target/arm: Implement security attribute lookups for memory accesses
[qemu/kevin.git] / target / arm / helper.c
blob1d689f00b36e665d7deae19cc24edc58e20e1845
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState *env, target_ulong address,
23 MMUAccessType access_type, ARMMMUIdx mmu_idx,
24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25 target_ulong *page_size, uint32_t *fsr,
26 ARMMMUFaultInfo *fi);
28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29 MMUAccessType access_type, ARMMMUIdx mmu_idx,
30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31 target_ulong *page_size_ptr, uint32_t *fsr,
32 ARMMMUFaultInfo *fi);
34 /* Security attributes for an address, as returned by v8m_security_lookup. */
35 typedef struct V8M_SAttributes {
36 bool ns;
37 bool nsc;
38 uint8_t sregion;
39 bool srvalid;
40 uint8_t iregion;
41 bool irvalid;
42 } V8M_SAttributes;
44 /* Definitions for the PMCCNTR and PMCR registers */
45 #define PMCRD 0x8
46 #define PMCRC 0x4
47 #define PMCRE 0x1
48 #endif
50 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
52 int nregs;
54 /* VFP data registers are always little-endian. */
55 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
56 if (reg < nregs) {
57 stfq_le_p(buf, env->vfp.regs[reg]);
58 return 8;
60 if (arm_feature(env, ARM_FEATURE_NEON)) {
61 /* Aliases for Q regs. */
62 nregs += 16;
63 if (reg < nregs) {
64 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
65 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
66 return 16;
69 switch (reg - nregs) {
70 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
71 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
72 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
74 return 0;
77 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
79 int nregs;
81 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
82 if (reg < nregs) {
83 env->vfp.regs[reg] = ldfq_le_p(buf);
84 return 8;
86 if (arm_feature(env, ARM_FEATURE_NEON)) {
87 nregs += 16;
88 if (reg < nregs) {
89 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
90 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
91 return 16;
94 switch (reg - nregs) {
95 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
96 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
97 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
99 return 0;
102 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
104 switch (reg) {
105 case 0 ... 31:
106 /* 128 bit FP register */
107 stfq_le_p(buf, env->vfp.regs[reg * 2]);
108 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
109 return 16;
110 case 32:
111 /* FPSR */
112 stl_p(buf, vfp_get_fpsr(env));
113 return 4;
114 case 33:
115 /* FPCR */
116 stl_p(buf, vfp_get_fpcr(env));
117 return 4;
118 default:
119 return 0;
123 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
125 switch (reg) {
126 case 0 ... 31:
127 /* 128 bit FP register */
128 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
129 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
130 return 16;
131 case 32:
132 /* FPSR */
133 vfp_set_fpsr(env, ldl_p(buf));
134 return 4;
135 case 33:
136 /* FPCR */
137 vfp_set_fpcr(env, ldl_p(buf));
138 return 4;
139 default:
140 return 0;
144 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
146 assert(ri->fieldoffset);
147 if (cpreg_field_is_64bit(ri)) {
148 return CPREG_FIELD64(env, ri);
149 } else {
150 return CPREG_FIELD32(env, ri);
154 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
155 uint64_t value)
157 assert(ri->fieldoffset);
158 if (cpreg_field_is_64bit(ri)) {
159 CPREG_FIELD64(env, ri) = value;
160 } else {
161 CPREG_FIELD32(env, ri) = value;
165 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
167 return (char *)env + ri->fieldoffset;
170 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
172 /* Raw read of a coprocessor register (as needed for migration, etc). */
173 if (ri->type & ARM_CP_CONST) {
174 return ri->resetvalue;
175 } else if (ri->raw_readfn) {
176 return ri->raw_readfn(env, ri);
177 } else if (ri->readfn) {
178 return ri->readfn(env, ri);
179 } else {
180 return raw_read(env, ri);
184 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
185 uint64_t v)
187 /* Raw write of a coprocessor register (as needed for migration, etc).
188 * Note that constant registers are treated as write-ignored; the
189 * caller should check for success by whether a readback gives the
190 * value written.
192 if (ri->type & ARM_CP_CONST) {
193 return;
194 } else if (ri->raw_writefn) {
195 ri->raw_writefn(env, ri, v);
196 } else if (ri->writefn) {
197 ri->writefn(env, ri, v);
198 } else {
199 raw_write(env, ri, v);
203 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
205 /* Return true if the regdef would cause an assertion if you called
206 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
207 * program bug for it not to have the NO_RAW flag).
208 * NB that returning false here doesn't necessarily mean that calling
209 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
210 * read/write access functions which are safe for raw use" from "has
211 * read/write access functions which have side effects but has forgotten
212 * to provide raw access functions".
213 * The tests here line up with the conditions in read/write_raw_cp_reg()
214 * and assertions in raw_read()/raw_write().
216 if ((ri->type & ARM_CP_CONST) ||
217 ri->fieldoffset ||
218 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
219 return false;
221 return true;
224 bool write_cpustate_to_list(ARMCPU *cpu)
226 /* Write the coprocessor state from cpu->env to the (index,value) list. */
227 int i;
228 bool ok = true;
230 for (i = 0; i < cpu->cpreg_array_len; i++) {
231 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
232 const ARMCPRegInfo *ri;
234 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
235 if (!ri) {
236 ok = false;
237 continue;
239 if (ri->type & ARM_CP_NO_RAW) {
240 continue;
242 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
244 return ok;
247 bool write_list_to_cpustate(ARMCPU *cpu)
249 int i;
250 bool ok = true;
252 for (i = 0; i < cpu->cpreg_array_len; i++) {
253 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
254 uint64_t v = cpu->cpreg_values[i];
255 const ARMCPRegInfo *ri;
257 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
258 if (!ri) {
259 ok = false;
260 continue;
262 if (ri->type & ARM_CP_NO_RAW) {
263 continue;
265 /* Write value and confirm it reads back as written
266 * (to catch read-only registers and partially read-only
267 * registers where the incoming migration value doesn't match)
269 write_raw_cp_reg(&cpu->env, ri, v);
270 if (read_raw_cp_reg(&cpu->env, ri) != v) {
271 ok = false;
274 return ok;
277 static void add_cpreg_to_list(gpointer key, gpointer opaque)
279 ARMCPU *cpu = opaque;
280 uint64_t regidx;
281 const ARMCPRegInfo *ri;
283 regidx = *(uint32_t *)key;
284 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
286 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
287 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
288 /* The value array need not be initialized at this point */
289 cpu->cpreg_array_len++;
293 static void count_cpreg(gpointer key, gpointer opaque)
295 ARMCPU *cpu = opaque;
296 uint64_t regidx;
297 const ARMCPRegInfo *ri;
299 regidx = *(uint32_t *)key;
300 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
302 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
303 cpu->cpreg_array_len++;
307 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
309 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
310 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
312 if (aidx > bidx) {
313 return 1;
315 if (aidx < bidx) {
316 return -1;
318 return 0;
321 void init_cpreg_list(ARMCPU *cpu)
323 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
324 * Note that we require cpreg_tuples[] to be sorted by key ID.
326 GList *keys;
327 int arraylen;
329 keys = g_hash_table_get_keys(cpu->cp_regs);
330 keys = g_list_sort(keys, cpreg_key_compare);
332 cpu->cpreg_array_len = 0;
334 g_list_foreach(keys, count_cpreg, cpu);
336 arraylen = cpu->cpreg_array_len;
337 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
338 cpu->cpreg_values = g_new(uint64_t, arraylen);
339 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
340 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
341 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
342 cpu->cpreg_array_len = 0;
344 g_list_foreach(keys, add_cpreg_to_list, cpu);
346 assert(cpu->cpreg_array_len == arraylen);
348 g_list_free(keys);
352 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
353 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
355 * access_el3_aa32ns: Used to check AArch32 register views.
356 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
358 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
359 const ARMCPRegInfo *ri,
360 bool isread)
362 bool secure = arm_is_secure_below_el3(env);
364 assert(!arm_el_is_aa64(env, 3));
365 if (secure) {
366 return CP_ACCESS_TRAP_UNCATEGORIZED;
368 return CP_ACCESS_OK;
371 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
372 const ARMCPRegInfo *ri,
373 bool isread)
375 if (!arm_el_is_aa64(env, 3)) {
376 return access_el3_aa32ns(env, ri, isread);
378 return CP_ACCESS_OK;
381 /* Some secure-only AArch32 registers trap to EL3 if used from
382 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
383 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
384 * We assume that the .access field is set to PL1_RW.
386 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
387 const ARMCPRegInfo *ri,
388 bool isread)
390 if (arm_current_el(env) == 3) {
391 return CP_ACCESS_OK;
393 if (arm_is_secure_below_el3(env)) {
394 return CP_ACCESS_TRAP_EL3;
396 /* This will be EL1 NS and EL2 NS, which just UNDEF */
397 return CP_ACCESS_TRAP_UNCATEGORIZED;
400 /* Check for traps to "powerdown debug" registers, which are controlled
401 * by MDCR.TDOSA
403 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
404 bool isread)
406 int el = arm_current_el(env);
408 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
409 && !arm_is_secure_below_el3(env)) {
410 return CP_ACCESS_TRAP_EL2;
412 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
413 return CP_ACCESS_TRAP_EL3;
415 return CP_ACCESS_OK;
418 /* Check for traps to "debug ROM" registers, which are controlled
419 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
421 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
422 bool isread)
424 int el = arm_current_el(env);
426 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
427 && !arm_is_secure_below_el3(env)) {
428 return CP_ACCESS_TRAP_EL2;
430 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
431 return CP_ACCESS_TRAP_EL3;
433 return CP_ACCESS_OK;
436 /* Check for traps to general debug registers, which are controlled
437 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
439 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
440 bool isread)
442 int el = arm_current_el(env);
444 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
445 && !arm_is_secure_below_el3(env)) {
446 return CP_ACCESS_TRAP_EL2;
448 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
449 return CP_ACCESS_TRAP_EL3;
451 return CP_ACCESS_OK;
454 /* Check for traps to performance monitor registers, which are controlled
455 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
457 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
458 bool isread)
460 int el = arm_current_el(env);
462 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
463 && !arm_is_secure_below_el3(env)) {
464 return CP_ACCESS_TRAP_EL2;
466 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
467 return CP_ACCESS_TRAP_EL3;
469 return CP_ACCESS_OK;
472 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
474 ARMCPU *cpu = arm_env_get_cpu(env);
476 raw_write(env, ri, value);
477 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
480 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
482 ARMCPU *cpu = arm_env_get_cpu(env);
484 if (raw_read(env, ri) != value) {
485 /* Unlike real hardware the qemu TLB uses virtual addresses,
486 * not modified virtual addresses, so this causes a TLB flush.
488 tlb_flush(CPU(cpu));
489 raw_write(env, ri, value);
493 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
494 uint64_t value)
496 ARMCPU *cpu = arm_env_get_cpu(env);
498 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
499 && !extended_addresses_enabled(env)) {
500 /* For VMSA (when not using the LPAE long descriptor page table
501 * format) this register includes the ASID, so do a TLB flush.
502 * For PMSA it is purely a process ID and no action is needed.
504 tlb_flush(CPU(cpu));
506 raw_write(env, ri, value);
509 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
510 uint64_t value)
512 /* Invalidate all (TLBIALL) */
513 ARMCPU *cpu = arm_env_get_cpu(env);
515 tlb_flush(CPU(cpu));
518 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
519 uint64_t value)
521 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
522 ARMCPU *cpu = arm_env_get_cpu(env);
524 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
527 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
528 uint64_t value)
530 /* Invalidate by ASID (TLBIASID) */
531 ARMCPU *cpu = arm_env_get_cpu(env);
533 tlb_flush(CPU(cpu));
536 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
537 uint64_t value)
539 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
540 ARMCPU *cpu = arm_env_get_cpu(env);
542 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
545 /* IS variants of TLB operations must affect all cores */
546 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
547 uint64_t value)
549 CPUState *cs = ENV_GET_CPU(env);
551 tlb_flush_all_cpus_synced(cs);
554 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
555 uint64_t value)
557 CPUState *cs = ENV_GET_CPU(env);
559 tlb_flush_all_cpus_synced(cs);
562 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
563 uint64_t value)
565 CPUState *cs = ENV_GET_CPU(env);
567 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
570 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 uint64_t value)
573 CPUState *cs = ENV_GET_CPU(env);
575 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
578 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 uint64_t value)
581 CPUState *cs = ENV_GET_CPU(env);
583 tlb_flush_by_mmuidx(cs,
584 ARMMMUIdxBit_S12NSE1 |
585 ARMMMUIdxBit_S12NSE0 |
586 ARMMMUIdxBit_S2NS);
589 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
590 uint64_t value)
592 CPUState *cs = ENV_GET_CPU(env);
594 tlb_flush_by_mmuidx_all_cpus_synced(cs,
595 ARMMMUIdxBit_S12NSE1 |
596 ARMMMUIdxBit_S12NSE0 |
597 ARMMMUIdxBit_S2NS);
600 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
601 uint64_t value)
603 /* Invalidate by IPA. This has to invalidate any structures that
604 * contain only stage 2 translation information, but does not need
605 * to apply to structures that contain combined stage 1 and stage 2
606 * translation information.
607 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
609 CPUState *cs = ENV_GET_CPU(env);
610 uint64_t pageaddr;
612 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
613 return;
616 pageaddr = sextract64(value << 12, 0, 40);
618 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
621 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
622 uint64_t value)
624 CPUState *cs = ENV_GET_CPU(env);
625 uint64_t pageaddr;
627 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
628 return;
631 pageaddr = sextract64(value << 12, 0, 40);
633 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
634 ARMMMUIdxBit_S2NS);
637 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
638 uint64_t value)
640 CPUState *cs = ENV_GET_CPU(env);
642 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
645 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
646 uint64_t value)
648 CPUState *cs = ENV_GET_CPU(env);
650 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
653 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
654 uint64_t value)
656 CPUState *cs = ENV_GET_CPU(env);
657 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
659 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
662 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
663 uint64_t value)
665 CPUState *cs = ENV_GET_CPU(env);
666 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
668 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
669 ARMMMUIdxBit_S1E2);
672 static const ARMCPRegInfo cp_reginfo[] = {
673 /* Define the secure and non-secure FCSE identifier CP registers
674 * separately because there is no secure bank in V8 (no _EL3). This allows
675 * the secure register to be properly reset and migrated. There is also no
676 * v8 EL1 version of the register so the non-secure instance stands alone.
678 { .name = "FCSEIDR(NS)",
679 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
680 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
681 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
682 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
683 { .name = "FCSEIDR(S)",
684 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
685 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
686 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
687 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
688 /* Define the secure and non-secure context identifier CP registers
689 * separately because there is no secure bank in V8 (no _EL3). This allows
690 * the secure register to be properly reset and migrated. In the
691 * non-secure case, the 32-bit register will have reset and migration
692 * disabled during registration as it is handled by the 64-bit instance.
694 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
695 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
696 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
697 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
698 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
699 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
700 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
701 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
702 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
703 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
704 REGINFO_SENTINEL
707 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
708 /* NB: Some of these registers exist in v8 but with more precise
709 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
711 /* MMU Domain access control / MPU write buffer control */
712 { .name = "DACR",
713 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
714 .access = PL1_RW, .resetvalue = 0,
715 .writefn = dacr_write, .raw_writefn = raw_write,
716 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
717 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
718 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
719 * For v6 and v5, these mappings are overly broad.
721 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
722 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
723 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
724 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
725 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
726 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
727 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
728 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
729 /* Cache maintenance ops; some of this space may be overridden later. */
730 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
731 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
732 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
733 REGINFO_SENTINEL
736 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
737 /* Not all pre-v6 cores implemented this WFI, so this is slightly
738 * over-broad.
740 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
741 .access = PL1_W, .type = ARM_CP_WFI },
742 REGINFO_SENTINEL
745 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
746 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
747 * is UNPREDICTABLE; we choose to NOP as most implementations do).
749 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
750 .access = PL1_W, .type = ARM_CP_WFI },
751 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
752 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
753 * OMAPCP will override this space.
755 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
756 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
757 .resetvalue = 0 },
758 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
759 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
760 .resetvalue = 0 },
761 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
762 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
763 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
764 .resetvalue = 0 },
765 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
766 * implementing it as RAZ means the "debug architecture version" bits
767 * will read as a reserved value, which should cause Linux to not try
768 * to use the debug hardware.
770 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
771 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
772 /* MMU TLB control. Note that the wildcarding means we cover not just
773 * the unified TLB ops but also the dside/iside/inner-shareable variants.
775 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
776 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
777 .type = ARM_CP_NO_RAW },
778 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
779 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
780 .type = ARM_CP_NO_RAW },
781 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
782 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
783 .type = ARM_CP_NO_RAW },
784 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
785 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
786 .type = ARM_CP_NO_RAW },
787 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
788 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
789 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
790 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
791 REGINFO_SENTINEL
794 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
795 uint64_t value)
797 uint32_t mask = 0;
799 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
800 if (!arm_feature(env, ARM_FEATURE_V8)) {
801 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
802 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
803 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
805 if (arm_feature(env, ARM_FEATURE_VFP)) {
806 /* VFP coprocessor: cp10 & cp11 [23:20] */
807 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
809 if (!arm_feature(env, ARM_FEATURE_NEON)) {
810 /* ASEDIS [31] bit is RAO/WI */
811 value |= (1 << 31);
814 /* VFPv3 and upwards with NEON implement 32 double precision
815 * registers (D0-D31).
817 if (!arm_feature(env, ARM_FEATURE_NEON) ||
818 !arm_feature(env, ARM_FEATURE_VFP3)) {
819 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
820 value |= (1 << 30);
823 value &= mask;
825 env->cp15.cpacr_el1 = value;
828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
829 bool isread)
831 if (arm_feature(env, ARM_FEATURE_V8)) {
832 /* Check if CPACR accesses are to be trapped to EL2 */
833 if (arm_current_el(env) == 1 &&
834 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
835 return CP_ACCESS_TRAP_EL2;
836 /* Check if CPACR accesses are to be trapped to EL3 */
837 } else if (arm_current_el(env) < 3 &&
838 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
839 return CP_ACCESS_TRAP_EL3;
843 return CP_ACCESS_OK;
846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
847 bool isread)
849 /* Check if CPTR accesses are set to trap to EL3 */
850 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
851 return CP_ACCESS_TRAP_EL3;
854 return CP_ACCESS_OK;
857 static const ARMCPRegInfo v6_cp_reginfo[] = {
858 /* prefetch by MVA in v6, NOP in v7 */
859 { .name = "MVA_prefetch",
860 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
861 .access = PL1_W, .type = ARM_CP_NOP },
862 /* We need to break the TB after ISB to execute self-modifying code
863 * correctly and also to take any pending interrupts immediately.
864 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
866 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
867 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
868 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
869 .access = PL0_W, .type = ARM_CP_NOP },
870 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
871 .access = PL0_W, .type = ARM_CP_NOP },
872 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
873 .access = PL1_RW,
874 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
875 offsetof(CPUARMState, cp15.ifar_ns) },
876 .resetvalue = 0, },
877 /* Watchpoint Fault Address Register : should actually only be present
878 * for 1136, 1176, 11MPCore.
880 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
881 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
882 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
883 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
884 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
885 .resetvalue = 0, .writefn = cpacr_write },
886 REGINFO_SENTINEL
889 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
890 bool isread)
892 /* Performance monitor registers user accessibility is controlled
893 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
894 * trapping to EL2 or EL3 for other accesses.
896 int el = arm_current_el(env);
898 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
899 return CP_ACCESS_TRAP;
901 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
902 && !arm_is_secure_below_el3(env)) {
903 return CP_ACCESS_TRAP_EL2;
905 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
906 return CP_ACCESS_TRAP_EL3;
909 return CP_ACCESS_OK;
912 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
913 const ARMCPRegInfo *ri,
914 bool isread)
916 /* ER: event counter read trap control */
917 if (arm_feature(env, ARM_FEATURE_V8)
918 && arm_current_el(env) == 0
919 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
920 && isread) {
921 return CP_ACCESS_OK;
924 return pmreg_access(env, ri, isread);
927 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
928 const ARMCPRegInfo *ri,
929 bool isread)
931 /* SW: software increment write trap control */
932 if (arm_feature(env, ARM_FEATURE_V8)
933 && arm_current_el(env) == 0
934 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
935 && !isread) {
936 return CP_ACCESS_OK;
939 return pmreg_access(env, ri, isread);
942 #ifndef CONFIG_USER_ONLY
944 static CPAccessResult pmreg_access_selr(CPUARMState *env,
945 const ARMCPRegInfo *ri,
946 bool isread)
948 /* ER: event counter read trap control */
949 if (arm_feature(env, ARM_FEATURE_V8)
950 && arm_current_el(env) == 0
951 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
952 return CP_ACCESS_OK;
955 return pmreg_access(env, ri, isread);
958 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
959 const ARMCPRegInfo *ri,
960 bool isread)
962 /* CR: cycle counter read trap control */
963 if (arm_feature(env, ARM_FEATURE_V8)
964 && arm_current_el(env) == 0
965 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
966 && isread) {
967 return CP_ACCESS_OK;
970 return pmreg_access(env, ri, isread);
973 static inline bool arm_ccnt_enabled(CPUARMState *env)
975 /* This does not support checking PMCCFILTR_EL0 register */
977 if (!(env->cp15.c9_pmcr & PMCRE)) {
978 return false;
981 return true;
984 void pmccntr_sync(CPUARMState *env)
986 uint64_t temp_ticks;
988 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
989 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
991 if (env->cp15.c9_pmcr & PMCRD) {
992 /* Increment once every 64 processor clock cycles */
993 temp_ticks /= 64;
996 if (arm_ccnt_enabled(env)) {
997 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1001 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1002 uint64_t value)
1004 pmccntr_sync(env);
1006 if (value & PMCRC) {
1007 /* The counter has been reset */
1008 env->cp15.c15_ccnt = 0;
1011 /* only the DP, X, D and E bits are writable */
1012 env->cp15.c9_pmcr &= ~0x39;
1013 env->cp15.c9_pmcr |= (value & 0x39);
1015 pmccntr_sync(env);
1018 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1020 uint64_t total_ticks;
1022 if (!arm_ccnt_enabled(env)) {
1023 /* Counter is disabled, do not change value */
1024 return env->cp15.c15_ccnt;
1027 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1028 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1030 if (env->cp15.c9_pmcr & PMCRD) {
1031 /* Increment once every 64 processor clock cycles */
1032 total_ticks /= 64;
1034 return total_ticks - env->cp15.c15_ccnt;
1037 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1038 uint64_t value)
1040 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1041 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1042 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1043 * accessed.
1045 env->cp15.c9_pmselr = value & 0x1f;
1048 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1049 uint64_t value)
1051 uint64_t total_ticks;
1053 if (!arm_ccnt_enabled(env)) {
1054 /* Counter is disabled, set the absolute value */
1055 env->cp15.c15_ccnt = value;
1056 return;
1059 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1060 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1062 if (env->cp15.c9_pmcr & PMCRD) {
1063 /* Increment once every 64 processor clock cycles */
1064 total_ticks /= 64;
1066 env->cp15.c15_ccnt = total_ticks - value;
1069 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1070 uint64_t value)
1072 uint64_t cur_val = pmccntr_read(env, NULL);
1074 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1077 #else /* CONFIG_USER_ONLY */
1079 void pmccntr_sync(CPUARMState *env)
1083 #endif
1085 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1086 uint64_t value)
1088 pmccntr_sync(env);
1089 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1090 pmccntr_sync(env);
1093 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1094 uint64_t value)
1096 value &= (1 << 31);
1097 env->cp15.c9_pmcnten |= value;
1100 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1101 uint64_t value)
1103 value &= (1 << 31);
1104 env->cp15.c9_pmcnten &= ~value;
1107 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1108 uint64_t value)
1110 env->cp15.c9_pmovsr &= ~value;
1113 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1114 uint64_t value)
1116 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1117 * PMSELR value is equal to or greater than the number of implemented
1118 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1120 if (env->cp15.c9_pmselr == 0x1f) {
1121 pmccfiltr_write(env, ri, value);
1125 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1127 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1128 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1130 if (env->cp15.c9_pmselr == 0x1f) {
1131 return env->cp15.pmccfiltr_el0;
1132 } else {
1133 return 0;
1137 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1138 uint64_t value)
1140 if (arm_feature(env, ARM_FEATURE_V8)) {
1141 env->cp15.c9_pmuserenr = value & 0xf;
1142 } else {
1143 env->cp15.c9_pmuserenr = value & 1;
1147 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1148 uint64_t value)
1150 /* We have no event counters so only the C bit can be changed */
1151 value &= (1 << 31);
1152 env->cp15.c9_pminten |= value;
1155 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1156 uint64_t value)
1158 value &= (1 << 31);
1159 env->cp15.c9_pminten &= ~value;
1162 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1163 uint64_t value)
1165 /* Note that even though the AArch64 view of this register has bits
1166 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1167 * architectural requirements for bits which are RES0 only in some
1168 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1169 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1171 raw_write(env, ri, value & ~0x1FULL);
1174 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1176 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1177 * For bits that vary between AArch32/64, code needs to check the
1178 * current execution mode before directly using the feature bit.
1180 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1182 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1183 valid_mask &= ~SCR_HCE;
1185 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1186 * supported if EL2 exists. The bit is UNK/SBZP when
1187 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1188 * when EL2 is unavailable.
1189 * On ARMv8, this bit is always available.
1191 if (arm_feature(env, ARM_FEATURE_V7) &&
1192 !arm_feature(env, ARM_FEATURE_V8)) {
1193 valid_mask &= ~SCR_SMD;
1197 /* Clear all-context RES0 bits. */
1198 value &= valid_mask;
1199 raw_write(env, ri, value);
1202 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1204 ARMCPU *cpu = arm_env_get_cpu(env);
1206 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1207 * bank
1209 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1210 ri->secure & ARM_CP_SECSTATE_S);
1212 return cpu->ccsidr[index];
1215 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1216 uint64_t value)
1218 raw_write(env, ri, value & 0xf);
1221 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1223 CPUState *cs = ENV_GET_CPU(env);
1224 uint64_t ret = 0;
1226 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1227 ret |= CPSR_I;
1229 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1230 ret |= CPSR_F;
1232 /* External aborts are not possible in QEMU so A bit is always clear */
1233 return ret;
1236 static const ARMCPRegInfo v7_cp_reginfo[] = {
1237 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1238 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1239 .access = PL1_W, .type = ARM_CP_NOP },
1240 /* Performance monitors are implementation defined in v7,
1241 * but with an ARM recommended set of registers, which we
1242 * follow (although we don't actually implement any counters)
1244 * Performance registers fall into three categories:
1245 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1246 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1247 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1248 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1249 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1251 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1252 .access = PL0_RW, .type = ARM_CP_ALIAS,
1253 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1254 .writefn = pmcntenset_write,
1255 .accessfn = pmreg_access,
1256 .raw_writefn = raw_write },
1257 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1258 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1259 .access = PL0_RW, .accessfn = pmreg_access,
1260 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1261 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1262 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1263 .access = PL0_RW,
1264 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1265 .accessfn = pmreg_access,
1266 .writefn = pmcntenclr_write,
1267 .type = ARM_CP_ALIAS },
1268 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1269 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1270 .access = PL0_RW, .accessfn = pmreg_access,
1271 .type = ARM_CP_ALIAS,
1272 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1273 .writefn = pmcntenclr_write },
1274 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1275 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1276 .accessfn = pmreg_access,
1277 .writefn = pmovsr_write,
1278 .raw_writefn = raw_write },
1279 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1280 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1281 .access = PL0_RW, .accessfn = pmreg_access,
1282 .type = ARM_CP_ALIAS,
1283 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1284 .writefn = pmovsr_write,
1285 .raw_writefn = raw_write },
1286 /* Unimplemented so WI. */
1287 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1288 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1289 #ifndef CONFIG_USER_ONLY
1290 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1291 .access = PL0_RW, .type = ARM_CP_ALIAS,
1292 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1293 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1294 .raw_writefn = raw_write},
1295 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1296 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1297 .access = PL0_RW, .accessfn = pmreg_access_selr,
1298 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1299 .writefn = pmselr_write, .raw_writefn = raw_write, },
1300 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1301 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1302 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1303 .accessfn = pmreg_access_ccntr },
1304 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1305 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1306 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1307 .type = ARM_CP_IO,
1308 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1309 #endif
1310 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1311 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1312 .writefn = pmccfiltr_write,
1313 .access = PL0_RW, .accessfn = pmreg_access,
1314 .type = ARM_CP_IO,
1315 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1316 .resetvalue = 0, },
1317 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1318 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1319 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1320 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1321 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1322 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1323 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1324 /* Unimplemented, RAZ/WI. */
1325 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1326 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1327 .accessfn = pmreg_access_xevcntr },
1328 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1329 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1330 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1331 .resetvalue = 0,
1332 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1333 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1334 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1335 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1336 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1337 .resetvalue = 0,
1338 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1339 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1340 .access = PL1_RW, .accessfn = access_tpm,
1341 .type = ARM_CP_ALIAS,
1342 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1343 .resetvalue = 0,
1344 .writefn = pmintenset_write, .raw_writefn = raw_write },
1345 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1346 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1347 .access = PL1_RW, .accessfn = access_tpm,
1348 .type = ARM_CP_IO,
1349 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1350 .writefn = pmintenset_write, .raw_writefn = raw_write,
1351 .resetvalue = 0x0 },
1352 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1353 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1354 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1355 .writefn = pmintenclr_write, },
1356 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1357 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1358 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1359 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1360 .writefn = pmintenclr_write },
1361 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1362 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1363 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1364 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1365 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1366 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1367 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1368 offsetof(CPUARMState, cp15.csselr_ns) } },
1369 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1370 * just RAZ for all cores:
1372 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1373 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1374 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1375 /* Auxiliary fault status registers: these also are IMPDEF, and we
1376 * choose to RAZ/WI for all cores.
1378 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1379 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1380 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1381 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1382 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1383 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1384 /* MAIR can just read-as-written because we don't implement caches
1385 * and so don't need to care about memory attributes.
1387 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1388 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1389 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1390 .resetvalue = 0 },
1391 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1392 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1393 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1394 .resetvalue = 0 },
1395 /* For non-long-descriptor page tables these are PRRR and NMRR;
1396 * regardless they still act as reads-as-written for QEMU.
1398 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1399 * allows them to assign the correct fieldoffset based on the endianness
1400 * handled in the field definitions.
1402 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1403 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1404 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1405 offsetof(CPUARMState, cp15.mair0_ns) },
1406 .resetfn = arm_cp_reset_ignore },
1407 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1408 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1409 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1410 offsetof(CPUARMState, cp15.mair1_ns) },
1411 .resetfn = arm_cp_reset_ignore },
1412 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1413 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1414 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1415 /* 32 bit ITLB invalidates */
1416 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1417 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1418 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1419 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1420 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1421 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1422 /* 32 bit DTLB invalidates */
1423 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1424 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1425 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1426 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1427 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1428 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1429 /* 32 bit TLB invalidates */
1430 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1431 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1432 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1433 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1434 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1435 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1436 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1437 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1438 REGINFO_SENTINEL
1441 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1442 /* 32 bit TLB invalidates, Inner Shareable */
1443 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1444 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1445 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1446 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1447 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1448 .type = ARM_CP_NO_RAW, .access = PL1_W,
1449 .writefn = tlbiasid_is_write },
1450 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1451 .type = ARM_CP_NO_RAW, .access = PL1_W,
1452 .writefn = tlbimvaa_is_write },
1453 REGINFO_SENTINEL
1456 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1457 uint64_t value)
1459 value &= 1;
1460 env->teecr = value;
1463 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1464 bool isread)
1466 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1467 return CP_ACCESS_TRAP;
1469 return CP_ACCESS_OK;
1472 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1473 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1474 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1475 .resetvalue = 0,
1476 .writefn = teecr_write },
1477 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1478 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1479 .accessfn = teehbr_access, .resetvalue = 0 },
1480 REGINFO_SENTINEL
1483 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1484 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1485 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1486 .access = PL0_RW,
1487 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1488 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1489 .access = PL0_RW,
1490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1491 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1492 .resetfn = arm_cp_reset_ignore },
1493 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1494 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1495 .access = PL0_R|PL1_W,
1496 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1497 .resetvalue = 0},
1498 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1499 .access = PL0_R|PL1_W,
1500 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1501 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1502 .resetfn = arm_cp_reset_ignore },
1503 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1504 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1505 .access = PL1_RW,
1506 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1507 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1508 .access = PL1_RW,
1509 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1510 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1511 .resetvalue = 0 },
1512 REGINFO_SENTINEL
1515 #ifndef CONFIG_USER_ONLY
1517 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1518 bool isread)
1520 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1521 * Writable only at the highest implemented exception level.
1523 int el = arm_current_el(env);
1525 switch (el) {
1526 case 0:
1527 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1528 return CP_ACCESS_TRAP;
1530 break;
1531 case 1:
1532 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1533 arm_is_secure_below_el3(env)) {
1534 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1535 return CP_ACCESS_TRAP_UNCATEGORIZED;
1537 break;
1538 case 2:
1539 case 3:
1540 break;
1543 if (!isread && el < arm_highest_el(env)) {
1544 return CP_ACCESS_TRAP_UNCATEGORIZED;
1547 return CP_ACCESS_OK;
1550 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1551 bool isread)
1553 unsigned int cur_el = arm_current_el(env);
1554 bool secure = arm_is_secure(env);
1556 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1557 if (cur_el == 0 &&
1558 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1559 return CP_ACCESS_TRAP;
1562 if (arm_feature(env, ARM_FEATURE_EL2) &&
1563 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1564 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1565 return CP_ACCESS_TRAP_EL2;
1567 return CP_ACCESS_OK;
1570 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1571 bool isread)
1573 unsigned int cur_el = arm_current_el(env);
1574 bool secure = arm_is_secure(env);
1576 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1577 * EL0[PV]TEN is zero.
1579 if (cur_el == 0 &&
1580 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1581 return CP_ACCESS_TRAP;
1584 if (arm_feature(env, ARM_FEATURE_EL2) &&
1585 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1586 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1587 return CP_ACCESS_TRAP_EL2;
1589 return CP_ACCESS_OK;
1592 static CPAccessResult gt_pct_access(CPUARMState *env,
1593 const ARMCPRegInfo *ri,
1594 bool isread)
1596 return gt_counter_access(env, GTIMER_PHYS, isread);
1599 static CPAccessResult gt_vct_access(CPUARMState *env,
1600 const ARMCPRegInfo *ri,
1601 bool isread)
1603 return gt_counter_access(env, GTIMER_VIRT, isread);
1606 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1607 bool isread)
1609 return gt_timer_access(env, GTIMER_PHYS, isread);
1612 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1613 bool isread)
1615 return gt_timer_access(env, GTIMER_VIRT, isread);
1618 static CPAccessResult gt_stimer_access(CPUARMState *env,
1619 const ARMCPRegInfo *ri,
1620 bool isread)
1622 /* The AArch64 register view of the secure physical timer is
1623 * always accessible from EL3, and configurably accessible from
1624 * Secure EL1.
