) {
389 uint64_t lr = cs->ich_lr_el2[i];
391 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
392 == ICH_LR_EL2_EOI) {
393 value |= (1 << i);
395 if ((lr & ICH_LR_EL2_STATE_MASK)) {
396 validcount++;
398 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
399 seenpending = true;
403 if (misr) {
404 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
405 *misr |= ICH_MISR_EL2_U;
407 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
408 *misr |= ICH_MISR_EL2_NP;
410 if (value) {
411 *misr |= ICH_MISR_EL2_EOI;
414 return value;
417 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
419 /* Return a set of bits indicating the maintenance interrupt status
420 * (as seen in the ICH_MISR_EL2 register).
422 uint32_t value = 0;
424 /* Scan list registers and fill in the U, NP and EOI bits */
425 eoi_maintenance_interrupt_state(cs, &value);
427 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) &&
428 (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) {
429 value |= ICH_MISR_EL2_LRENP;
432 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
433 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
434 value |= ICH_MISR_EL2_VGRP0E;
437 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
438 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
439 value |= ICH_MISR_EL2_VGRP0D;
441 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
442 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
443 value |= ICH_MISR_EL2_VGRP1E;
446 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
447 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
448 value |= ICH_MISR_EL2_VGRP1D;
451 return value;
454 void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs)
457 * Tell the CPU about any pending virtual interrupts.
458 * This should only be called for changes that affect the
459 * vIRQ and vFIQ status and do not change the maintenance
460 * interrupt status. This means that unlike gicv3_cpuif_virt_update()
461 * this function won't recursively call back into the GIC code.
462 * The main use of this is when the redistributor has changed the
463 * highest priority pending virtual LPI.
465 int idx;
466 int irqlevel = 0;
467 int fiqlevel = 0;
469 idx = hppvi_index(cs);
470 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx,
471 cs->hppvlpi.irq, cs->hppvlpi.grp,
472 cs->hppvlpi.prio);
473 if (idx == HPPVI_INDEX_VLPI) {
474 if (icv_hppvlpi_can_preempt(cs)) {
475 if (cs->hppvlpi.grp == GICV3_G0) {
476 fiqlevel = 1;
477 } else {
478 irqlevel = 1;
481 } else if (idx >= 0) {
482 uint64_t lr = cs->ich_lr_el2[idx];
484 if (icv_hppi_can_preempt(cs, lr)) {
485 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
486 if (lr & ICH_LR_EL2_GROUP) {
487 irqlevel = 1;
488 } else {
489 fiqlevel = 1;
494 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
495 qemu_set_irq(cs->parent_vfiq, fiqlevel);
496 qemu_set_irq(cs->parent_virq, irqlevel);
499 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
502 * Tell the CPU about any pending virtual interrupts or
503 * maintenance interrupts, following a change to the state
504 * of the CPU interface relevant to virtual interrupts.
506 * CAUTION: this function will call qemu_set_irq() on the
507 * CPU maintenance IRQ line, which is typically wired up
508 * to the GIC as a per-CPU interrupt. This means that it
509 * will recursively call back into the GIC code via
510 * gicv3_redist_set_irq() and thus into the CPU interface code's
511 * gicv3_cpuif_update(). It is therefore important that this
512 * function is only called as the final action of a CPU interface
513 * register write implementation, after all the GIC state
514 * fields have been updated. gicv3_cpuif_update() also must
515 * not cause this function to be called, but that happens
516 * naturally as a result of there being no architectural
517 * linkage between the physical and virtual GIC logic.
519 ARMCPU *cpu = ARM_CPU(cs->cpu);
520 int maintlevel = 0;
522 gicv3_cpuif_virt_irq_fiq_update(cs);
524 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) &&
525 maintenance_interrupt_state(cs) != 0) {
526 maintlevel = 1;
529 trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel);
530 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
533 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
535 GICv3CPUState *cs = icc_cs_from_env(env);
536 int regno = ri->opc2 & 3;
537 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
538 uint64_t value = cs->ich_apr[grp][regno];
540 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
541 return value;
544 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
545 uint64_t value)
547 GICv3CPUState *cs = icc_cs_from_env(env);
548 int regno = ri->opc2 & 3;
549 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
551 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
553 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
555 gicv3_cpuif_virt_irq_fiq_update(cs);
556 return;
559 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
561 GICv3CPUState *cs = icc_cs_from_env(env);
562 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
563 uint64_t bpr;
564 bool satinc = false;
566 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
567 /* reads return bpr0 + 1 saturated to 7, writes ignored */
568 grp = GICV3_G0;
569 satinc = true;
572 bpr = read_vbpr(cs, grp);
574 if (satinc) {
575 bpr++;
576 bpr = MIN(bpr, 7);
579 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
581 return bpr;
584 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
585 uint64_t value)
587 GICv3CPUState *cs = icc_cs_from_env(env);
588 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
590 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
591 gicv3_redist_affid(cs), value);
593 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
594 /* reads return bpr0 + 1 saturated to 7, writes ignored */
595 return;
598 write_vbpr(cs, grp, value);
600 gicv3_cpuif_virt_irq_fiq_update(cs);
603 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
605 GICv3CPUState *cs = icc_cs_from_env(env);
606 uint64_t value;
608 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
609 ICH_VMCR_EL2_VPMR_LENGTH);
611 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
612 return value;
615 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
616 uint64_t value)
618 GICv3CPUState *cs = icc_cs_from_env(env);
620 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
622 value &= icv_fullprio_mask(cs);
624 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
625 ICH_VMCR_EL2_VPMR_LENGTH, value);
627 gicv3_cpuif_virt_irq_fiq_update(cs);
630 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
632 GICv3CPUState *cs = icc_cs_from_env(env);
633 int enbit;
634 uint64_t value;
636 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
637 value = extract64(cs->ich_vmcr_el2, enbit, 1);
639 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
640 gicv3_redist_affid(cs), value);
641 return value;
644 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
645 uint64_t value)
647 GICv3CPUState *cs = icc_cs_from_env(env);
648 int enbit;
650 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
651 gicv3_redist_affid(cs), value);
653 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
655 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
656 gicv3_cpuif_virt_update(cs);
659 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
661 GICv3CPUState *cs = icc_cs_from_env(env);
662 uint64_t value;
664 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
665 * should match the ones reported in ich_vtr_read().
667 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
668 ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
670 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
671 value |= ICC_CTLR_EL1_EOIMODE;
674 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
675 value |= ICC_CTLR_EL1_CBPR;
678 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
679 return value;
682 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
683 uint64_t value)
685 GICv3CPUState *cs = icc_cs_from_env(env);
687 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
689 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
690 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
691 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
692 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
694 gicv3_cpuif_virt_irq_fiq_update(cs);
697 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
699 GICv3CPUState *cs = icc_cs_from_env(env);
700 int prio = ich_highest_active_virt_prio(cs);
702 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
703 return prio;
706 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
708 GICv3CPUState *cs = icc_cs_from_env(env);
709 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
710 int idx = hppvi_index(cs);
711 uint64_t value = INTID_SPURIOUS;
713 if (idx == HPPVI_INDEX_VLPI) {
714 if (cs->hppvlpi.grp == grp) {
715 value = cs->hppvlpi.irq;
717 } else if (idx >= 0) {
718 uint64_t lr = cs->ich_lr_el2[idx];
719 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
721 if (grp == thisgrp) {
722 value = ich_lr_vintid(lr);
726 trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1,
727 gicv3_redist_affid(cs), value);
728 return value;
731 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
733 /* Activate the interrupt in the specified list register
734 * by moving it from Pending to Active state, and update the
735 * Active Priority Registers.