1626 switch (arm_current_el(env)) {
1627 case 1:
1628 if (!arm_is_secure(env)) {
1629 return CP_ACCESS_TRAP;
1631 if (!(env->cp15.scr_el3 & SCR_ST)) {
1632 return CP_ACCESS_TRAP_EL3;
1634 return CP_ACCESS_OK;
1635 case 0:
1636 case 2:
1637 return CP_ACCESS_TRAP;
1638 case 3:
1639 return CP_ACCESS_OK;
1640 default:
1641 g_assert_not_reached();
1645 static uint64_t gt_get_countervalue(CPUARMState *env)
1647 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1650 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1652 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1654 if (gt->ctl & 1) {
1655 /* Timer enabled: calculate and set current ISTATUS, irq, and
1656 * reset timer to when ISTATUS next has to change
1658 uint64_t offset = timeridx == GTIMER_VIRT ?
1659 cpu->env.cp15.cntvoff_el2 : 0;
1660 uint64_t count = gt_get_countervalue(&cpu->env);
1661 /* Note that this must be unsigned 64 bit arithmetic: */
1662 int istatus = count - offset >= gt->cval;
1663 uint64_t nexttick;
1664 int irqstate;
1666 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1668 irqstate = (istatus && !(gt->ctl & 2));
1669 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1671 if (istatus) {
1672 /* Next transition is when count rolls back over to zero */
1673 nexttick = UINT64_MAX;
1674 } else {
1675 /* Next transition is when we hit cval */
1676 nexttick = gt->cval + offset;
1678 /* Note that the desired next expiry time might be beyond the
1679 * signed-64-bit range of a QEMUTimer -- in this case we just
1680 * set the timer for as far in the future as possible. When the
1681 * timer expires we will reset the timer for any remaining period.
1683 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1684 nexttick = INT64_MAX / GTIMER_SCALE;
1686 timer_mod(cpu->gt_timer[timeridx], nexttick);
1687 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1688 } else {
1689 /* Timer disabled: ISTATUS and timer output always clear */
1690 gt->ctl &= ~4;
1691 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1692 timer_del(cpu->gt_timer[timeridx]);
1693 trace_arm_gt_recalc_disabled(timeridx);
1697 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1698 int timeridx)
1700 ARMCPU *cpu = arm_env_get_cpu(env);
1702 timer_del(cpu->gt_timer[timeridx]);
1705 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1707 return gt_get_countervalue(env);
1710 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1712 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1715 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1716 int timeridx,
1717 uint64_t value)
1719 trace_arm_gt_cval_write(timeridx, value);
1720 env->cp15.c14_timer[timeridx].cval = value;
1721 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1724 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1725 int timeridx)
1727 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1729 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1730 (gt_get_countervalue(env) - offset));
1733 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734 int timeridx,
1735 uint64_t value)
1737 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1739 trace_arm_gt_tval_write(timeridx, value);
1740 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1741 sextract64(value, 0, 32);
1742 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1745 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1746 int timeridx,
1747 uint64_t value)
1749 ARMCPU *cpu = arm_env_get_cpu(env);
1750 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1752 trace_arm_gt_ctl_write(timeridx, value);
1753 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1754 if ((oldval ^ value) & 1) {
1755 /* Enable toggled */
1756 gt_recalc_timer(cpu, timeridx);
1757 } else if ((oldval ^ value) & 2) {
1758 /* IMASK toggled: don't need to recalculate,
1759 * just set the interrupt line based on ISTATUS
1761 int irqstate = (oldval & 4) && !(value & 2);
1763 trace_arm_gt_imask_toggle(timeridx, irqstate);
1764 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1768 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1770 gt_timer_reset(env, ri, GTIMER_PHYS);
1773 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1774 uint64_t value)
1776 gt_cval_write(env, ri, GTIMER_PHYS, value);
1779 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1781 return gt_tval_read(env, ri, GTIMER_PHYS);
1784 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1785 uint64_t value)
1787 gt_tval_write(env, ri, GTIMER_PHYS, value);
1790 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1791 uint64_t value)
1793 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1796 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1798 gt_timer_reset(env, ri, GTIMER_VIRT);
1801 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1802 uint64_t value)
1804 gt_cval_write(env, ri, GTIMER_VIRT, value);
1807 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1809 return gt_tval_read(env, ri, GTIMER_VIRT);
1812 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1813 uint64_t value)
1815 gt_tval_write(env, ri, GTIMER_VIRT, value);
1818 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1819 uint64_t value)
1821 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1824 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1825 uint64_t value)
1827 ARMCPU *cpu = arm_env_get_cpu(env);
1829 trace_arm_gt_cntvoff_write(value);
1830 raw_write(env, ri, value);
1831 gt_recalc_timer(cpu, GTIMER_VIRT);
1834 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1836 gt_timer_reset(env, ri, GTIMER_HYP);
1839 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1840 uint64_t value)
1842 gt_cval_write(env, ri, GTIMER_HYP, value);
1845 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1847 return gt_tval_read(env, ri, GTIMER_HYP);
1850 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1851 uint64_t value)
1853 gt_tval_write(env, ri, GTIMER_HYP, value);
1856 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1857 uint64_t value)
1859 gt_ctl_write(env, ri, GTIMER_HYP, value);
1862 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1864 gt_timer_reset(env, ri, GTIMER_SEC);
1867 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1868 uint64_t value)
1870 gt_cval_write(env, ri, GTIMER_SEC, value);
1873 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1875 return gt_tval_read(env, ri, GTIMER_SEC);
1878 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1879 uint64_t value)
1881 gt_tval_write(env, ri, GTIMER_SEC, value);
1884 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1885 uint64_t value)
1887 gt_ctl_write(env, ri, GTIMER_SEC, value);
1890 void arm_gt_ptimer_cb(void *opaque)
1892 ARMCPU *cpu = opaque;
1894 gt_recalc_timer(cpu, GTIMER_PHYS);
1897 void arm_gt_vtimer_cb(void *opaque)
1899 ARMCPU *cpu = opaque;
1901 gt_recalc_timer(cpu, GTIMER_VIRT);
1904 void arm_gt_htimer_cb(void *opaque)
1906 ARMCPU *cpu = opaque;
1908 gt_recalc_timer(cpu, GTIMER_HYP);
1911 void arm_gt_stimer_cb(void *opaque)
1913 ARMCPU *cpu = opaque;
1915 gt_recalc_timer(cpu, GTIMER_SEC);
1918 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1919 /* Note that CNTFRQ is purely reads-as-written for the benefit
1920 * of software; writing it doesn't actually change the timer frequency.
1921 * Our reset value matches the fixed frequency we implement the timer at.
1923 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1924 .type = ARM_CP_ALIAS,
1925 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1926 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1928 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1929 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1930 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1931 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1932 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1934 /* overall control: mostly access permissions */
1935 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1936 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1937 .access = PL1_RW,
1938 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1939 .resetvalue = 0,
1941 /* per-timer control */
1942 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1943 .secure = ARM_CP_SECSTATE_NS,
1944 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1945 .accessfn = gt_ptimer_access,
1946 .fieldoffset = offsetoflow32(CPUARMState,
1947 cp15.c14_timer[GTIMER_PHYS].ctl),
1948 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1950 { .name = "CNTP_CTL(S)",
1951 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1952 .secure = ARM_CP_SECSTATE_S,
1953 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1954 .accessfn = gt_ptimer_access,
1955 .fieldoffset = offsetoflow32(CPUARMState,
1956 cp15.c14_timer[GTIMER_SEC].ctl),
1957 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1959 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1960 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1961 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1962 .accessfn = gt_ptimer_access,
1963 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1964 .resetvalue = 0,
1965 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1967 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1968 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1969 .accessfn = gt_vtimer_access,
1970 .fieldoffset = offsetoflow32(CPUARMState,
1971 cp15.c14_timer[GTIMER_VIRT].ctl),
1972 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1974 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1975 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1976 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1977 .accessfn = gt_vtimer_access,
1978 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1979 .resetvalue = 0,
1980 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1982 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1983 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1984 .secure = ARM_CP_SECSTATE_NS,
1985 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1986 .accessfn = gt_ptimer_access,
1987 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1989 { .name = "CNTP_TVAL(S)",
1990 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1991 .secure = ARM_CP_SECSTATE_S,
1992 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1993 .accessfn = gt_ptimer_access,
1994 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1996 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1997 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1998 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1999 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2000 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2002 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2003 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2004 .accessfn = gt_vtimer_access,
2005 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2007 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2008 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2009 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2010 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2011 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2013 /* The counter itself */
2014 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2015 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2016 .accessfn = gt_pct_access,
2017 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2019 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2021 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2022 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2024 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2025 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2026 .accessfn = gt_vct_access,
2027 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2029 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2030 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2031 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2032 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2034 /* Comparison value, indicating when the timer goes off */
2035 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2036 .secure = ARM_CP_SECSTATE_NS,
2037 .access = PL1_RW | PL0_R,
2038 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2039 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2040 .accessfn = gt_ptimer_access,
2041 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2043 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2044 .secure = ARM_CP_SECSTATE_S,
2045 .access = PL1_RW | PL0_R,
2046 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2047 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2048 .accessfn = gt_ptimer_access,
2049 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2051 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2052 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2053 .access = PL1_RW | PL0_R,
2054 .type = ARM_CP_IO,
2055 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2056 .resetvalue = 0, .accessfn = gt_ptimer_access,
2057 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2059 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2060 .access = PL1_RW | PL0_R,
2061 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2062 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2063 .accessfn = gt_vtimer_access,
2064 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2066 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2067 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2068 .access = PL1_RW | PL0_R,
2069 .type = ARM_CP_IO,
2070 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2071 .resetvalue = 0, .accessfn = gt_vtimer_access,
2072 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2074 /* Secure timer -- this is actually restricted to only EL3
2075 * and configurably Secure-EL1 via the accessfn.
2077 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2078 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2079 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2080 .accessfn = gt_stimer_access,
2081 .readfn = gt_sec_tval_read,
2082 .writefn = gt_sec_tval_write,
2083 .resetfn = gt_sec_timer_reset,
2085 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2086 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2087 .type = ARM_CP_IO, .access = PL1_RW,
2088 .accessfn = gt_stimer_access,
2089 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2090 .resetvalue = 0,
2091 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2093 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2094 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2095 .type = ARM_CP_IO, .access = PL1_RW,
2096 .accessfn = gt_stimer_access,
2097 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2098 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2100 REGINFO_SENTINEL
2103 #else
2104 /* In user-mode none of the generic timer registers are accessible,
2105 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2106 * so instead just don't register any of them.
2108 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2109 REGINFO_SENTINEL
2112 #endif
2114 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2116 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2117 raw_write(env, ri, value);
2118 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2119 raw_write(env, ri, value & 0xfffff6ff);
2120 } else {
2121 raw_write(env, ri, value & 0xfffff1ff);
2125 #ifndef CONFIG_USER_ONLY
2126 /* get_phys_addr() isn't present for user-mode-only targets */
2128 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2129 bool isread)
2131 if (ri->opc2 & 4) {
2132 /* The ATS12NSO* operations must trap to EL3 if executed in
2133 * Secure EL1 (which can only happen if EL3 is AArch64).
2134 * They are simply UNDEF if executed from NS EL1.
2135 * They function normally from EL2 or EL3.
2137 if (arm_current_el(env) == 1) {
2138 if (arm_is_secure_below_el3(env)) {
2139 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2141 return CP_ACCESS_TRAP_UNCATEGORIZED;
2144 return CP_ACCESS_OK;
2147 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2148 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2150 hwaddr phys_addr;
2151 target_ulong page_size;
2152 int prot;
2153 uint32_t fsr;
2154 bool ret;
2155 uint64_t par64;
2156 MemTxAttrs attrs = {};
2157 ARMMMUFaultInfo fi = {};
2159 ret = get_phys_addr(env, value, access_type, mmu_idx,
2160 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2161 if (extended_addresses_enabled(env)) {
2162 /* fsr is a DFSR/IFSR value for the long descriptor
2163 * translation table format, but with WnR always clear.
2164 * Convert it to a 64-bit PAR.
2166 par64 = (1 << 11); /* LPAE bit always set */
2167 if (!ret) {
2168 par64 |= phys_addr & ~0xfffULL;
2169 if (!attrs.secure) {
2170 par64 |= (1 << 9); /* NS */
2172 /* We don't set the ATTR or SH fields in the PAR. */
2173 } else {
2174 par64 |= 1; /* F */
2175 par64 |= (fsr & 0x3f) << 1; /* FS */
2176 /* Note that S2WLK and FSTAGE are always zero, because we don't
2177 * implement virtualization and therefore there can't be a stage 2
2178 * fault.
2181 } else {
2182 /* fsr is a DFSR/IFSR value for the short descriptor
2183 * translation table format (with WnR always clear).
2184 * Convert it to a 32-bit PAR.
2186 if (!ret) {
2187 /* We do not set any attribute bits in the PAR */
2188 if (page_size == (1 << 24)
2189 && arm_feature(env, ARM_FEATURE_V7)) {
2190 par64 = (phys_addr & 0xff000000) | (1 << 1);
2191 } else {
2192 par64 = phys_addr & 0xfffff000;
2194 if (!attrs.secure) {
2195 par64 |= (1 << 9); /* NS */
2197 } else {
2198 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2199 ((fsr & 0xf) << 1) | 1;
2202 return par64;
2205 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2207 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2208 uint64_t par64;
2209 ARMMMUIdx mmu_idx;
2210 int el = arm_current_el(env);
2211 bool secure = arm_is_secure_below_el3(env);
2213 switch (ri->opc2 & 6) {
2214 case 0:
2215 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2216 switch (el) {
2217 case 3:
2218 mmu_idx = ARMMMUIdx_S1E3;
2219 break;
2220 case 2:
2221 mmu_idx = ARMMMUIdx_S1NSE1;
2222 break;
2223 case 1:
2224 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2225 break;
2226 default:
2227 g_assert_not_reached();
2229 break;
2230 case 2:
2231 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2232 switch (el) {
2233 case 3:
2234 mmu_idx = ARMMMUIdx_S1SE0;
2235 break;
2236 case 2:
2237 mmu_idx = ARMMMUIdx_S1NSE0;
2238 break;
2239 case 1:
2240 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2241 break;
2242 default:
2243 g_assert_not_reached();
2245 break;
2246 case 4:
2247 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2248 mmu_idx = ARMMMUIdx_S12NSE1;
2249 break;
2250 case 6:
2251 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2252 mmu_idx = ARMMMUIdx_S12NSE0;
2253 break;
2254 default:
2255 g_assert_not_reached();
2258 par64 = do_ats_write(env, value, access_type, mmu_idx);
2260 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2263 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2264 uint64_t value)
2266 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2267 uint64_t par64;
2269 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2271 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2274 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2275 bool isread)
2277 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2278 return CP_ACCESS_TRAP;
2280 return CP_ACCESS_OK;
2283 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2284 uint64_t value)
2286 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2287 ARMMMUIdx mmu_idx;
2288 int secure = arm_is_secure_below_el3(env);
2290 switch (ri->opc2 & 6) {
2291 case 0:
2292 switch (ri->opc1) {
2293 case 0: /* AT S1E1R, AT S1E1W */
2294 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2295 break;
2296 case 4: /* AT S1E2R, AT S1E2W */
2297 mmu_idx = ARMMMUIdx_S1E2;
2298 break;
2299 case 6: /* AT S1E3R, AT S1E3W */
2300 mmu_idx = ARMMMUIdx_S1E3;
2301 break;
2302 default:
2303 g_assert_not_reached();
2305 break;
2306 case 2: /* AT S1E0R, AT S1E0W */
2307 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2308 break;
2309 case 4: /* AT S12E1R, AT S12E1W */
2310 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2311 break;
2312 case 6: /* AT S12E0R, AT S12E0W */
2313 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2314 break;
2315 default:
2316 g_assert_not_reached();
2319 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2321 #endif
2323 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2324 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2325 .access = PL1_RW, .resetvalue = 0,
2326 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2327 offsetoflow32(CPUARMState, cp15.par_ns) },
2328 .writefn = par_write },
2329 #ifndef CONFIG_USER_ONLY
2330 /* This underdecoding is safe because the reginfo is NO_RAW. */
2331 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2332 .access = PL1_W, .accessfn = ats_access,
2333 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2334 #endif
2335 REGINFO_SENTINEL
2338 /* Return basic MPU access permission bits. */
2339 static uint32_t simple_mpu_ap_bits(uint32_t val)
2341 uint32_t ret;
2342 uint32_t mask;
2343 int i;
2344 ret = 0;
2345 mask = 3;
2346 for (i = 0; i < 16; i += 2) {
2347 ret |= (val >> i) & mask;
2348 mask <<= 2;
2350 return ret;
2353 /* Pad basic MPU access permission bits to extended format. */
2354 static uint32_t extended_mpu_ap_bits(uint32_t val)
2356 uint32_t ret;
2357 uint32_t mask;
2358 int i;
2359 ret = 0;
2360 mask = 3;
2361 for (i = 0; i < 16; i += 2) {
2362 ret |= (val & mask) << i;
2363 mask <<= 2;
2365 return ret;
2368 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2369 uint64_t value)
2371 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2374 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2376 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2379 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2380 uint64_t value)
2382 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2385 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2387 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2390 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2392 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2394 if (!u32p) {
2395 return 0;
2398 u32p += env->pmsav7.rnr[M_REG_NS];
2399 return *u32p;
2402 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2403 uint64_t value)
2405 ARMCPU *cpu = arm_env_get_cpu(env);
2406 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2408 if (!u32p) {
2409 return;
2412 u32p += env->pmsav7.rnr[M_REG_NS];
2413 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2414 *u32p = value;
2417 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2418 uint64_t value)
2420 ARMCPU *cpu = arm_env_get_cpu(env);
2421 uint32_t nrgs = cpu->pmsav7_dregion;
2423 if (value >= nrgs) {
2424 qemu_log_mask(LOG_GUEST_ERROR,
2425 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2426 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2427 return;
2430 raw_write(env, ri, value);
2433 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2434 /* Reset for all these registers is handled in arm_cpu_reset(),
2435 * because the PMSAv7 is also used by M-profile CPUs, which do
2436 * not register cpregs but still need the state to be reset.
2438 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2439 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2440 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2441 .readfn = pmsav7_read, .writefn = pmsav7_write,
2442 .resetfn = arm_cp_reset_ignore },
2443 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2444 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2445 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2446 .readfn = pmsav7_read, .writefn = pmsav7_write,
2447 .resetfn = arm_cp_reset_ignore },
2448 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2449 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2450 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2451 .readfn = pmsav7_read, .writefn = pmsav7_write,
2452 .resetfn = arm_cp_reset_ignore },
2453 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2454 .access = PL1_RW,
2455 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2456 .writefn = pmsav7_rgnr_write,
2457 .resetfn = arm_cp_reset_ignore },
2458 REGINFO_SENTINEL
2461 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2462 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2463 .access = PL1_RW, .type = ARM_CP_ALIAS,
2464 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2465 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2466 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2467 .access = PL1_RW, .type = ARM_CP_ALIAS,
2468 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2469 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2470 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2471 .access = PL1_RW,
2472 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2473 .resetvalue = 0, },
2474 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2475 .access = PL1_RW,
2476 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2477 .resetvalue = 0, },
2478 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2479 .access = PL1_RW,
2480 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2481 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2482 .access = PL1_RW,
2483 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2484 /* Protection region base and size registers */
2485 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2486 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2487 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2488 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2489 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2490 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2491 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2492 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2493 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2494 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2495 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2496 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2497 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2498 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2499 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2500 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2501 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2502 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2503 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2504 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2505 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2506 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2507 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2508 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2509 REGINFO_SENTINEL
2512 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2513 uint64_t value)
2515 TCR *tcr = raw_ptr(env, ri);
2516 int maskshift = extract32(value, 0, 3);
2518 if (!arm_feature(env, ARM_FEATURE_V8)) {
2519 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2520 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2521 * using Long-desciptor translation table format */
2522 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2523 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2524 /* In an implementation that includes the Security Extensions
2525 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2526 * Short-descriptor translation table format.
2528 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2529 } else {
2530 value &= TTBCR_N;
2534 /* Update the masks corresponding to the TCR bank being written
2535 * Note that we always calculate mask and base_mask, but
2536 * they are only used for short-descriptor tables (ie if EAE is 0);
2537 * for long-descriptor tables the TCR fields are used differently
2538 * and the mask and base_mask values are meaningless.
2540 tcr->raw_tcr = value;
2541 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2542 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2545 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2546 uint64_t value)
2548 ARMCPU *cpu = arm_env_get_cpu(env);
2550 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2551 /* With LPAE the TTBCR could result in a change of ASID
2552 * via the TTBCR.A1 bit, so do a TLB flush.
2554 tlb_flush(CPU(cpu));
2556 vmsa_ttbcr_raw_write(env, ri, value);
2559 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2561 TCR *tcr = raw_ptr(env, ri);
2563 /* Reset both the TCR as well as the masks corresponding to the bank of
2564 * the TCR being reset.
2566 tcr->raw_tcr = 0;
2567 tcr->mask = 0;
2568 tcr->base_mask = 0xffffc000u;
2571 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2572 uint64_t value)
2574 ARMCPU *cpu = arm_env_get_cpu(env);
2575 TCR *tcr = raw_ptr(env, ri);
2577 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2578 tlb_flush(CPU(cpu));
2579 tcr->raw_tcr = value;
2582 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2583 uint64_t value)
2585 /* 64 bit accesses to the TTBRs can change the ASID and so we
2586 * must flush the TLB.
2588 if (cpreg_field_is_64bit(ri)) {
2589 ARMCPU *cpu = arm_env_get_cpu(env);
2591 tlb_flush(CPU(cpu));
2593 raw_write(env, ri, value);
2596 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2597 uint64_t value)
2599 ARMCPU *cpu = arm_env_get_cpu(env);
2600 CPUState *cs = CPU(cpu);
2602 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2603 if (raw_read(env, ri) != value) {
2604 tlb_flush_by_mmuidx(cs,
2605 ARMMMUIdxBit_S12NSE1 |
2606 ARMMMUIdxBit_S12NSE0 |
2607 ARMMMUIdxBit_S2NS);
2608 raw_write(env, ri, value);
2612 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2613 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2614 .access = PL1_RW, .type = ARM_CP_ALIAS,
2615 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2616 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2617 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2618 .access = PL1_RW, .resetvalue = 0,
2619 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2620 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2621 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2622 .access = PL1_RW, .resetvalue = 0,
2623 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2624 offsetof(CPUARMState, cp15.dfar_ns) } },
2625 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2626 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2627 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2628 .resetvalue = 0, },
2629 REGINFO_SENTINEL
2632 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2633 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2634 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2635 .access = PL1_RW,
2636 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2637 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2638 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2639 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2640 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2641 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2642 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2643 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2644 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2645 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2646 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2647 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2648 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2649 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2650 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2651 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2652 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2653 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2654 .raw_writefn = vmsa_ttbcr_raw_write,
2655 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2656 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2657 REGINFO_SENTINEL
2660 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2661 uint64_t value)
2663 env->cp15.c15_ticonfig = value & 0xe7;
2664 /* The OS_TYPE bit in this register changes the reported CPUID! */
2665 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2666 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2669 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2670 uint64_t value)
2672 env->cp15.c15_threadid = value & 0xffff;
2675 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2676 uint64_t value)
2678 /* Wait-for-interrupt (deprecated) */
2679 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2682 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2683 uint64_t value)
2685 /* On OMAP there are registers indicating the max/min index of dcache lines
2686 * containing a dirty line; cache flush operations have to reset these.
2688 env->cp15.c15_i_max = 0x000;
2689 env->cp15.c15_i_min = 0xff0;
2692 static const ARMCPRegInfo omap_cp_reginfo[] = {
2693 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2694 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2695 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2696 .resetvalue = 0, },
2697 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2698 .access = PL1_RW, .type = ARM_CP_NOP },
2699 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2700 .access = PL1_RW,
2701 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2702 .writefn = omap_ticonfig_write },
2703 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2704 .access = PL1_RW,
2705 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2706 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2707 .access = PL1_RW, .resetvalue = 0xff0,
2708 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2709 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2710 .access = PL1_RW,
2711 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2712 .writefn = omap_threadid_write },
2713 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2714 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2715 .type = ARM_CP_NO_RAW,
2716 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2717 /* TODO: Peripheral port remap register:
2718 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2719 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2720 * when MMU is off.
2722 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2723 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2724 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2725 .writefn = omap_cachemaint_write },
2726 { .name = "C9", .cp = 15, .crn = 9,
2727 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2728 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2729 REGINFO_SENTINEL
2732 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2733 uint64_t value)
2735 env->cp15.c15_cpar = value & 0x3fff;
2738 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2739 { .name = "XSCALE_CPAR",
2740 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2741 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2742 .writefn = xscale_cpar_write, },
2743 { .name = "XSCALE_AUXCR",
2744 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2745 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2746 .resetvalue = 0, },
2747 /* XScale specific cache-lockdown: since we have no cache we NOP these
2748 * and hope the guest does not really rely on cache behaviour.
2750 { .name = "XSCALE_LOCK_ICACHE_LINE",
2751 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2752 .access = PL1_W, .type = ARM_CP_NOP },
2753 { .name = "XSCALE_UNLOCK_ICACHE",
2754 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2755 .access = PL1_W, .type = ARM_CP_NOP },
2756 { .name = "XSCALE_DCACHE_LOCK",
2757 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2758 .access = PL1_RW, .type = ARM_CP_NOP },
2759 { .name = "XSCALE_UNLOCK_DCACHE",
2760 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2761 .access = PL1_W, .type = ARM_CP_NOP },
2762 REGINFO_SENTINEL
2765 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2766 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2767 * implementation of this implementation-defined space.
2768 * Ideally this should eventually disappear in favour of actually
2769 * implementing the correct behaviour for all cores.
2771 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2772 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2773 .access = PL1_RW,
2774 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2775 .resetvalue = 0 },
2776 REGINFO_SENTINEL
2779 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2780 /* Cache status: RAZ because we have no cache so it's always clean */
2781 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2782 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2783 .resetvalue = 0 },
2784 REGINFO_SENTINEL
2787 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2788 /* We never have a a block transfer operation in progress */
2789 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2790 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2791 .resetvalue = 0 },
2792 /* The cache ops themselves: these all NOP for QEMU */
2793 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2794 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2795 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2796 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2797 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2798 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2799 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2800 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2801 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2802 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2803 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2804 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2805 REGINFO_SENTINEL
2808 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2809 /* The cache test-and-clean instructions always return (1 << 30)
2810 * to indicate that there are no dirty cache lines.
2812 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2813 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2814 .resetvalue = (1 << 30) },
2815 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2816 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2817 .resetvalue = (1 << 30) },
2818 REGINFO_SENTINEL
2821 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2822 /* Ignore ReadBuffer accesses */
2823 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2824 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2825 .access = PL1_RW, .resetvalue = 0,
2826 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2827 REGINFO_SENTINEL
2830 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2832 ARMCPU *cpu = arm_env_get_cpu(env);
2833 unsigned int cur_el = arm_current_el(env);
2834 bool secure = arm_is_secure(env);
2836 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2837 return env->cp15.vpidr_el2;
2839 return raw_read(env, ri);
2842 static uint64_t mpidr_read_val(CPUARMState *env)
2844 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2845 uint64_t mpidr = cpu->mp_affinity;
2847 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2848 mpidr |= (1U << 31);
2849 /* Cores which are uniprocessor (non-coherent)
2850 * but still implement the MP extensions set
2851 * bit 30. (For instance, Cortex-R5).
2853 if (cpu->mp_is_up) {
2854 mpidr |= (1u << 30);
2857 return mpidr;
2860 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2862 unsigned int cur_el = arm_current_el(env);
2863 bool secure = arm_is_secure(env);
2865 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2866 return env->cp15.vmpidr_el2;
2868 return mpidr_read_val(env);
2871 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2872 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2873 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2874 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2875 REGINFO_SENTINEL
2878 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2879 /* NOP AMAIR0/1 */
2880 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2881 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2882 .access = PL1_RW, .type = ARM_CP_CONST,
2883 .resetvalue = 0 },
2884 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2885 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2886 .access = PL1_RW, .type = ARM_CP_CONST,
2887 .resetvalue = 0 },
2888 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2889 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2890 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2891 offsetof(CPUARMState, cp15.par_ns)} },
2892 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2893 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2894 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2895 offsetof(CPUARMState, cp15.ttbr0_ns) },
2896 .writefn = vmsa_ttbr_write, },
2897 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2898 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2899 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2900 offsetof(CPUARMState, cp15.ttbr1_ns) },
2901 .writefn = vmsa_ttbr_write, },
2902 REGINFO_SENTINEL
2905 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2907 return vfp_get_fpcr(env);
2910 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2911 uint64_t value)
2913 vfp_set_fpcr(env, value);
2916 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2918 return vfp_get_fpsr(env);
2921 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2922 uint64_t value)
2924 vfp_set_fpsr(env, value);
2927 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2928 bool isread)
2930 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2931 return CP_ACCESS_TRAP;
2933 return CP_ACCESS_OK;
2936 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2937 uint64_t value)
2939 env->daif = value & PSTATE_DAIF;
2942 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2943 const ARMCPRegInfo *ri,
2944 bool isread)
2946 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2947 * SCTLR_EL1.UCI is set.
2949 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2950 return CP_ACCESS_TRAP;
2952 return CP_ACCESS_OK;
2955 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2956 * Page D4-1736 (DDI0487A.b)
2959 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2960 uint64_t value)
2962 CPUState *cs = ENV_GET_CPU(env);
2964 if (arm_is_secure_below_el3(env)) {
2965 tlb_flush_by_mmuidx(cs,
2966 ARMMMUIdxBit_S1SE1 |
2967 ARMMMUIdxBit_S1SE0);
2968 } else {
2969 tlb_flush_by_mmuidx(cs,
2970 ARMMMUIdxBit_S12NSE1 |
2971 ARMMMUIdxBit_S12NSE0);
2975 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2976 uint64_t value)
2978 CPUState *cs = ENV_GET_CPU(env);
2979 bool sec = arm_is_secure_below_el3(env);
2981 if (sec) {
2982 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2983 ARMMMUIdxBit_S1SE1 |
2984 ARMMMUIdxBit_S1SE0);
2985 } else {
2986 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2987 ARMMMUIdxBit_S12NSE1 |
2988 ARMMMUIdxBit_S12NSE0);
2992 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2993 uint64_t value)
2995 /* Note that the 'ALL' scope must invalidate both stage 1 and
2996 * stage 2 translations, whereas most other scopes only invalidate
2997 * stage 1 translations.
2999 ARMCPU *cpu = arm_env_get_cpu(env);
3000 CPUState *cs = CPU(cpu);
3002 if (arm_is_secure_below_el3(env)) {
3003 tlb_flush_by_mmuidx(cs,
3004 ARMMMUIdxBit_S1SE1 |
3005 ARMMMUIdxBit_S1SE0);
3006 } else {
3007 if (arm_feature(env, ARM_FEATURE_EL2)) {
3008 tlb_flush_by_mmuidx(cs,
3009 ARMMMUIdxBit_S12NSE1 |
3010 ARMMMUIdxBit_S12NSE0 |
3011 ARMMMUIdxBit_S2NS);
3012 } else {
3013 tlb_flush_by_mmuidx(cs,
3014 ARMMMUIdxBit_S12NSE1 |
3015 ARMMMUIdxBit_S12NSE0);
3020 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3021 uint64_t value)
3023 ARMCPU *cpu = arm_env_get_cpu(env);
3024 CPUState *cs = CPU(cpu);
3026 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3029 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3030 uint64_t value)
3032 ARMCPU *cpu = arm_env_get_cpu(env);
3033 CPUState *cs = CPU(cpu);
3035 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3038 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3039 uint64_t value)
3041 /* Note that the 'ALL' scope must invalidate both stage 1 and
3042 * stage 2 translations, whereas most other scopes only invalidate
3043 * stage 1 translations.
3045 CPUState *cs = ENV_GET_CPU(env);
3046 bool sec = arm_is_secure_below_el3(env);
3047 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3049 if (sec) {
3050 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3051 ARMMMUIdxBit_S1SE1 |
3052 ARMMMUIdxBit_S1SE0);
3053 } else if (has_el2) {
3054 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3055 ARMMMUIdxBit_S12NSE1 |
3056 ARMMMUIdxBit_S12NSE0 |
3057 ARMMMUIdxBit_S2NS);
3058 } else {
3059 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3060 ARMMMUIdxBit_S12NSE1 |
3061 ARMMMUIdxBit_S12NSE0);
3065 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3066 uint64_t value)
3068 CPUState *cs = ENV_GET_CPU(env);
3070 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3073 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3074 uint64_t value)
3076 CPUState *cs = ENV_GET_CPU(env);
3078 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3081 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3082 uint64_t value)
3084 /* Invalidate by VA, EL1&0 (AArch64 version).
3085 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3086 * since we don't support flush-for-specific-ASID-only or
3087 * flush-last-level-only.
3089 ARMCPU *cpu = arm_env_get_cpu(env);
3090 CPUState *cs = CPU(cpu);
3091 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3093 if (arm_is_secure_below_el3(env)) {
3094 tlb_flush_page_by_mmuidx(cs, pageaddr,
3095 ARMMMUIdxBit_S1SE1 |
3096 ARMMMUIdxBit_S1SE0);
3097 } else {
3098 tlb_flush_page_by_mmuidx(cs, pageaddr,
3099 ARMMMUIdxBit_S12NSE1 |
3100 ARMMMUIdxBit_S12NSE0);
3104 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3105 uint64_t value)
3107 /* Invalidate by VA, EL2
3108 * Currently handles both VAE2 and VALE2, since we don't support
3109 * flush-last-level-only.
3111 ARMCPU *cpu = arm_env_get_cpu(env);
3112 CPUState *cs = CPU(cpu);
3113 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3115 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3118 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3119 uint64_t value)
3121 /* Invalidate by VA, EL3
3122 * Currently handles both VAE3 and VALE3, since we don't support
3123 * flush-last-level-only.
3125 ARMCPU *cpu = arm_env_get_cpu(env);
3126 CPUState *cs = CPU(cpu);
3127 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3129 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3132 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3133 uint64_t value)
3135 ARMCPU *cpu = arm_env_get_cpu(env);
3136 CPUState *cs = CPU(cpu);
3137 bool sec = arm_is_secure_below_el3(env);
3138 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3140 if (sec) {
3141 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3142 ARMMMUIdxBit_S1SE1 |
3143 ARMMMUIdxBit_S1SE0);
3144 } else {
3145 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3146 ARMMMUIdxBit_S12NSE1 |
3147 ARMMMUIdxBit_S12NSE0);
3151 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3152 uint64_t value)
3154 CPUState *cs = ENV_GET_CPU(env);
3155 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3157 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3158 ARMMMUIdxBit_S1E2);
3161 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3162 uint64_t value)
3164 CPUState *cs = ENV_GET_CPU(env);
3165 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3167 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3168 ARMMMUIdxBit_S1E3);
3171 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3172 uint64_t value)
3174 /* Invalidate by IPA. This has to invalidate any structures that
3175 * contain only stage 2 translation information, but does not need
3176 * to apply to structures that contain combined stage 1 and stage 2
3177 * translation information.
3178 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3180 ARMCPU *cpu = arm_env_get_cpu(env);
3181 CPUState *cs = CPU(cpu);
3182 uint64_t pageaddr;
3184 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3185 return;
3188 pageaddr = sextract64(value << 12, 0, 48);
3190 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3193 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3194 uint64_t value)
3196 CPUState *cs = ENV_GET_CPU(env);
3197 uint64_t pageaddr;
3199 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3200 return;
3203 pageaddr = sextract64(value << 12, 0, 48);
3205 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3206 ARMMMUIdxBit_S2NS);
3209 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3210 bool isread)
3212 /* We don't implement EL2, so the only control on DC ZVA is the
3213 * bit in the SCTLR which can prohibit access for EL0.
3215 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3216 return CP_ACCESS_TRAP;
3218 return CP_ACCESS_OK;
3221 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3223 ARMCPU *cpu = arm_env_get_cpu(env);
3224 int dzp_bit = 1 << 4;
3226 /* DZP indicates whether DC ZVA access is allowed */
3227 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3228 dzp_bit = 0;
3230 return cpu->dcz_blocksize | dzp_bit;
3233 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3234 bool isread)
3236 if (!(env->pstate & PSTATE_SP)) {
3237 /* Access to SP_EL0 is undefined if it's being used as
3238 * the stack pointer.
3240 return CP_ACCESS_TRAP_UNCATEGORIZED;
3242 return CP_ACCESS_OK;
3245 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3247 return env->pstate & PSTATE_SP;
3250 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3252 update_spsel(env, val);
3255 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3256 uint64_t value)
3258 ARMCPU *cpu = arm_env_get_cpu(env);
3260 if (raw_read(env, ri) == value) {
3261 /* Skip the TLB flush if nothing actually changed; Linux likes
3262 * to do a lot of pointless SCTLR writes.
3264 return;
3267 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3268 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3269 value &= ~SCTLR_M;
3272 raw_write(env, ri, value);
3273 /* ??? Lots of these bits are not implemented. */
3274 /* This may enable/disable the MMU, so do a TLB flush. */
3275 tlb_flush(CPU(cpu));
3278 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3279 bool isread)
3281 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3282 return CP_ACCESS_TRAP_FP_EL2;
3284 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3285 return CP_ACCESS_TRAP_FP_EL3;
3287 return CP_ACCESS_OK;
3290 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3291 uint64_t value)
3293 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3296 static const ARMCPRegInfo v8_cp_reginfo[] = {
3297 /* Minimal set of EL0-visible registers. This will need to be expanded
3298 * significantly for system emulation of AArch64 CPUs.
3300 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3301 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3302 .access = PL0_RW, .type = ARM_CP_NZCV },
3303 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3304 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3305 .type = ARM_CP_NO_RAW,
3306 .access = PL0_RW, .accessfn = aa64_daif_access,
3307 .fieldoffset = offsetof(CPUARMState, daif),
3308 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3309 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3310 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3311 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3312 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3313 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3314 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3315 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3316 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3317 .access = PL0_R, .type = ARM_CP_NO_RAW,
3318 .readfn = aa64_dczid_read },
3319 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3320 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3321 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3322 #ifndef CONFIG_USER_ONLY
3323 /* Avoid overhead of an access check that always passes in user-mode */
3324 .accessfn = aa64_zva_access,
3325 #endif
3327 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3328 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3329 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3330 /* Cache ops: all NOPs since we don't emulate caches */
3331 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3333 .access = PL1_W, .type = ARM_CP_NOP },
3334 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3335 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3336 .access = PL1_W, .type = ARM_CP_NOP },
3337 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3338 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3339 .access = PL0_W, .type = ARM_CP_NOP,
3340 .accessfn = aa64_cacheop_access },
3341 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3342 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3343 .access = PL1_W, .type = ARM_CP_NOP },
3344 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3345 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3346 .access = PL1_W, .type = ARM_CP_NOP },
3347 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3348 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3349 .access = PL0_W, .type = ARM_CP_NOP,
3350 .accessfn = aa64_cacheop_access },
3351 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3352 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3353 .access = PL1_W, .type = ARM_CP_NOP },
3354 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3355 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3356 .access = PL0_W, .type = ARM_CP_NOP,
3357 .accessfn = aa64_cacheop_access },
3358 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3359 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3360 .access = PL0_W, .type = ARM_CP_NOP,
3361 .accessfn = aa64_cacheop_access },
3362 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3363 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3364 .access = PL1_W, .type = ARM_CP_NOP },
3365 /* TLBI operations */
3366 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3367 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3368 .access = PL1_W, .type = ARM_CP_NO_RAW,
3369 .writefn = tlbi_aa64_vmalle1is_write },
3370 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3371 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3372 .access = PL1_W, .type = ARM_CP_NO_RAW,
3373 .writefn = tlbi_aa64_vae1is_write },
3374 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3375 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3376 .access = PL1_W, .type = ARM_CP_NO_RAW,
3377 .writefn = tlbi_aa64_vmalle1is_write },
3378 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3379 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3380 .access = PL1_W, .type = ARM_CP_NO_RAW,
3381 .writefn = tlbi_aa64_vae1is_write },
3382 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3383 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3384 .access = PL1_W, .type = ARM_CP_NO_RAW,
3385 .writefn = tlbi_aa64_vae1is_write },
3386 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3387 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3388 .access = PL1_W, .type = ARM_CP_NO_RAW,
3389 .writefn = tlbi_aa64_vae1is_write },
3390 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3391 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3392 .access = PL1_W, .type = ARM_CP_NO_RAW,
3393 .writefn = tlbi_aa64_vmalle1_write },
3394 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3395 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3396 .access = PL1_W, .type = ARM_CP_NO_RAW,
3397 .writefn = tlbi_aa64_vae1_write },
3398 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3399 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3400 .access = PL1_W, .type = ARM_CP_NO_RAW,
3401 .writefn = tlbi_aa64_vmalle1_write },
3402 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3403 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3404 .access = PL1_W, .type = ARM_CP_NO_RAW,
3405 .writefn = tlbi_aa64_vae1_write },
3406 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3407 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3408 .access = PL1_W, .type = ARM_CP_NO_RAW,
3409 .writefn = tlbi_aa64_vae1_write },
3410 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3411 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3412 .access = PL1_W, .type = ARM_CP_NO_RAW,
3413 .writefn = tlbi_aa64_vae1_write },
3414 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3415 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3416 .access = PL2_W, .type = ARM_CP_NO_RAW,
3417 .writefn = tlbi_aa64_ipas2e1is_write },
3418 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3419 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3420 .access = PL2_W, .type = ARM_CP_NO_RAW,
3421 .writefn = tlbi_aa64_ipas2e1is_write },
3422 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3423 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3424 .access = PL2_W, .type = ARM_CP_NO_RAW,
3425 .writefn = tlbi_aa64_alle1is_write },
3426 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3427 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3428 .access = PL2_W, .type = ARM_CP_NO_RAW,
3429 .writefn = tlbi_aa64_alle1is_write },
3430 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3431 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3432 .access = PL2_W, .type = ARM_CP_NO_RAW,
3433 .writefn = tlbi_aa64_ipas2e1_write },
3434 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3435 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3436 .access = PL2_W, .type = ARM_CP_NO_RAW,
3437 .writefn = tlbi_aa64_ipas2e1_write },
3438 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3439 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3440 .access = PL2_W, .type = ARM_CP_NO_RAW,
3441 .writefn = tlbi_aa64_alle1_write },
3442 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3443 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3444 .access = PL2_W, .type = ARM_CP_NO_RAW,
3445 .writefn = tlbi_aa64_alle1is_write },
3446 #ifndef CONFIG_USER_ONLY
3447 /* 64 bit address translation operations */
3448 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3449 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3450 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3451 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3452 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3453 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3454 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3455 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3456 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3457 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3458 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3459 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3460 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3461 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3462 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3463 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3464 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3465 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3466 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3467 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3468 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3469 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3470 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3471 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3472 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3473 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3474 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3475 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3476 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3477 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3478 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3479 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3480 .type = ARM_CP_ALIAS,
3481 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3482 .access = PL1_RW, .resetvalue = 0,
3483 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3484 .writefn = par_write },
3485 #endif
3486 /* TLB invalidate last level of translation table walk */
3487 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3488 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3489 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3490 .type = ARM_CP_NO_RAW, .access = PL1_W,
3491 .writefn = tlbimvaa_is_write },
3492 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3493 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3494 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3495 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3496 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3497 .type = ARM_CP_NO_RAW, .access = PL2_W,
3498 .writefn = tlbimva_hyp_write },
3499 { .name = "TLBIMVALHIS",
3500 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3501 .type = ARM_CP_NO_RAW, .access = PL2_W,
3502 .writefn = tlbimva_hyp_is_write },
3503 { .name = "TLBIIPAS2",
3504 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3505 .type = ARM_CP_NO_RAW, .access = PL2_W,
3506 .writefn = tlbiipas2_write },
3507 { .name = "TLBIIPAS2IS",
3508 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3509 .type = ARM_CP_NO_RAW, .access = PL2_W,
3510 .writefn = tlbiipas2_is_write },
3511 { .name = "TLBIIPAS2L",
3512 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3513 .type = ARM_CP_NO_RAW, .access = PL2_W,
3514 .writefn = tlbiipas2_write },
3515 { .name = "TLBIIPAS2LIS",
3516 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3517 .type = ARM_CP_NO_RAW, .access = PL2_W,
3518 .writefn = tlbiipas2_is_write },
3519 /* 32 bit cache operations */
3520 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3521 .type = ARM_CP_NOP, .access = PL1_W },
3522 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3523 .type = ARM_CP_NOP, .access = PL1_W },
3524 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3525 .type = ARM_CP_NOP, .access = PL1_W },
3526 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3527 .type = ARM_CP_NOP, .access = PL1_W },
3528 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3529 .type = ARM_CP_NOP, .access = PL1_W },
3530 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3531 .type = ARM_CP_NOP, .access = PL1_W },
3532 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3533 .type = ARM_CP_NOP, .access = PL1_W },
3534 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3535 .type = ARM_CP_NOP, .access = PL1_W },
3536 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3537 .type = ARM_CP_NOP, .access = PL1_W },
3538 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3539 .type = ARM_CP_NOP, .access = PL1_W },
3540 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3541 .type = ARM_CP_NOP, .access = PL1_W },
3542 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3543 .type = ARM_CP_NOP, .access = PL1_W },
3544 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3545 .type = ARM_CP_NOP, .access = PL1_W },
3546 /* MMU Domain access control / MPU write buffer control */
3547 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3548 .access = PL1_RW, .resetvalue = 0,
3549 .writefn = dacr_write, .raw_writefn = raw_write,
3550 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3551 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3552 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3553 .type = ARM_CP_ALIAS,
3554 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3555 .access = PL1_RW,
3556 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3557 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3558 .type = ARM_CP_ALIAS,
3559 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3560 .access = PL1_RW,
3561 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3562 /* We rely on the access checks not allowing the guest to write to the
3563 * state field when SPSel indicates that it's being used as the stack
3564 * pointer.
3566 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3567 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3568 .access = PL1_RW, .accessfn = sp_el0_access,
3569 .type = ARM_CP_ALIAS,
3570 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3571 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3572 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3573 .access = PL2_RW, .type = ARM_CP_ALIAS,
3574 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3575 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3576 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3577 .type = ARM_CP_NO_RAW,
3578 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3579 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3580 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3581 .type = ARM_CP_ALIAS,
3582 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3583 .access = PL2_RW, .accessfn = fpexc32_access },
3584 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3585 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3586 .access = PL2_RW, .resetvalue = 0,
3587 .writefn = dacr_write, .raw_writefn = raw_write,
3588 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3589 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3590 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3591 .access = PL2_RW, .resetvalue = 0,
3592 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3593 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3594 .type = ARM_CP_ALIAS,
3595 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3596 .access = PL2_RW,
3597 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3598 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3599 .type = ARM_CP_ALIAS,
3600 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3601 .access = PL2_RW,
3602 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3603 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3604 .type = ARM_CP_ALIAS,
3605 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3606 .access = PL2_RW,
3607 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3608 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3609 .type = ARM_CP_ALIAS,
3610 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3611 .access = PL2_RW,
3612 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3613 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3614 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3615 .resetvalue = 0,
3616 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3617 { .name = "SDCR", .type = ARM_CP_ALIAS,
3618 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3619 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3620 .writefn = sdcr_write,
3621 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3622 REGINFO_SENTINEL
3625 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3626 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3627 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3628 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3629 .access = PL2_RW,
3630 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3631 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3632 .type = ARM_CP_NO_RAW,
3633 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3634 .access = PL2_RW,
3635 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3636 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3637 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3638 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3639 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3640 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3641 .access = PL2_RW, .type = ARM_CP_CONST,
3642 .resetvalue = 0 },
3643 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3644 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3645 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3646 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3647 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3648 .access = PL2_RW, .type = ARM_CP_CONST,
3649 .resetvalue = 0 },
3650 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3651 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3652 .access = PL2_RW, .type = ARM_CP_CONST,
3653 .resetvalue = 0 },
3654 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3655 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3656 .access = PL2_RW, .type = ARM_CP_CONST,
3657 .resetvalue = 0 },
3658 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3659 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3660 .access = PL2_RW, .type = ARM_CP_CONST,
3661 .resetvalue = 0 },
3662 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3663 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3664 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3665 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3666 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3667 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3668 .type = ARM_CP_CONST, .resetvalue = 0 },
3669 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3670 .cp = 15, .opc1 = 6, .crm = 2,
3671 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3672 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3673 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3674 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3675 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3676 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3677 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3678 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3679 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3680 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3681 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3682 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3683 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3684 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3685 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3686 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3687 .resetvalue = 0 },
3688 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3689 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3690 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3691 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3692 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3693 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3694 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3695 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3696 .resetvalue = 0 },
3697 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3698 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3699 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3700 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3701 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3702 .resetvalue = 0 },
3703 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3704 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3705 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3706 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3707 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3708 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3709 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3710 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3711 .access = PL2_RW, .accessfn = access_tda,
3712 .type = ARM_CP_CONST, .resetvalue = 0 },
3713 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3714 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3715 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3716 .type = ARM_CP_CONST, .resetvalue = 0 },
3717 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3718 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3719 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3720 REGINFO_SENTINEL
3723 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3725 ARMCPU *cpu = arm_env_get_cpu(env);
3726 uint64_t valid_mask = HCR_MASK;
3728 if (arm_feature(env, ARM_FEATURE_EL3)) {
3729 valid_mask &= ~HCR_HCD;
3730 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3731 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3732 * However, if we're using the SMC PSCI conduit then QEMU is
3733 * effectively acting like EL3 firmware and so the guest at
3734 * EL2 should retain the ability to prevent EL1 from being
3735 * able to make SMC calls into the ersatz firmware, so in
3736 * that case HCR.TSC should be read/write.
3738 valid_mask &= ~HCR_TSC;
3741 /* Clear RES0 bits. */
3742 value &= valid_mask;
3744 /* These bits change the MMU setup:
3745 * HCR_VM enables stage 2 translation
3746 * HCR_PTW forbids certain page-table setups
3747 * HCR_DC Disables stage1 and enables stage2 translation
3749 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3750 tlb_flush(CPU(cpu));
3752 raw_write(env, ri, value);
3755 static const ARMCPRegInfo el2_cp_reginfo[] = {
3756 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3757 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3758 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3759 .writefn = hcr_write },
3760 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3761 .type = ARM_CP_ALIAS,
3762 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3763 .access = PL2_RW,
3764 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3765 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3766 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3767 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3768 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3769 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3770 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3771 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3772 .type = ARM_CP_ALIAS,
3773 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3774 .access = PL2_RW,
3775 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3776 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3777 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3778 .access = PL2_RW, .writefn = vbar_write,
3779 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3780 .resetvalue = 0 },
3781 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3782 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3783 .access = PL3_RW, .type = ARM_CP_ALIAS,
3784 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3785 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3786 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3787 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3788 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3789 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3790 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3791 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3792 .resetvalue = 0 },
3793 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3794 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3795 .access = PL2_RW, .type = ARM_CP_ALIAS,
3796 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3797 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3798 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3799 .access = PL2_RW, .type = ARM_CP_CONST,
3800 .resetvalue = 0 },
3801 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3802 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3803 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3804 .access = PL2_RW, .type = ARM_CP_CONST,
3805 .resetvalue = 0 },
3806 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3807 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3808 .access = PL2_RW, .type = ARM_CP_CONST,
3809 .resetvalue = 0 },
3810 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3811 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3812 .access = PL2_RW, .type = ARM_CP_CONST,
3813 .resetvalue = 0 },
3814 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3815 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3816 .access = PL2_RW,
3817 /* no .writefn needed as this can't cause an ASID change;
3818 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3820 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3821 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3822 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3823 .type = ARM_CP_ALIAS,
3824 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3825 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3826 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3827 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3828 .access = PL2_RW,
3829 /* no .writefn needed as this can't cause an ASID change;
3830 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3832 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3833 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3834 .cp = 15, .opc1 = 6, .crm = 2,
3835 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3836 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3837 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3838 .writefn = vttbr_write },
3839 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3840 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3841 .access = PL2_RW, .writefn = vttbr_write,
3842 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3843 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3844 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3845 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3846 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3847 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3848 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3849 .access = PL2_RW, .resetvalue = 0,
3850 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3851 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3852 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3853 .access = PL2_RW, .resetvalue = 0,
3854 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3855 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3856 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3857 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3858 { .name = "TLBIALLNSNH",
3859 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3860 .type = ARM_CP_NO_RAW, .access = PL2_W,
3861 .writefn = tlbiall_nsnh_write },
3862 { .name = "TLBIALLNSNHIS",
3863 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3864 .type = ARM_CP_NO_RAW, .access = PL2_W,
3865 .writefn = tlbiall_nsnh_is_write },
3866 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3867 .type = ARM_CP_NO_RAW, .access = PL2_W,
3868 .writefn = tlbiall_hyp_write },
3869 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3870 .type = ARM_CP_NO_RAW, .access = PL2_W,
3871 .writefn = tlbiall_hyp_is_write },
3872 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3873 .type = ARM_CP_NO_RAW, .access = PL2_W,
3874 .writefn = tlbimva_hyp_write },
3875 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3876 .type = ARM_CP_NO_RAW, .access = PL2_W,
3877 .writefn = tlbimva_hyp_is_write },
3878 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3879 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3880 .type = ARM_CP_NO_RAW, .access = PL2_W,
3881 .writefn = tlbi_aa64_alle2_write },
3882 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3883 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3884 .type = ARM_CP_NO_RAW, .access = PL2_W,
3885 .writefn = tlbi_aa64_vae2_write },
3886 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3887 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3888 .access = PL2_W, .type = ARM_CP_NO_RAW,
3889 .writefn = tlbi_aa64_vae2_write },
3890 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3891 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3892 .access = PL2_W, .type = ARM_CP_NO_RAW,
3893 .writefn = tlbi_aa64_alle2is_write },
3894 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3895 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3896 .type = ARM_CP_NO_RAW, .access = PL2_W,
3897 .writefn = tlbi_aa64_vae2is_write },
3898 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3899 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3900 .access = PL2_W, .type = ARM_CP_NO_RAW,
3901 .writefn = tlbi_aa64_vae2is_write },
3902 #ifndef CONFIG_USER_ONLY
3903 /* Unlike the other EL2-related AT operations, these must
3904 * UNDEF from EL3 if EL2 is not implemented, which is why we
3905 * define them here rather than with the rest of the AT ops.
3907 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3908 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3909 .access = PL2_W, .accessfn = at_s1e2_access,
3910 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3911 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3912 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3913 .access = PL2_W, .accessfn = at_s1e2_access,
3914 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3915 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3916 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3917 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3918 * to behave as if SCR.NS was 1.
3920 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3921 .access = PL2_W,
3922 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3923 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3924 .access = PL2_W,
3925 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3926 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3927 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3928 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3929 * reset values as IMPDEF. We choose to reset to 3 to comply with
3930 * both ARMv7 and ARMv8.
3932 .access = PL2_RW, .resetvalue = 3,
3933 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3934 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3935 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3936 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3937 .writefn = gt_cntvoff_write,
3938 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3939 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3940 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3941 .writefn = gt_cntvoff_write,
3942 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3943 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3944 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3945 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3946 .type = ARM_CP_IO, .access = PL2_RW,
3947 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3948 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3949 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3950 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3951 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3952 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3953 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3954 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3955 .resetfn = gt_hyp_timer_reset,
3956 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3957 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3958 .type = ARM_CP_IO,
3959 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3960 .access = PL2_RW,
3961 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3962 .resetvalue = 0,
3963 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3964 #endif
3965 /* The only field of MDCR_EL2 that has a defined architectural reset value
3966 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3967 * don't impelment any PMU event counters, so using zero as a reset
3968 * value for MDCR_EL2 is okay
3970 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3971 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3972 .access = PL2_RW, .resetvalue = 0,
3973 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3974 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3975 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3976 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3977 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3978 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3979 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3980 .access = PL2_RW,
3981 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3982 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3983 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3984 .access = PL2_RW,
3985 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3986 REGINFO_SENTINEL
3989 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3990 bool isread)
3992 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3993 * At Secure EL1 it traps to EL3.
3995 if (arm_current_el(env) == 3) {
3996 return CP_ACCESS_OK;
3998 if (arm_is_secure_below_el3(env)) {
3999 return CP_ACCESS_TRAP_EL3;
4001 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4002 if (isread) {
4003 return CP_ACCESS_OK;
4005 return CP_ACCESS_TRAP_UNCATEGORIZED;
4008 static const ARMCPRegInfo el3_cp_reginfo[] = {
4009 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4010 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4011 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4012 .resetvalue = 0, .writefn = scr_write },
4013 { .name = "SCR", .type = ARM_CP_ALIAS,
4014 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4015 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4016 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4017 .writefn = scr_write },
4018 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4019 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4020 .access = PL3_RW, .resetvalue = 0,
4021 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4022 { .name = "SDER",
4023 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4024 .access = PL3_RW, .resetvalue = 0,
4025 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4026 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4027 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4028 .writefn = vbar_write, .resetvalue = 0,
4029 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4030 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4031 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4032 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4033 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4034 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4035 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4036 .access = PL3_RW,
4037 /* no .writefn needed as this can't cause an ASID change;
4038 * we must provide a .raw_writefn and .resetfn because we handle
4039 * reset and migration for the AArch32 TTBCR(S), which might be
4040 * using mask and base_mask.
4042 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4043 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4044 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4045 .type = ARM_CP_ALIAS,
4046 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4047 .access = PL3_RW,
4048 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4049 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4050 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4051 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4052 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4053 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4054 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4055 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4056 .type = ARM_CP_ALIAS,
4057 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4058 .access = PL3_RW,
4059 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4060 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4061 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4062 .access = PL3_RW, .writefn = vbar_write,
4063 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4064 .resetvalue = 0 },
4065 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4066 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4067 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4068 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4069 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4070 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4071 .access = PL3_RW, .resetvalue = 0,
4072 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4073 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4074 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4075 .access = PL3_RW, .type = ARM_CP_CONST,
4076 .resetvalue = 0 },
4077 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4078 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4079 .access = PL3_RW, .type = ARM_CP_CONST,
4080 .resetvalue = 0 },
4081 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4082 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4083 .access = PL3_RW, .type = ARM_CP_CONST,
4084 .resetvalue = 0 },
4085 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4086 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4087 .access = PL3_W, .type = ARM_CP_NO_RAW,
4088 .writefn = tlbi_aa64_alle3is_write },
4089 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4090 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4091 .access = PL3_W, .type = ARM_CP_NO_RAW,
4092 .writefn = tlbi_aa64_vae3is_write },
4093 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4094 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4095 .access = PL3_W, .type = ARM_CP_NO_RAW,
4096 .writefn = tlbi_aa64_vae3is_write },
4097 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4098 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4099 .access = PL3_W, .type = ARM_CP_NO_RAW,
4100 .writefn = tlbi_aa64_alle3_write },
4101 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4102 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4103 .access = PL3_W, .type = ARM_CP_NO_RAW,
4104 .writefn = tlbi_aa64_vae3_write },
4105 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4106 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4107 .access = PL3_W, .type = ARM_CP_NO_RAW,
4108 .writefn = tlbi_aa64_vae3_write },
4109 REGINFO_SENTINEL
4112 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4113 bool isread)
4115 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4116 * but the AArch32 CTR has its own reginfo struct)
4118 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4119 return CP_ACCESS_TRAP;
4121 return CP_ACCESS_OK;
4124 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4125 uint64_t value)
4127 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4128 * read via a bit in OSLSR_EL1.
4130 int oslock;
4132 if (ri->state == ARM_CP_STATE_AA32) {
4133 oslock = (value == 0xC5ACCE55);
4134 } else {
4135 oslock = value & 1;
4138 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4141 static const ARMCPRegInfo debug_cp_reginfo[] = {
4142 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4143 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4144 * unlike DBGDRAR it is never accessible from EL0.
4145 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4146 * accessor.
4148 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4149 .access = PL0_R, .accessfn = access_tdra,
4150 .type = ARM_CP_CONST, .resetvalue = 0 },
4151 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4152 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4153 .access = PL1_R, .accessfn = access_tdra,
4154 .type = ARM_CP_CONST, .resetvalue = 0 },
4155 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4156 .access = PL0_R, .accessfn = access_tdra,
4157 .type = ARM_CP_CONST, .resetvalue = 0 },
4158 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4159 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4160 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4161 .access = PL1_RW, .accessfn = access_tda,
4162 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4163 .resetvalue = 0 },
4164 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4165 * We don't implement the configurable EL0 access.
4167 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4168 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4169 .type = ARM_CP_ALIAS,
4170 .access = PL1_R, .accessfn = access_tda,
4171 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4172 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4173 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4174 .access = PL1_W, .type = ARM_CP_NO_RAW,
4175 .accessfn = access_tdosa,
4176 .writefn = oslar_write },
4177 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4178 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4179 .access = PL1_R, .resetvalue = 10,
4180 .accessfn = access_tdosa,
4181 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4182 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4183 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4184 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4185 .access = PL1_RW, .accessfn = access_tdosa,
4186 .type = ARM_CP_NOP },
4187 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4188 * implement vector catch debug events yet.
4190 { .name = "DBGVCR",
4191 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4192 .access = PL1_RW, .accessfn = access_tda,
4193 .type = ARM_CP_NOP },
4194 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4195 * to save and restore a 32-bit guest's DBGVCR)
4197 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4198 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4199 .access = PL2_RW, .accessfn = access_tda,
4200 .type = ARM_CP_NOP },
4201 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4202 * Channel but Linux may try to access this register. The 32-bit
4203 * alias is DBGDCCINT.
4205 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4206 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4207 .access = PL1_RW, .accessfn = access_tda,
4208 .type = ARM_CP_NOP },
4209 REGINFO_SENTINEL
4212 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4213 /* 64 bit access versions of the (dummy) debug registers */
4214 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4215 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4216 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4217 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4218 REGINFO_SENTINEL
4221 void hw_watchpoint_update(ARMCPU *cpu, int n)
4223 CPUARMState *env = &cpu->env;
4224 vaddr len = 0;
4225 vaddr wvr = env->cp15.dbgwvr[n];
4226 uint64_t wcr = env->cp15.dbgwcr[n];
4227 int mask;
4228 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4230 if (env->cpu_watchpoint[n]) {
4231 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4232 env->cpu_watchpoint[n] = NULL;
4235 if (!extract64(wcr, 0, 1)) {
4236 /* E bit clear : watchpoint disabled */
4237 return;
4240 switch (extract64(wcr, 3, 2)) {
4241 case 0:
4242 /* LSC 00 is reserved and must behave as if the wp is disabled */
4243 return;
4244 case 1:
4245 flags |= BP_MEM_READ;
4246 break;
4247 case 2:
4248 flags |= BP_MEM_WRITE;
4249 break;
4250 case 3:
4251 flags |= BP_MEM_ACCESS;
4252 break;
4255 /* Attempts to use both MASK and BAS fields simultaneously are
4256 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4257 * thus generating a watchpoint for every byte in the masked region.
4259 mask = extract64(wcr, 24, 4);
4260 if (mask == 1 || mask == 2) {
4261 /* Reserved values of MASK; we must act as if the mask value was
4262 * some non-reserved value, or as if the watchpoint were disabled.
4263 * We choose the latter.
4265 return;
4266 } else if (mask) {
4267 /* Watchpoint covers an aligned area up to 2GB in size */
4268 len = 1ULL << mask;
4269 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4270 * whether the watchpoint fires when the unmasked bits match; we opt
4271 * to generate the exceptions.
4273 wvr &= ~(len - 1);
4274 } else {
4275 /* Watchpoint covers bytes defined by the byte address select bits */
4276 int bas = extract64(wcr, 5, 8);
4277 int basstart;
4279 if (bas == 0) {
4280 /* This must act as if the watchpoint is disabled */
4281 return;
4284 if (extract64(wvr, 2, 1)) {
4285 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4286 * ignored, and BAS[3:0] define which bytes to watch.
4288 bas &= 0xf;
4290 /* The BAS bits are supposed to be programmed to indicate a contiguous
4291 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4292 * we fire for each byte in the word/doubleword addressed by the WVR.
4293 * We choose to ignore any non-zero bits after the first range of 1s.
4295 basstart = ctz32(bas);
4296 len = cto32(bas >> basstart);
4297 wvr += basstart;
4300 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4301 &env->cpu_watchpoint[n]);
4304 void hw_watchpoint_update_all(ARMCPU *cpu)
4306 int i;
4307 CPUARMState *env = &cpu->env;
4309 /* Completely clear out existing QEMU watchpoints and our array, to
4310 * avoid possible stale entries following migration load.
4312 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4313 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4315 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4316 hw_watchpoint_update(cpu, i);
4320 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4321 uint64_t value)
4323 ARMCPU *cpu = arm_env_get_cpu(env);
4324 int i = ri->crm;
4326 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4327 * register reads and behaves as if values written are sign extended.
4328 * Bits [1:0] are RES0.
4330 value = sextract64(value, 0, 49) & ~3ULL;
4332 raw_write(env, ri, value);
4333 hw_watchpoint_update(cpu, i);
4336 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4337 uint64_t value)
4339 ARMCPU *cpu = arm_env_get_cpu(env);
4340 int i = ri->crm;
4342 raw_write(env, ri, value);
4343 hw_watchpoint_update(cpu, i);
4346 void hw_breakpoint_update(ARMCPU *cpu, int n)
4348 CPUARMState *env = &cpu->env;
4349 uint64_t bvr = env->cp15.dbgbvr[n];
4350 uint64_t bcr = env->cp15.dbgbcr[n];
4351 vaddr addr;
4352 int bt;
4353 int flags = BP_CPU;
4355 if (env->cpu_breakpoint[n]) {
4356 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4357 env->cpu_breakpoint[n] = NULL;
4360 if (!extract64(bcr, 0, 1)) {
4361 /* E bit clear : watchpoint disabled */
4362 return;
4365 bt = extract64(bcr, 20, 4);
4367 switch (bt) {
4368 case 4: /* unlinked address mismatch (reserved if AArch64) */
4369 case 5: /* linked address mismatch (reserved if AArch64) */
4370 qemu_log_mask(LOG_UNIMP,
4371 "arm: address mismatch breakpoint types not implemented");
4372 return;
4373 case 0: /* unlinked address match */
4374 case 1: /* linked address match */
4376 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4377 * we behave as if the register was sign extended. Bits [1:0] are
4378 * RES0. The BAS field is used to allow setting breakpoints on 16
4379 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4380 * a bp will fire if the addresses covered by the bp and the addresses
4381 * covered by the insn overlap but the insn doesn't start at the
4382 * start of the bp address range. We choose to require the insn and
4383 * the bp to have the same address. The constraints on writing to
4384 * BAS enforced in dbgbcr_write mean we have only four cases:
4385 * 0b0000 => no breakpoint
4386 * 0b0011 => breakpoint on addr
4387 * 0b1100 => breakpoint on addr + 2
4388 * 0b1111 => breakpoint on addr
4389 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4391 int bas = extract64(bcr, 5, 4);
4392 addr = sextract64(bvr, 0, 49) & ~3ULL;
4393 if (bas == 0) {
4394 return;
4396 if (bas == 0xc) {
4397 addr += 2;
4399 break;
4401 case 2: /* unlinked context ID match */
4402 case 8: /* unlinked VMID match (reserved if no EL2) */
4403 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4404 qemu_log_mask(LOG_UNIMP,
4405 "arm: unlinked context breakpoint types not implemented");
4406 return;
4407 case 9: /* linked VMID match (reserved if no EL2) */
4408 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4409 case 3: /* linked context ID match */
4410 default:
4411 /* We must generate no events for Linked context matches (unless
4412 * they are linked to by some other bp/wp, which is handled in
4413 * updates for the linking bp/wp). We choose to also generate no events
4414 * for reserved values.
4416 return;
4419 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4422 void hw_breakpoint_update_all(ARMCPU *cpu)
4424 int i;
4425 CPUARMState *env = &cpu->env;
4427 /* Completely clear out existing QEMU breakpoints and our array, to
4428 * avoid possible stale entries following migration load.
4430 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4431 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4433 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4434 hw_breakpoint_update(cpu, i);
4438 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4439 uint64_t value)
4441 ARMCPU *cpu = arm_env_get_cpu(env);
4442 int i = ri->crm;
4444 raw_write(env, ri, value);
4445 hw_breakpoint_update(cpu, i);
4448 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4449 uint64_t value)
4451 ARMCPU *cpu = arm_env_get_cpu(env);
4452 int i = ri->crm;
4454 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4455 * copy of BAS[0].
4457 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4458 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4460 raw_write(env, ri, value);
4461 hw_breakpoint_update(cpu, i);
4464 static void define_debug_regs(ARMCPU *cpu)
4466 /* Define v7 and v8 architectural debug registers.