737 uint32_t mask = icv_gprio_mask(cs, grp);
738 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
739 int aprbit = prio >> (8 - cs->vprebits);
740 int regno = aprbit / 32;
741 int regbit = aprbit % 32;
743 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
744 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
745 cs->ich_apr[grp][regno] |= (1 << regbit);
748 static void icv_activate_vlpi(GICv3CPUState *cs)
750 uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
751 int prio = cs->hppvlpi.prio & mask;
752 int aprbit = prio >> (8 - cs->vprebits);
753 int regno = aprbit / 32;
754 int regbit = aprbit % 32;
756 cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit);
757 gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0);
760 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
762 GICv3CPUState *cs = icc_cs_from_env(env);
763 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
764 int idx = hppvi_index(cs);
765 uint64_t intid = INTID_SPURIOUS;
767 if (idx == HPPVI_INDEX_VLPI) {
768 if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) {
769 intid = cs->hppvlpi.irq;
770 icv_activate_vlpi(cs);
772 } else if (idx >= 0) {
773 uint64_t lr = cs->ich_lr_el2[idx];
774 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
776 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
777 intid = ich_lr_vintid(lr);
778 if (!gicv3_intid_is_special(intid)) {
779 icv_activate_irq(cs, idx, grp);
780 } else {
781 /* Interrupt goes from Pending to Invalid */
782 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
783 /* We will now return the (bogus) ID from the list register,
784 * as per the pseudocode.
790 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
791 gicv3_redist_affid(cs), intid);
793 gicv3_cpuif_virt_update(cs);
795 return intid;
798 static uint32_t icc_fullprio_mask(GICv3CPUState *cs)
801 * Return a mask word which clears the unimplemented priority bits
802 * from a priority value for a physical interrupt. (Not to be confused
803 * with the group priority, whose mask depends on the value of BPR
804 * for the interrupt group.)
806 return ~0U << (8 - cs->pribits);
809 static inline int icc_min_bpr(GICv3CPUState *cs)
811 /* The minimum BPR for the physical interface. */
812 return 7 - cs->prebits;
815 static inline int icc_min_bpr_ns(GICv3CPUState *cs)
817 return icc_min_bpr(cs) + 1;
820 static inline int icc_num_aprs(GICv3CPUState *cs)
822 /* Return the number of APR registers (1, 2, or 4) */
823 int aprmax = 1 << MAX(cs->prebits - 5, 0);
824 assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0]));
825 return aprmax;
828 static int icc_highest_active_prio(GICv3CPUState *cs)
830 /* Calculate the current running priority based on the set bits
831 * in the Active Priority Registers.
833 int i;
835 for (i = 0; i < icc_num_aprs(cs); i++) {
836 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
837 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
839 if (!apr) {
840 continue;
842 return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1);
844 /* No current active interrupts: return idle priority */
845 return 0xff;
848 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
850 /* Return a mask word which clears the subpriority bits from
851 * a priority value for an interrupt in the specified group.
852 * This depends on the BPR value. For CBPR0 (S or NS):
853 * a BPR of 0 means the group priority bits are [7:1];
854 * a BPR of 1 means they are [7:2], and so on down to
855 * a BPR of 7 meaning no group priority bits at all.
856 * For CBPR1 NS:
857 * a BPR of 0 is impossible (the minimum value is 1)
858 * a BPR of 1 means the group priority bits are [7:1];
859 * a BPR of 2 means they are [7:2], and so on down to
860 * a BPR of 7 meaning the group priority is [7].
862 * Which BPR to use depends on the group of the interrupt and
863 * the current ICC_CTLR.CBPR settings.
865 * This corresponds to the GroupBits() pseudocode.
867 int bpr;
869 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
870 (group == GICV3_G1NS &&
871 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
872 group = GICV3_G0;
875 bpr = cs->icc_bpr[group] & 7;
877 if (group == GICV3_G1NS) {
878 assert(bpr > 0);
879 bpr--;
882 return ~0U << (bpr + 1);
885 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
887 /* Return true if there is no pending interrupt, or the
888 * highest priority pending interrupt is in a group which has been
889 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
891 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
894 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
896 /* Return true if we have a pending interrupt of sufficient
897 * priority to preempt.
899 int rprio;
900 uint32_t mask;
902 if (icc_no_enabled_hppi(cs)) {
903 return false;
906 if (cs->hppi.prio >= cs->icc_pmr_el1) {
907 /* Priority mask masks this interrupt */
908 return false;
911 rprio = icc_highest_active_prio(cs);
912 if (rprio == 0xff) {
913 /* No currently running interrupt so we can preempt */
914 return true;
917 mask = icc_gprio_mask(cs, cs->hppi.grp);
919 /* We only preempt a running interrupt if the pending interrupt's
920 * group priority is sufficient (the subpriorities are not considered).
922 if ((cs->hppi.prio & mask) < (rprio & mask)) {
923 return true;
926 return false;
929 void gicv3_cpuif_update(GICv3CPUState *cs)
931 /* Tell the CPU about its highest priority pending interrupt */
932 int irqlevel = 0;
933 int fiqlevel = 0;
934 ARMCPU *cpu = ARM_CPU(cs->cpu);
935 CPUARMState *env = &cpu->env;
937 g_assert(qemu_mutex_iothread_locked());
939 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
940 cs->hppi.grp, cs->hppi.prio);
942 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
943 /* If a Security-enabled GIC sends a G1S interrupt to a
944 * Security-disabled CPU, we must treat it as if it were G0.
946 cs->hppi.grp = GICV3_G0;
949 if (icc_hppi_can_preempt(cs)) {
950 /* We have an interrupt: should we signal it as IRQ or FIQ?
951 * This is described in the GICv3 spec section 4.6.2.