4467 * These are just dummy implementations for now.
4469 int i;
4470 int wrps, brps, ctx_cmps;
4471 ARMCPRegInfo dbgdidr = {
4472 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4473 .access = PL0_R, .accessfn = access_tda,
4474 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4477 /* Note that all these register fields hold "number of Xs minus 1". */
4478 brps = extract32(cpu->dbgdidr, 24, 4);
4479 wrps = extract32(cpu->dbgdidr, 28, 4);
4480 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4482 assert(ctx_cmps <= brps);
4484 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4485 * of the debug registers such as number of breakpoints;
4486 * check that if they both exist then they agree.
4488 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4489 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4490 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4491 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4494 define_one_arm_cp_reg(cpu, &dbgdidr);
4495 define_arm_cp_regs(cpu, debug_cp_reginfo);
4497 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4498 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4501 for (i = 0; i < brps + 1; i++) {
4502 ARMCPRegInfo dbgregs[] = {
4503 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4504 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4505 .access = PL1_RW, .accessfn = access_tda,
4506 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4507 .writefn = dbgbvr_write, .raw_writefn = raw_write
4509 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4510 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4511 .access = PL1_RW, .accessfn = access_tda,
4512 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4513 .writefn = dbgbcr_write, .raw_writefn = raw_write
4515 REGINFO_SENTINEL
4517 define_arm_cp_regs(cpu, dbgregs);
4520 for (i = 0; i < wrps + 1; i++) {
4521 ARMCPRegInfo dbgregs[] = {
4522 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4523 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4524 .access = PL1_RW, .accessfn = access_tda,
4525 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4526 .writefn = dbgwvr_write, .raw_writefn = raw_write
4528 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4529 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4530 .access = PL1_RW, .accessfn = access_tda,
4531 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4532 .writefn = dbgwcr_write, .raw_writefn = raw_write
4534 REGINFO_SENTINEL
4536 define_arm_cp_regs(cpu, dbgregs);
4540 void register_cp_regs_for_features(ARMCPU *cpu)
4542 /* Register all the coprocessor registers based on feature bits */
4543 CPUARMState *env = &cpu->env;
4544 if (arm_feature(env, ARM_FEATURE_M)) {
4545 /* M profile has no coprocessor registers */
4546 return;
4549 define_arm_cp_regs(cpu, cp_reginfo);
4550 if (!arm_feature(env, ARM_FEATURE_V8)) {
4551 /* Must go early as it is full of wildcards that may be
4552 * overridden by later definitions.
4554 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4557 if (arm_feature(env, ARM_FEATURE_V6)) {
4558 /* The ID registers all have impdef reset values */
4559 ARMCPRegInfo v6_idregs[] = {
4560 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4561 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4562 .access = PL1_R, .type = ARM_CP_CONST,
4563 .resetvalue = cpu->id_pfr0 },
4564 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4566 .access = PL1_R, .type = ARM_CP_CONST,
4567 .resetvalue = cpu->id_pfr1 },
4568 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4569 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4570 .access = PL1_R, .type = ARM_CP_CONST,
4571 .resetvalue = cpu->id_dfr0 },
4572 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4573 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4574 .access = PL1_R, .type = ARM_CP_CONST,
4575 .resetvalue = cpu->id_afr0 },
4576 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4577 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4578 .access = PL1_R, .type = ARM_CP_CONST,
4579 .resetvalue = cpu->id_mmfr0 },
4580 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4581 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4582 .access = PL1_R, .type = ARM_CP_CONST,
4583 .resetvalue = cpu->id_mmfr1 },
4584 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4585 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4586 .access = PL1_R, .type = ARM_CP_CONST,
4587 .resetvalue = cpu->id_mmfr2 },
4588 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4589 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4590 .access = PL1_R, .type = ARM_CP_CONST,
4591 .resetvalue = cpu->id_mmfr3 },
4592 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4593 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4594 .access = PL1_R, .type = ARM_CP_CONST,
4595 .resetvalue = cpu->id_isar0 },
4596 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4598 .access = PL1_R, .type = ARM_CP_CONST,
4599 .resetvalue = cpu->id_isar1 },
4600 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4601 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4602 .access = PL1_R, .type = ARM_CP_CONST,
4603 .resetvalue = cpu->id_isar2 },
4604 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4605 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4606 .access = PL1_R, .type = ARM_CP_CONST,
4607 .resetvalue = cpu->id_isar3 },
4608 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4609 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4610 .access = PL1_R, .type = ARM_CP_CONST,
4611 .resetvalue = cpu->id_isar4 },
4612 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4613 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4614 .access = PL1_R, .type = ARM_CP_CONST,
4615 .resetvalue = cpu->id_isar5 },
4616 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4617 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4618 .access = PL1_R, .type = ARM_CP_CONST,
4619 .resetvalue = cpu->id_mmfr4 },
4620 /* 7 is as yet unallocated and must RAZ */
4621 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4622 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4623 .access = PL1_R, .type = ARM_CP_CONST,
4624 .resetvalue = 0 },
4625 REGINFO_SENTINEL
4627 define_arm_cp_regs(cpu, v6_idregs);
4628 define_arm_cp_regs(cpu, v6_cp_reginfo);
4629 } else {
4630 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4632 if (arm_feature(env, ARM_FEATURE_V6K)) {
4633 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4635 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4636 !arm_feature(env, ARM_FEATURE_PMSA)) {
4637 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4639 if (arm_feature(env, ARM_FEATURE_V7)) {
4640 /* v7 performance monitor control register: same implementor
4641 * field as main ID register, and we implement only the cycle
4642 * count register.
4644 #ifndef CONFIG_USER_ONLY
4645 ARMCPRegInfo pmcr = {
4646 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4647 .access = PL0_RW,
4648 .type = ARM_CP_IO | ARM_CP_ALIAS,
4649 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4650 .accessfn = pmreg_access, .writefn = pmcr_write,
4651 .raw_writefn = raw_write,
4653 ARMCPRegInfo pmcr64 = {
4654 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4655 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4656 .access = PL0_RW, .accessfn = pmreg_access,
4657 .type = ARM_CP_IO,
4658 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4659 .resetvalue = cpu->midr & 0xff000000,
4660 .writefn = pmcr_write, .raw_writefn = raw_write,
4662 define_one_arm_cp_reg(cpu, &pmcr);
4663 define_one_arm_cp_reg(cpu, &pmcr64);
4664 #endif
4665 ARMCPRegInfo clidr = {
4666 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4667 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4668 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4670 define_one_arm_cp_reg(cpu, &clidr);
4671 define_arm_cp_regs(cpu, v7_cp_reginfo);
4672 define_debug_regs(cpu);
4673 } else {
4674 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4676 if (arm_feature(env, ARM_FEATURE_V8)) {
4677 /* AArch64 ID registers, which all have impdef reset values.
4678 * Note that within the ID register ranges the unused slots
4679 * must all RAZ, not UNDEF; future architecture versions may
4680 * define new registers here.
4682 ARMCPRegInfo v8_idregs[] = {
4683 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4684 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4685 .access = PL1_R, .type = ARM_CP_CONST,
4686 .resetvalue = cpu->id_aa64pfr0 },
4687 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4688 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4689 .access = PL1_R, .type = ARM_CP_CONST,
4690 .resetvalue = cpu->id_aa64pfr1},
4691 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4693 .access = PL1_R, .type = ARM_CP_CONST,
4694 .resetvalue = 0 },
4695 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4696 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4697 .access = PL1_R, .type = ARM_CP_CONST,
4698 .resetvalue = 0 },
4699 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4701 .access = PL1_R, .type = ARM_CP_CONST,
4702 .resetvalue = 0 },
4703 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4704 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4705 .access = PL1_R, .type = ARM_CP_CONST,
4706 .resetvalue = 0 },
4707 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4708 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4709 .access = PL1_R, .type = ARM_CP_CONST,
4710 .resetvalue = 0 },
4711 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4713 .access = PL1_R, .type = ARM_CP_CONST,
4714 .resetvalue = 0 },
4715 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4716 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4717 .access = PL1_R, .type = ARM_CP_CONST,
4718 .resetvalue = cpu->id_aa64dfr0 },
4719 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4721 .access = PL1_R, .type = ARM_CP_CONST,
4722 .resetvalue = cpu->id_aa64dfr1 },
4723 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4724 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4725 .access = PL1_R, .type = ARM_CP_CONST,
4726 .resetvalue = 0 },
4727 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4728 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4729 .access = PL1_R, .type = ARM_CP_CONST,
4730 .resetvalue = 0 },
4731 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4733 .access = PL1_R, .type = ARM_CP_CONST,
4734 .resetvalue = cpu->id_aa64afr0 },
4735 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4737 .access = PL1_R, .type = ARM_CP_CONST,
4738 .resetvalue = cpu->id_aa64afr1 },
4739 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4740 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4741 .access = PL1_R, .type = ARM_CP_CONST,
4742 .resetvalue = 0 },
4743 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4745 .access = PL1_R, .type = ARM_CP_CONST,
4746 .resetvalue = 0 },
4747 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4748 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4749 .access = PL1_R, .type = ARM_CP_CONST,
4750 .resetvalue = cpu->id_aa64isar0 },
4751 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4753 .access = PL1_R, .type = ARM_CP_CONST,
4754 .resetvalue = cpu->id_aa64isar1 },
4755 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4756 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4757 .access = PL1_R, .type = ARM_CP_CONST,
4758 .resetvalue = 0 },
4759 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4761 .access = PL1_R, .type = ARM_CP_CONST,
4762 .resetvalue = 0 },
4763 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4765 .access = PL1_R, .type = ARM_CP_CONST,
4766 .resetvalue = 0 },
4767 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4768 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4769 .access = PL1_R, .type = ARM_CP_CONST,
4770 .resetvalue = 0 },
4771 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4773 .access = PL1_R, .type = ARM_CP_CONST,
4774 .resetvalue = 0 },
4775 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4777 .access = PL1_R, .type = ARM_CP_CONST,
4778 .resetvalue = 0 },
4779 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4781 .access = PL1_R, .type = ARM_CP_CONST,
4782 .resetvalue = cpu->id_aa64mmfr0 },
4783 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4785 .access = PL1_R, .type = ARM_CP_CONST,
4786 .resetvalue = cpu->id_aa64mmfr1 },
4787 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4789 .access = PL1_R, .type = ARM_CP_CONST,
4790 .resetvalue = 0 },
4791 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4793 .access = PL1_R, .type = ARM_CP_CONST,
4794 .resetvalue = 0 },
4795 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4797 .access = PL1_R, .type = ARM_CP_CONST,
4798 .resetvalue = 0 },
4799 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4801 .access = PL1_R, .type = ARM_CP_CONST,
4802 .resetvalue = 0 },
4803 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4805 .access = PL1_R, .type = ARM_CP_CONST,
4806 .resetvalue = 0 },
4807 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4809 .access = PL1_R, .type = ARM_CP_CONST,
4810 .resetvalue = 0 },
4811 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4813 .access = PL1_R, .type = ARM_CP_CONST,
4814 .resetvalue = cpu->mvfr0 },
4815 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4817 .access = PL1_R, .type = ARM_CP_CONST,
4818 .resetvalue = cpu->mvfr1 },
4819 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4821 .access = PL1_R, .type = ARM_CP_CONST,
4822 .resetvalue = cpu->mvfr2 },
4823 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4825 .access = PL1_R, .type = ARM_CP_CONST,
4826 .resetvalue = 0 },
4827 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4829 .access = PL1_R, .type = ARM_CP_CONST,
4830 .resetvalue = 0 },
4831 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4833 .access = PL1_R, .type = ARM_CP_CONST,
4834 .resetvalue = 0 },
4835 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4837 .access = PL1_R, .type = ARM_CP_CONST,
4838 .resetvalue = 0 },
4839 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4841 .access = PL1_R, .type = ARM_CP_CONST,
4842 .resetvalue = 0 },
4843 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4844 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4845 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4846 .resetvalue = cpu->pmceid0 },
4847 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4848 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4849 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4850 .resetvalue = cpu->pmceid0 },
4851 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4852 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4853 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4854 .resetvalue = cpu->pmceid1 },
4855 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4856 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4857 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4858 .resetvalue = cpu->pmceid1 },
4859 REGINFO_SENTINEL
4861 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4862 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4863 !arm_feature(env, ARM_FEATURE_EL2)) {
4864 ARMCPRegInfo rvbar = {
4865 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4866 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4867 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4869 define_one_arm_cp_reg(cpu, &rvbar);
4871 define_arm_cp_regs(cpu, v8_idregs);
4872 define_arm_cp_regs(cpu, v8_cp_reginfo);
4874 if (arm_feature(env, ARM_FEATURE_EL2)) {
4875 uint64_t vmpidr_def = mpidr_read_val(env);
4876 ARMCPRegInfo vpidr_regs[] = {
4877 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4878 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4879 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4880 .resetvalue = cpu->midr,
4881 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4882 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4883 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4884 .access = PL2_RW, .resetvalue = cpu->midr,
4885 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4886 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4887 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4888 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4889 .resetvalue = vmpidr_def,
4890 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4891 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4892 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4893 .access = PL2_RW,
4894 .resetvalue = vmpidr_def,
4895 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4896 REGINFO_SENTINEL
4898 define_arm_cp_regs(cpu, vpidr_regs);
4899 define_arm_cp_regs(cpu, el2_cp_reginfo);
4900 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4901 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4902 ARMCPRegInfo rvbar = {
4903 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4904 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4905 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4907 define_one_arm_cp_reg(cpu, &rvbar);
4909 } else {
4910 /* If EL2 is missing but higher ELs are enabled, we need to
4911 * register the no_el2 reginfos.
4913 if (arm_feature(env, ARM_FEATURE_EL3)) {
4914 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4915 * of MIDR_EL1 and MPIDR_EL1.
4917 ARMCPRegInfo vpidr_regs[] = {
4918 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4919 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4920 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4921 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4922 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4923 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4924 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4925 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4926 .type = ARM_CP_NO_RAW,
4927 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4928 REGINFO_SENTINEL
4930 define_arm_cp_regs(cpu, vpidr_regs);
4931 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4934 if (arm_feature(env, ARM_FEATURE_EL3)) {
4935 define_arm_cp_regs(cpu, el3_cp_reginfo);
4936 ARMCPRegInfo el3_regs[] = {
4937 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4938 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4939 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4940 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4941 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4942 .access = PL3_RW,
4943 .raw_writefn = raw_write, .writefn = sctlr_write,
4944 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4945 .resetvalue = cpu->reset_sctlr },
4946 REGINFO_SENTINEL
4949 define_arm_cp_regs(cpu, el3_regs);
4951 /* The behaviour of NSACR is sufficiently various that we don't
4952 * try to describe it in a single reginfo:
4953 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4954 * reads as constant 0xc00 from NS EL1 and NS EL2
4955 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4956 * if v7 without EL3, register doesn't exist
4957 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4959 if (arm_feature(env, ARM_FEATURE_EL3)) {
4960 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4961 ARMCPRegInfo nsacr = {
4962 .name = "NSACR", .type = ARM_CP_CONST,
4963 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4964 .access = PL1_RW, .accessfn = nsacr_access,
4965 .resetvalue = 0xc00
4967 define_one_arm_cp_reg(cpu, &nsacr);
4968 } else {
4969 ARMCPRegInfo nsacr = {
4970 .name = "NSACR",
4971 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4972 .access = PL3_RW | PL1_R,
4973 .resetvalue = 0,
4974 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4976 define_one_arm_cp_reg(cpu, &nsacr);
4978 } else {
4979 if (arm_feature(env, ARM_FEATURE_V8)) {
4980 ARMCPRegInfo nsacr = {
4981 .name = "NSACR", .type = ARM_CP_CONST,
4982 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4983 .access = PL1_R,
4984 .resetvalue = 0xc00
4986 define_one_arm_cp_reg(cpu, &nsacr);
4990 if (arm_feature(env, ARM_FEATURE_PMSA)) {
4991 if (arm_feature(env, ARM_FEATURE_V6)) {
4992 /* PMSAv6 not implemented */
4993 assert(arm_feature(env, ARM_FEATURE_V7));
4994 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4995 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4996 } else {
4997 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4999 } else {
5000 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5001 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5003 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5004 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5006 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5007 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5009 if (arm_feature(env, ARM_FEATURE_VAPA)) {
5010 define_arm_cp_regs(cpu, vapa_cp_reginfo);
5012 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5013 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5015 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5016 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5018 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5019 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5021 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5022 define_arm_cp_regs(cpu, omap_cp_reginfo);
5024 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5025 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5027 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5028 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5030 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5031 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5033 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5034 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5036 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5037 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5038 * be read-only (ie write causes UNDEF exception).
5041 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5042 /* Pre-v8 MIDR space.
5043 * Note that the MIDR isn't a simple constant register because
5044 * of the TI925 behaviour where writes to another register can
5045 * cause the MIDR value to change.
5047 * Unimplemented registers in the c15 0 0 0 space default to
5048 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5049 * and friends override accordingly.
5051 { .name = "MIDR",
5052 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5053 .access = PL1_R, .resetvalue = cpu->midr,
5054 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5055 .readfn = midr_read,
5056 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5057 .type = ARM_CP_OVERRIDE },
5058 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5059 { .name = "DUMMY",
5060 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5061 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5062 { .name = "DUMMY",
5063 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5064 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5065 { .name = "DUMMY",
5066 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5067 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5068 { .name = "DUMMY",
5069 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5070 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5071 { .name = "DUMMY",
5072 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5073 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5074 REGINFO_SENTINEL
5076 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5077 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5078 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5079 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5080 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5081 .readfn = midr_read },
5082 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5083 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5084 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5085 .access = PL1_R, .resetvalue = cpu->midr },
5086 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5087 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5088 .access = PL1_R, .resetvalue = cpu->midr },
5089 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5091 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5092 REGINFO_SENTINEL
5094 ARMCPRegInfo id_cp_reginfo[] = {
5095 /* These are common to v8 and pre-v8 */
5096 { .name = "CTR",
5097 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5098 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5099 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5100 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5101 .access = PL0_R, .accessfn = ctr_el0_access,
5102 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5103 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5104 { .name = "TCMTR",
5105 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5106 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5107 REGINFO_SENTINEL
5109 /* TLBTR is specific to VMSA */
5110 ARMCPRegInfo id_tlbtr_reginfo = {
5111 .name = "TLBTR",
5112 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5113 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5115 /* MPUIR is specific to PMSA V6+ */
5116 ARMCPRegInfo id_mpuir_reginfo = {
5117 .name = "MPUIR",
5118 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5119 .access = PL1_R, .type = ARM_CP_CONST,
5120 .resetvalue = cpu->pmsav7_dregion << 8
5122 ARMCPRegInfo crn0_wi_reginfo = {
5123 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5124 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5125 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5127 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5128 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5129 ARMCPRegInfo *r;
5130 /* Register the blanket "writes ignored" value first to cover the
5131 * whole space. Then update the specific ID registers to allow write
5132 * access, so that they ignore writes rather than causing them to
5133 * UNDEF.
5135 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5136 for (r = id_pre_v8_midr_cp_reginfo;
5137 r->type != ARM_CP_SENTINEL; r++) {
5138 r->access = PL1_RW;
5140 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5141 r->access = PL1_RW;
5143 id_tlbtr_reginfo.access = PL1_RW;
5144 id_tlbtr_reginfo.access = PL1_RW;
5146 if (arm_feature(env, ARM_FEATURE_V8)) {
5147 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5148 } else {
5149 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5151 define_arm_cp_regs(cpu, id_cp_reginfo);
5152 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5153 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5154 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5155 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5159 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5160 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5163 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5164 ARMCPRegInfo auxcr_reginfo[] = {
5165 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5166 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5167 .access = PL1_RW, .type = ARM_CP_CONST,
5168 .resetvalue = cpu->reset_auxcr },
5169 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5170 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5171 .access = PL2_RW, .type = ARM_CP_CONST,
5172 .resetvalue = 0 },
5173 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5174 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5175 .access = PL3_RW, .type = ARM_CP_CONST,
5176 .resetvalue = 0 },
5177 REGINFO_SENTINEL
5179 define_arm_cp_regs(cpu, auxcr_reginfo);
5182 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5183 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5184 /* 32 bit view is [31:18] 0...0 [43:32]. */
5185 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5186 | extract64(cpu->reset_cbar, 32, 12);
5187 ARMCPRegInfo cbar_reginfo[] = {
5188 { .name = "CBAR",
5189 .type = ARM_CP_CONST,
5190 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5191 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5192 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5193 .type = ARM_CP_CONST,
5194 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5195 .access = PL1_R, .resetvalue = cbar32 },
5196 REGINFO_SENTINEL
5198 /* We don't implement a r/w 64 bit CBAR currently */
5199 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5200 define_arm_cp_regs(cpu, cbar_reginfo);
5201 } else {
5202 ARMCPRegInfo cbar = {
5203 .name = "CBAR",
5204 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5205 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5206 .fieldoffset = offsetof(CPUARMState,
5207 cp15.c15_config_base_address)
5209 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5210 cbar.access = PL1_R;
5211 cbar.fieldoffset = 0;
5212 cbar.type = ARM_CP_CONST;
5214 define_one_arm_cp_reg(cpu, &cbar);
5218 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5219 ARMCPRegInfo vbar_cp_reginfo[] = {
5220 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5221 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5222 .access = PL1_RW, .writefn = vbar_write,
5223 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5224 offsetof(CPUARMState, cp15.vbar_ns) },
5225 .resetvalue = 0 },
5226 REGINFO_SENTINEL
5228 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5231 /* Generic registers whose values depend on the implementation */
5233 ARMCPRegInfo sctlr = {
5234 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5235 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5236 .access = PL1_RW,
5237 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5238 offsetof(CPUARMState, cp15.sctlr_ns) },
5239 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5240 .raw_writefn = raw_write,
5242 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5243 /* Normally we would always end the TB on an SCTLR write, but Linux
5244 * arch/arm/mach-pxa/sleep.S expects two instructions following
5245 * an MMU enable to execute from cache. Imitate this behaviour.
5247 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5249 define_one_arm_cp_reg(cpu, &sctlr);
5253 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5255 CPUState *cs = CPU(cpu);
5256 CPUARMState *env = &cpu->env;
5258 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5259 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5260 aarch64_fpu_gdb_set_reg,
5261 34, "aarch64-fpu.xml", 0);
5262 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5263 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5264 51, "arm-neon.xml", 0);
5265 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5266 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5267 35, "arm-vfp3.xml", 0);
5268 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5269 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5270 19, "arm-vfp.xml", 0);
5274 /* Sort alphabetically by type name, except for "any". */
5275 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5277 ObjectClass *class_a = (ObjectClass *)a;
5278 ObjectClass *class_b = (ObjectClass *)b;
5279 const char *name_a, *name_b;
5281 name_a = object_class_get_name(class_a);
5282 name_b = object_class_get_name(class_b);
5283 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5284 return 1;
5285 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5286 return -1;
5287 } else {
5288 return strcmp(name_a, name_b);
5292 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5294 ObjectClass *oc = data;
5295 CPUListState *s = user_data;
5296 const char *typename;
5297 char *name;
5299 typename = object_class_get_name(oc);
5300 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5301 (*s->cpu_fprintf)(s->file, " %s\n",
5302 name);
5303 g_free(name);
5306 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5308 CPUListState s = {
5309 .file = f,
5310 .cpu_fprintf = cpu_fprintf,
5312 GSList *list;
5314 list = object_class_get_list(TYPE_ARM_CPU, false);
5315 list = g_slist_sort(list, arm_cpu_list_compare);
5316 (*cpu_fprintf)(f, "Available CPUs:\n");
5317 g_slist_foreach(list, arm_cpu_list_entry, &s);
5318 g_slist_free(list);
5319 #ifdef CONFIG_KVM
5320 /* The 'host' CPU type is dynamically registered only if KVM is
5321 * enabled, so we have to special-case it here:
5323 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5324 #endif
5327 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5329 ObjectClass *oc = data;
5330 CpuDefinitionInfoList **cpu_list = user_data;
5331 CpuDefinitionInfoList *entry;
5332 CpuDefinitionInfo *info;
5333 const char *typename;
5335 typename = object_class_get_name(oc);
5336 info = g_malloc0(sizeof(*info));
5337 info->name = g_strndup(typename,
5338 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5339 info->q_typename = g_strdup(typename);
5341 entry = g_malloc0(sizeof(*entry));
5342 entry->value = info;
5343 entry->next = *cpu_list;
5344 *cpu_list = entry;
5347 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5349 CpuDefinitionInfoList *cpu_list = NULL;
5350 GSList *list;
5352 list = object_class_get_list(TYPE_ARM_CPU, false);
5353 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5354 g_slist_free(list);
5356 return cpu_list;
5359 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5360 void *opaque, int state, int secstate,
5361 int crm, int opc1, int opc2)
5363 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5364 * add a single reginfo struct to the hash table.
5366 uint32_t *key = g_new(uint32_t, 1);
5367 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5368 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5369 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5371 /* Reset the secure state to the specific incoming state. This is
5372 * necessary as the register may have been defined with both states.
5374 r2->secure = secstate;
5376 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5377 /* Register is banked (using both entries in array).
5378 * Overwriting fieldoffset as the array is only used to define
5379 * banked registers but later only fieldoffset is used.
5381 r2->fieldoffset = r->bank_fieldoffsets[ns];
5384 if (state == ARM_CP_STATE_AA32) {
5385 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5386 /* If the register is banked then we don't need to migrate or
5387 * reset the 32-bit instance in certain cases:
5389 * 1) If the register has both 32-bit and 64-bit instances then we
5390 * can count on the 64-bit instance taking care of the
5391 * non-secure bank.
5392 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5393 * taking care of the secure bank. This requires that separate
5394 * 32 and 64-bit definitions are provided.
5396 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5397 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5398 r2->type |= ARM_CP_ALIAS;
5400 } else if ((secstate != r->secure) && !ns) {
5401 /* The register is not banked so we only want to allow migration of
5402 * the non-secure instance.
5404 r2->type |= ARM_CP_ALIAS;
5407 if (r->state == ARM_CP_STATE_BOTH) {
5408 /* We assume it is a cp15 register if the .cp field is left unset.
5410 if (r2->cp == 0) {
5411 r2->cp = 15;
5414 #ifdef HOST_WORDS_BIGENDIAN
5415 if (r2->fieldoffset) {
5416 r2->fieldoffset += sizeof(uint32_t);
5418 #endif
5421 if (state == ARM_CP_STATE_AA64) {
5422 /* To allow abbreviation of ARMCPRegInfo
5423 * definitions, we treat cp == 0 as equivalent to
5424 * the value for "standard guest-visible sysreg".
5425 * STATE_BOTH definitions are also always "standard
5426 * sysreg" in their AArch64 view (the .cp value may
5427 * be non-zero for the benefit of the AArch32 view).
5429 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5430 r2->cp = CP_REG_ARM64_SYSREG_CP;
5432 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5433 r2->opc0, opc1, opc2);
5434 } else {
5435 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5437 if (opaque) {
5438 r2->opaque = opaque;
5440 /* reginfo passed to helpers is correct for the actual access,
5441 * and is never ARM_CP_STATE_BOTH:
5443 r2->state = state;
5444 /* Make sure reginfo passed to helpers for wildcarded regs
5445 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5447 r2->crm = crm;
5448 r2->opc1 = opc1;
5449 r2->opc2 = opc2;
5450 /* By convention, for wildcarded registers only the first
5451 * entry is used for migration; the others are marked as
5452 * ALIAS so we don't try to transfer the register
5453 * multiple times. Special registers (ie NOP/WFI) are
5454 * never migratable and not even raw-accessible.
5456 if ((r->type & ARM_CP_SPECIAL)) {
5457 r2->type |= ARM_CP_NO_RAW;
5459 if (((r->crm == CP_ANY) && crm != 0) ||
5460 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5461 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5462 r2->type |= ARM_CP_ALIAS;
5465 /* Check that raw accesses are either forbidden or handled. Note that
5466 * we can't assert this earlier because the setup of fieldoffset for
5467 * banked registers has to be done first.
5469 if (!(r2->type & ARM_CP_NO_RAW)) {
5470 assert(!raw_accessors_invalid(r2));
5473 /* Overriding of an existing definition must be explicitly
5474 * requested.
5476 if (!(r->type & ARM_CP_OVERRIDE)) {
5477 ARMCPRegInfo *oldreg;
5478 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5479 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5480 fprintf(stderr, "Register redefined: cp=%d %d bit "
5481 "crn=%d crm=%d opc1=%d opc2=%d, "
5482 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5483 r2->crn, r2->crm, r2->opc1, r2->opc2,
5484 oldreg->name, r2->name);
5485 g_assert_not_reached();
5488 g_hash_table_insert(cpu->cp_regs, key, r2);
5492 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5493 const ARMCPRegInfo *r, void *opaque)
5495 /* Define implementations of coprocessor registers.
5496 * We store these in a hashtable because typically
5497 * there are less than 150 registers in a space which
5498 * is 16*16*16*8*8 = 262144 in size.
5499 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5500 * If a register is defined twice then the second definition is
5501 * used, so this can be used to define some generic registers and
5502 * then override them with implementation specific variations.
5503 * At least one of the original and the second definition should
5504 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5505 * against accidental use.
5507 * The state field defines whether the register is to be
5508 * visible in the AArch32 or AArch64 execution state. If the
5509 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5510 * reginfo structure for the AArch32 view, which sees the lower
5511 * 32 bits of the 64 bit register.
5513 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5514 * be wildcarded. AArch64 registers are always considered to be 64
5515 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5516 * the register, if any.
5518 int crm, opc1, opc2, state;
5519 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5520 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5521 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5522 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5523 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5524 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5525 /* 64 bit registers have only CRm and Opc1 fields */
5526 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5527 /* op0 only exists in the AArch64 encodings */
5528 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5529 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5530 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5531 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5532 * encodes a minimum access level for the register. We roll this
5533 * runtime check into our general permission check code, so check
5534 * here that the reginfo's specified permissions are strict enough
5535 * to encompass the generic architectural permission check.
5537 if (r->state != ARM_CP_STATE_AA32) {
5538 int mask = 0;
5539 switch (r->opc1) {
5540 case 0: case 1: case 2:
5541 /* min_EL EL1 */
5542 mask = PL1_RW;
5543 break;
5544 case 3:
5545 /* min_EL EL0 */
5546 mask = PL0_RW;
5547 break;
5548 case 4:
5549 /* min_EL EL2 */
5550 mask = PL2_RW;
5551 break;
5552 case 5:
5553 /* unallocated encoding, so not possible */
5554 assert(false);
5555 break;
5556 case 6:
5557 /* min_EL EL3 */
5558 mask = PL3_RW;
5559 break;
5560 case 7:
5561 /* min_EL EL1, secure mode only (we don't check the latter) */
5562 mask = PL1_RW;
5563 break;
5564 default:
5565 /* broken reginfo with out-of-range opc1 */
5566 assert(false);
5567 break;
5569 /* assert our permissions are not too lax (stricter is fine) */
5570 assert((r->access & ~mask) == 0);
5573 /* Check that the register definition has enough info to handle
5574 * reads and writes if they are permitted.
5576 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5577 if (r->access & PL3_R) {
5578 assert((r->fieldoffset ||
5579 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5580 r->readfn);
5582 if (r->access & PL3_W) {
5583 assert((r->fieldoffset ||
5584 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5585 r->writefn);
5588 /* Bad type field probably means missing sentinel at end of reg list */
5589 assert(cptype_valid(r->type));
5590 for (crm = crmmin; crm <= crmmax; crm++) {
5591 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5592 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5593 for (state = ARM_CP_STATE_AA32;
5594 state <= ARM_CP_STATE_AA64; state++) {
5595 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5596 continue;
5598 if (state == ARM_CP_STATE_AA32) {
5599 /* Under AArch32 CP registers can be common
5600 * (same for secure and non-secure world) or banked.
5602 switch (r->secure) {
5603 case ARM_CP_SECSTATE_S:
5604 case ARM_CP_SECSTATE_NS:
5605 add_cpreg_to_hashtable(cpu, r, opaque, state,
5606 r->secure, crm, opc1, opc2);
5607 break;
5608 default:
5609 add_cpreg_to_hashtable(cpu, r, opaque, state,
5610 ARM_CP_SECSTATE_S,
5611 crm, opc1, opc2);
5612 add_cpreg_to_hashtable(cpu, r, opaque, state,
5613 ARM_CP_SECSTATE_NS,
5614 crm, opc1, opc2);
5615 break;
5617 } else {
5618 /* AArch64 registers get mapped to non-secure instance
5619 * of AArch32 */
5620 add_cpreg_to_hashtable(cpu, r, opaque, state,
5621 ARM_CP_SECSTATE_NS,
5622 crm, opc1, opc2);
5630 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5631 const ARMCPRegInfo *regs, void *opaque)
5633 /* Define a whole list of registers */
5634 const ARMCPRegInfo *r;
5635 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5636 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5640 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5642 return g_hash_table_lookup(cpregs, &encoded_cp);
5645 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5646 uint64_t value)
5648 /* Helper coprocessor write function for write-ignore registers */
5651 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5653 /* Helper coprocessor write function for read-as-zero registers */
5654 return 0;
5657 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5659 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5662 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5664 /* Return true if it is not valid for us to switch to
5665 * this CPU mode (ie all the UNPREDICTABLE cases in
5666 * the ARM ARM CPSRWriteByInstr pseudocode).
5669 /* Changes to or from Hyp via MSR and CPS are illegal. */
5670 if (write_type == CPSRWriteByInstr &&
5671 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5672 mode == ARM_CPU_MODE_HYP)) {
5673 return 1;
5676 switch (mode) {
5677 case ARM_CPU_MODE_USR:
5678 return 0;
5679 case ARM_CPU_MODE_SYS:
5680 case ARM_CPU_MODE_SVC:
5681 case ARM_CPU_MODE_ABT:
5682 case ARM_CPU_MODE_UND:
5683 case ARM_CPU_MODE_IRQ:
5684 case ARM_CPU_MODE_FIQ:
5685 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5686 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5688 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5689 * and CPS are treated as illegal mode changes.
5691 if (write_type == CPSRWriteByInstr &&
5692 (env->cp15.hcr_el2 & HCR_TGE) &&
5693 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5694 !arm_is_secure_below_el3(env)) {
5695 return 1;
5697 return 0;
5698 case ARM_CPU_MODE_HYP:
5699 return !arm_feature(env, ARM_FEATURE_EL2)
5700 || arm_current_el(env) < 2 || arm_is_secure(env);
5701 case ARM_CPU_MODE_MON:
5702 return arm_current_el(env) < 3;
5703 default:
5704 return 1;
5708 uint32_t cpsr_read(CPUARMState *env)
5710 int ZF;
5711 ZF = (env->ZF == 0);
5712 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5713 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5714 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5715 | ((env->condexec_bits & 0xfc) << 8)
5716 | (env->GE << 16) | (env->daif & CPSR_AIF);
5719 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5720 CPSRWriteType write_type)
5722 uint32_t changed_daif;
5724 if (mask & CPSR_NZCV) {
5725 env->ZF = (~val) & CPSR_Z;
5726 env->NF = val;
5727 env->CF = (val >> 29) & 1;
5728 env->VF = (val << 3) & 0x80000000;
5730 if (mask & CPSR_Q)
5731 env->QF = ((val & CPSR_Q) != 0);
5732 if (mask & CPSR_T)
5733 env->thumb = ((val & CPSR_T) != 0);
5734 if (mask & CPSR_IT_0_1) {
5735 env->condexec_bits &= ~3;
5736 env->condexec_bits |= (val >> 25) & 3;
5738 if (mask & CPSR_IT_2_7) {
5739 env->condexec_bits &= 3;
5740 env->condexec_bits |= (val >> 8) & 0xfc;
5742 if (mask & CPSR_GE) {
5743 env->GE = (val >> 16) & 0xf;
5746 /* In a V7 implementation that includes the security extensions but does
5747 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5748 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5749 * bits respectively.
5751 * In a V8 implementation, it is permitted for privileged software to
5752 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5754 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5755 arm_feature(env, ARM_FEATURE_EL3) &&
5756 !arm_feature(env, ARM_FEATURE_EL2) &&
5757 !arm_is_secure(env)) {
5759 changed_daif = (env->daif ^ val) & mask;
5761 if (changed_daif & CPSR_A) {
5762 /* Check to see if we are allowed to change the masking of async
5763 * abort exceptions from a non-secure state.
5765 if (!(env->cp15.scr_el3 & SCR_AW)) {
5766 qemu_log_mask(LOG_GUEST_ERROR,
5767 "Ignoring attempt to switch CPSR_A flag from "
5768 "non-secure world with SCR.AW bit clear\n");
5769 mask &= ~CPSR_A;
5773 if (changed_daif & CPSR_F) {
5774 /* Check to see if we are allowed to change the masking of FIQ
5775 * exceptions from a non-secure state.
5777 if (!(env->cp15.scr_el3 & SCR_FW)) {
5778 qemu_log_mask(LOG_GUEST_ERROR,
5779 "Ignoring attempt to switch CPSR_F flag from "
5780 "non-secure world with SCR.FW bit clear\n");
5781 mask &= ~CPSR_F;
5784 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5785 * If this bit is set software is not allowed to mask
5786 * FIQs, but is allowed to set CPSR_F to 0.
5788 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5789 (val & CPSR_F)) {
5790 qemu_log_mask(LOG_GUEST_ERROR,
5791 "Ignoring attempt to enable CPSR_F flag "
5792 "(non-maskable FIQ [NMFI] support enabled)\n");
5793 mask &= ~CPSR_F;
5798 env->daif &= ~(CPSR_AIF & mask);
5799 env->daif |= val & CPSR_AIF & mask;
5801 if (write_type != CPSRWriteRaw &&
5802 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5803 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5804 /* Note that we can only get here in USR mode if this is a
5805 * gdb stub write; for this case we follow the architectural
5806 * behaviour for guest writes in USR mode of ignoring an attempt
5807 * to switch mode. (Those are caught by translate.c for writes
5808 * triggered by guest instructions.)
5810 mask &= ~CPSR_M;
5811 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5812 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5813 * v7, and has defined behaviour in v8:
5814 * + leave CPSR.M untouched
5815 * + allow changes to the other CPSR fields
5816 * + set PSTATE.IL
5817 * For user changes via the GDB stub, we don't set PSTATE.IL,
5818 * as this would be unnecessarily harsh for a user error.
5820 mask &= ~CPSR_M;
5821 if (write_type != CPSRWriteByGDBStub &&
5822 arm_feature(env, ARM_FEATURE_V8)) {
5823 mask |= CPSR_IL;
5824 val |= CPSR_IL;
5826 } else {
5827 switch_mode(env, val & CPSR_M);
5830 mask &= ~CACHED_CPSR_BITS;
5831 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5834 /* Sign/zero extend */
5835 uint32_t HELPER(sxtb16)(uint32_t x)
5837 uint32_t res;
5838 res = (uint16_t)(int8_t)x;
5839 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5840 return res;
5843 uint32_t HELPER(uxtb16)(uint32_t x)
5845 uint32_t res;
5846 res = (uint16_t)(uint8_t)x;
5847 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5848 return res;
5851 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5853 if (den == 0)
5854 return 0;
5855 if (num == INT_MIN && den == -1)
5856 return INT_MIN;
5857 return num / den;
5860 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5862 if (den == 0)
5863 return 0;
5864 return num / den;
5867 uint32_t HELPER(rbit)(uint32_t x)
5869 return revbit32(x);
5872 #if defined(CONFIG_USER_ONLY)
5874 /* These should probably raise undefined insn exceptions. */
5875 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5877 ARMCPU *cpu = arm_env_get_cpu(env);
5879 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5882 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5884 ARMCPU *cpu = arm_env_get_cpu(env);
5886 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5887 return 0;
5890 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
5892 /* translate.c should never generate calls here in user-only mode */
5893 g_assert_not_reached();
5896 void switch_mode(CPUARMState *env, int mode)
5898 ARMCPU *cpu = arm_env_get_cpu(env);
5900 if (mode != ARM_CPU_MODE_USR) {
5901 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5905 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5906 uint32_t cur_el, bool secure)
5908 return 1;
5911 void aarch64_sync_64_to_32(CPUARMState *env)
5913 g_assert_not_reached();
5916 #else
5918 void switch_mode(CPUARMState *env, int mode)
5920 int old_mode;
5921 int i;
5923 old_mode = env->uncached_cpsr & CPSR_M;
5924 if (mode == old_mode)
5925 return;
5927 if (old_mode == ARM_CPU_MODE_FIQ) {
5928 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5929 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5930 } else if (mode == ARM_CPU_MODE_FIQ) {
5931 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5932 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5935 i = bank_number(old_mode);
5936 env->banked_r13[i] = env->regs[13];
5937 env->banked_r14[i] = env->regs[14];
5938 env->banked_spsr[i] = env->spsr;
5940 i = bank_number(mode);
5941 env->regs[13] = env->banked_r13[i];
5942 env->regs[14] = env->banked_r14[i];
5943 env->spsr = env->banked_spsr[i];
5946 /* Physical Interrupt Target EL Lookup Table
5948 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5950 * The below multi-dimensional table is used for looking up the target
5951 * exception level given numerous condition criteria. Specifically, the
5952 * target EL is based on SCR and HCR routing controls as well as the
5953 * currently executing EL and secure state.
5955 * Dimensions:
5956 * target_el_table[2][2][2][2][2][4]
5957 * | | | | | +--- Current EL
5958 * | | | | +------ Non-secure(0)/Secure(1)
5959 * | | | +--------- HCR mask override
5960 * | | +------------ SCR exec state control
5961 * | +--------------- SCR mask override
5962 * +------------------ 32-bit(0)/64-bit(1) EL3
5964 * The table values are as such:
5965 * 0-3 = EL0-EL3
5966 * -1 = Cannot occur
5968 * The ARM ARM target EL table includes entries indicating that an "exception
5969 * is not taken". The two cases where this is applicable are:
5970 * 1) An exception is taken from EL3 but the SCR does not have the exception
5971 * routed to EL3.
5972 * 2) An exception is taken from EL2 but the HCR does not have the exception
5973 * routed to EL2.
5974 * In these two cases, the below table contain a target of EL1. This value is
5975 * returned as it is expected that the consumer of the table data will check
5976 * for "target EL >= current EL" to ensure the exception is not taken.
5978 * SCR HCR
5979 * 64 EA AMO From
5980 * BIT IRQ IMO Non-secure Secure
5981 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5983 static const int8_t target_el_table[2][2][2][2][2][4] = {
5984 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5985 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5986 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5987 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5988 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5989 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5990 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5991 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5992 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5993 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5994 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5995 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5996 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5997 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5998 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5999 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
6003 * Determine the target EL for physical exceptions
6005 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6006 uint32_t cur_el, bool secure)
6008 CPUARMState *env = cs->env_ptr;
6009 int rw;
6010 int scr;
6011 int hcr;
6012 int target_el;
6013 /* Is the highest EL AArch64? */
6014 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6016 if (arm_feature(env, ARM_FEATURE_EL3)) {
6017 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6018 } else {
6019 /* Either EL2 is the highest EL (and so the EL2 register width
6020 * is given by is64); or there is no EL2 or EL3, in which case
6021 * the value of 'rw' does not affect the table lookup anyway.
6023 rw = is64;
6026 switch (excp_idx) {
6027 case EXCP_IRQ:
6028 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6029 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6030 break;
6031 case EXCP_FIQ:
6032 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6033 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6034 break;
6035 default:
6036 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6037 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6038 break;
6041 /* If HCR.TGE is set then HCR is treated as being 1 */
6042 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6044 /* Perform a table-lookup for the target EL given the current state */
6045 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6047 assert(target_el > 0);
6049 return target_el;
6052 static void v7m_push(CPUARMState *env, uint32_t val)
6054 CPUState *cs = CPU(arm_env_get_cpu(env));
6056 env->regs[13] -= 4;
6057 stl_phys(cs->as, env->regs[13], val);
6060 /* Return true if we're using the process stack pointer (not the MSP) */
6061 static bool v7m_using_psp(CPUARMState *env)
6063 /* Handler mode always uses the main stack; for thread mode
6064 * the CONTROL.SPSEL bit determines the answer.
6065 * Note that in v7M it is not possible to be in Handler mode with
6066 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6068 return !arm_v7m_is_handler_mode(env) &&
6069 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6072 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6073 * This may change the current stack pointer between Main and Process
6074 * stack pointers if it is done for the CONTROL register for the current
6075 * security state.
6077 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6078 bool new_spsel,
6079 bool secstate)
6081 bool old_is_psp = v7m_using_psp(env);
6083 env->v7m.control[secstate] =
6084 deposit32(env->v7m.control[secstate],
6085 R_V7M_CONTROL_SPSEL_SHIFT,
6086 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6088 if (secstate == env->v7m.secure) {
6089 bool new_is_psp = v7m_using_psp(env);
6090 uint32_t tmp;
6092 if (old_is_psp != new_is_psp) {
6093 tmp = env->v7m.other_sp;
6094 env->v7m.other_sp = env->regs[13];
6095 env->regs[13] = tmp;
6100 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6101 * stack pointer between Main and Process stack pointers.
6103 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6105 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6108 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6110 /* Write a new value to v7m.exception, thus transitioning into or out
6111 * of Handler mode; this may result in a change of active stack pointer.
6113 bool new_is_psp, old_is_psp = v7m_using_psp(env);
6114 uint32_t tmp;
6116 env->v7m.exception = new_exc;
6118 new_is_psp = v7m_using_psp(env);
6120 if (old_is_psp != new_is_psp) {
6121 tmp = env->v7m.other_sp;
6122 env->v7m.other_sp = env->regs[13];
6123 env->regs[13] = tmp;
6127 /* Switch M profile security state between NS and S */
6128 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6130 uint32_t new_ss_msp, new_ss_psp;
6132 if (env->v7m.secure == new_secstate) {
6133 return;
6136 /* All the banked state is accessed by looking at env->v7m.secure
6137 * except for the stack pointer; rearrange the SP appropriately.
6139 new_ss_msp = env->v7m.other_ss_msp;
6140 new_ss_psp = env->v7m.other_ss_psp;
6142 if (v7m_using_psp(env)) {
6143 env->v7m.other_ss_psp = env->regs[13];
6144 env->v7m.other_ss_msp = env->v7m.other_sp;
6145 } else {
6146 env->v7m.other_ss_msp = env->regs[13];
6147 env->v7m.other_ss_psp = env->v7m.other_sp;
6150 env->v7m.secure = new_secstate;
6152 if (v7m_using_psp(env)) {
6153 env->regs[13] = new_ss_psp;
6154 env->v7m.other_sp = new_ss_msp;
6155 } else {
6156 env->regs[13] = new_ss_msp;
6157 env->v7m.other_sp = new_ss_psp;
6161 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6163 /* Handle v7M BXNS:
6164 * - if the return value is a magic value, do exception return (like BX)
6165 * - otherwise bit 0 of the return value is the target security state
6167 if (dest >= 0xff000000) {
6168 /* This is an exception return magic value; put it where
6169 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6170 * Note that if we ever add gen_ss_advance() singlestep support to
6171 * M profile this should count as an "instruction execution complete"
6172 * event (compare gen_bx_excret_final_code()).
6174 env->regs[15] = dest & ~1;
6175 env->thumb = dest & 1;
6176 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6177 /* notreached */
6180 /* translate.c should have made BXNS UNDEF unless we're secure */
6181 assert(env->v7m.secure);
6183 switch_v7m_security_state(env, dest & 1);
6184 env->thumb = 1;
6185 env->regs[15] = dest & ~1;
6188 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6189 bool spsel)
6191 /* Return a pointer to the location where we currently store the
6192 * stack pointer for the requested security state and thread mode.
6193 * This pointer will become invalid if the CPU state is updated
6194 * such that the stack pointers are switched around (eg changing
6195 * the SPSEL control bit).
6196 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6197 * Unlike that pseudocode, we require the caller to pass us in the
6198 * SPSEL control bit value; this is because we also use this
6199 * function in handling of pushing of the callee-saves registers
6200 * part of the v8M stack frame (pseudocode PushCalleeStack()),
6201 * and in the tailchain codepath the SPSEL bit comes from the exception
6202 * return magic LR value from the previous exception. The pseudocode
6203 * opencodes the stack-selection in PushCalleeStack(), but we prefer
6204 * to make this utility function generic enough to do the job.
6206 bool want_psp = threadmode && spsel;
6208 if (secure == env->v7m.secure) {
6209 if (want_psp == v7m_using_psp(env)) {
6210 return &env->regs[13];
6211 } else {
6212 return &env->v7m.other_sp;
6214 } else {
6215 if (want_psp) {
6216 return &env->v7m.other_ss_psp;
6217 } else {
6218 return &env->v7m.other_ss_msp;
6223 static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure)
6225 CPUState *cs = CPU(cpu);
6226 CPUARMState *env = &cpu->env;
6227 MemTxResult result;
6228 hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4;
6229 uint32_t addr;
6231 addr = address_space_ldl(cs->as, vec,
6232 MEMTXATTRS_UNSPECIFIED, &result);
6233 if (result != MEMTX_OK) {
6234 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6235 * which would then be immediately followed by our failing to load
6236 * the entry vector for that HardFault, which is a Lockup case.
6237 * Since we don't model Lockup, we just report this guest error
6238 * via cpu_abort().
6240 cpu_abort(cs, "Failed to read from %s exception vector table "
6241 "entry %08x\n", targets_secure ? "secure" : "nonsecure",
6242 (unsigned)vec);
6244 return addr;
6247 static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6249 /* For v8M, push the callee-saves register part of the stack frame.
6250 * Compare the v8M pseudocode PushCalleeStack().
6251 * In the tailchaining case this may not be the current stack.
6253 CPUARMState *env = &cpu->env;
6254 CPUState *cs = CPU(cpu);
6255 uint32_t *frame_sp_p;
6256 uint32_t frameptr;
6258 if (dotailchain) {
6259 frame_sp_p = get_v7m_sp_ptr(env, true,
6260 lr & R_V7M_EXCRET_MODE_MASK,
6261 lr & R_V7M_EXCRET_SPSEL_MASK);
6262 } else {
6263 frame_sp_p = &env->regs[13];
6266 frameptr = *frame_sp_p - 0x28;
6268 stl_phys(cs->as, frameptr, 0xfefa125b);
6269 stl_phys(cs->as, frameptr + 0x8, env->regs[4]);
6270 stl_phys(cs->as, frameptr + 0xc, env->regs[5]);
6271 stl_phys(cs->as, frameptr + 0x10, env->regs[6]);
6272 stl_phys(cs->as, frameptr + 0x14, env->regs[7]);
6273 stl_phys(cs->as, frameptr + 0x18, env->regs[8]);
6274 stl_phys(cs->as, frameptr + 0x1c, env->regs[9]);
6275 stl_phys(cs->as, frameptr + 0x20, env->regs[10]);
6276 stl_phys(cs->as, frameptr + 0x24, env->regs[11]);
6278 *frame_sp_p = frameptr;
6281 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6283 /* Do the "take the exception" parts of exception entry,
6284 * but not the pushing of state to the stack. This is
6285 * similar to the pseudocode ExceptionTaken() function.
6287 CPUARMState *env = &cpu->env;
6288 uint32_t addr;
6289 bool targets_secure;
6291 targets_secure = armv7m_nvic_acknowledge_irq(env->nvic);
6293 if (arm_feature(env, ARM_FEATURE_V8)) {
6294 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6295 (lr & R_V7M_EXCRET_S_MASK)) {
6296 /* The background code (the owner of the registers in the
6297 * exception frame) is Secure. This means it may either already
6298 * have or now needs to push callee-saves registers.
6300 if (targets_secure) {
6301 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6302 /* We took an exception from Secure to NonSecure
6303 * (which means the callee-saved registers got stacked)
6304 * and are now tailchaining to a Secure exception.
6305 * Clear DCRS so eventual return from this Secure
6306 * exception unstacks the callee-saved registers.
6308 lr &= ~R_V7M_EXCRET_DCRS_MASK;
6310 } else {
6311 /* We're going to a non-secure exception; push the
6312 * callee-saves registers to the stack now, if they're
6313 * not already saved.
6315 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6316 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6317 v7m_push_callee_stack(cpu, lr, dotailchain);
6319 lr |= R_V7M_EXCRET_DCRS_MASK;
6323 lr &= ~R_V7M_EXCRET_ES_MASK;
6324 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6325 lr |= R_V7M_EXCRET_ES_MASK;
6327 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6328 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6329 lr |= R_V7M_EXCRET_SPSEL_MASK;
6332 /* Clear registers if necessary to prevent non-secure exception
6333 * code being able to see register values from secure code.
6334 * Where register values become architecturally UNKNOWN we leave
6335 * them with their previous values.
6337 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6338 if (!targets_secure) {
6339 /* Always clear the caller-saved registers (they have been
6340 * pushed to the stack earlier in v7m_push_stack()).
6341 * Clear callee-saved registers if the background code is
6342 * Secure (in which case these regs were saved in
6343 * v7m_push_callee_stack()).
6345 int i;
6347 for (i = 0; i < 13; i++) {
6348 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6349 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6350 env->regs[i] = 0;
6353 /* Clear EAPSR */
6354 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6359 /* Switch to target security state -- must do this before writing SPSEL */
6360 switch_v7m_security_state(env, targets_secure);
6361 write_v7m_control_spsel(env, 0);
6362 arm_clear_exclusive(env);
6363 /* Clear IT bits */
6364 env->condexec_bits = 0;
6365 env->regs[14] = lr;
6366 addr = arm_v7m_load_vector(cpu, targets_secure);
6367 env->regs[15] = addr & 0xfffffffe;
6368 env->thumb = addr & 1;
6371 static void v7m_push_stack(ARMCPU *cpu)
6373 /* Do the "set up stack frame" part of exception entry,
6374 * similar to pseudocode PushStack().
6376 CPUARMState *env = &cpu->env;
6377 uint32_t xpsr = xpsr_read(env);
6379 /* Align stack pointer if the guest wants that */
6380 if ((env->regs[13] & 4) &&
6381 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6382 env->regs[13] -= 4;
6383 xpsr |= XPSR_SPREALIGN;
6385 /* Switch to the handler mode. */
6386 v7m_push(env, xpsr);
6387 v7m_push(env, env->regs[15]);
6388 v7m_push(env, env->regs[14]);
6389 v7m_push(env, env->regs[12]);
6390 v7m_push(env, env->regs[3]);
6391 v7m_push(env, env->regs[2]);
6392 v7m_push(env, env->regs[1]);
6393 v7m_push(env, env->regs[0]);
6396 static void do_v7m_exception_exit(ARMCPU *cpu)
6398 CPUARMState *env = &cpu->env;
6399 CPUState *cs = CPU(cpu);
6400 uint32_t excret;
6401 uint32_t xpsr;
6402 bool ufault = false;
6403 bool sfault = false;
6404 bool return_to_sp_process;
6405 bool return_to_handler;
6406 bool rettobase = false;
6407 bool exc_secure = false;
6408 bool return_to_secure;
6410 /* We can only get here from an EXCP_EXCEPTION_EXIT, and
6411 * gen_bx_excret() enforces the architectural rule
6412 * that jumps to magic addresses don't have magic behaviour unless
6413 * we're in Handler mode (compare pseudocode BXWritePC()).
6415 assert(arm_v7m_is_handler_mode(env));
6417 /* In the spec pseudocode ExceptionReturn() is called directly
6418 * from BXWritePC() and gets the full target PC value including
6419 * bit zero. In QEMU's implementation we treat it as a normal
6420 * jump-to-register (which is then caught later on), and so split
6421 * the target value up between env->regs[15] and env->thumb in
6422 * gen_bx(). Reconstitute it.
6424 excret = env->regs[15];
6425 if (env->thumb) {
6426 excret |= 1;
6429 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6430 " previous exception %d\n",
6431 excret, env->v7m.exception);
6433 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6434 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6435 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6436 excret);
6439 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6440 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
6441 * we pick which FAULTMASK to clear.
6443 if (!env->v7m.secure &&
6444 ((excret & R_V7M_EXCRET_ES_MASK) ||
6445 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
6446 sfault = 1;
6447 /* For all other purposes, treat ES as 0 (R_HXSR) */
6448 excret &= ~R_V7M_EXCRET_ES_MASK;
6452 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6453 /* Auto-clear FAULTMASK on return from other than NMI.
6454 * If the security extension is implemented then this only
6455 * happens if the raw execution priority is >= 0; the
6456 * value of the ES bit in the exception return value indicates
6457 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6459 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6460 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6461 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6462 env->v7m.faultmask[exc_secure] = 0;
6464 } else {
6465 env->v7m.faultmask[M_REG_NS] = 0;
6469 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6470 exc_secure)) {
6471 case -1:
6472 /* attempt to exit an exception that isn't active */
6473 ufault = true;
6474 break;
6475 case 0:
6476 /* still an irq active now */
6477 break;
6478 case 1:
6479 /* we returned to base exception level, no nesting.
6480 * (In the pseudocode this is written using "NestedActivation != 1"
6481 * where we have 'rettobase == false'.)
6483 rettobase = true;
6484 break;
6485 default:
6486 g_assert_not_reached();
6489 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
6490 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
6491 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6492 (excret & R_V7M_EXCRET_S_MASK);
6494 if (arm_feature(env, ARM_FEATURE_V8)) {
6495 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6496 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
6497 * we choose to take the UsageFault.
6499 if ((excret & R_V7M_EXCRET_S_MASK) ||
6500 (excret & R_V7M_EXCRET_ES_MASK) ||
6501 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
6502 ufault = true;
6505 if (excret & R_V7M_EXCRET_RES0_MASK) {
6506 ufault = true;
6508 } else {
6509 /* For v7M we only recognize certain combinations of the low bits */
6510 switch (excret & 0xf) {
6511 case 1: /* Return to Handler */
6512 break;
6513 case 13: /* Return to Thread using Process stack */
6514 case 9: /* Return to Thread using Main stack */
6515 /* We only need to check NONBASETHRDENA for v7M, because in
6516 * v8M this bit does not exist (it is RES1).
6518 if (!rettobase &&
6519 !(env->v7m.ccr[env->v7m.secure] &
6520 R_V7M_CCR_NONBASETHRDENA_MASK)) {
6521 ufault = true;
6523 break;
6524 default:
6525 ufault = true;
6529 if (sfault) {
6530 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
6531 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6532 v7m_exception_taken(cpu, excret, true);
6533 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6534 "stackframe: failed EXC_RETURN.ES validity check\n");
6535 return;
6538 if (ufault) {
6539 /* Bad exception return: instead of popping the exception
6540 * stack, directly take a usage fault on the current stack.
6542 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6543 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6544 v7m_exception_taken(cpu, excret, true);
6545 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6546 "stackframe: failed exception return integrity check\n");
6547 return;
6550 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
6551 * Handler mode (and will be until we write the new XPSR.Interrupt
6552 * field) this does not switch around the current stack pointer.
6554 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
6556 switch_v7m_security_state(env, return_to_secure);
6559 /* The stack pointer we should be reading the exception frame from
6560 * depends on bits in the magic exception return type value (and
6561 * for v8M isn't necessarily the stack pointer we will eventually
6562 * end up resuming execution with). Get a pointer to the location
6563 * in the CPU state struct where the SP we need is currently being
6564 * stored; we will use and modify it in place.
6565 * We use this limited C variable scope so we don't accidentally
6566 * use 'frame_sp_p' after we do something that makes it invalid.
6568 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
6569 return_to_secure,
6570 !return_to_handler,
6571 return_to_sp_process);
6572 uint32_t frameptr = *frame_sp_p;
6574 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
6575 arm_feature(env, ARM_FEATURE_V8)) {
6576 qemu_log_mask(LOG_GUEST_ERROR,
6577 "M profile exception return with non-8-aligned SP "
6578 "for destination state is UNPREDICTABLE\n");
6581 /* Do we need to pop callee-saved registers? */
6582 if (return_to_secure &&
6583 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
6584 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
6585 uint32_t expected_sig = 0xfefa125b;
6586 uint32_t actual_sig = ldl_phys(cs->as, frameptr);
6588 if (expected_sig != actual_sig) {
6589 /* Take a SecureFault on the current stack */
6590 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
6591 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6592 v7m_exception_taken(cpu, excret, true);
6593 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6594 "stackframe: failed exception return integrity "
6595 "signature check\n");
6596 return;
6599 env->regs[4] = ldl_phys(cs->as, frameptr + 0x8);
6600 env->regs[5] = ldl_phys(cs->as, frameptr + 0xc);
6601 env->regs[6] = ldl_phys(cs->as, frameptr + 0x10);
6602 env->regs[7] = ldl_phys(cs->as, frameptr + 0x14);
6603 env->regs[8] = ldl_phys(cs->as, frameptr + 0x18);
6604 env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c);
6605 env->regs[10] = ldl_phys(cs->as, frameptr + 0x20);
6606 env->regs[11] = ldl_phys(cs->as, frameptr + 0x24);
6608 frameptr += 0x28;
6611 /* Pop registers. TODO: make these accesses use the correct
6612 * attributes and address space (S/NS, priv/unpriv) and handle
6613 * memory transaction failures.
6615 env->regs[0] = ldl_phys(cs->as, frameptr);
6616 env->regs[1] = ldl_phys(cs->as, frameptr + 0x4);
6617 env->regs[2] = ldl_phys(cs->as, frameptr + 0x8);
6618 env->regs[3] = ldl_phys(cs->as, frameptr + 0xc);
6619 env->regs[12] = ldl_phys(cs->as, frameptr + 0x10);
6620 env->regs[14] = ldl_phys(cs->as, frameptr + 0x14);
6621 env->regs[15] = ldl_phys(cs->as, frameptr + 0x18);
6623 /* Returning from an exception with a PC with bit 0 set is defined
6624 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
6625 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
6626 * the lsbit, and there are several RTOSes out there which incorrectly
6627 * assume the r15 in the stack frame should be a Thumb-style "lsbit
6628 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
6629 * complain about the badly behaved guest.
6631 if (env->regs[15] & 1) {
6632 env->regs[15] &= ~1U;
6633 if (!arm_feature(env, ARM_FEATURE_V8)) {
6634 qemu_log_mask(LOG_GUEST_ERROR,
6635 "M profile return from interrupt with misaligned "
6636 "PC is UNPREDICTABLE on v7M\n");
6640 xpsr = ldl_phys(cs->as, frameptr + 0x1c);
6642 if (arm_feature(env, ARM_FEATURE_V8)) {
6643 /* For v8M we have to check whether the xPSR exception field
6644 * matches the EXCRET value for return to handler/thread
6645 * before we commit to changing the SP and xPSR.
6647 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
6648 if (return_to_handler != will_be_handler) {
6649 /* Take an INVPC UsageFault on the current stack.
6650 * By this point we will have switched to the security state
6651 * for the background state, so this UsageFault will target
6652 * that state.
6654 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6655 env->v7m.secure);
6656 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6657 v7m_exception_taken(cpu, excret, true);
6658 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6659 "stackframe: failed exception return integrity "
6660 "check\n");
6661 return;
6665 /* Commit to consuming the stack frame */
6666 frameptr += 0x20;
6667 /* Undo stack alignment (the SPREALIGN bit indicates that the original
6668 * pre-exception SP was not 8-aligned and we added a padding word to
6669 * align it, so we undo this by ORing in the bit that increases it
6670 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
6671 * would work too but a logical OR is how the pseudocode specifies it.)
6673 if (xpsr & XPSR_SPREALIGN) {
6674 frameptr |= 4;
6676 *frame_sp_p = frameptr;
6678 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
6679 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
6681 /* The restored xPSR exception field will be zero if we're
6682 * resuming in Thread mode. If that doesn't match what the
6683 * exception return excret specified then this is a UsageFault.
6684 * v7M requires we make this check here; v8M did it earlier.
6686 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
6687 /* Take an INVPC UsageFault by pushing the stack again;
6688 * we know we're v7M so this is never a Secure UsageFault.
6690 assert(!arm_feature(env, ARM_FEATURE_V8));
6691 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
6692 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6693 v7m_push_stack(cpu);
6694 v7m_exception_taken(cpu, excret, false);
6695 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6696 "failed exception return integrity check\n");
6697 return;
6700 /* Otherwise, we have a successful exception exit. */
6701 arm_clear_exclusive(env);
6702 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6705 static void arm_log_exception(int idx)
6707 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6708 const char *exc = NULL;
6709 static const char * const excnames[] = {
6710 [EXCP_UDEF] = "Undefined Instruction",
6711 [EXCP_SWI] = "SVC",
6712 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6713 [EXCP_DATA_ABORT] = "Data Abort",
6714 [EXCP_IRQ] = "IRQ",
6715 [EXCP_FIQ] = "FIQ",
6716 [EXCP_BKPT] = "Breakpoint",
6717 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6718 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6719 [EXCP_HVC] = "Hypervisor Call",
6720 [EXCP_HYP_TRAP] = "Hypervisor Trap",
6721 [EXCP_SMC] = "Secure Monitor Call",
6722 [EXCP_VIRQ] = "Virtual IRQ",
6723 [EXCP_VFIQ] = "Virtual FIQ",
6724 [EXCP_SEMIHOST] = "Semihosting call",
6725 [EXCP_NOCP] = "v7M NOCP UsageFault",
6726 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6729 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6730 exc = excnames[idx];
6732 if (!exc) {
6733 exc = "unknown";
6735 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6739 void arm_v7m_cpu_do_interrupt(CPUState *cs)
6741 ARMCPU *cpu = ARM_CPU(cs);
6742 CPUARMState *env = &cpu->env;
6743 uint32_t lr;
6745 arm_log_exception(cs->exception_index);
6747 /* For exceptions we just mark as pending on the NVIC, and let that
6748 handle it. */
6749 switch (cs->exception_index) {
6750 case EXCP_UDEF:
6751 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6752 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
6753 break;
6754 case EXCP_NOCP:
6755 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6756 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
6757 break;
6758 case EXCP_INVSTATE:
6759 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6760 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
6761 break;
6762 case EXCP_SWI:
6763 /* The PC already points to the next instruction. */
6764 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
6765 break;
6766 case EXCP_PREFETCH_ABORT:
6767 case EXCP_DATA_ABORT:
6768 /* Note that for M profile we don't have a guest facing FSR, but
6769 * the env->exception.fsr will be populated by the code that
6770 * raises the fault, in the A profile short-descriptor format.
6772 switch (env->exception.fsr & 0xf) {
6773 case M_FAKE_FSR_NSC_EXEC:
6774 /* Exception generated when we try to execute code at an address
6775 * which is marked as Secure & Non-Secure Callable and the CPU
6776 * is in the Non-Secure state. The only instruction which can
6777 * be executed like this is SG (and that only if both halves of
6778 * the SG instruction have the same security attributes.)
6779 * Everything else must generate an INVEP SecureFault, so we
6780 * emulate the SG instruction here.
6781 * TODO: actually emulate SG.
6783 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
6784 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6785 qemu_log_mask(CPU_LOG_INT,
6786 "...really SecureFault with SFSR.INVEP\n");
6787 break;
6788 case M_FAKE_FSR_SFAULT:
6789 /* Various flavours of SecureFault for attempts to execute or
6790 * access data in the wrong security state.
6792 switch (cs->exception_index) {
6793 case EXCP_PREFETCH_ABORT:
6794 if (env->v7m.secure) {
6795 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
6796 qemu_log_mask(CPU_LOG_INT,
6797 "...really SecureFault with SFSR.INVTRAN\n");
6798 } else {
6799 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
6800 qemu_log_mask(CPU_LOG_INT,
6801 "...really SecureFault with SFSR.INVEP\n");
6803 break;
6804 case EXCP_DATA_ABORT:
6805 /* This must be an NS access to S memory */
6806 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
6807 qemu_log_mask(CPU_LOG_INT,
6808 "...really SecureFault with SFSR.AUVIOL\n");
6809 break;
6811 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6812 break;
6813 case 0x8: /* External Abort */
6814 switch (cs->exception_index) {
6815 case EXCP_PREFETCH_ABORT:
6816 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
6817 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
6818 break;
6819 case EXCP_DATA_ABORT:
6820 env->v7m.cfsr[M_REG_NS] |=
6821 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
6822 env->v7m.bfar = env->exception.vaddress;
6823 qemu_log_mask(CPU_LOG_INT,
6824 "...with CFSR.PRECISERR and BFAR 0x%x\n",
6825 env->v7m.bfar);
6826 break;
6828 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
6829 break;
6830 default:
6831 /* All other FSR values are either MPU faults or "can't happen
6832 * for M profile" cases.