953 bool isfiq;
955 switch (cs->hppi.grp) {
956 case GICV3_G0:
957 isfiq = true;
958 break;
959 case GICV3_G1:
960 isfiq = (!arm_is_secure(env) ||
961 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
962 break;
963 case GICV3_G1NS:
964 isfiq = arm_is_secure(env);
965 break;
966 default:
967 g_assert_not_reached();
970 if (isfiq) {
971 fiqlevel = 1;
972 } else {
973 irqlevel = 1;
977 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
979 qemu_set_irq(cs->parent_fiq, fiqlevel);
980 qemu_set_irq(cs->parent_irq, irqlevel);
983 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
985 GICv3CPUState *cs = icc_cs_from_env(env);
986 uint32_t value = cs->icc_pmr_el1;
988 if (icv_access(env, HCR_FMO | HCR_IMO)) {
989 return icv_pmr_read(env, ri);
992 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
993 (env->cp15.scr_el3 & SCR_FIQ)) {
994 /* NS access and Group 0 is inaccessible to NS: return the
995 * NS view of the current priority
997 if ((value & 0x80) == 0) {
998 /* Secure priorities not visible to NS */
999 value = 0;
1000 } else if (value != 0xff) {
1001 value = (value << 1) & 0xff;
1005 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
1007 return value;
1010 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1011 uint64_t value)
1013 GICv3CPUState *cs = icc_cs_from_env(env);
1015 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1016 return icv_pmr_write(env, ri, value);
1019 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
1021 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
1022 (env->cp15.scr_el3 & SCR_FIQ)) {
1023 /* NS access and Group 0 is inaccessible to NS: return the
1024 * NS view of the current priority
1026 if (!(cs->icc_pmr_el1 & 0x80)) {
1027 /* Current PMR in the secure range, don't allow NS to change it */
1028 return;
1030 value = (value >> 1) | 0x80;
1032 value &= icc_fullprio_mask(cs);
1033 cs->icc_pmr_el1 = value;
1034 gicv3_cpuif_update(cs);
1037 static void icc_activate_irq(GICv3CPUState *cs, int irq)
1039 /* Move the interrupt from the Pending state to Active, and update
1040 * the Active Priority Registers
1042 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
1043 int prio = cs->hppi.prio & mask;
1044 int aprbit = prio >> (8 - cs->prebits);
1045 int regno = aprbit / 32;
1046 int regbit = aprbit % 32;
1048 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
1050 if (irq < GIC_INTERNAL) {
1051 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
1052 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
1053 gicv3_redist_update(cs);
1054 } else if (irq < GICV3_LPI_INTID_START) {
1055 gicv3_gicd_active_set(cs->gic, irq);
1056 gicv3_gicd_pending_clear(cs->gic, irq);
1057 gicv3_update(cs->gic, irq, 1);
1058 } else {
1059 gicv3_redist_lpi_pending(cs, irq, 0);
1063 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
1065 /* Return the highest priority pending interrupt register value
1066 * for group 0.
1068 bool irq_is_secure;
1070 if (cs->hppi.prio == 0xff) {
1071 return INTID_SPURIOUS;
1074 /* Check whether we can return the interrupt or if we should return
1075 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
1076 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1077 * is always zero.)
1079 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1080 (cs->hppi.grp != GICV3_G1NS));
1082 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
1083 return INTID_SPURIOUS;
1085 if (irq_is_secure && !arm_is_secure(env)) {
1086 /* Secure interrupts not visible to Nonsecure */
1087 return INTID_SPURIOUS;
1090 if (cs->hppi.grp != GICV3_G0) {
1091 /* Indicate to EL3 that there's a Group 1 interrupt for the other
1092 * state pending.
1094 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
1097 return cs->hppi.irq;
1100 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
1102 /* Return the highest priority pending interrupt register value
1103 * for group 1.
1105 bool irq_is_secure;
1107 if (cs->hppi.prio == 0xff) {
1108 return INTID_SPURIOUS;
1111 /* Check whether we can return the interrupt or if we should return
1112 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
1113 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1114 * is always zero.)
1116 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1117 (cs->hppi.grp != GICV3_G1NS));
1119 if (cs->hppi.grp == GICV3_G0) {
1120 /* Group 0 interrupts not visible via HPPIR1 */
1121 return INTID_SPURIOUS;
1123 if (irq_is_secure) {
1124 if (!arm_is_secure(env)) {
1125 /* Secure interrupts not visible in Non-secure */
1126 return INTID_SPURIOUS;
1128 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1129 /* Group 1 non-secure interrupts not visible in Secure EL1 */
1130 return INTID_SPURIOUS;
1133 return cs->hppi.irq;
1136 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1138 GICv3CPUState *cs = icc_cs_from_env(env);
1139 uint64_t intid;
1141 if (icv_access(env, HCR_FMO)) {
1142 return icv_iar_read(env, ri);
1145 if (!icc_hppi_can_preempt(cs)) {
1146 intid = INTID_SPURIOUS;
1147 } else {
1148 intid = icc_hppir0_value(cs, env);
1151 if (!gicv3_intid_is_special(intid)) {
1152 icc_activate_irq(cs, intid);
1155 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
1156 return intid;
1159 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1161 GICv3CPUState *cs = icc_cs_from_env(env);
1162 uint64_t intid;
1164 if (icv_access(env, HCR_IMO)) {
1165 return icv_iar_read(env, ri);
1168 if (!icc_hppi_can_preempt(cs)) {
1169 intid = INTID_SPURIOUS;
1170 } else {
1171 intid = icc_hppir1_value(cs, env);
1174 if (!gicv3_intid_is_special(intid)) {
1175 icc_activate_irq(cs, intid);
1178 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1179 return intid;
1182 static void icc_drop_prio(GICv3CPUState *cs, int grp)
1184 /* Drop the priority of the currently active interrupt in
1185 * the specified group.
1187 * Note that we can guarantee (because of the requirement to nest
1188 * ICC_IAR reads [which activate an interrupt and raise priority]
1189 * with ICC_EOIR writes [which drop the priority for the interrupt])
1190 * that the interrupt we're being called for is the highest priority
1191 * active interrupt, meaning that it has the lowest set bit in the
1192 * APR registers.
1194 * If the guest does not honour the ordering constraints then the
1195 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1196 * the values of the APR registers might become incorrect and the
1197 * running priority will be wrong, so interrupts that should preempt
1198 * might not do so, and interrupts that should not preempt might do so.
1200 int i;
1202 for (i = 0; i < icc_num_aprs(cs); i++) {
1203 uint64_t *papr = &cs->icc_apr[grp][i];
1205 if (!*papr) {
1206 continue;
1208 /* Clear the lowest set bit */
1209 *papr &= *papr - 1;
1210 break;
1213 /* running priority change means we need an update for this cpu i/f */
1214 gicv3_cpuif_update(cs);
1217 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1219 /* Return true if we should split priority drop and interrupt
1220 * deactivation, ie whether the relevant EOIMode bit is set.
1222 if (arm_is_el3_or_mon(env)) {
1223 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1225 if (arm_is_secure_below_el3(env)) {
1226 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1227 } else {
1228 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1232 static int icc_highest_active_group(GICv3CPUState *cs)
1234 /* Return the group with the highest priority active interrupt.
1235 * We can do this by just comparing the APRs to see which one
1236 * has the lowest set bit.
1237 * (If more than one group is active at the same priority then
1238 * we're in UNPREDICTABLE territory.)
1240 int i;
1242 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1243 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1244 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1245 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1247 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1248 return GICV3_G1NS;
1250 if (g1ctz < g0ctz) {
1251 return GICV3_G1;
1253 if (g0ctz < 32) {
1254 return GICV3_G0;
1257 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1258 * ignores the spurious EOI attempt.
1260 return -1;
1263 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1265 if (irq < GIC_INTERNAL) {
1266 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1267 gicv3_redist_update(cs);
1268 } else {
1269 gicv3_gicd_active_clear(cs->gic, irq);
1270 gicv3_update(cs->gic, irq, 1);
1274 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1276 /* Return true if we should split priority drop and interrupt
1277 * deactivation, ie whether the virtual EOIMode bit is set.
1279 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1282 static int icv_find_active(GICv3CPUState *cs, int irq)
1284 /* Given an interrupt number for an active interrupt, return the index
1285 * of the corresponding list register, or -1 if there is no match.
1286 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1288 int i;
1290 for (i = 0; i < cs->num_list_regs; i++) {
1291 uint64_t lr = cs->ich_lr_el2[i];
1293 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1294 return i;
1298 return -1;
1301 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1303 /* Deactivate the interrupt in the specified list register index */
1304 uint64_t lr = cs->ich_lr_el2[idx];
1306 if (lr & ICH_LR_EL2_HW) {
1307 /* Deactivate the associated physical interrupt */
1308 int pirq = ich_lr_pintid(lr);
1310 if (pirq < INTID_SECURE) {
1311 icc_deactivate_irq(cs, pirq);
1315 /* Clear the 'active' part of the state, so ActivePending->Pending
1316 * and Active->Invalid.
1318 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1319 cs->ich_lr_el2[idx] = lr;
1322 static void icv_increment_eoicount(GICv3CPUState *cs)
1324 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1325 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1326 ICH_HCR_EL2_EOICOUNT_LENGTH);
1328 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1329 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1332 static int icv_drop_prio(GICv3CPUState *cs)
1334 /* Drop the priority of the currently active virtual interrupt
1335 * (favouring group 0 if there is a set active bit at
1336 * the same priority for both group 0 and group 1).
1337 * Return the priority value for the bit we just cleared,
1338 * or 0xff if no bits were set in the AP registers at all.
1339 * Note that though the ich_apr[] are uint64_t only the low
1340 * 32 bits are actually relevant.
1342 int i;
1343 int aprmax = ich_num_aprs(cs);
1345 for (i = 0; i < aprmax; i++) {
1346 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1347 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1348 int apr0count, apr1count;
1350 if (!*papr0 && !*papr1) {
1351 continue;
1354 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1355 * because we need to return the bit number we cleared so
1356 * it can be compared against the list register's priority field.
1358 apr0count = ctz32(*papr0);
1359 apr1count = ctz32(*papr1);
1361 if (apr0count <= apr1count) {
1362 *papr0 &= *papr0 - 1;
1363 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1364 } else {
1365 *papr1 &= *papr1 - 1;
1366 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1369 return 0xff;
1372 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1373 uint64_t value)
1375 /* Deactivate interrupt */
1376 GICv3CPUState *cs = icc_cs_from_env(env);
1377 int idx;
1378 int irq = value & 0xffffff;
1380 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1382 if (irq >= GICV3_MAXIRQ) {
1383 /* Also catches special interrupt numbers and LPIs */
1384 return;
1387 if (!icv_eoi_split(env, cs)) {
1388 return;
1391 idx = icv_find_active(cs, irq);
1393 if (idx < 0) {
1394 /* No list register matching this, so increment the EOI count
1395 * (might trigger a maintenance interrupt)
1397 icv_increment_eoicount(cs);
1398 } else {
1399 icv_deactivate_irq(cs, idx);
1402 gicv3_cpuif_virt_update(cs);
1405 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1406 uint64_t value)
1408 /* End of Interrupt */
1409 GICv3CPUState *cs = icc_cs_from_env(env);
1410 int irq = value & 0xffffff;
1411 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1412 int idx, dropprio;
1414 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1415 gicv3_redist_affid(cs), value);
1417 if (gicv3_intid_is_special(irq)) {
1418 return;
1421 /* We implement the IMPDEF choice of "drop priority before doing
1422 * error checks" (because that lets us avoid scanning the AP
1423 * registers twice).
1425 dropprio = icv_drop_prio(cs);
1426 if (dropprio == 0xff) {
1427 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1428 * whether the list registers are checked in this
1429 * situation; we choose not to.
1431 return;
1434 idx = icv_find_active(cs, irq);
1436 if (idx < 0) {
1437 /* No valid list register corresponding to EOI ID */
1438 icv_increment_eoicount(cs);
1439 } else {
1440 uint64_t lr = cs->ich_lr_el2[idx];
1441 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1442 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1444 if (thisgrp == grp && lr_gprio == dropprio) {
1445 if (!icv_eoi_split(env, cs)) {
1446 /* Priority drop and deactivate not split: deactivate irq now */
1447 icv_deactivate_irq(cs, idx);
1452 gicv3_cpuif_virt_update(cs);
1455 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1456 uint64_t value)
1458 /* End of Interrupt */
1459 GICv3CPUState *cs = icc_cs_from_env(env);
1460 int irq = value & 0xffffff;
1461 int grp;
1462 bool is_eoir0 = ri->crm == 8;
1464 if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) {
1465 icv_eoir_write(env, ri, value);
1466 return;
1469 trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1,
1470 gicv3_redist_affid(cs), value);
1472 if ((irq >= cs->gic->num_irq) &&
1473 !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) {
1474 /* This handles two cases:
1475 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1476 * to the GICC_EOIR, the GIC ignores that write.
1477 * 2. If software writes the number of a non-existent interrupt
1478 * this must be a subcase of "value written does not match the last
1479 * valid interrupt value read from the Interrupt Acknowledge
1480 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1482 return;
1485 grp = icc_highest_active_group(cs);
1486 switch (grp) {
1487 case GICV3_G0:
1488 if (!is_eoir0) {
1489 return;
1491 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS)
1492 && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
1493 return;
1495 break;
1496 case GICV3_G1:
1497 if (is_eoir0) {
1498 return;
1500 if (!arm_is_secure(env)) {
1501 return;
1503 break;
1504 case GICV3_G1NS:
1505 if (is_eoir0) {
1506 return;
1508 if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1509 return;
1511 break;
1512 default:
1513 qemu_log_mask(LOG_GUEST_ERROR,
1514 "%s: IRQ %d isn't active\n", __func__, irq);
1515 return;
1518 icc_drop_prio(cs, grp);
1520 if (!icc_eoi_split(env, cs)) {
1521 /* Priority drop and deactivate not split: deactivate irq now */
1522 icc_deactivate_irq(cs, irq);
1526 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1528 GICv3CPUState *cs = icc_cs_from_env(env);
1529 uint64_t value;
1531 if (icv_access(env, HCR_FMO)) {
1532 return icv_hppir_read(env, ri);
1535 value = icc_hppir0_value(cs, env);
1536 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1537 return value;
1540 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1542 GICv3CPUState *cs = icc_cs_from_env(env);
1543 uint64_t value;
1545 if (icv_access(env, HCR_IMO)) {
1546 return icv_hppir_read(env, ri);
1549 value = icc_hppir1_value(cs, env);
1550 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1551 return value;
1554 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1556 GICv3CPUState *cs = icc_cs_from_env(env);
1557 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1558 bool satinc = false;
1559 uint64_t bpr;
1561 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1562 return icv_bpr_read(env, ri);
1565 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1566 grp = GICV3_G1NS;
1569 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1570 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1571 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1572 * modify BPR0
1574 grp = GICV3_G0;
1577 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1578 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1579 /* reads return bpr0 + 1 sat to 7, writes ignored */
1580 grp = GICV3_G0;
1581 satinc = true;
1584 bpr = cs->icc_bpr[grp];
1585 if (satinc) {
1586 bpr++;
1587 bpr = MIN(bpr, 7);
1590 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1592 return bpr;
1595 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1596 uint64_t value)
1598 GICv3CPUState *cs = icc_cs_from_env(env);
1599 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1600 uint64_t minval;
1602 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1603 icv_bpr_write(env, ri, value);
1604 return;
1607 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1608 gicv3_redist_affid(cs), value);
1610 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1611 grp = GICV3_G1NS;
1614 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1615 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1616 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1617 * modify BPR0
1619 grp = GICV3_G0;
1622 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1623 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1624 /* reads return bpr0 + 1 sat to 7, writes ignored */
1625 return;
1628 minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs);
1629 if (value < minval) {
1630 value = minval;
1633 cs->icc_bpr[grp] = value & 7;
1634 gicv3_cpuif_update(cs);
1637 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1639 GICv3CPUState *cs = icc_cs_from_env(env);
1640 uint64_t value;
1642 int regno = ri->opc2 & 3;
1643 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1645 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1646 return icv_ap_read(env, ri);
1649 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1650 grp = GICV3_G1NS;
1653 value = cs->icc_apr[grp][regno];
1655 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1656 return value;
1659 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1660 uint64_t value)
1662 GICv3CPUState *cs = icc_cs_from_env(env);
1664 int regno = ri->opc2 & 3;
1665 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1667 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1668 icv_ap_write(env, ri, value);
1669 return;
1672 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1674 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1675 grp = GICV3_G1NS;
1678 /* It's not possible to claim that a Non-secure interrupt is active
1679 * at a priority outside the Non-secure range (128..255), since this
1680 * would otherwise allow malicious NS code to block delivery of S interrupts
1681 * by writing a bad value to these registers.