6834 switch (cs->exception_index) {
6835 case EXCP_PREFETCH_ABORT:
6836 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
6837 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
6838 break;
6839 case EXCP_DATA_ABORT:
6840 env->v7m.cfsr[env->v7m.secure] |=
6841 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
6842 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
6843 qemu_log_mask(CPU_LOG_INT,
6844 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
6845 env->v7m.mmfar[env->v7m.secure]);
6846 break;
6848 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
6849 env->v7m.secure);
6850 break;
6852 break;
6853 case EXCP_BKPT:
6854 if (semihosting_enabled()) {
6855 int nr;
6856 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6857 if (nr == 0xab) {
6858 env->regs[15] += 2;
6859 qemu_log_mask(CPU_LOG_INT,
6860 "...handling as semihosting call 0x%x\n",
6861 env->regs[0]);
6862 env->regs[0] = do_arm_semihosting(env);
6863 return;
6866 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
6867 break;
6868 case EXCP_IRQ:
6869 break;
6870 case EXCP_EXCEPTION_EXIT:
6871 do_v7m_exception_exit(cpu);
6872 return;
6873 default:
6874 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6875 return; /* Never happens. Keep compiler happy. */
6878 if (arm_feature(env, ARM_FEATURE_V8)) {
6879 lr = R_V7M_EXCRET_RES1_MASK |
6880 R_V7M_EXCRET_DCRS_MASK |
6881 R_V7M_EXCRET_FTYPE_MASK;
6882 /* The S bit indicates whether we should return to Secure
6883 * or NonSecure (ie our current state).
6884 * The ES bit indicates whether we're taking this exception
6885 * to Secure or NonSecure (ie our target state). We set it
6886 * later, in v7m_exception_taken().
6887 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
6888 * This corresponds to the ARM ARM pseudocode for v8M setting
6889 * some LR bits in PushStack() and some in ExceptionTaken();
6890 * the distinction matters for the tailchain cases where we
6891 * can take an exception without pushing the stack.
6893 if (env->v7m.secure) {
6894 lr |= R_V7M_EXCRET_S_MASK;
6896 } else {
6897 lr = R_V7M_EXCRET_RES1_MASK |
6898 R_V7M_EXCRET_S_MASK |
6899 R_V7M_EXCRET_DCRS_MASK |
6900 R_V7M_EXCRET_FTYPE_MASK |
6901 R_V7M_EXCRET_ES_MASK;
6902 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
6903 lr |= R_V7M_EXCRET_SPSEL_MASK;
6906 if (!arm_v7m_is_handler_mode(env)) {
6907 lr |= R_V7M_EXCRET_MODE_MASK;
6910 v7m_push_stack(cpu);
6911 v7m_exception_taken(cpu, lr, false);
6912 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
6915 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6916 * register set. This is necessary when switching between AArch32 and AArch64
6917 * execution state.
6919 void aarch64_sync_32_to_64(CPUARMState *env)
6921 int i;
6922 uint32_t mode = env->uncached_cpsr & CPSR_M;
6924 /* We can blanket copy R[0:7] to X[0:7] */
6925 for (i = 0; i < 8; i++) {
6926 env->xregs[i] = env->regs[i];
6929 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6930 * Otherwise, they come from the banked user regs.
6932 if (mode == ARM_CPU_MODE_FIQ) {
6933 for (i = 8; i < 13; i++) {
6934 env->xregs[i] = env->usr_regs[i - 8];
6936 } else {
6937 for (i = 8; i < 13; i++) {
6938 env->xregs[i] = env->regs[i];
6942 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6943 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6944 * from the mode banked register.
6946 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6947 env->xregs[13] = env->regs[13];
6948 env->xregs[14] = env->regs[14];
6949 } else {
6950 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6951 /* HYP is an exception in that it is copied from r14 */
6952 if (mode == ARM_CPU_MODE_HYP) {
6953 env->xregs[14] = env->regs[14];
6954 } else {
6955 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6959 if (mode == ARM_CPU_MODE_HYP) {
6960 env->xregs[15] = env->regs[13];
6961 } else {
6962 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6965 if (mode == ARM_CPU_MODE_IRQ) {
6966 env->xregs[16] = env->regs[14];
6967 env->xregs[17] = env->regs[13];
6968 } else {
6969 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6970 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6973 if (mode == ARM_CPU_MODE_SVC) {
6974 env->xregs[18] = env->regs[14];
6975 env->xregs[19] = env->regs[13];
6976 } else {
6977 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6978 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6981 if (mode == ARM_CPU_MODE_ABT) {
6982 env->xregs[20] = env->regs[14];
6983 env->xregs[21] = env->regs[13];
6984 } else {
6985 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6986 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6989 if (mode == ARM_CPU_MODE_UND) {
6990 env->xregs[22] = env->regs[14];
6991 env->xregs[23] = env->regs[13];
6992 } else {
6993 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6994 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6997 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6998 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6999 * FIQ bank for r8-r14.
7001 if (mode == ARM_CPU_MODE_FIQ) {
7002 for (i = 24; i < 31; i++) {
7003 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
7005 } else {
7006 for (i = 24; i < 29; i++) {
7007 env->xregs[i] = env->fiq_regs[i - 24];
7009 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7010 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7013 env->pc = env->regs[15];
7016 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7017 * register set. This is necessary when switching between AArch32 and AArch64
7018 * execution state.
7020 void aarch64_sync_64_to_32(CPUARMState *env)
7022 int i;
7023 uint32_t mode = env->uncached_cpsr & CPSR_M;
7025 /* We can blanket copy X[0:7] to R[0:7] */
7026 for (i = 0; i < 8; i++) {
7027 env->regs[i] = env->xregs[i];
7030 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7031 * Otherwise, we copy x8-x12 into the banked user regs.
7033 if (mode == ARM_CPU_MODE_FIQ) {
7034 for (i = 8; i < 13; i++) {
7035 env->usr_regs[i - 8] = env->xregs[i];
7037 } else {
7038 for (i = 8; i < 13; i++) {
7039 env->regs[i] = env->xregs[i];
7043 /* Registers r13 & r14 depend on the current mode.
7044 * If we are in a given mode, we copy the corresponding x registers to r13
7045 * and r14. Otherwise, we copy the x register to the banked r13 and r14
7046 * for the mode.
7048 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7049 env->regs[13] = env->xregs[13];
7050 env->regs[14] = env->xregs[14];
7051 } else {
7052 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7054 /* HYP is an exception in that it does not have its own banked r14 but
7055 * shares the USR r14
7057 if (mode == ARM_CPU_MODE_HYP) {
7058 env->regs[14] = env->xregs[14];
7059 } else {
7060 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7064 if (mode == ARM_CPU_MODE_HYP) {
7065 env->regs[13] = env->xregs[15];
7066 } else {
7067 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7070 if (mode == ARM_CPU_MODE_IRQ) {
7071 env->regs[14] = env->xregs[16];
7072 env->regs[13] = env->xregs[17];
7073 } else {
7074 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7075 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7078 if (mode == ARM_CPU_MODE_SVC) {
7079 env->regs[14] = env->xregs[18];
7080 env->regs[13] = env->xregs[19];
7081 } else {
7082 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7083 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7086 if (mode == ARM_CPU_MODE_ABT) {
7087 env->regs[14] = env->xregs[20];
7088 env->regs[13] = env->xregs[21];
7089 } else {
7090 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7091 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7094 if (mode == ARM_CPU_MODE_UND) {
7095 env->regs[14] = env->xregs[22];
7096 env->regs[13] = env->xregs[23];
7097 } else {
7098 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7099 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7102 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7103 * mode, then we can copy to r8-r14. Otherwise, we copy to the
7104 * FIQ bank for r8-r14.
7106 if (mode == ARM_CPU_MODE_FIQ) {
7107 for (i = 24; i < 31; i++) {
7108 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
7110 } else {
7111 for (i = 24; i < 29; i++) {
7112 env->fiq_regs[i - 24] = env->xregs[i];
7114 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7115 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7118 env->regs[15] = env->pc;
7121 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7123 ARMCPU *cpu = ARM_CPU(cs);
7124 CPUARMState *env = &cpu->env;
7125 uint32_t addr;
7126 uint32_t mask;
7127 int new_mode;
7128 uint32_t offset;
7129 uint32_t moe;
7131 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7132 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7133 case EC_BREAKPOINT:
7134 case EC_BREAKPOINT_SAME_EL:
7135 moe = 1;
7136 break;
7137 case EC_WATCHPOINT:
7138 case EC_WATCHPOINT_SAME_EL:
7139 moe = 10;
7140 break;
7141 case EC_AA32_BKPT:
7142 moe = 3;
7143 break;
7144 case EC_VECTORCATCH:
7145 moe = 5;
7146 break;
7147 default:
7148 moe = 0;
7149 break;
7152 if (moe) {
7153 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7156 /* TODO: Vectored interrupt controller. */
7157 switch (cs->exception_index) {
7158 case EXCP_UDEF:
7159 new_mode = ARM_CPU_MODE_UND;
7160 addr = 0x04;
7161 mask = CPSR_I;
7162 if (env->thumb)
7163 offset = 2;
7164 else
7165 offset = 4;
7166 break;
7167 case EXCP_SWI:
7168 new_mode = ARM_CPU_MODE_SVC;
7169 addr = 0x08;
7170 mask = CPSR_I;
7171 /* The PC already points to the next instruction. */
7172 offset = 0;
7173 break;
7174 case EXCP_BKPT:
7175 env->exception.fsr = 2;
7176 /* Fall through to prefetch abort. */
7177 case EXCP_PREFETCH_ABORT:
7178 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
7179 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7180 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
7181 env->exception.fsr, (uint32_t)env->exception.vaddress);
7182 new_mode = ARM_CPU_MODE_ABT;
7183 addr = 0x0c;
7184 mask = CPSR_A | CPSR_I;
7185 offset = 4;
7186 break;
7187 case EXCP_DATA_ABORT:
7188 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
7189 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7190 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
7191 env->exception.fsr,
7192 (uint32_t)env->exception.vaddress);
7193 new_mode = ARM_CPU_MODE_ABT;
7194 addr = 0x10;
7195 mask = CPSR_A | CPSR_I;
7196 offset = 8;
7197 break;
7198 case EXCP_IRQ:
7199 new_mode = ARM_CPU_MODE_IRQ;
7200 addr = 0x18;
7201 /* Disable IRQ and imprecise data aborts. */
7202 mask = CPSR_A | CPSR_I;
7203 offset = 4;
7204 if (env->cp15.scr_el3 & SCR_IRQ) {
7205 /* IRQ routed to monitor mode */
7206 new_mode = ARM_CPU_MODE_MON;
7207 mask |= CPSR_F;
7209 break;
7210 case EXCP_FIQ:
7211 new_mode = ARM_CPU_MODE_FIQ;
7212 addr = 0x1c;
7213 /* Disable FIQ, IRQ and imprecise data aborts. */
7214 mask = CPSR_A | CPSR_I | CPSR_F;
7215 if (env->cp15.scr_el3 & SCR_FIQ) {
7216 /* FIQ routed to monitor mode */
7217 new_mode = ARM_CPU_MODE_MON;
7219 offset = 4;
7220 break;
7221 case EXCP_VIRQ:
7222 new_mode = ARM_CPU_MODE_IRQ;
7223 addr = 0x18;
7224 /* Disable IRQ and imprecise data aborts. */
7225 mask = CPSR_A | CPSR_I;
7226 offset = 4;
7227 break;
7228 case EXCP_VFIQ:
7229 new_mode = ARM_CPU_MODE_FIQ;
7230 addr = 0x1c;
7231 /* Disable FIQ, IRQ and imprecise data aborts. */
7232 mask = CPSR_A | CPSR_I | CPSR_F;
7233 offset = 4;
7234 break;
7235 case EXCP_SMC:
7236 new_mode = ARM_CPU_MODE_MON;
7237 addr = 0x08;
7238 mask = CPSR_A | CPSR_I | CPSR_F;
7239 offset = 0;
7240 break;
7241 default:
7242 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7243 return; /* Never happens. Keep compiler happy. */
7246 if (new_mode == ARM_CPU_MODE_MON) {
7247 addr += env->cp15.mvbar;
7248 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
7249 /* High vectors. When enabled, base address cannot be remapped. */
7250 addr += 0xffff0000;
7251 } else {
7252 /* ARM v7 architectures provide a vector base address register to remap
7253 * the interrupt vector table.
7254 * This register is only followed in non-monitor mode, and is banked.
7255 * Note: only bits 31:5 are valid.
7257 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
7260 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
7261 env->cp15.scr_el3 &= ~SCR_NS;
7264 switch_mode (env, new_mode);
7265 /* For exceptions taken to AArch32 we must clear the SS bit in both
7266 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
7268 env->uncached_cpsr &= ~PSTATE_SS;
7269 env->spsr = cpsr_read(env);
7270 /* Clear IT bits. */
7271 env->condexec_bits = 0;
7272 /* Switch to the new mode, and to the correct instruction set. */
7273 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
7274 /* Set new mode endianness */
7275 env->uncached_cpsr &= ~CPSR_E;
7276 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
7277 env->uncached_cpsr |= CPSR_E;
7279 env->daif |= mask;
7280 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
7281 * and we should just guard the thumb mode on V4 */
7282 if (arm_feature(env, ARM_FEATURE_V4T)) {
7283 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
7285 env->regs[14] = env->regs[15] + offset;
7286 env->regs[15] = addr;
7289 /* Handle exception entry to a target EL which is using AArch64 */
7290 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
7292 ARMCPU *cpu = ARM_CPU(cs);
7293 CPUARMState *env = &cpu->env;
7294 unsigned int new_el = env->exception.target_el;
7295 target_ulong addr = env->cp15.vbar_el[new_el];
7296 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
7298 if (arm_current_el(env) < new_el) {
7299 /* Entry vector offset depends on whether the implemented EL
7300 * immediately lower than the target level is using AArch32 or AArch64
7302 bool is_aa64;
7304 switch (new_el) {
7305 case 3:
7306 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
7307 break;
7308 case 2:
7309 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
7310 break;
7311 case 1:
7312 is_aa64 = is_a64(env);
7313 break;
7314 default:
7315 g_assert_not_reached();
7318 if (is_aa64) {
7319 addr += 0x400;
7320 } else {
7321 addr += 0x600;
7323 } else if (pstate_read(env) & PSTATE_SP) {
7324 addr += 0x200;
7327 switch (cs->exception_index) {
7328 case EXCP_PREFETCH_ABORT:
7329 case EXCP_DATA_ABORT:
7330 env->cp15.far_el[new_el] = env->exception.vaddress;
7331 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
7332 env->cp15.far_el[new_el]);
7333 /* fall through */
7334 case EXCP_BKPT:
7335 case EXCP_UDEF:
7336 case EXCP_SWI:
7337 case EXCP_HVC:
7338 case EXCP_HYP_TRAP:
7339 case EXCP_SMC:
7340 env->cp15.esr_el[new_el] = env->exception.syndrome;
7341 break;
7342 case EXCP_IRQ:
7343 case EXCP_VIRQ:
7344 addr += 0x80;
7345 break;
7346 case EXCP_FIQ:
7347 case EXCP_VFIQ:
7348 addr += 0x100;
7349 break;
7350 case EXCP_SEMIHOST:
7351 qemu_log_mask(CPU_LOG_INT,
7352 "...handling as semihosting call 0x%" PRIx64 "\n",
7353 env->xregs[0]);
7354 env->xregs[0] = do_arm_semihosting(env);
7355 return;
7356 default:
7357 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7360 if (is_a64(env)) {
7361 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
7362 aarch64_save_sp(env, arm_current_el(env));
7363 env->elr_el[new_el] = env->pc;
7364 } else {
7365 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
7366 env->elr_el[new_el] = env->regs[15];
7368 aarch64_sync_32_to_64(env);
7370 env->condexec_bits = 0;
7372 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
7373 env->elr_el[new_el]);
7375 pstate_write(env, PSTATE_DAIF | new_mode);
7376 env->aarch64 = 1;
7377 aarch64_restore_sp(env, new_el);
7379 env->pc = addr;
7381 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
7382 new_el, env->pc, pstate_read(env));
7385 static inline bool check_for_semihosting(CPUState *cs)
7387 /* Check whether this exception is a semihosting call; if so
7388 * then handle it and return true; otherwise return false.
7390 ARMCPU *cpu = ARM_CPU(cs);
7391 CPUARMState *env = &cpu->env;
7393 if (is_a64(env)) {
7394 if (cs->exception_index == EXCP_SEMIHOST) {
7395 /* This is always the 64-bit semihosting exception.
7396 * The "is this usermode" and "is semihosting enabled"
7397 * checks have been done at translate time.
7399 qemu_log_mask(CPU_LOG_INT,
7400 "...handling as semihosting call 0x%" PRIx64 "\n",
7401 env->xregs[0]);
7402 env->xregs[0] = do_arm_semihosting(env);
7403 return true;
7405 return false;
7406 } else {
7407 uint32_t imm;
7409 /* Only intercept calls from privileged modes, to provide some
7410 * semblance of security.
7412 if (cs->exception_index != EXCP_SEMIHOST &&
7413 (!semihosting_enabled() ||
7414 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
7415 return false;
7418 switch (cs->exception_index) {
7419 case EXCP_SEMIHOST:
7420 /* This is always a semihosting call; the "is this usermode"
7421 * and "is semihosting enabled" checks have been done at
7422 * translate time.
7424 break;
7425 case EXCP_SWI:
7426 /* Check for semihosting interrupt. */
7427 if (env->thumb) {
7428 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
7429 & 0xff;
7430 if (imm == 0xab) {
7431 break;
7433 } else {
7434 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
7435 & 0xffffff;
7436 if (imm == 0x123456) {
7437 break;
7440 return false;
7441 case EXCP_BKPT:
7442 /* See if this is a semihosting syscall. */
7443 if (env->thumb) {
7444 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
7445 & 0xff;
7446 if (imm == 0xab) {
7447 env->regs[15] += 2;
7448 break;
7451 return false;
7452 default:
7453 return false;
7456 qemu_log_mask(CPU_LOG_INT,
7457 "...handling as semihosting call 0x%x\n",
7458 env->regs[0]);
7459 env->regs[0] = do_arm_semihosting(env);
7460 return true;
7464 /* Handle a CPU exception for A and R profile CPUs.
7465 * Do any appropriate logging, handle PSCI calls, and then hand off
7466 * to the AArch64-entry or AArch32-entry function depending on the
7467 * target exception level's register width.
7469 void arm_cpu_do_interrupt(CPUState *cs)
7471 ARMCPU *cpu = ARM_CPU(cs);
7472 CPUARMState *env = &cpu->env;
7473 unsigned int new_el = env->exception.target_el;
7475 assert(!arm_feature(env, ARM_FEATURE_M));
7477 arm_log_exception(cs->exception_index);
7478 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
7479 new_el);
7480 if (qemu_loglevel_mask(CPU_LOG_INT)
7481 && !excp_is_internal(cs->exception_index)) {
7482 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
7483 env->exception.syndrome >> ARM_EL_EC_SHIFT,
7484 env->exception.syndrome);
7487 if (arm_is_psci_call(cpu, cs->exception_index)) {
7488 arm_handle_psci_call(cpu);
7489 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
7490 return;
7493 /* Semihosting semantics depend on the register width of the
7494 * code that caused the exception, not the target exception level,
7495 * so must be handled here.
7497 if (check_for_semihosting(cs)) {
7498 return;
7501 assert(!excp_is_internal(cs->exception_index));
7502 if (arm_el_is_aa64(env, new_el)) {
7503 arm_cpu_do_interrupt_aarch64(cs);
7504 } else {
7505 arm_cpu_do_interrupt_aarch32(cs);
7508 /* Hooks may change global state so BQL should be held, also the
7509 * BQL needs to be held for any modification of
7510 * cs->interrupt_request.
7512 g_assert(qemu_mutex_iothread_locked());
7514 arm_call_el_change_hook(cpu);
7516 if (!kvm_enabled()) {
7517 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7521 /* Return the exception level which controls this address translation regime */
7522 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7524 switch (mmu_idx) {
7525 case ARMMMUIdx_S2NS:
7526 case ARMMMUIdx_S1E2:
7527 return 2;
7528 case ARMMMUIdx_S1E3:
7529 return 3;
7530 case ARMMMUIdx_S1SE0:
7531 return arm_el_is_aa64(env, 3) ? 1 : 3;
7532 case ARMMMUIdx_S1SE1:
7533 case ARMMMUIdx_S1NSE0:
7534 case ARMMMUIdx_S1NSE1:
7535 case ARMMMUIdx_MPriv:
7536 case ARMMMUIdx_MNegPri:
7537 case ARMMMUIdx_MUser:
7538 case ARMMMUIdx_MSPriv:
7539 case ARMMMUIdx_MSNegPri:
7540 case ARMMMUIdx_MSUser:
7541 return 1;
7542 default:
7543 g_assert_not_reached();
7547 /* Return the SCTLR value which controls this address translation regime */
7548 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7550 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7553 /* Return true if the specified stage of address translation is disabled */
7554 static inline bool regime_translation_disabled(CPUARMState *env,
7555 ARMMMUIdx mmu_idx)
7557 if (arm_feature(env, ARM_FEATURE_M)) {
7558 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
7559 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7560 case R_V7M_MPU_CTRL_ENABLE_MASK:
7561 /* Enabled, but not for HardFault and NMI */
7562 return mmu_idx == ARMMMUIdx_MNegPri ||
7563 mmu_idx == ARMMMUIdx_MSNegPri;
7564 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7565 /* Enabled for all cases */
7566 return false;
7567 case 0:
7568 default:
7569 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7570 * we warned about that in armv7m_nvic.c when the guest set it.
7572 return true;
7576 if (mmu_idx == ARMMMUIdx_S2NS) {
7577 return (env->cp15.hcr_el2 & HCR_VM) == 0;
7579 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7582 static inline bool regime_translation_big_endian(CPUARMState *env,
7583 ARMMMUIdx mmu_idx)
7585 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7588 /* Return the TCR controlling this translation regime */
7589 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7591 if (mmu_idx == ARMMMUIdx_S2NS) {
7592 return &env->cp15.vtcr_el2;
7594 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7597 /* Convert a possible stage1+2 MMU index into the appropriate
7598 * stage 1 MMU index
7600 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7602 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7603 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7605 return mmu_idx;
7608 /* Returns TBI0 value for current regime el */
7609 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7611 TCR *tcr;
7612 uint32_t el;
7614 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7615 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7617 mmu_idx = stage_1_mmu_idx(mmu_idx);
7619 tcr = regime_tcr(env, mmu_idx);
7620 el = regime_el(env, mmu_idx);
7622 if (el > 1) {
7623 return extract64(tcr->raw_tcr, 20, 1);
7624 } else {
7625 return extract64(tcr->raw_tcr, 37, 1);
7629 /* Returns TBI1 value for current regime el */
7630 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7632 TCR *tcr;
7633 uint32_t el;
7635 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7636 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7638 mmu_idx = stage_1_mmu_idx(mmu_idx);
7640 tcr = regime_tcr(env, mmu_idx);
7641 el = regime_el(env, mmu_idx);
7643 if (el > 1) {
7644 return 0;
7645 } else {
7646 return extract64(tcr->raw_tcr, 38, 1);
7650 /* Return the TTBR associated with this translation regime */
7651 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7652 int ttbrn)
7654 if (mmu_idx == ARMMMUIdx_S2NS) {
7655 return env->cp15.vttbr_el2;
7657 if (ttbrn == 0) {
7658 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7659 } else {
7660 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7664 /* Return true if the translation regime is using LPAE format page tables */
7665 static inline bool regime_using_lpae_format(CPUARMState *env,
7666 ARMMMUIdx mmu_idx)
7668 int el = regime_el(env, mmu_idx);
7669 if (el == 2 || arm_el_is_aa64(env, el)) {
7670 return true;
7672 if (arm_feature(env, ARM_FEATURE_LPAE)
7673 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7674 return true;
7676 return false;
7679 /* Returns true if the stage 1 translation regime is using LPAE format page
7680 * tables. Used when raising alignment exceptions, whose FSR changes depending
7681 * on whether the long or short descriptor format is in use. */
7682 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
7684 mmu_idx = stage_1_mmu_idx(mmu_idx);
7686 return regime_using_lpae_format(env, mmu_idx);
7689 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7691 switch (mmu_idx) {
7692 case ARMMMUIdx_S1SE0:
7693 case ARMMMUIdx_S1NSE0:
7694 case ARMMMUIdx_MUser:
7695 return true;
7696 default:
7697 return false;
7698 case ARMMMUIdx_S12NSE0:
7699 case ARMMMUIdx_S12NSE1:
7700 g_assert_not_reached();
7704 /* Translate section/page access permissions to page
7705 * R/W protection flags
7707 * @env: CPUARMState
7708 * @mmu_idx: MMU index indicating required translation regime
7709 * @ap: The 3-bit access permissions (AP[2:0])
7710 * @domain_prot: The 2-bit domain access permissions
7712 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
7713 int ap, int domain_prot)
7715 bool is_user = regime_is_user(env, mmu_idx);
7717 if (domain_prot == 3) {
7718 return PAGE_READ | PAGE_WRITE;
7721 switch (ap) {
7722 case 0:
7723 if (arm_feature(env, ARM_FEATURE_V7)) {
7724 return 0;
7726 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
7727 case SCTLR_S:
7728 return is_user ? 0 : PAGE_READ;
7729 case SCTLR_R:
7730 return PAGE_READ;
7731 default:
7732 return 0;
7734 case 1:
7735 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7736 case 2:
7737 if (is_user) {
7738 return PAGE_READ;
7739 } else {
7740 return PAGE_READ | PAGE_WRITE;
7742 case 3:
7743 return PAGE_READ | PAGE_WRITE;
7744 case 4: /* Reserved. */
7745 return 0;
7746 case 5:
7747 return is_user ? 0 : PAGE_READ;
7748 case 6:
7749 return PAGE_READ;
7750 case 7:
7751 if (!arm_feature(env, ARM_FEATURE_V6K)) {
7752 return 0;
7754 return PAGE_READ;
7755 default:
7756 g_assert_not_reached();
7760 /* Translate section/page access permissions to page
7761 * R/W protection flags.
7763 * @ap: The 2-bit simple AP (AP[2:1])
7764 * @is_user: TRUE if accessing from PL0
7766 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
7768 switch (ap) {
7769 case 0:
7770 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7771 case 1:
7772 return PAGE_READ | PAGE_WRITE;
7773 case 2:
7774 return is_user ? 0 : PAGE_READ;
7775 case 3:
7776 return PAGE_READ;
7777 default:
7778 g_assert_not_reached();
7782 static inline int
7783 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
7785 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
7788 /* Translate S2 section/page access permissions to protection flags
7790 * @env: CPUARMState
7791 * @s2ap: The 2-bit stage2 access permissions (S2AP)
7792 * @xn: XN (execute-never) bit
7794 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7796 int prot = 0;
7798 if (s2ap & 1) {
7799 prot |= PAGE_READ;
7801 if (s2ap & 2) {
7802 prot |= PAGE_WRITE;
7804 if (!xn) {
7805 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7806 prot |= PAGE_EXEC;
7809 return prot;
7812 /* Translate section/page access permissions to protection flags
7814 * @env: CPUARMState
7815 * @mmu_idx: MMU index indicating required translation regime
7816 * @is_aa64: TRUE if AArch64
7817 * @ap: The 2-bit simple AP (AP[2:1])
7818 * @ns: NS (non-secure) bit
7819 * @xn: XN (execute-never) bit
7820 * @pxn: PXN (privileged execute-never) bit
7822 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7823 int ap, int ns, int xn, int pxn)
7825 bool is_user = regime_is_user(env, mmu_idx);
7826 int prot_rw, user_rw;
7827 bool have_wxn;
7828 int wxn = 0;
7830 assert(mmu_idx != ARMMMUIdx_S2NS);
7832 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7833 if (is_user) {
7834 prot_rw = user_rw;
7835 } else {
7836 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7839 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7840 return prot_rw;
7843 /* TODO have_wxn should be replaced with
7844 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7845 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7846 * compatible processors have EL2, which is required for [U]WXN.
7848 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7850 if (have_wxn) {
7851 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7854 if (is_aa64) {
7855 switch (regime_el(env, mmu_idx)) {
7856 case 1:
7857 if (!is_user) {
7858 xn = pxn || (user_rw & PAGE_WRITE);
7860 break;
7861 case 2:
7862 case 3:
7863 break;
7865 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7866 switch (regime_el(env, mmu_idx)) {
7867 case 1:
7868 case 3:
7869 if (is_user) {
7870 xn = xn || !(user_rw & PAGE_READ);
7871 } else {
7872 int uwxn = 0;
7873 if (have_wxn) {
7874 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7876 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7877 (uwxn && (user_rw & PAGE_WRITE));
7879 break;
7880 case 2:
7881 break;
7883 } else {
7884 xn = wxn = 0;
7887 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7888 return prot_rw;
7890 return prot_rw | PAGE_EXEC;
7893 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7894 uint32_t *table, uint32_t address)
7896 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
7897 TCR *tcr = regime_tcr(env, mmu_idx);
7899 if (address & tcr->mask) {
7900 if (tcr->raw_tcr & TTBCR_PD1) {
7901 /* Translation table walk disabled for TTBR1 */
7902 return false;
7904 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7905 } else {
7906 if (tcr->raw_tcr & TTBCR_PD0) {
7907 /* Translation table walk disabled for TTBR0 */
7908 return false;
7910 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7912 *table |= (address >> 18) & 0x3ffc;
7913 return true;
7916 /* Translate a S1 pagetable walk through S2 if needed. */
7917 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7918 hwaddr addr, MemTxAttrs txattrs,
7919 uint32_t *fsr,
7920 ARMMMUFaultInfo *fi)
7922 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7923 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7924 target_ulong s2size;
7925 hwaddr s2pa;
7926 int s2prot;
7927 int ret;
7929 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7930 &txattrs, &s2prot, &s2size, fsr, fi);
7931 if (ret) {
7932 fi->s2addr = addr;
7933 fi->stage2 = true;
7934 fi->s1ptw = true;
7935 return ~0;
7937 addr = s2pa;
7939 return addr;
7942 /* All loads done in the course of a page table walk go through here.
7943 * TODO: rather than ignoring errors from physical memory reads (which
7944 * are external aborts in ARM terminology) we should propagate this
7945 * error out so that we can turn it into a Data Abort if this walk
7946 * was being done for a CPU load/store or an address translation instruction
7947 * (but not if it was for a debug access).
7949 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7950 ARMMMUIdx mmu_idx, uint32_t *fsr,
7951 ARMMMUFaultInfo *fi)
7953 ARMCPU *cpu = ARM_CPU(cs);
7954 CPUARMState *env = &cpu->env;
7955 MemTxAttrs attrs = {};
7956 AddressSpace *as;
7958 attrs.secure = is_secure;
7959 as = arm_addressspace(cs, attrs);
7960 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7961 if (fi->s1ptw) {
7962 return 0;
7964 if (regime_translation_big_endian(env, mmu_idx)) {
7965 return address_space_ldl_be(as, addr, attrs, NULL);
7966 } else {
7967 return address_space_ldl_le(as, addr, attrs, NULL);
7971 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7972 ARMMMUIdx mmu_idx, uint32_t *fsr,
7973 ARMMMUFaultInfo *fi)
7975 ARMCPU *cpu = ARM_CPU(cs);
7976 CPUARMState *env = &cpu->env;
7977 MemTxAttrs attrs = {};
7978 AddressSpace *as;
7980 attrs.secure = is_secure;
7981 as = arm_addressspace(cs, attrs);
7982 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7983 if (fi->s1ptw) {
7984 return 0;
7986 if (regime_translation_big_endian(env, mmu_idx)) {
7987 return address_space_ldq_be(as, addr, attrs, NULL);
7988 } else {
7989 return address_space_ldq_le(as, addr, attrs, NULL);
7993 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7994 MMUAccessType access_type, ARMMMUIdx mmu_idx,
7995 hwaddr *phys_ptr, int *prot,
7996 target_ulong *page_size, uint32_t *fsr,
7997 ARMMMUFaultInfo *fi)
7999 CPUState *cs = CPU(arm_env_get_cpu(env));
8000 int code;
8001 uint32_t table;
8002 uint32_t desc;
8003 int type;
8004 int ap;
8005 int domain = 0;
8006 int domain_prot;
8007 hwaddr phys_addr;
8008 uint32_t dacr;
8010 /* Pagetable walk. */
8011 /* Lookup l1 descriptor. */
8012 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8013 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8014 code = 5;
8015 goto do_fault;
8017 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8018 mmu_idx, fsr, fi);
8019 type = (desc & 3);
8020 domain = (desc >> 5) & 0x0f;
8021 if (regime_el(env, mmu_idx) == 1) {
8022 dacr = env->cp15.dacr_ns;
8023 } else {
8024 dacr = env->cp15.dacr_s;
8026 domain_prot = (dacr >> (domain * 2)) & 3;
8027 if (type == 0) {
8028 /* Section translation fault. */
8029 code = 5;
8030 goto do_fault;
8032 if (domain_prot == 0 || domain_prot == 2) {
8033 if (type == 2)
8034 code = 9; /* Section domain fault. */
8035 else
8036 code = 11; /* Page domain fault. */
8037 goto do_fault;
8039 if (type == 2) {
8040 /* 1Mb section. */
8041 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8042 ap = (desc >> 10) & 3;
8043 code = 13;
8044 *page_size = 1024 * 1024;
8045 } else {
8046 /* Lookup l2 entry. */
8047 if (type == 1) {
8048 /* Coarse pagetable. */
8049 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8050 } else {
8051 /* Fine pagetable. */
8052 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8054 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8055 mmu_idx, fsr, fi);
8056 switch (desc & 3) {
8057 case 0: /* Page translation fault. */
8058 code = 7;
8059 goto do_fault;
8060 case 1: /* 64k page. */
8061 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8062 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8063 *page_size = 0x10000;
8064 break;
8065 case 2: /* 4k page. */
8066 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8067 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8068 *page_size = 0x1000;
8069 break;
8070 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8071 if (type == 1) {
8072 /* ARMv6/XScale extended small page format */
8073 if (arm_feature(env, ARM_FEATURE_XSCALE)
8074 || arm_feature(env, ARM_FEATURE_V6)) {
8075 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8076 *page_size = 0x1000;
8077 } else {
8078 /* UNPREDICTABLE in ARMv5; we choose to take a
8079 * page translation fault.
8081 code = 7;
8082 goto do_fault;
8084 } else {
8085 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8086 *page_size = 0x400;
8088 ap = (desc >> 4) & 3;
8089 break;
8090 default:
8091 /* Never happens, but compiler isn't smart enough to tell. */
8092 abort();
8094 code = 15;
8096 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8097 *prot |= *prot ? PAGE_EXEC : 0;
8098 if (!(*prot & (1 << access_type))) {
8099 /* Access permission fault. */
8100 goto do_fault;
8102 *phys_ptr = phys_addr;
8103 return false;
8104 do_fault:
8105 *fsr = code | (domain << 4);
8106 return true;
8109 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8110 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8111 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8112 target_ulong *page_size, uint32_t *fsr,
8113 ARMMMUFaultInfo *fi)
8115 CPUState *cs = CPU(arm_env_get_cpu(env));
8116 int code;
8117 uint32_t table;
8118 uint32_t desc;
8119 uint32_t xn;
8120 uint32_t pxn = 0;
8121 int type;
8122 int ap;
8123 int domain = 0;
8124 int domain_prot;
8125 hwaddr phys_addr;
8126 uint32_t dacr;
8127 bool ns;
8129 /* Pagetable walk. */
8130 /* Lookup l1 descriptor. */
8131 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8132 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8133 code = 5;
8134 goto do_fault;
8136 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8137 mmu_idx, fsr, fi);
8138 type = (desc & 3);
8139 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
8140 /* Section translation fault, or attempt to use the encoding
8141 * which is Reserved on implementations without PXN.