1683 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1684 return;
1687 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1688 gicv3_cpuif_update(cs);
1691 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1692 uint64_t value)
1694 /* Deactivate interrupt */
1695 GICv3CPUState *cs = icc_cs_from_env(env);
1696 int irq = value & 0xffffff;
1697 bool irq_is_secure, single_sec_state, irq_is_grp0;
1698 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1700 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1701 icv_dir_write(env, ri, value);
1702 return;
1705 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1707 if (irq >= cs->gic->num_irq) {
1708 /* Also catches special interrupt numbers and LPIs */
1709 return;
1712 if (!icc_eoi_split(env, cs)) {
1713 return;
1716 int grp = gicv3_irq_group(cs->gic, cs, irq);
1718 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1719 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1720 irq_is_grp0 = grp == GICV3_G0;
1722 /* Check whether we're allowed to deactivate this interrupt based
1723 * on its group and the current CPU state.
1724 * These checks are laid out to correspond to the spec's pseudocode.
1726 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1727 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1728 /* No need to include !IsSecure in route_*_to_el2 as it's only
1729 * tested in cases where we know !IsSecure is true.
1731 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1732 route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1733 route_irq_to_el2 = hcr_el2 & HCR_IMO;
1735 switch (arm_current_el(env)) {
1736 case 3:
1737 break;
1738 case 2:
1739 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1740 break;
1742 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1743 break;
1745 return;
1746 case 1:
1747 if (!arm_is_secure_below_el3(env)) {
1748 if (single_sec_state && irq_is_grp0 &&
1749 !route_fiq_to_el3 && !route_fiq_to_el2) {
1750 break;
1752 if (!irq_is_secure && !irq_is_grp0 &&
1753 !route_irq_to_el3 && !route_irq_to_el2) {
1754 break;
1756 } else {
1757 if (irq_is_grp0 && !route_fiq_to_el3) {
1758 break;
1760 if (!irq_is_grp0 &&
1761 (!irq_is_secure || !single_sec_state) &&
1762 !route_irq_to_el3) {
1763 break;
1766 return;
1767 default:
1768 g_assert_not_reached();
1771 icc_deactivate_irq(cs, irq);
1774 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1776 GICv3CPUState *cs = icc_cs_from_env(env);
1777 int prio;
1779 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1780 return icv_rpr_read(env, ri);
1783 prio = icc_highest_active_prio(cs);
1785 if (arm_feature(env, ARM_FEATURE_EL3) &&
1786 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1787 /* NS GIC access and Group 0 is inaccessible to NS */
1788 if ((prio & 0x80) == 0) {
1789 /* NS mustn't see priorities in the Secure half of the range */
1790 prio = 0;
1791 } else if (prio != 0xff) {
1792 /* Non-idle priority: show the Non-secure view of it */
1793 prio = (prio << 1) & 0xff;
1797 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1798 return prio;
1801 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1802 uint64_t value, int grp, bool ns)
1804 GICv3State *s = cs->gic;
1806 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1807 uint64_t aff = extract64(value, 48, 8) << 16 |
1808 extract64(value, 32, 8) << 8 |
1809 extract64(value, 16, 8);
1810 uint32_t targetlist = extract64(value, 0, 16);
1811 uint32_t irq = extract64(value, 24, 4);
1812 bool irm = extract64(value, 40, 1);
1813 int i;
1815 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1816 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1817 * interrupts as Group 0 interrupts and must send Secure Group 0
1818 * interrupts to the target CPUs.
1820 grp = GICV3_G0;
1823 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1824 aff, targetlist);
1826 for (i = 0; i < s->num_cpu; i++) {
1827 GICv3CPUState *ocs = &s->cpu[i];
1829 if (irm) {
1830 /* IRM == 1 : route to all CPUs except self */
1831 if (cs == ocs) {
1832 continue;
1834 } else {
1835 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1836 * where the corresponding bit is set in targetlist
1838 int aff0;
1840 if (ocs->gicr_typer >> 40 != aff) {
1841 continue;
1843 aff0 = extract64(ocs->gicr_typer, 32, 8);
1844 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1845 continue;
1849 /* The redistributor will check against its own GICR_NSACR as needed */
1850 gicv3_redist_send_sgi(ocs, grp, irq, ns);
1854 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1855 uint64_t value)
1857 /* Generate Secure Group 0 SGI. */
1858 GICv3CPUState *cs = icc_cs_from_env(env);
1859 bool ns = !arm_is_secure(env);
1861 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1864 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1865 uint64_t value)
1867 /* Generate Group 1 SGI for the current Security state */
1868 GICv3CPUState *cs = icc_cs_from_env(env);
1869 int grp;
1870 bool ns = !arm_is_secure(env);
1872 grp = ns ? GICV3_G1NS : GICV3_G1;
1873 icc_generate_sgi(env, cs, value, grp, ns);
1876 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1877 uint64_t value)
1879 /* Generate Group 1 SGI for the Security state that is not
1880 * the current state
1882 GICv3CPUState *cs = icc_cs_from_env(env);
1883 int grp;
1884 bool ns = !arm_is_secure(env);
1886 grp = ns ? GICV3_G1 : GICV3_G1NS;
1887 icc_generate_sgi(env, cs, value, grp, ns);
1890 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1892 GICv3CPUState *cs = icc_cs_from_env(env);
1893 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1894 uint64_t value;
1896 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1897 return icv_igrpen_read(env, ri);
1900 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1901 grp = GICV3_G1NS;
1904 value = cs->icc_igrpen[grp];
1905 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1906 gicv3_redist_affid(cs), value);
1907 return value;
1910 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1911 uint64_t value)
1913 GICv3CPUState *cs = icc_cs_from_env(env);
1914 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1916 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1917 icv_igrpen_write(env, ri, value);
1918 return;
1921 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1922 gicv3_redist_affid(cs), value);
1924 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1925 grp = GICV3_G1NS;
1928 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1929 gicv3_cpuif_update(cs);
1932 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1934 GICv3CPUState *cs = icc_cs_from_env(env);
1935 uint64_t value;
1937 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1938 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1939 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1940 return value;
1943 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1944 uint64_t value)
1946 GICv3CPUState *cs = icc_cs_from_env(env);
1948 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1950 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1951 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1952 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1953 gicv3_cpuif_update(cs);
1956 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1958 GICv3CPUState *cs = icc_cs_from_env(env);
1959 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1960 uint64_t value;
1962 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1963 return icv_ctlr_read(env, ri);
1966 value = cs->icc_ctlr_el1[bank];
1967 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1968 return value;
1971 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972 uint64_t value)
1974 GICv3CPUState *cs = icc_cs_from_env(env);
1975 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1976 uint64_t mask;
1978 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1979 icv_ctlr_write(env, ri, value);
1980 return;
1983 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1985 /* Only CBPR and EOIMODE can be RW;
1986 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1987 * the asseciated priority-based routing of them);
1988 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1990 if (arm_feature(env, ARM_FEATURE_EL3) &&
1991 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1992 mask = ICC_CTLR_EL1_EOIMODE;
1993 } else {
1994 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1997 cs->icc_ctlr_el1[bank] &= ~mask;
1998 cs->icc_ctlr_el1[bank] |= (value & mask);
1999 gicv3_cpuif_update(cs);
2003 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
2005 GICv3CPUState *cs = icc_cs_from_env(env);
2006 uint64_t value;
2008 value = cs->icc_ctlr_el3;
2009 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
2010 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
2012 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
2013 value |= ICC_CTLR_EL3_CBPR_EL1NS;
2015 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
2016 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
2018 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
2019 value |= ICC_CTLR_EL3_CBPR_EL1S;
2022 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
2023 return value;
2026 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2027 uint64_t value)
2029 GICv3CPUState *cs = icc_cs_from_env(env);
2030 uint64_t mask;
2032 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
2034 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
2035 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
2036 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
2037 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
2039 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
2040 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
2043 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
2044 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
2045 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
2047 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
2048 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
2051 /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */
2052 mask = ICC_CTLR_EL3_EOIMODE_EL3;
2054 cs->icc_ctlr_el3 &= ~mask;
2055 cs->icc_ctlr_el3 |= (value & mask);
2056 gicv3_cpuif_update(cs);
2059 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
2060 const ARMCPRegInfo *ri, bool isread)
2062 CPAccessResult r = CP_ACCESS_OK;
2063 GICv3CPUState *cs = icc_cs_from_env(env);
2064 int el = arm_current_el(env);
2066 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
2067 el == 1 && !arm_is_secure_below_el3(env)) {
2068 /* Takes priority over a possible EL3 trap */
2069 return CP_ACCESS_TRAP_EL2;
2072 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
2073 switch (el) {
2074 case 1:
2075 /* Note that arm_hcr_el2_eff takes secure state into account. */
2076 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
2077 r = CP_ACCESS_TRAP_EL3;
2079 break;
2080 case 2:
2081 r = CP_ACCESS_TRAP_EL3;
2082 break;
2083 case 3:
2084 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2085 r = CP_ACCESS_TRAP_EL3;
2087 break;
2088 default:
2089 g_assert_not_reached();
2093 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2094 r = CP_ACCESS_TRAP;
2096 return r;
2099 static CPAccessResult gicv3_dir_access(CPUARMState *env,
2100 const ARMCPRegInfo *ri, bool isread)
2102 GICv3CPUState *cs = icc_cs_from_env(env);
2104 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
2105 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
2106 /* Takes priority over a possible EL3 trap */
2107 return CP_ACCESS_TRAP_EL2;
2110 return gicv3_irqfiq_access(env, ri, isread);
2113 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
2114 const ARMCPRegInfo *ri, bool isread)
2116 if (arm_current_el(env) == 1 &&
2117 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
2118 /* Takes priority over a possible EL3 trap */
2119 return CP_ACCESS_TRAP_EL2;
2122 return gicv3_irqfiq_access(env, ri, isread);
2125 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
2126 const ARMCPRegInfo *ri, bool isread)
2128 CPAccessResult r = CP_ACCESS_OK;
2129 GICv3CPUState *cs = icc_cs_from_env(env);
2130 int el = arm_current_el(env);
2132 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
2133 el == 1 && !arm_is_secure_below_el3(env)) {
2134 /* Takes priority over a possible EL3 trap */
2135 return CP_ACCESS_TRAP_EL2;
2138 if (env->cp15.scr_el3 & SCR_FIQ) {
2139 switch (el) {
2140 case 1:
2141 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
2142 r = CP_ACCESS_TRAP_EL3;
2144 break;
2145 case 2:
2146 r = CP_ACCESS_TRAP_EL3;
2147 break;
2148 case 3:
2149 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2150 r = CP_ACCESS_TRAP_EL3;
2152 break;
2153 default:
2154 g_assert_not_reached();
2158 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2159 r = CP_ACCESS_TRAP;
2161 return r;
2164 static CPAccessResult gicv3_irq_access(CPUARMState *env,
2165 const ARMCPRegInfo *ri, bool isread)
2167 CPAccessResult r = CP_ACCESS_OK;
2168 GICv3CPUState *cs = icc_cs_from_env(env);
2169 int el = arm_current_el(env);
2171 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
2172 el == 1 && !arm_is_secure_below_el3(env)) {
2173 /* Takes priority over a possible EL3 trap */
2174 return CP_ACCESS_TRAP_EL2;
2177 if (env->cp15.scr_el3 & SCR_IRQ) {
2178 switch (el) {
2179 case 1:
2180 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2181 r = CP_ACCESS_TRAP_EL3;
2183 break;
2184 case 2:
2185 r = CP_ACCESS_TRAP_EL3;
2186 break;
2187 case 3:
2188 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2189 r = CP_ACCESS_TRAP_EL3;
2191 break;
2192 default:
2193 g_assert_not_reached();
2197 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2198 r = CP_ACCESS_TRAP;
2200 return r;
2203 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2205 GICv3CPUState *cs = icc_cs_from_env(env);
2207 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2208 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2209 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
2210 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2211 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2212 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
2213 cs->icc_pmr_el1 = 0;
2214 cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs);
2215 cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs);
2216 cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs);
2217 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2218 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2219 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2220 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2221 ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT);
2223 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2224 cs->ich_hcr_el2 = 0;
2225 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2226 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2227 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2228 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2231 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2232 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2233 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2234 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2235 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2236 .readfn = icc_pmr_read,
2237 .writefn = icc_pmr_write,
2238 /* We hang the whole cpu interface reset routine off here
2239 * rather than parcelling it out into one little function
2240 * per register
2242 .resetfn = icc_reset,
2244 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2245 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2246 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2247 .access = PL1_R, .accessfn = gicv3_fiq_access,
2248 .readfn = icc_iar0_read,
2250 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2251 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2252 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2253 .access = PL1_W, .accessfn = gicv3_fiq_access,
2254 .writefn = icc_eoir_write,
2256 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2257 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2258 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2259 .access = PL1_R, .accessfn = gicv3_fiq_access,
2260 .readfn = icc_hppir0_read,
2262 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2263 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2264 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2265 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2266 .readfn = icc_bpr_read,
2267 .writefn = icc_bpr_write,
2269 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2270 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2271 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2272 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2273 .readfn = icc_ap_read,
2274 .writefn = icc_ap_write,
2276 /* All the ICC_AP1R*_EL1 registers are banked */
2277 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2278 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2279 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2280 .access = PL1_RW, .accessfn = gicv3_irq_access,
2281 .readfn = icc_ap_read,
2282 .writefn = icc_ap_write,
2284 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2285 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2286 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2287 .access = PL1_W, .accessfn = gicv3_dir_access,
2288 .writefn = icc_dir_write,
2290 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2291 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2292 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2293 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2294 .readfn = icc_rpr_read,
2296 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2297 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2298 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2299 .access = PL1_W, .accessfn = gicv3_sgi_access,
2300 .writefn = icc_sgi1r_write,
2302 { .name = "ICC_SGI1R",
2303 .cp = 15, .opc1 = 0, .crm = 12,
2304 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2305 .access = PL1_W, .accessfn = gicv3_sgi_access,
2306 .writefn = icc_sgi1r_write,
2308 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2309 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2310 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2311 .access = PL1_W, .accessfn = gicv3_sgi_access,
2312 .writefn = icc_asgi1r_write,
2314 { .name = "ICC_ASGI1R",
2315 .cp = 15, .opc1 = 1, .crm = 12,
2316 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2317 .access = PL1_W, .accessfn = gicv3_sgi_access,
2318 .writefn = icc_asgi1r_write,
2320 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2321 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2322 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2323 .access = PL1_W, .accessfn = gicv3_sgi_access,
2324 .writefn = icc_sgi0r_write,
2326 { .name = "ICC_SGI0R",
2327 .cp = 15, .opc1 = 2, .crm = 12,
2328 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2329 .access = PL1_W, .accessfn = gicv3_sgi_access,
2330 .writefn = icc_sgi0r_write,
2332 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2333 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2334 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2335 .access = PL1_R, .accessfn = gicv3_irq_access,
2336 .readfn = icc_iar1_read,
2338 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2339 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2340 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2341 .access = PL1_W, .accessfn = gicv3_irq_access,
2342 .writefn = icc_eoir_write,
2344 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2345 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2346 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2347 .access = PL1_R, .accessfn = gicv3_irq_access,
2348 .readfn = icc_hppir1_read,
2350 /* This register is banked */
2351 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2352 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2353 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2354 .access = PL1_RW, .accessfn = gicv3_irq_access,
2355 .readfn = icc_bpr_read,
2356 .writefn = icc_bpr_write,
2358 /* This register is banked */
2359 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2360 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2361 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2362 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2363 .readfn = icc_ctlr_el1_read,
2364 .writefn = icc_ctlr_el1_write,
2366 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2367 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2368 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2369 .access = PL1_RW,
2370 /* We don't support IRQ/FIQ bypass and system registers are
2371 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2372 * This register is banked but since it's constant we don't
2373 * need to do anything special.