8143 code = 5;
8144 goto do_fault;
8146 if ((type == 1) || !(desc & (1 << 18))) {
8147 /* Page or Section. */
8148 domain = (desc >> 5) & 0x0f;
8150 if (regime_el(env, mmu_idx) == 1) {
8151 dacr = env->cp15.dacr_ns;
8152 } else {
8153 dacr = env->cp15.dacr_s;
8155 domain_prot = (dacr >> (domain * 2)) & 3;
8156 if (domain_prot == 0 || domain_prot == 2) {
8157 if (type != 1) {
8158 code = 9; /* Section domain fault. */
8159 } else {
8160 code = 11; /* Page domain fault. */
8162 goto do_fault;
8164 if (type != 1) {
8165 if (desc & (1 << 18)) {
8166 /* Supersection. */
8167 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8168 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
8169 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
8170 *page_size = 0x1000000;
8171 } else {
8172 /* Section. */
8173 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8174 *page_size = 0x100000;
8176 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
8177 xn = desc & (1 << 4);
8178 pxn = desc & 1;
8179 code = 13;
8180 ns = extract32(desc, 19, 1);
8181 } else {
8182 if (arm_feature(env, ARM_FEATURE_PXN)) {
8183 pxn = (desc >> 2) & 1;
8185 ns = extract32(desc, 3, 1);
8186 /* Lookup l2 entry. */
8187 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8188 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8189 mmu_idx, fsr, fi);
8190 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
8191 switch (desc & 3) {
8192 case 0: /* Page translation fault. */
8193 code = 7;
8194 goto do_fault;
8195 case 1: /* 64k page. */
8196 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8197 xn = desc & (1 << 15);
8198 *page_size = 0x10000;
8199 break;
8200 case 2: case 3: /* 4k page. */
8201 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8202 xn = desc & 1;
8203 *page_size = 0x1000;
8204 break;
8205 default:
8206 /* Never happens, but compiler isn't smart enough to tell. */
8207 abort();
8209 code = 15;
8211 if (domain_prot == 3) {
8212 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8213 } else {
8214 if (pxn && !regime_is_user(env, mmu_idx)) {
8215 xn = 1;
8217 if (xn && access_type == MMU_INST_FETCH)
8218 goto do_fault;
8220 if (arm_feature(env, ARM_FEATURE_V6K) &&
8221 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
8222 /* The simplified model uses AP[0] as an access control bit. */
8223 if ((ap & 1) == 0) {
8224 /* Access flag fault. */
8225 code = (code == 15) ? 6 : 3;
8226 goto do_fault;
8228 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
8229 } else {
8230 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8232 if (*prot && !xn) {
8233 *prot |= PAGE_EXEC;
8235 if (!(*prot & (1 << access_type))) {
8236 /* Access permission fault. */
8237 goto do_fault;
8240 if (ns) {
8241 /* The NS bit will (as required by the architecture) have no effect if
8242 * the CPU doesn't support TZ or this is a non-secure translation
8243 * regime, because the attribute will already be non-secure.
8245 attrs->secure = false;
8247 *phys_ptr = phys_addr;
8248 return false;
8249 do_fault:
8250 *fsr = code | (domain << 4);
8251 return true;
8254 /* Fault type for long-descriptor MMU fault reporting; this corresponds
8255 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
8257 typedef enum {
8258 translation_fault = 1,
8259 access_fault = 2,
8260 permission_fault = 3,
8261 } MMUFaultType;
8264 * check_s2_mmu_setup
8265 * @cpu: ARMCPU
8266 * @is_aa64: True if the translation regime is in AArch64 state
8267 * @startlevel: Suggested starting level
8268 * @inputsize: Bitsize of IPAs
8269 * @stride: Page-table stride (See the ARM ARM)
8271 * Returns true if the suggested S2 translation parameters are OK and
8272 * false otherwise.
8274 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
8275 int inputsize, int stride)
8277 const int grainsize = stride + 3;
8278 int startsizecheck;
8280 /* Negative levels are never allowed. */
8281 if (level < 0) {
8282 return false;
8285 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
8286 if (startsizecheck < 1 || startsizecheck > stride + 4) {
8287 return false;
8290 if (is_aa64) {
8291 CPUARMState *env = &cpu->env;
8292 unsigned int pamax = arm_pamax(cpu);
8294 switch (stride) {
8295 case 13: /* 64KB Pages. */
8296 if (level == 0 || (level == 1 && pamax <= 42)) {
8297 return false;
8299 break;
8300 case 11: /* 16KB Pages. */
8301 if (level == 0 || (level == 1 && pamax <= 40)) {
8302 return false;
8304 break;
8305 case 9: /* 4KB Pages. */
8306 if (level == 0 && pamax <= 42) {
8307 return false;
8309 break;
8310 default:
8311 g_assert_not_reached();
8314 /* Inputsize checks. */
8315 if (inputsize > pamax &&
8316 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
8317 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
8318 return false;
8320 } else {
8321 /* AArch32 only supports 4KB pages. Assert on that. */
8322 assert(stride == 9);
8324 if (level == 0) {
8325 return false;
8328 return true;
8331 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
8332 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8333 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
8334 target_ulong *page_size_ptr, uint32_t *fsr,
8335 ARMMMUFaultInfo *fi)
8337 ARMCPU *cpu = arm_env_get_cpu(env);
8338 CPUState *cs = CPU(cpu);
8339 /* Read an LPAE long-descriptor translation table. */
8340 MMUFaultType fault_type = translation_fault;
8341 uint32_t level;
8342 uint32_t epd = 0;
8343 int32_t t0sz, t1sz;
8344 uint32_t tg;
8345 uint64_t ttbr;
8346 int ttbr_select;
8347 hwaddr descaddr, indexmask, indexmask_grainsize;
8348 uint32_t tableattrs;
8349 target_ulong page_size;
8350 uint32_t attrs;
8351 int32_t stride = 9;
8352 int32_t addrsize;
8353 int inputsize;
8354 int32_t tbi = 0;
8355 TCR *tcr = regime_tcr(env, mmu_idx);
8356 int ap, ns, xn, pxn;
8357 uint32_t el = regime_el(env, mmu_idx);
8358 bool ttbr1_valid = true;
8359 uint64_t descaddrmask;
8360 bool aarch64 = arm_el_is_aa64(env, el);
8362 /* TODO:
8363 * This code does not handle the different format TCR for VTCR_EL2.
8364 * This code also does not support shareability levels.
8365 * Attribute and permission bit handling should also be checked when adding
8366 * support for those page table walks.
8368 if (aarch64) {
8369 level = 0;
8370 addrsize = 64;
8371 if (el > 1) {
8372 if (mmu_idx != ARMMMUIdx_S2NS) {
8373 tbi = extract64(tcr->raw_tcr, 20, 1);
8375 } else {
8376 if (extract64(address, 55, 1)) {
8377 tbi = extract64(tcr->raw_tcr, 38, 1);
8378 } else {
8379 tbi = extract64(tcr->raw_tcr, 37, 1);
8382 tbi *= 8;
8384 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
8385 * invalid.
8387 if (el > 1) {
8388 ttbr1_valid = false;
8390 } else {
8391 level = 1;
8392 addrsize = 32;
8393 /* There is no TTBR1 for EL2 */
8394 if (el == 2) {
8395 ttbr1_valid = false;
8399 /* Determine whether this address is in the region controlled by
8400 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
8401 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
8402 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
8404 if (aarch64) {
8405 /* AArch64 translation. */
8406 t0sz = extract32(tcr->raw_tcr, 0, 6);
8407 t0sz = MIN(t0sz, 39);
8408 t0sz = MAX(t0sz, 16);
8409 } else if (mmu_idx != ARMMMUIdx_S2NS) {
8410 /* AArch32 stage 1 translation. */
8411 t0sz = extract32(tcr->raw_tcr, 0, 3);
8412 } else {
8413 /* AArch32 stage 2 translation. */
8414 bool sext = extract32(tcr->raw_tcr, 4, 1);
8415 bool sign = extract32(tcr->raw_tcr, 3, 1);
8416 /* Address size is 40-bit for a stage 2 translation,
8417 * and t0sz can be negative (from -8 to 7),
8418 * so we need to adjust it to use the TTBR selecting logic below.
8420 addrsize = 40;
8421 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
8423 /* If the sign-extend bit is not the same as t0sz[3], the result
8424 * is unpredictable. Flag this as a guest error. */
8425 if (sign != sext) {
8426 qemu_log_mask(LOG_GUEST_ERROR,
8427 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
8430 t1sz = extract32(tcr->raw_tcr, 16, 6);
8431 if (aarch64) {
8432 t1sz = MIN(t1sz, 39);
8433 t1sz = MAX(t1sz, 16);
8435 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
8436 /* there is a ttbr0 region and we are in it (high bits all zero) */
8437 ttbr_select = 0;
8438 } else if (ttbr1_valid && t1sz &&
8439 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
8440 /* there is a ttbr1 region and we are in it (high bits all one) */
8441 ttbr_select = 1;
8442 } else if (!t0sz) {
8443 /* ttbr0 region is "everything not in the ttbr1 region" */
8444 ttbr_select = 0;
8445 } else if (!t1sz && ttbr1_valid) {
8446 /* ttbr1 region is "everything not in the ttbr0 region" */
8447 ttbr_select = 1;
8448 } else {
8449 /* in the gap between the two regions, this is a Translation fault */
8450 fault_type = translation_fault;
8451 goto do_fault;
8454 /* Note that QEMU ignores shareability and cacheability attributes,
8455 * so we don't need to do anything with the SH, ORGN, IRGN fields
8456 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
8457 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
8458 * implement any ASID-like capability so we can ignore it (instead
8459 * we will always flush the TLB any time the ASID is changed).
8461 if (ttbr_select == 0) {
8462 ttbr = regime_ttbr(env, mmu_idx, 0);
8463 if (el < 2) {
8464 epd = extract32(tcr->raw_tcr, 7, 1);
8466 inputsize = addrsize - t0sz;
8468 tg = extract32(tcr->raw_tcr, 14, 2);
8469 if (tg == 1) { /* 64KB pages */
8470 stride = 13;
8472 if (tg == 2) { /* 16KB pages */
8473 stride = 11;
8475 } else {
8476 /* We should only be here if TTBR1 is valid */
8477 assert(ttbr1_valid);
8479 ttbr = regime_ttbr(env, mmu_idx, 1);
8480 epd = extract32(tcr->raw_tcr, 23, 1);
8481 inputsize = addrsize - t1sz;
8483 tg = extract32(tcr->raw_tcr, 30, 2);
8484 if (tg == 3) { /* 64KB pages */
8485 stride = 13;
8487 if (tg == 1) { /* 16KB pages */
8488 stride = 11;
8492 /* Here we should have set up all the parameters for the translation:
8493 * inputsize, ttbr, epd, stride, tbi
8496 if (epd) {
8497 /* Translation table walk disabled => Translation fault on TLB miss
8498 * Note: This is always 0 on 64-bit EL2 and EL3.
8500 goto do_fault;
8503 if (mmu_idx != ARMMMUIdx_S2NS) {
8504 /* The starting level depends on the virtual address size (which can
8505 * be up to 48 bits) and the translation granule size. It indicates
8506 * the number of strides (stride bits at a time) needed to
8507 * consume the bits of the input address. In the pseudocode this is:
8508 * level = 4 - RoundUp((inputsize - grainsize) / stride)
8509 * where their 'inputsize' is our 'inputsize', 'grainsize' is
8510 * our 'stride + 3' and 'stride' is our 'stride'.
8511 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8512 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8513 * = 4 - (inputsize - 4) / stride;
8515 level = 4 - (inputsize - 4) / stride;
8516 } else {
8517 /* For stage 2 translations the starting level is specified by the
8518 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8520 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8521 uint32_t startlevel;
8522 bool ok;
8524 if (!aarch64 || stride == 9) {
8525 /* AArch32 or 4KB pages */
8526 startlevel = 2 - sl0;
8527 } else {
8528 /* 16KB or 64KB pages */
8529 startlevel = 3 - sl0;
8532 /* Check that the starting level is valid. */
8533 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
8534 inputsize, stride);
8535 if (!ok) {
8536 fault_type = translation_fault;
8537 goto do_fault;
8539 level = startlevel;
8542 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8543 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
8545 /* Now we can extract the actual base address from the TTBR */
8546 descaddr = extract64(ttbr, 0, 48);
8547 descaddr &= ~indexmask;
8549 /* The address field in the descriptor goes up to bit 39 for ARMv7
8550 * but up to bit 47 for ARMv8, but we use the descaddrmask
8551 * up to bit 39 for AArch32, because we don't need other bits in that case
8552 * to construct next descriptor address (anyway they should be all zeroes).
8554 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
8555 ~indexmask_grainsize;
8557 /* Secure accesses start with the page table in secure memory and
8558 * can be downgraded to non-secure at any step. Non-secure accesses
8559 * remain non-secure. We implement this by just ORing in the NSTable/NS
8560 * bits at each step.
8562 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
8563 for (;;) {
8564 uint64_t descriptor;
8565 bool nstable;
8567 descaddr |= (address >> (stride * (4 - level))) & indexmask;
8568 descaddr &= ~7ULL;
8569 nstable = extract32(tableattrs, 4, 1);
8570 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8571 if (fi->s1ptw) {
8572 goto do_fault;
8575 if (!(descriptor & 1) ||
8576 (!(descriptor & 2) && (level == 3))) {
8577 /* Invalid, or the Reserved level 3 encoding */
8578 goto do_fault;
8580 descaddr = descriptor & descaddrmask;
8582 if ((descriptor & 2) && (level < 3)) {
8583 /* Table entry. The top five bits are attributes which may
8584 * propagate down through lower levels of the table (and
8585 * which are all arranged so that 0 means "no effect", so
8586 * we can gather them up by ORing in the bits at each level).
8588 tableattrs |= extract64(descriptor, 59, 5);
8589 level++;
8590 indexmask = indexmask_grainsize;
8591 continue;
8593 /* Block entry at level 1 or 2, or page entry at level 3.
8594 * These are basically the same thing, although the number
8595 * of bits we pull in from the vaddr varies.
8597 page_size = (1ULL << ((stride * (4 - level)) + 3));
8598 descaddr |= (address & (page_size - 1));
8599 /* Extract attributes from the descriptor */
8600 attrs = extract64(descriptor, 2, 10)
8601 | (extract64(descriptor, 52, 12) << 10);
8603 if (mmu_idx == ARMMMUIdx_S2NS) {
8604 /* Stage 2 table descriptors do not include any attribute fields */
8605 break;
8607 /* Merge in attributes from table descriptors */
8608 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8609 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8610 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8611 * means "force PL1 access only", which means forcing AP[1] to 0.
8613 if (extract32(tableattrs, 2, 1)) {
8614 attrs &= ~(1 << 4);
8616 attrs |= nstable << 3; /* NS */
8617 break;
8619 /* Here descaddr is the final physical address, and attributes
8620 * are all in attrs.
8622 fault_type = access_fault;
8623 if ((attrs & (1 << 8)) == 0) {
8624 /* Access flag */
8625 goto do_fault;
8628 ap = extract32(attrs, 4, 2);
8629 xn = extract32(attrs, 12, 1);
8631 if (mmu_idx == ARMMMUIdx_S2NS) {
8632 ns = true;
8633 *prot = get_S2prot(env, ap, xn);
8634 } else {
8635 ns = extract32(attrs, 3, 1);
8636 pxn = extract32(attrs, 11, 1);
8637 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
8640 fault_type = permission_fault;
8641 if (!(*prot & (1 << access_type))) {
8642 goto do_fault;
8645 if (ns) {
8646 /* The NS bit will (as required by the architecture) have no effect if
8647 * the CPU doesn't support TZ or this is a non-secure translation
8648 * regime, because the attribute will already be non-secure.
8650 txattrs->secure = false;
8652 *phys_ptr = descaddr;
8653 *page_size_ptr = page_size;
8654 return false;
8656 do_fault:
8657 /* Long-descriptor format IFSR/DFSR value */
8658 *fsr = (1 << 9) | (fault_type << 2) | level;
8659 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
8660 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
8661 return true;
8664 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8665 ARMMMUIdx mmu_idx,
8666 int32_t address, int *prot)
8668 if (!arm_feature(env, ARM_FEATURE_M)) {
8669 *prot = PAGE_READ | PAGE_WRITE;
8670 switch (address) {
8671 case 0xF0000000 ... 0xFFFFFFFF:
8672 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
8673 /* hivecs execing is ok */
8674 *prot |= PAGE_EXEC;
8676 break;
8677 case 0x00000000 ... 0x7FFFFFFF:
8678 *prot |= PAGE_EXEC;
8679 break;
8681 } else {
8682 /* Default system address map for M profile cores.
8683 * The architecture specifies which regions are execute-never;
8684 * at the MPU level no other checks are defined.
8686 switch (address) {
8687 case 0x00000000 ... 0x1fffffff: /* ROM */
8688 case 0x20000000 ... 0x3fffffff: /* SRAM */
8689 case 0x60000000 ... 0x7fffffff: /* RAM */
8690 case 0x80000000 ... 0x9fffffff: /* RAM */
8691 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8692 break;
8693 case 0x40000000 ... 0x5fffffff: /* Peripheral */
8694 case 0xa0000000 ... 0xbfffffff: /* Device */
8695 case 0xc0000000 ... 0xdfffffff: /* Device */
8696 case 0xe0000000 ... 0xffffffff: /* System */
8697 *prot = PAGE_READ | PAGE_WRITE;
8698 break;
8699 default:
8700 g_assert_not_reached();
8705 static bool pmsav7_use_background_region(ARMCPU *cpu,
8706 ARMMMUIdx mmu_idx, bool is_user)
8708 /* Return true if we should use the default memory map as a
8709 * "background" region if there are no hits against any MPU regions.
8711 CPUARMState *env = &cpu->env;
8713 if (is_user) {
8714 return false;
8717 if (arm_feature(env, ARM_FEATURE_M)) {
8718 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
8719 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
8720 } else {
8721 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
8725 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
8727 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
8728 return arm_feature(env, ARM_FEATURE_M) &&
8729 extract32(address, 20, 12) == 0xe00;
8732 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
8734 /* True if address is in the M profile system region
8735 * 0xe0000000 - 0xffffffff
8737 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
8740 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
8741 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8742 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8744 ARMCPU *cpu = arm_env_get_cpu(env);
8745 int n;
8746 bool is_user = regime_is_user(env, mmu_idx);
8748 *phys_ptr = address;
8749 *prot = 0;
8751 if (regime_translation_disabled(env, mmu_idx) ||
8752 m_is_ppb_region(env, address)) {
8753 /* MPU disabled or M profile PPB access: use default memory map.
8754 * The other case which uses the default memory map in the
8755 * v7M ARM ARM pseudocode is exception vector reads from the vector
8756 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
8757 * which always does a direct read using address_space_ldl(), rather
8758 * than going via this function, so we don't need to check that here.
8760 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8761 } else { /* MPU enabled */
8762 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8763 /* region search */
8764 uint32_t base = env->pmsav7.drbar[n];
8765 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
8766 uint32_t rmask;
8767 bool srdis = false;
8769 if (!(env->pmsav7.drsr[n] & 0x1)) {
8770 continue;
8773 if (!rsize) {
8774 qemu_log_mask(LOG_GUEST_ERROR,
8775 "DRSR[%d]: Rsize field cannot be 0\n", n);
8776 continue;
8778 rsize++;
8779 rmask = (1ull << rsize) - 1;
8781 if (base & rmask) {
8782 qemu_log_mask(LOG_GUEST_ERROR,
8783 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
8784 "to DRSR region size, mask = 0x%" PRIx32 "\n",
8785 n, base, rmask);
8786 continue;
8789 if (address < base || address > base + rmask) {
8790 continue;
8793 /* Region matched */
8795 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
8796 int i, snd;
8797 uint32_t srdis_mask;
8799 rsize -= 3; /* sub region size (power of 2) */
8800 snd = ((address - base) >> rsize) & 0x7;
8801 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
8803 srdis_mask = srdis ? 0x3 : 0x0;
8804 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
8805 /* This will check in groups of 2, 4 and then 8, whether
8806 * the subregion bits are consistent. rsize is incremented
8807 * back up to give the region size, considering consistent
8808 * adjacent subregions as one region. Stop testing if rsize
8809 * is already big enough for an entire QEMU page.
8811 int snd_rounded = snd & ~(i - 1);
8812 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
8813 snd_rounded + 8, i);
8814 if (srdis_mask ^ srdis_multi) {
8815 break;
8817 srdis_mask = (srdis_mask << i) | srdis_mask;
8818 rsize++;
8821 if (rsize < TARGET_PAGE_BITS) {
8822 qemu_log_mask(LOG_UNIMP,
8823 "DRSR[%d]: No support for MPU (sub)region "
8824 "alignment of %" PRIu32 " bits. Minimum is %d\n",
8825 n, rsize, TARGET_PAGE_BITS);
8826 continue;
8828 if (srdis) {
8829 continue;
8831 break;
8834 if (n == -1) { /* no hits */
8835 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
8836 /* background fault */
8837 *fsr = 0;
8838 return true;
8840 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8841 } else { /* a MPU hit! */
8842 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
8843 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
8845 if (m_is_system_region(env, address)) {
8846 /* System space is always execute never */
8847 xn = 1;
8850 if (is_user) { /* User mode AP bit decoding */
8851 switch (ap) {
8852 case 0:
8853 case 1:
8854 case 5:
8855 break; /* no access */
8856 case 3:
8857 *prot |= PAGE_WRITE;
8858 /* fall through */
8859 case 2:
8860 case 6:
8861 *prot |= PAGE_READ | PAGE_EXEC;
8862 break;
8863 default:
8864 qemu_log_mask(LOG_GUEST_ERROR,
8865 "DRACR[%d]: Bad value for AP bits: 0x%"
8866 PRIx32 "\n", n, ap);
8868 } else { /* Priv. mode AP bits decoding */
8869 switch (ap) {
8870 case 0:
8871 break; /* no access */
8872 case 1:
8873 case 2:
8874 case 3:
8875 *prot |= PAGE_WRITE;
8876 /* fall through */
8877 case 5:
8878 case 6:
8879 *prot |= PAGE_READ | PAGE_EXEC;
8880 break;
8881 default:
8882 qemu_log_mask(LOG_GUEST_ERROR,
8883 "DRACR[%d]: Bad value for AP bits: 0x%"
8884 PRIx32 "\n", n, ap);
8888 /* execute never */
8889 if (xn) {
8890 *prot &= ~PAGE_EXEC;
8895 *fsr = 0x00d; /* Permission fault */
8896 return !(*prot & (1 << access_type));
8899 static bool v8m_is_sau_exempt(CPUARMState *env,
8900 uint32_t address, MMUAccessType access_type)
8902 /* The architecture specifies that certain address ranges are
8903 * exempt from v8M SAU/IDAU checks.
8905 return
8906 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
8907 (address >= 0xe0000000 && address <= 0xe0002fff) ||
8908 (address >= 0xe000e000 && address <= 0xe000efff) ||
8909 (address >= 0xe002e000 && address <= 0xe002efff) ||
8910 (address >= 0xe0040000 && address <= 0xe0041fff) ||
8911 (address >= 0xe00ff000 && address <= 0xe00fffff);
8914 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
8915 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8916 V8M_SAttributes *sattrs)
8918 /* Look up the security attributes for this address. Compare the
8919 * pseudocode SecurityCheck() function.
8920 * We assume the caller has zero-initialized *sattrs.
8922 ARMCPU *cpu = arm_env_get_cpu(env);
8923 int r;
8925 /* TODO: implement IDAU */
8927 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
8928 /* 0xf0000000..0xffffffff is always S for insn fetches */
8929 return;
8932 if (v8m_is_sau_exempt(env, address, access_type)) {
8933 sattrs->ns = !regime_is_secure(env, mmu_idx);
8934 return;
8937 switch (env->sau.ctrl & 3) {
8938 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
8939 break;
8940 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
8941 sattrs->ns = true;
8942 break;
8943 default: /* SAU.ENABLE == 1 */
8944 for (r = 0; r < cpu->sau_sregion; r++) {
8945 if (env->sau.rlar[r] & 1) {
8946 uint32_t base = env->sau.rbar[r] & ~0x1f;
8947 uint32_t limit = env->sau.rlar[r] | 0x1f;
8949 if (base <= address && limit >= address) {
8950 if (sattrs->srvalid) {
8951 /* If we hit in more than one region then we must report
8952 * as Secure, not NS-Callable, with no valid region
8953 * number info.
8955 sattrs->ns = false;
8956 sattrs->nsc = false;
8957 sattrs->sregion = 0;
8958 sattrs->srvalid = false;
8959 break;
8960 } else {
8961 if (env->sau.rlar[r] & 2) {
8962 sattrs->nsc = true;
8963 } else {
8964 sattrs->ns = true;
8966 sattrs->srvalid = true;
8967 sattrs->sregion = r;
8973 /* TODO when we support the IDAU then it may override the result here */
8974 break;
8978 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
8979 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8980 hwaddr *phys_ptr, MemTxAttrs *txattrs,
8981 int *prot, uint32_t *fsr)
8983 ARMCPU *cpu = arm_env_get_cpu(env);
8984 bool is_user = regime_is_user(env, mmu_idx);
8985 uint32_t secure = regime_is_secure(env, mmu_idx);
8986 int n;
8987 int matchregion = -1;
8988 bool hit = false;
8989 V8M_SAttributes sattrs = {};
8991 *phys_ptr = address;
8992 *prot = 0;
8994 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8995 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
8996 if (access_type == MMU_INST_FETCH) {
8997 /* Instruction fetches always use the MMU bank and the
8998 * transaction attribute determined by the fetch address,
8999 * regardless of CPU state. This is painful for QEMU
9000 * to handle, because it would mean we need to encode
9001 * into the mmu_idx not just the (user, negpri) information
9002 * for the current security state but also that for the
9003 * other security state, which would balloon the number
9004 * of mmu_idx values needed alarmingly.
9005 * Fortunately we can avoid this because it's not actually
9006 * possible to arbitrarily execute code from memory with
9007 * the wrong security attribute: it will always generate
9008 * an exception of some kind or another, apart from the
9009 * special case of an NS CPU executing an SG instruction
9010 * in S&NSC memory. So we always just fail the translation
9011 * here and sort things out in the exception handler
9012 * (including possibly emulating an SG instruction).
9014 if (sattrs.ns != !secure) {
9015 *fsr = sattrs.nsc ? M_FAKE_FSR_NSC_EXEC : M_FAKE_FSR_SFAULT;
9016 return true;
9018 } else {
9019 /* For data accesses we always use the MMU bank indicated
9020 * by the current CPU state, but the security attributes
9021 * might downgrade a secure access to nonsecure.
9023 if (sattrs.ns) {
9024 txattrs->secure = false;
9025 } else if (!secure) {
9026 /* NS access to S memory must fault.
9027 * Architecturally we should first check whether the
9028 * MPU information for this address indicates that we
9029 * are doing an unaligned access to Device memory, which
9030 * should generate a UsageFault instead. QEMU does not
9031 * currently check for that kind of unaligned access though.
9032 * If we added it we would need to do so as a special case
9033 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
9035 *fsr = M_FAKE_FSR_SFAULT;
9036 return true;
9041 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9042 * was an exception vector read from the vector table (which is always
9043 * done using the default system address map), because those accesses
9044 * are done in arm_v7m_load_vector(), which always does a direct
9045 * read using address_space_ldl(), rather than going via this function.
9047 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9048 hit = true;
9049 } else if (m_is_ppb_region(env, address)) {
9050 hit = true;
9051 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9052 hit = true;
9053 } else {
9054 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9055 /* region search */
9056 /* Note that the base address is bits [31:5] from the register
9057 * with bits [4:0] all zeroes, but the limit address is bits
9058 * [31:5] from the register with bits [4:0] all ones.
9060 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
9061 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
9063 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
9064 /* Region disabled */
9065 continue;
9068 if (address < base || address > limit) {
9069 continue;
9072 if (hit) {
9073 /* Multiple regions match -- always a failure (unlike
9074 * PMSAv7 where highest-numbered-region wins)
9076 *fsr = 0x00d; /* permission fault */
9077 return true;
9080 matchregion = n;
9081 hit = true;
9083 if (base & ~TARGET_PAGE_MASK) {
9084 qemu_log_mask(LOG_UNIMP,
9085 "MPU_RBAR[%d]: No support for MPU region base"
9086 "address of 0x%" PRIx32 ". Minimum alignment is "
9087 "%d\n",
9088 n, base, TARGET_PAGE_BITS);
9089 continue;
9091 if ((limit + 1) & ~TARGET_PAGE_MASK) {
9092 qemu_log_mask(LOG_UNIMP,
9093 "MPU_RBAR[%d]: No support for MPU region limit"
9094 "address of 0x%" PRIx32 ". Minimum alignment is "
9095 "%d\n",
9096 n, limit, TARGET_PAGE_BITS);
9097 continue;
9102 if (!hit) {
9103 /* background fault */
9104 *fsr = 0;
9105 return true;
9108 if (matchregion == -1) {
9109 /* hit using the background region */
9110 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9111 } else {
9112 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
9113 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
9115 if (m_is_system_region(env, address)) {
9116 /* System space is always execute never */
9117 xn = 1;
9120 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
9121 if (*prot && !xn) {
9122 *prot |= PAGE_EXEC;
9124 /* We don't need to look the attribute up in the MAIR0/MAIR1
9125 * registers because that only tells us about cacheability.
9129 *fsr = 0x00d; /* Permission fault */
9130 return !(*prot & (1 << access_type));
9133 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
9134 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9135 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9137 int n;
9138 uint32_t mask;
9139 uint32_t base;
9140 bool is_user = regime_is_user(env, mmu_idx);
9142 if (regime_translation_disabled(env, mmu_idx)) {
9143 /* MPU disabled. */
9144 *phys_ptr = address;
9145 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9146 return false;
9149 *phys_ptr = address;
9150 for (n = 7; n >= 0; n--) {
9151 base = env->cp15.c6_region[n];
9152 if ((base & 1) == 0) {
9153 continue;
9155 mask = 1 << ((base >> 1) & 0x1f);
9156 /* Keep this shift separate from the above to avoid an
9157 (undefined) << 32. */
9158 mask = (mask << 1) - 1;
9159 if (((base ^ address) & ~mask) == 0) {
9160 break;
9163 if (n < 0) {
9164 *fsr = 2;
9165 return true;
9168 if (access_type == MMU_INST_FETCH) {
9169 mask = env->cp15.pmsav5_insn_ap;
9170 } else {
9171 mask = env->cp15.pmsav5_data_ap;
9173 mask = (mask >> (n * 4)) & 0xf;
9174 switch (mask) {
9175 case 0:
9176 *fsr = 1;
9177 return true;
9178 case 1:
9179 if (is_user) {
9180 *fsr = 1;
9181 return true;
9183 *prot = PAGE_READ | PAGE_WRITE;
9184 break;
9185 case 2:
9186 *prot = PAGE_READ;
9187 if (!is_user) {
9188 *prot |= PAGE_WRITE;
9190 break;
9191 case 3:
9192 *prot = PAGE_READ | PAGE_WRITE;
9193 break;
9194 case 5:
9195 if (is_user) {
9196 *fsr = 1;
9197 return true;
9199 *prot = PAGE_READ;
9200 break;
9201 case 6:
9202 *prot = PAGE_READ;
9203 break;
9204 default:
9205 /* Bad permission. */
9206 *fsr = 1;
9207 return true;
9209 *prot |= PAGE_EXEC;
9210 return false;
9213 /* get_phys_addr - get the physical address for this virtual address
9215 * Find the physical address corresponding to the given virtual address,
9216 * by doing a translation table walk on MMU based systems or using the
9217 * MPU state on MPU based systems.
9219 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
9220 * prot and page_size may not be filled in, and the populated fsr value provides
9221 * information on why the translation aborted, in the format of a
9222 * DFSR/IFSR fault register, with the following caveats:
9223 * * we honour the short vs long DFSR format differences.
9224 * * the WnR bit is never set (the caller must do this).
9225 * * for PSMAv5 based systems we don't bother to return a full FSR format
9226 * value.
9228 * @env: CPUARMState
9229 * @address: virtual address to get physical address for
9230 * @access_type: 0 for read, 1 for write, 2 for execute
9231 * @mmu_idx: MMU index indicating required translation regime
9232 * @phys_ptr: set to the physical address corresponding to the virtual address
9233 * @attrs: set to the memory transaction attributes to use
9234 * @prot: set to the permissions for the page containing phys_ptr
9235 * @page_size: set to the size of the page containing phys_ptr
9236 * @fsr: set to the DFSR/IFSR value on failure
9238 static bool get_phys_addr(CPUARMState *env, target_ulong address,
9239 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9240 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9241 target_ulong *page_size, uint32_t *fsr,
9242 ARMMMUFaultInfo *fi)
9244 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9245 /* Call ourselves recursively to do the stage 1 and then stage 2
9246 * translations.
9248 if (arm_feature(env, ARM_FEATURE_EL2)) {
9249 hwaddr ipa;
9250 int s2_prot;
9251 int ret;
9253 ret = get_phys_addr(env, address, access_type,
9254 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
9255 prot, page_size, fsr, fi);
9257 /* If S1 fails or S2 is disabled, return early. */
9258 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9259 *phys_ptr = ipa;
9260 return ret;
9263 /* S1 is done. Now do S2 translation. */
9264 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
9265 phys_ptr, attrs, &s2_prot,
9266 page_size, fsr, fi);
9267 fi->s2addr = ipa;
9268 /* Combine the S1 and S2 perms. */
9269 *prot &= s2_prot;
9270 return ret;
9271 } else {
9273 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
9275 mmu_idx = stage_1_mmu_idx(mmu_idx);
9279 /* The page table entries may downgrade secure to non-secure, but
9280 * cannot upgrade an non-secure translation regime's attributes
9281 * to secure.
9283 attrs->secure = regime_is_secure(env, mmu_idx);
9284 attrs->user = regime_is_user(env, mmu_idx);
9286 /* Fast Context Switch Extension. This doesn't exist at all in v8.
9287 * In v7 and earlier it affects all stage 1 translations.