2375 .resetvalue = 0x7,
2377 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2378 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2379 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2380 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2381 .fgt = FGT_ICC_IGRPENN_EL1,
2382 .readfn = icc_igrpen_read,
2383 .writefn = icc_igrpen_write,
2385 /* This register is banked */
2386 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2387 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2388 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2389 .access = PL1_RW, .accessfn = gicv3_irq_access,
2390 .fgt = FGT_ICC_IGRPENN_EL1,
2391 .readfn = icc_igrpen_read,
2392 .writefn = icc_igrpen_write,
2394 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2395 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2396 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2397 .access = PL2_RW,
2398 /* We don't support IRQ/FIQ bypass and system registers are
2399 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2401 .resetvalue = 0xf,
2403 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2404 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2405 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2406 .access = PL3_RW,
2407 .readfn = icc_ctlr_el3_read,
2408 .writefn = icc_ctlr_el3_write,
2410 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2411 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2412 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2413 .access = PL3_RW,
2414 /* We don't support IRQ/FIQ bypass and system registers are
2415 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2417 .resetvalue = 0xf,
2419 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2420 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2421 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2422 .access = PL3_RW,
2423 .readfn = icc_igrpen1_el3_read,
2424 .writefn = icc_igrpen1_el3_write,
2428 static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = {
2429 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2430 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2431 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2432 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2433 .readfn = icc_ap_read,
2434 .writefn = icc_ap_write,
2436 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2437 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2438 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2439 .access = PL1_RW, .accessfn = gicv3_irq_access,
2440 .readfn = icc_ap_read,
2441 .writefn = icc_ap_write,
2445 static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = {
2446 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2447 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2448 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2449 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2450 .readfn = icc_ap_read,
2451 .writefn = icc_ap_write,
2453 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2454 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2455 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2456 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2457 .readfn = icc_ap_read,
2458 .writefn = icc_ap_write,
2460 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2461 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2462 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2463 .access = PL1_RW, .accessfn = gicv3_irq_access,
2464 .readfn = icc_ap_read,
2465 .writefn = icc_ap_write,
2467 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2468 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2469 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2470 .access = PL1_RW, .accessfn = gicv3_irq_access,
2471 .readfn = icc_ap_read,
2472 .writefn = icc_ap_write,
2476 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2478 GICv3CPUState *cs = icc_cs_from_env(env);
2479 int regno = ri->opc2 & 3;
2480 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2481 uint64_t value;
2483 value = cs->ich_apr[grp][regno];
2484 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2485 return value;
2488 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2489 uint64_t value)
2491 GICv3CPUState *cs = icc_cs_from_env(env);
2492 int regno = ri->opc2 & 3;
2493 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2495 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2497 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2498 gicv3_cpuif_virt_irq_fiq_update(cs);
2501 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2503 GICv3CPUState *cs = icc_cs_from_env(env);
2504 uint64_t value = cs->ich_hcr_el2;
2506 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2507 return value;
2510 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2511 uint64_t value)
2513 GICv3CPUState *cs = icc_cs_from_env(env);
2515 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2517 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2518 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2519 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2520 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2521 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2523 cs->ich_hcr_el2 = value;
2524 gicv3_cpuif_virt_update(cs);
2527 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2529 GICv3CPUState *cs = icc_cs_from_env(env);
2530 uint64_t value = cs->ich_vmcr_el2;
2532 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2533 return value;
2536 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2537 uint64_t value)
2539 GICv3CPUState *cs = icc_cs_from_env(env);
2541 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2543 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2544 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2545 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2546 value |= ICH_VMCR_EL2_VFIQEN;
2548 cs->ich_vmcr_el2 = value;
2549 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2550 * by reading and writing back the fields.
2552 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
2553 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2555 gicv3_cpuif_virt_update(cs);
2558 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2560 GICv3CPUState *cs = icc_cs_from_env(env);
2561 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2562 uint64_t value;
2564 /* This read function handles all of:
2565 * 64-bit reads of the whole LR
2566 * 32-bit reads of the low half of the LR
2567 * 32-bit reads of the high half of the LR
2569 if (ri->state == ARM_CP_STATE_AA32) {
2570 if (ri->crm >= 14) {
2571 value = extract64(cs->ich_lr_el2[regno], 32, 32);
2572 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2573 } else {
2574 value = extract64(cs->ich_lr_el2[regno], 0, 32);
2575 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2577 } else {
2578 value = cs->ich_lr_el2[regno];
2579 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2582 return value;
2585 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2586 uint64_t value)
2588 GICv3CPUState *cs = icc_cs_from_env(env);
2589 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2591 /* This write function handles all of:
2592 * 64-bit writes to the whole LR
2593 * 32-bit writes to the low half of the LR
2594 * 32-bit writes to the high half of the LR
2596 if (ri->state == ARM_CP_STATE_AA32) {
2597 if (ri->crm >= 14) {
2598 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2599 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2600 } else {
2601 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2602 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2604 } else {
2605 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2608 /* Enforce RES0 bits in priority field */
2609 if (cs->vpribits < 8) {
2610 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2611 8 - cs->vpribits, 0);
2614 cs->ich_lr_el2[regno] = value;
2615 gicv3_cpuif_virt_update(cs);
2618 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2620 GICv3CPUState *cs = icc_cs_from_env(env);
2621 uint64_t value;
2623 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2624 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V
2625 | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2626 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2627 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2629 if (cs->gic->revision < 4) {
2630 value |= ICH_VTR_EL2_NV4;
2633 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2634 return value;
2637 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2639 GICv3CPUState *cs = icc_cs_from_env(env);
2640 uint64_t value = maintenance_interrupt_state(cs);
2642 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2643 return value;
2646 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2648 GICv3CPUState *cs = icc_cs_from_env(env);
2649 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2651 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2652 return value;
2655 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2657 GICv3CPUState *cs = icc_cs_from_env(env);
2658 uint64_t value = 0;
2659 int i;
2661 for (i = 0; i < cs->num_list_regs; i++) {
2662 uint64_t lr = cs->ich_lr_el2[i];
2664 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2665 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2666 value |= (1 << i);
2670 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2671 return value;
2674 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2675 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2676 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2677 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2678 .access = PL2_RW,
2679 .readfn = ich_ap_read,
2680 .writefn = ich_ap_write,
2682 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2683 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2684 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2685 .access = PL2_RW,
2686 .readfn = ich_ap_read,
2687 .writefn = ich_ap_write,
2689 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2690 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2691 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2692 .access = PL2_RW,
2693 .readfn = ich_hcr_read,
2694 .writefn = ich_hcr_write,
2696 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2697 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2698 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2699 .access = PL2_R,
2700 .readfn = ich_vtr_read,
2702 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2703 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2704 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2705 .access = PL2_R,
2706 .readfn = ich_misr_read,
2708 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2709 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2710 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2711 .access = PL2_R,
2712 .readfn = ich_eisr_read,
2714 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2715 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2716 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2717 .access = PL2_R,
2718 .readfn = ich_elrsr_read,
2720 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2721 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2722 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2723 .access = PL2_RW,
2724 .readfn = ich_vmcr_read,
2725 .writefn = ich_vmcr_write,
2729 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2730 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2731 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2732 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2733 .access = PL2_RW,
2734 .readfn = ich_ap_read,
2735 .writefn = ich_ap_write,
2737 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2738 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2739 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2740 .access = PL2_RW,
2741 .readfn = ich_ap_read,
2742 .writefn = ich_ap_write,
2746 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2747 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2748 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2749 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2750 .access = PL2_RW,
2751 .readfn = ich_ap_read,
2752 .writefn = ich_ap_write,
2754 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2755 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2756 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2757 .access = PL2_RW,
2758 .readfn = ich_ap_read,
2759 .writefn = ich_ap_write,
2761 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2762 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2763 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2764 .access = PL2_RW,
2765 .readfn = ich_ap_read,
2766 .writefn = ich_ap_write,
2768 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2769 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2770 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2771 .access = PL2_RW,
2772 .readfn = ich_ap_read,
2773 .writefn = ich_ap_write,
2777 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2779 GICv3CPUState *cs = opaque;
2781 gicv3_cpuif_update(cs);
2783 * Because vLPIs are only pending in NonSecure state,
2784 * an EL change can change the VIRQ/VFIQ status (but
2785 * cannot affect the maintenance interrupt state)
2787 gicv3_cpuif_virt_irq_fiq_update(cs);
2790 void gicv3_init_cpuif(GICv3State *s)
2792 /* Called from the GICv3 realize function; register our system
2793 * registers with the CPU
2795 int i;
2797 for (i = 0; i < s->num_cpu; i++) {
2798 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2799 GICv3CPUState *cs = &s->cpu[i];
2802 * If the CPU doesn't define a GICv3 configuration, probably because
2803 * in real hardware it doesn't have one, then we use default values
2804 * matching the one used by most Arm CPUs. This applies to:
2805 * cpu->gic_num_lrs
2806 * cpu->gic_vpribits
2807 * cpu->gic_vprebits
2808 * cpu->gic_pribits
2811 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2812 * in define_arm_cp_regs_with_opaque(), because when we're called back
2813 * it might be with code translated by CPU 0 but run by CPU 1, in
2814 * which case we'd get the wrong value.
2815 * So instead we define the regs with no ri->opaque info, and
2816 * get back to the GICv3CPUState from the CPUARMState.
2818 * These CP regs callbacks can be called from either TCG or HVF code.
2820 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2823 * The CPU implementation specifies the number of supported
2824 * bits of physical priority. For backwards compatibility
2825 * of migration, we have a compat property that forces use
2826 * of 8 priority bits regardless of what the CPU really has.
2828 if (s->force_8bit_prio) {
2829 cs->pribits = 8;
2830 } else {
2831 cs->pribits = cpu->gic_pribits ?: 5;
2835 * The GICv3 has separate ID register fields for virtual priority
2836 * and preemption bit values, but only a single ID register field
2837 * for the physical priority bits. The preemption bit count is
2838 * always the same as the priority bit count, except that 8 bits
2839 * of priority means 7 preemption bits. We precalculate the
2840 * preemption bits because it simplifies the code and makes the
2841 * parallels between the virtual and physical bits of the GIC
2842 * a bit clearer.
2844 cs->prebits = cs->pribits;
2845 if (cs->prebits == 8) {
2846 cs->prebits--;
2849 * Check that CPU code defining pribits didn't violate
2850 * architectural constraints our implementation relies on.
2852 g_assert(cs->pribits >= 4 && cs->pribits <= 8);
2855 * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions
2856 * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them.
2858 if (cs->prebits >= 6) {
2859 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo);
2861 if (cs->prebits == 7) {
2862 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo);
2865 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
2866 int j;
2868 cs->num_list_regs = cpu->gic_num_lrs ?: 4;
2869 cs->vpribits = cpu->gic_vpribits ?: 5;
2870 cs->vprebits = cpu->gic_vprebits ?: 5;
2872 /* Check against architectural constraints: getting these
2873 * wrong would be a bug in the CPU code defining these,
2874 * and the implementation relies on them holding.
2876 g_assert(cs->vprebits <= cs->vpribits);
2877 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2878 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2880 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2882 for (j = 0; j < cs->num_list_regs; j++) {
2883 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2884 * are split into two cp15 regs, LR (the low part, with the
2885 * same encoding as the AArch64 LR) and LRC (the high part).
2887 ARMCPRegInfo lr_regset[] = {
2888 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2889 .opc0 = 3, .opc1 = 4, .crn = 12,
2890 .crm = 12 + (j >> 3), .opc2 = j & 7,
2891 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2892 .access = PL2_RW,
2893 .readfn = ich_lr_read,
2894 .writefn = ich_lr_write,
2896 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2897 .cp = 15, .opc1 = 4, .crn = 12,
2898 .crm = 14 + (j >> 3), .opc2 = j & 7,
2899 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2900 .access = PL2_RW,
2901 .readfn = ich_lr_read,
2902 .writefn = ich_lr_write,
2905 define_arm_cp_regs(cpu, lr_regset);
2907 if (cs->vprebits >= 6) {
2908 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2910 if (cs->vprebits == 7) {
2911 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2914 if (tcg_enabled() || qtest_enabled()) {
2916 * We can only trap EL changes with TCG. However the GIC interrupt
2917 * state only changes on EL changes involving EL2 or EL3, so for
2918 * the non-TCG case this is OK, as EL2 and EL3 can't exist.
2920 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
2921 } else {
2922 assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2));
2923 assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3));