9289 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
9290 && !arm_feature(env, ARM_FEATURE_V8)) {
9291 if (regime_el(env, mmu_idx) == 3) {
9292 address += env->cp15.fcseidr_s;
9293 } else {
9294 address += env->cp15.fcseidr_ns;
9298 if (arm_feature(env, ARM_FEATURE_PMSA)) {
9299 bool ret;
9300 *page_size = TARGET_PAGE_SIZE;
9302 if (arm_feature(env, ARM_FEATURE_V8)) {
9303 /* PMSAv8 */
9304 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
9305 phys_ptr, attrs, prot, fsr);
9306 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9307 /* PMSAv7 */
9308 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
9309 phys_ptr, prot, fsr);
9310 } else {
9311 /* Pre-v7 MPU */
9312 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
9313 phys_ptr, prot, fsr);
9315 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
9316 " mmu_idx %u -> %s (prot %c%c%c)\n",
9317 access_type == MMU_DATA_LOAD ? "reading" :
9318 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
9319 (uint32_t)address, mmu_idx,
9320 ret ? "Miss" : "Hit",
9321 *prot & PAGE_READ ? 'r' : '-',
9322 *prot & PAGE_WRITE ? 'w' : '-',
9323 *prot & PAGE_EXEC ? 'x' : '-');
9325 return ret;
9328 /* Definitely a real MMU, not an MPU */
9330 if (regime_translation_disabled(env, mmu_idx)) {
9331 /* MMU disabled. */
9332 *phys_ptr = address;
9333 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9334 *page_size = TARGET_PAGE_SIZE;
9335 return 0;
9338 if (regime_using_lpae_format(env, mmu_idx)) {
9339 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
9340 attrs, prot, page_size, fsr, fi);
9341 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
9342 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
9343 attrs, prot, page_size, fsr, fi);
9344 } else {
9345 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
9346 prot, page_size, fsr, fi);
9350 /* Walk the page table and (if the mapping exists) add the page
9351 * to the TLB. Return false on success, or true on failure. Populate
9352 * fsr with ARM DFSR/IFSR fault register format value on failure.
9354 bool arm_tlb_fill(CPUState *cs, vaddr address,
9355 MMUAccessType access_type, int mmu_idx, uint32_t *fsr,
9356 ARMMMUFaultInfo *fi)
9358 ARMCPU *cpu = ARM_CPU(cs);
9359 CPUARMState *env = &cpu->env;
9360 hwaddr phys_addr;
9361 target_ulong page_size;
9362 int prot;
9363 int ret;
9364 MemTxAttrs attrs = {};
9366 ret = get_phys_addr(env, address, access_type,
9367 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
9368 &attrs, &prot, &page_size, fsr, fi);
9369 if (!ret) {
9370 /* Map a single [sub]page. */
9371 phys_addr &= TARGET_PAGE_MASK;
9372 address &= TARGET_PAGE_MASK;
9373 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
9374 prot, mmu_idx, page_size);
9375 return 0;
9378 return ret;
9381 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
9382 MemTxAttrs *attrs)
9384 ARMCPU *cpu = ARM_CPU(cs);
9385 CPUARMState *env = &cpu->env;
9386 hwaddr phys_addr;
9387 target_ulong page_size;
9388 int prot;
9389 bool ret;
9390 uint32_t fsr;
9391 ARMMMUFaultInfo fi = {};
9392 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
9394 *attrs = (MemTxAttrs) {};
9396 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
9397 attrs, &prot, &page_size, &fsr, &fi);
9399 if (ret) {
9400 return -1;
9402 return phys_addr;
9405 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9407 uint32_t mask;
9408 unsigned el = arm_current_el(env);
9410 /* First handle registers which unprivileged can read */
9412 switch (reg) {
9413 case 0 ... 7: /* xPSR sub-fields */
9414 mask = 0;
9415 if ((reg & 1) && el) {
9416 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
9418 if (!(reg & 4)) {
9419 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
9421 /* EPSR reads as zero */
9422 return xpsr_read(env) & mask;
9423 break;
9424 case 20: /* CONTROL */
9425 return env->v7m.control[env->v7m.secure];
9426 case 0x94: /* CONTROL_NS */
9427 /* We have to handle this here because unprivileged Secure code
9428 * can read the NS CONTROL register.
9430 if (!env->v7m.secure) {
9431 return 0;
9433 return env->v7m.control[M_REG_NS];
9436 if (el == 0) {
9437 return 0; /* unprivileged reads others as zero */
9440 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9441 switch (reg) {
9442 case 0x88: /* MSP_NS */
9443 if (!env->v7m.secure) {
9444 return 0;
9446 return env->v7m.other_ss_msp;
9447 case 0x89: /* PSP_NS */
9448 if (!env->v7m.secure) {
9449 return 0;
9451 return env->v7m.other_ss_psp;
9452 case 0x90: /* PRIMASK_NS */
9453 if (!env->v7m.secure) {
9454 return 0;
9456 return env->v7m.primask[M_REG_NS];
9457 case 0x91: /* BASEPRI_NS */
9458 if (!env->v7m.secure) {
9459 return 0;
9461 return env->v7m.basepri[M_REG_NS];
9462 case 0x93: /* FAULTMASK_NS */
9463 if (!env->v7m.secure) {
9464 return 0;
9466 return env->v7m.faultmask[M_REG_NS];
9467 case 0x98: /* SP_NS */
9469 /* This gives the non-secure SP selected based on whether we're
9470 * currently in handler mode or not, using the NS CONTROL.SPSEL.
9472 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9474 if (!env->v7m.secure) {
9475 return 0;
9477 if (!arm_v7m_is_handler_mode(env) && spsel) {
9478 return env->v7m.other_ss_psp;
9479 } else {
9480 return env->v7m.other_ss_msp;
9483 default:
9484 break;
9488 switch (reg) {
9489 case 8: /* MSP */
9490 return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
9491 env->v7m.other_sp : env->regs[13];
9492 case 9: /* PSP */
9493 return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
9494 env->regs[13] : env->v7m.other_sp;
9495 case 16: /* PRIMASK */
9496 return env->v7m.primask[env->v7m.secure];
9497 case 17: /* BASEPRI */
9498 case 18: /* BASEPRI_MAX */
9499 return env->v7m.basepri[env->v7m.secure];
9500 case 19: /* FAULTMASK */
9501 return env->v7m.faultmask[env->v7m.secure];
9502 default:
9503 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
9504 " register %d\n", reg);
9505 return 0;
9509 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
9511 /* We're passed bits [11..0] of the instruction; extract
9512 * SYSm and the mask bits.
9513 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
9514 * we choose to treat them as if the mask bits were valid.
9515 * NB that the pseudocode 'mask' variable is bits [11..10],
9516 * whereas ours is [11..8].
9518 uint32_t mask = extract32(maskreg, 8, 4);
9519 uint32_t reg = extract32(maskreg, 0, 8);
9521 if (arm_current_el(env) == 0 && reg > 7) {
9522 /* only xPSR sub-fields may be written by unprivileged */
9523 return;
9526 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9527 switch (reg) {
9528 case 0x88: /* MSP_NS */
9529 if (!env->v7m.secure) {
9530 return;
9532 env->v7m.other_ss_msp = val;
9533 return;
9534 case 0x89: /* PSP_NS */
9535 if (!env->v7m.secure) {
9536 return;
9538 env->v7m.other_ss_psp = val;
9539 return;
9540 case 0x90: /* PRIMASK_NS */
9541 if (!env->v7m.secure) {
9542 return;
9544 env->v7m.primask[M_REG_NS] = val & 1;
9545 return;
9546 case 0x91: /* BASEPRI_NS */
9547 if (!env->v7m.secure) {
9548 return;
9550 env->v7m.basepri[M_REG_NS] = val & 0xff;
9551 return;
9552 case 0x93: /* FAULTMASK_NS */
9553 if (!env->v7m.secure) {
9554 return;
9556 env->v7m.faultmask[M_REG_NS] = val & 1;
9557 return;
9558 case 0x98: /* SP_NS */
9560 /* This gives the non-secure SP selected based on whether we're
9561 * currently in handler mode or not, using the NS CONTROL.SPSEL.
9563 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9565 if (!env->v7m.secure) {
9566 return;
9568 if (!arm_v7m_is_handler_mode(env) && spsel) {
9569 env->v7m.other_ss_psp = val;
9570 } else {
9571 env->v7m.other_ss_msp = val;
9573 return;
9575 default:
9576 break;
9580 switch (reg) {
9581 case 0 ... 7: /* xPSR sub-fields */
9582 /* only APSR is actually writable */
9583 if (!(reg & 4)) {
9584 uint32_t apsrmask = 0;
9586 if (mask & 8) {
9587 apsrmask |= XPSR_NZCV | XPSR_Q;
9589 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
9590 apsrmask |= XPSR_GE;
9592 xpsr_write(env, val, apsrmask);
9594 break;
9595 case 8: /* MSP */
9596 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9597 env->v7m.other_sp = val;
9598 } else {
9599 env->regs[13] = val;
9601 break;
9602 case 9: /* PSP */
9603 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9604 env->regs[13] = val;
9605 } else {
9606 env->v7m.other_sp = val;
9608 break;
9609 case 16: /* PRIMASK */
9610 env->v7m.primask[env->v7m.secure] = val & 1;
9611 break;
9612 case 17: /* BASEPRI */
9613 env->v7m.basepri[env->v7m.secure] = val & 0xff;
9614 break;
9615 case 18: /* BASEPRI_MAX */
9616 val &= 0xff;
9617 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
9618 || env->v7m.basepri[env->v7m.secure] == 0)) {
9619 env->v7m.basepri[env->v7m.secure] = val;
9621 break;
9622 case 19: /* FAULTMASK */
9623 env->v7m.faultmask[env->v7m.secure] = val & 1;
9624 break;
9625 case 20: /* CONTROL */
9626 /* Writing to the SPSEL bit only has an effect if we are in
9627 * thread mode; other bits can be updated by any privileged code.
9628 * write_v7m_control_spsel() deals with updating the SPSEL bit in
9629 * env->v7m.control, so we only need update the others.
9631 if (!arm_v7m_is_handler_mode(env)) {
9632 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
9634 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
9635 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
9636 break;
9637 default:
9638 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
9639 " register %d\n", reg);
9640 return;
9644 #endif
9646 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
9648 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
9649 * Note that we do not implement the (architecturally mandated)
9650 * alignment fault for attempts to use this on Device memory
9651 * (which matches the usual QEMU behaviour of not implementing either
9652 * alignment faults or any memory attribute handling).
9655 ARMCPU *cpu = arm_env_get_cpu(env);
9656 uint64_t blocklen = 4 << cpu->dcz_blocksize;
9657 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
9659 #ifndef CONFIG_USER_ONLY
9661 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
9662 * the block size so we might have to do more than one TLB lookup.
9663 * We know that in fact for any v8 CPU the page size is at least 4K
9664 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
9665 * 1K as an artefact of legacy v5 subpage support being present in the
9666 * same QEMU executable.
9668 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
9669 void *hostaddr[maxidx];
9670 int try, i;
9671 unsigned mmu_idx = cpu_mmu_index(env, false);
9672 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
9674 for (try = 0; try < 2; try++) {
9676 for (i = 0; i < maxidx; i++) {
9677 hostaddr[i] = tlb_vaddr_to_host(env,
9678 vaddr + TARGET_PAGE_SIZE * i,
9679 1, mmu_idx);
9680 if (!hostaddr[i]) {
9681 break;
9684 if (i == maxidx) {
9685 /* If it's all in the TLB it's fair game for just writing to;
9686 * we know we don't need to update dirty status, etc.
9688 for (i = 0; i < maxidx - 1; i++) {
9689 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
9691 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
9692 return;
9694 /* OK, try a store and see if we can populate the tlb. This
9695 * might cause an exception if the memory isn't writable,
9696 * in which case we will longjmp out of here. We must for
9697 * this purpose use the actual register value passed to us
9698 * so that we get the fault address right.
9700 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
9701 /* Now we can populate the other TLB entries, if any */
9702 for (i = 0; i < maxidx; i++) {
9703 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
9704 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
9705 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
9710 /* Slow path (probably attempt to do this to an I/O device or
9711 * similar, or clearing of a block of code we have translations
9712 * cached for). Just do a series of byte writes as the architecture
9713 * demands. It's not worth trying to use a cpu_physical_memory_map(),
9714 * memset(), unmap() sequence here because:
9715 * + we'd need to account for the blocksize being larger than a page
9716 * + the direct-RAM access case is almost always going to be dealt
9717 * with in the fastpath code above, so there's no speed benefit
9718 * + we would have to deal with the map returning NULL because the
9719 * bounce buffer was in use
9721 for (i = 0; i < blocklen; i++) {
9722 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
9725 #else
9726 memset(g2h(vaddr), 0, blocklen);
9727 #endif
9730 /* Note that signed overflow is undefined in C. The following routines are
9731 careful to use unsigned types where modulo arithmetic is required.
9732 Failure to do so _will_ break on newer gcc. */
9734 /* Signed saturating arithmetic. */
9736 /* Perform 16-bit signed saturating addition. */
9737 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
9739 uint16_t res;
9741 res = a + b;
9742 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
9743 if (a & 0x8000)
9744 res = 0x8000;
9745 else
9746 res = 0x7fff;
9748 return res;
9751 /* Perform 8-bit signed saturating addition. */
9752 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
9754 uint8_t res;
9756 res = a + b;
9757 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
9758 if (a & 0x80)
9759 res = 0x80;
9760 else
9761 res = 0x7f;
9763 return res;
9766 /* Perform 16-bit signed saturating subtraction. */
9767 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
9769 uint16_t res;
9771 res = a - b;
9772 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
9773 if (a & 0x8000)
9774 res = 0x8000;
9775 else
9776 res = 0x7fff;
9778 return res;
9781 /* Perform 8-bit signed saturating subtraction. */
9782 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
9784 uint8_t res;
9786 res = a - b;
9787 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
9788 if (a & 0x80)
9789 res = 0x80;
9790 else
9791 res = 0x7f;
9793 return res;
9796 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
9797 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
9798 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
9799 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
9800 #define PFX q
9802 #include "op_addsub.h"
9804 /* Unsigned saturating arithmetic. */
9805 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
9807 uint16_t res;
9808 res = a + b;
9809 if (res < a)
9810 res = 0xffff;
9811 return res;
9814 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
9816 if (a > b)
9817 return a - b;
9818 else
9819 return 0;
9822 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
9824 uint8_t res;
9825 res = a + b;
9826 if (res < a)
9827 res = 0xff;
9828 return res;
9831 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
9833 if (a > b)
9834 return a - b;
9835 else
9836 return 0;
9839 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
9840 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
9841 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
9842 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
9843 #define PFX uq
9845 #include "op_addsub.h"
9847 /* Signed modulo arithmetic. */
9848 #define SARITH16(a, b, n, op) do { \
9849 int32_t sum; \
9850 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
9851 RESULT(sum, n, 16); \
9852 if (sum >= 0) \
9853 ge |= 3 << (n * 2); \
9854 } while(0)
9856 #define SARITH8(a, b, n, op) do { \
9857 int32_t sum; \
9858 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
9859 RESULT(sum, n, 8); \
9860 if (sum >= 0) \
9861 ge |= 1 << n; \
9862 } while(0)
9865 #define ADD16(a, b, n) SARITH16(a, b, n, +)
9866 #define SUB16(a, b, n) SARITH16(a, b, n, -)
9867 #define ADD8(a, b, n) SARITH8(a, b, n, +)
9868 #define SUB8(a, b, n) SARITH8(a, b, n, -)
9869 #define PFX s
9870 #define ARITH_GE
9872 #include "op_addsub.h"
9874 /* Unsigned modulo arithmetic. */
9875 #define ADD16(a, b, n) do { \
9876 uint32_t sum; \
9877 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
9878 RESULT(sum, n, 16); \
9879 if ((sum >> 16) == 1) \
9880 ge |= 3 << (n * 2); \
9881 } while(0)
9883 #define ADD8(a, b, n) do { \
9884 uint32_t sum; \
9885 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
9886 RESULT(sum, n, 8); \
9887 if ((sum >> 8) == 1) \
9888 ge |= 1 << n; \
9889 } while(0)
9891 #define SUB16(a, b, n) do { \
9892 uint32_t sum; \
9893 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
9894 RESULT(sum, n, 16); \
9895 if ((sum >> 16) == 0) \
9896 ge |= 3 << (n * 2); \
9897 } while(0)
9899 #define SUB8(a, b, n) do { \
9900 uint32_t sum; \
9901 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
9902 RESULT(sum, n, 8); \
9903 if ((sum >> 8) == 0) \
9904 ge |= 1 << n; \
9905 } while(0)
9907 #define PFX u
9908 #define ARITH_GE
9910 #include "op_addsub.h"
9912 /* Halved signed arithmetic. */
9913 #define ADD16(a, b, n) \
9914 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
9915 #define SUB16(a, b, n) \
9916 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
9917 #define ADD8(a, b, n) \
9918 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
9919 #define SUB8(a, b, n) \
9920 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
9921 #define PFX sh
9923 #include "op_addsub.h"
9925 /* Halved unsigned arithmetic. */
9926 #define ADD16(a, b, n) \
9927 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9928 #define SUB16(a, b, n) \
9929 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9930 #define ADD8(a, b, n) \
9931 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9932 #define SUB8(a, b, n) \
9933 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9934 #define PFX uh
9936 #include "op_addsub.h"
9938 static inline uint8_t do_usad(uint8_t a, uint8_t b)
9940 if (a > b)
9941 return a - b;
9942 else
9943 return b - a;
9946 /* Unsigned sum of absolute byte differences. */
9947 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
9949 uint32_t sum;
9950 sum = do_usad(a, b);
9951 sum += do_usad(a >> 8, b >> 8);
9952 sum += do_usad(a >> 16, b >>16);
9953 sum += do_usad(a >> 24, b >> 24);
9954 return sum;
9957 /* For ARMv6 SEL instruction. */
9958 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
9960 uint32_t mask;
9962 mask = 0;
9963 if (flags & 1)
9964 mask |= 0xff;
9965 if (flags & 2)
9966 mask |= 0xff00;
9967 if (flags & 4)
9968 mask |= 0xff0000;
9969 if (flags & 8)
9970 mask |= 0xff000000;
9971 return (a & mask) | (b & ~mask);
9974 /* VFP support. We follow the convention used for VFP instructions:
9975 Single precision routines have a "s" suffix, double precision a
9976 "d" suffix. */
9978 /* Convert host exception flags to vfp form. */
9979 static inline int vfp_exceptbits_from_host(int host_bits)
9981 int target_bits = 0;
9983 if (host_bits & float_flag_invalid)
9984 target_bits |= 1;
9985 if (host_bits & float_flag_divbyzero)
9986 target_bits |= 2;
9987 if (host_bits & float_flag_overflow)
9988 target_bits |= 4;
9989 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
9990 target_bits |= 8;
9991 if (host_bits & float_flag_inexact)
9992 target_bits |= 0x10;
9993 if (host_bits & float_flag_input_denormal)
9994 target_bits |= 0x80;
9995 return target_bits;
9998 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
10000 int i;
10001 uint32_t fpscr;
10003 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
10004 | (env->vfp.vec_len << 16)
10005 | (env->vfp.vec_stride << 20);
10006 i = get_float_exception_flags(&env->vfp.fp_status);
10007 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
10008 fpscr |= vfp_exceptbits_from_host(i);
10009 return fpscr;
10012 uint32_t vfp_get_fpscr(CPUARMState *env)
10014 return HELPER(vfp_get_fpscr)(env);
10017 /* Convert vfp exception flags to target form. */
10018 static inline int vfp_exceptbits_to_host(int target_bits)
10020 int host_bits = 0;
10022 if (target_bits & 1)
10023 host_bits |= float_flag_invalid;
10024 if (target_bits & 2)
10025 host_bits |= float_flag_divbyzero;
10026 if (target_bits & 4)
10027 host_bits |= float_flag_overflow;
10028 if (target_bits & 8)
10029 host_bits |= float_flag_underflow;
10030 if (target_bits & 0x10)
10031 host_bits |= float_flag_inexact;
10032 if (target_bits & 0x80)
10033 host_bits |= float_flag_input_denormal;
10034 return host_bits;
10037 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
10039 int i;
10040 uint32_t changed;
10042 changed = env->vfp.xregs[ARM_VFP_FPSCR];
10043 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
10044 env->vfp.vec_len = (val >> 16) & 7;
10045 env->vfp.vec_stride = (val >> 20) & 3;
10047 changed ^= val;
10048 if (changed & (3 << 22)) {
10049 i = (val >> 22) & 3;
10050 switch (i) {
10051 case FPROUNDING_TIEEVEN:
10052 i = float_round_nearest_even;
10053 break;
10054 case FPROUNDING_POSINF:
10055 i = float_round_up;
10056 break;
10057 case FPROUNDING_NEGINF:
10058 i = float_round_down;
10059 break;
10060 case FPROUNDING_ZERO:
10061 i = float_round_to_zero;
10062 break;
10064 set_float_rounding_mode(i, &env->vfp.fp_status);
10066 if (changed & (1 << 24)) {
10067 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10068 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10070 if (changed & (1 << 25))
10071 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
10073 i = vfp_exceptbits_to_host(val);
10074 set_float_exception_flags(i, &env->vfp.fp_status);
10075 set_float_exception_flags(0, &env->vfp.standard_fp_status);
10078 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
10080 HELPER(vfp_set_fpscr)(env, val);
10083 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
10085 #define VFP_BINOP(name) \
10086 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
10088 float_status *fpst = fpstp; \
10089 return float32_ ## name(a, b, fpst); \
10091 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
10093 float_status *fpst = fpstp; \
10094 return float64_ ## name(a, b, fpst); \
10096 VFP_BINOP(add)
10097 VFP_BINOP(sub)
10098 VFP_BINOP(mul)
10099 VFP_BINOP(div)
10100 VFP_BINOP(min)
10101 VFP_BINOP(max)
10102 VFP_BINOP(minnum)
10103 VFP_BINOP(maxnum)
10104 #undef VFP_BINOP
10106 float32 VFP_HELPER(neg, s)(float32 a)
10108 return float32_chs(a);
10111 float64 VFP_HELPER(neg, d)(float64 a)
10113 return float64_chs(a);
10116 float32 VFP_HELPER(abs, s)(float32 a)
10118 return float32_abs(a);
10121 float64 VFP_HELPER(abs, d)(float64 a)
10123 return float64_abs(a);
10126 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
10128 return float32_sqrt(a, &env->vfp.fp_status);
10131 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
10133 return float64_sqrt(a, &env->vfp.fp_status);
10136 /* XXX: check quiet/signaling case */
10137 #define DO_VFP_cmp(p, type) \
10138 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
10140 uint32_t flags; \
10141 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
10142 case 0: flags = 0x6; break; \
10143 case -1: flags = 0x8; break; \
10144 case 1: flags = 0x2; break; \
10145 default: case 2: flags = 0x3; break; \
10147 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10148 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10150 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
10152 uint32_t flags; \
10153 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
10154 case 0: flags = 0x6; break; \
10155 case -1: flags = 0x8; break; \
10156 case 1: flags = 0x2; break; \
10157 default: case 2: flags = 0x3; break; \
10159 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10160 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10162 DO_VFP_cmp(s, float32)
10163 DO_VFP_cmp(d, float64)
10164 #undef DO_VFP_cmp
10166 /* Integer to float and float to integer conversions */
10168 #define CONV_ITOF(name, fsz, sign) \
10169 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
10171 float_status *fpst = fpstp; \
10172 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
10175 #define CONV_FTOI(name, fsz, sign, round) \
10176 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
10178 float_status *fpst = fpstp; \
10179 if (float##fsz##_is_any_nan(x)) { \
10180 float_raise(float_flag_invalid, fpst); \
10181 return 0; \
10183 return float##fsz##_to_##sign##int32##round(x, fpst); \
10186 #define FLOAT_CONVS(name, p, fsz, sign) \
10187 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
10188 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
10189 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
10191 FLOAT_CONVS(si, s, 32, )
10192 FLOAT_CONVS(si, d, 64, )
10193 FLOAT_CONVS(ui, s, 32, u)
10194 FLOAT_CONVS(ui, d, 64, u)
10196 #undef CONV_ITOF
10197 #undef CONV_FTOI
10198 #undef FLOAT_CONVS
10200 /* floating point conversion */
10201 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
10203 float64 r = float32_to_float64(x, &env->vfp.fp_status);
10204 /* ARM requires that S<->D conversion of any kind of NaN generates
10205 * a quiet NaN by forcing the most significant frac bit to 1.
10207 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10210 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
10212 float32 r = float64_to_float32(x, &env->vfp.fp_status);
10213 /* ARM requires that S<->D conversion of any kind of NaN generates
10214 * a quiet NaN by forcing the most significant frac bit to 1.
10216 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
10219 /* VFP3 fixed point conversion. */
10220 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10221 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
10222 void *fpstp) \
10224 float_status *fpst = fpstp; \
10225 float##fsz tmp; \
10226 tmp = itype##_to_##float##fsz(x, fpst); \
10227 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
10230 /* Notice that we want only input-denormal exception flags from the
10231 * scalbn operation: the other possible flags (overflow+inexact if
10232 * we overflow to infinity, output-denormal) aren't correct for the
10233 * complete scale-and-convert operation.
10235 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
10236 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
10237 uint32_t shift, \
10238 void *fpstp) \
10240 float_status *fpst = fpstp; \
10241 int old_exc_flags = get_float_exception_flags(fpst); \
10242 float##fsz tmp; \
10243 if (float##fsz##_is_any_nan(x)) { \
10244 float_raise(float_flag_invalid, fpst); \
10245 return 0; \
10247 tmp = float##fsz##_scalbn(x, shift, fpst); \
10248 old_exc_flags |= get_float_exception_flags(fpst) \
10249 & float_flag_input_denormal; \
10250 set_float_exception_flags(old_exc_flags, fpst); \
10251 return float##fsz##_to_##itype##round(tmp, fpst); \
10254 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
10255 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10256 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
10257 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10259 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
10260 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10261 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10263 VFP_CONV_FIX(sh, d, 64, 64, int16)
10264 VFP_CONV_FIX(sl, d, 64, 64, int32)
10265 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
10266 VFP_CONV_FIX(uh, d, 64, 64, uint16)
10267 VFP_CONV_FIX(ul, d, 64, 64, uint32)
10268 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
10269 VFP_CONV_FIX(sh, s, 32, 32, int16)
10270 VFP_CONV_FIX(sl, s, 32, 32, int32)
10271 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
10272 VFP_CONV_FIX(uh, s, 32, 32, uint16)
10273 VFP_CONV_FIX(ul, s, 32, 32, uint32)
10274 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
10275 #undef VFP_CONV_FIX
10276 #undef VFP_CONV_FIX_FLOAT
10277 #undef VFP_CONV_FLOAT_FIX_ROUND
10279 /* Set the current fp rounding mode and return the old one.
10280 * The argument is a softfloat float_round_ value.
10282 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
10284 float_status *fp_status = &env->vfp.fp_status;
10286 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10287 set_float_rounding_mode(rmode, fp_status);
10289 return prev_rmode;
10292 /* Set the current fp rounding mode in the standard fp status and return
10293 * the old one. This is for NEON instructions that need to change the
10294 * rounding mode but wish to use the standard FPSCR values for everything
10295 * else. Always set the rounding mode back to the correct value after
10296 * modifying it.
10297 * The argument is a softfloat float_round_ value.
10299 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
10301 float_status *fp_status = &env->vfp.standard_fp_status;
10303 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10304 set_float_rounding_mode(rmode, fp_status);
10306 return prev_rmode;
10309 /* Half precision conversions. */
10310 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
10312 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10313 float32 r = float16_to_float32(make_float16(a), ieee, s);
10314 if (ieee) {
10315 return float32_maybe_silence_nan(r, s);
10317 return r;
10320 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
10322 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10323 float16 r = float32_to_float16(a, ieee, s);
10324 if (ieee) {
10325 r = float16_maybe_silence_nan(r, s);
10327 return float16_val(r);
10330 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10332 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
10335 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10337 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
10340 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10342 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
10345 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10347 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
10350 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
10352 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10353 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
10354 if (ieee) {
10355 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10357 return r;
10360 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
10362 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10363 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
10364 if (ieee) {
10365 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
10367 return float16_val(r);
10370 #define float32_two make_float32(0x40000000)
10371 #define float32_three make_float32(0x40400000)
10372 #define float32_one_point_five make_float32(0x3fc00000)
10374 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
10376 float_status *s = &env->vfp.standard_fp_status;
10377 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
10378 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
10379 if (!(float32_is_zero(a) || float32_is_zero(b))) {
10380 float_raise(float_flag_input_denormal, s);
10382 return float32_two;
10384 return float32_sub(float32_two, float32_mul(a, b, s), s);
10387 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
10389 float_status *s = &env->vfp.standard_fp_status;
10390 float32 product;
10391 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
10392 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
10393 if (!(float32_is_zero(a) || float32_is_zero(b))) {
10394 float_raise(float_flag_input_denormal, s);
10396 return float32_one_point_five;
10398 product = float32_mul(a, b, s);
10399 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
10402 /* NEON helpers. */
10404 /* Constants 256 and 512 are used in some helpers; we avoid relying on
10405 * int->float conversions at run-time. */
10406 #define float64_256 make_float64(0x4070000000000000LL)
10407 #define float64_512 make_float64(0x4080000000000000LL)
10408 #define float32_maxnorm make_float32(0x7f7fffff)
10409 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
10411 /* Reciprocal functions
10413 * The algorithm that must be used to calculate the estimate
10414 * is specified by the ARM ARM, see FPRecipEstimate()
10417 static float64 recip_estimate(float64 a, float_status *real_fp_status)
10419 /* These calculations mustn't set any fp exception flags,
10420 * so we use a local copy of the fp_status.
10422 float_status dummy_status = *real_fp_status;
10423 float_status *s = &dummy_status;
10424 /* q = (int)(a * 512.0) */
10425 float64 q = float64_mul(float64_512, a, s);
10426 int64_t q_int = float64_to_int64_round_to_zero(q, s);
10428 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
10429 q = int64_to_float64(q_int, s);
10430 q = float64_add(q, float64_half, s);
10431 q = float64_div(q, float64_512, s);
10432 q = float64_div(float64_one, q, s);
10434 /* s = (int)(256.0 * r + 0.5) */
10435 q = float64_mul(q, float64_256, s);
10436 q = float64_add(q, float64_half, s);
10437 q_int = float64_to_int64_round_to_zero(q, s);
10439 /* return (double)s / 256.0 */
10440 return float64_div(int64_to_float64(q_int, s), float64_256, s);
10443 /* Common wrapper to call recip_estimate */
10444 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
10446 uint64_t val64 = float64_val(num);
10447 uint64_t frac = extract64(val64, 0, 52);
10448 int64_t exp = extract64(val64, 52, 11);
10449 uint64_t sbit;
10450 float64 scaled, estimate;
10452 /* Generate the scaled number for the estimate function */
10453 if (exp == 0) {
10454 if (extract64(frac, 51, 1) == 0) {
10455 exp = -1;
10456 frac = extract64(frac, 0, 50) << 2;
10457 } else {
10458 frac = extract64(frac, 0, 51) << 1;
10462 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
10463 scaled = make_float64((0x3feULL << 52)
10464 | extract64(frac, 44, 8) << 44);
10466 estimate = recip_estimate(scaled, fpst);
10468 /* Build new result */
10469 val64 = float64_val(estimate);
10470 sbit = 0x8000000000000000ULL & val64;
10471 exp = off - exp;
10472 frac = extract64(val64, 0, 52);
10474 if (exp == 0) {
10475 frac = 1ULL << 51 | extract64(frac, 1, 51);
10476 } else if (exp == -1) {
10477 frac = 1ULL << 50 | extract64(frac, 2, 50);
10478 exp = 0;
10481 return make_float64(sbit | (exp << 52) | frac);
10484 static bool round_to_inf(float_status *fpst, bool sign_bit)
10486 switch (fpst->float_rounding_mode) {
10487 case float_round_nearest_even: /* Round to Nearest */
10488 return true;
10489 case float_round_up: /* Round to +Inf */
10490 return !sign_bit;
10491 case float_round_down: /* Round to -Inf */
10492 return sign_bit;
10493 case float_round_to_zero: /* Round to Zero */
10494 return false;
10497 g_assert_not_reached();
10500 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
10502 float_status *fpst = fpstp;
10503 float32 f32 = float32_squash_input_denormal(input, fpst);
10504 uint32_t f32_val = float32_val(f32);
10505 uint32_t f32_sbit = 0x80000000ULL & f32_val;
10506 int32_t f32_exp = extract32(f32_val, 23, 8);
10507 uint32_t f32_frac = extract32(f32_val, 0, 23);
10508 float64 f64, r64;
10509 uint64_t r64_val;
10510 int64_t r64_exp;
10511 uint64_t r64_frac;
10513 if (float32_is_any_nan(f32)) {
10514 float32 nan = f32;
10515 if (float32_is_signaling_nan(f32, fpst)) {
10516 float_raise(float_flag_invalid, fpst);
10517 nan = float32_maybe_silence_nan(f32, fpst);
10519 if (fpst->default_nan_mode) {
10520 nan = float32_default_nan(fpst);
10522 return nan;
10523 } else if (float32_is_infinity(f32)) {
10524 return float32_set_sign(float32_zero, float32_is_neg(f32));
10525 } else if (float32_is_zero(f32)) {
10526 float_raise(float_flag_divbyzero, fpst);
10527 return float32_set_sign(float32_infinity, float32_is_neg(f32));
10528 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
10529 /* Abs(value) < 2.0^-128 */
10530 float_raise(float_flag_overflow | float_flag_inexact, fpst);
10531 if (round_to_inf(fpst, f32_sbit)) {
10532 return float32_set_sign(float32_infinity, float32_is_neg(f32));
10533 } else {
10534 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
10536 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
10537 float_raise(float_flag_underflow, fpst);
10538 return float32_set_sign(float32_zero, float32_is_neg(f32));
10542 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
10543 r64 = call_recip_estimate(f64, 253, fpst);
10544 r64_val = float64_val(r64);
10545 r64_exp = extract64(r64_val, 52, 11);
10546 r64_frac = extract64(r64_val, 0, 52);
10548 /* result = sign : result_exp<7:0> : fraction<51:29>; */
10549 return make_float32(f32_sbit |
10550 (r64_exp & 0xff) << 23 |
10551 extract64(r64_frac, 29, 24));
10554 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
10556 float_status *fpst = fpstp;
10557 float64 f64 = float64_squash_input_denormal(input, fpst);
10558 uint64_t f64_val = float64_val(f64);
10559 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
10560 int64_t f64_exp = extract64(f64_val, 52, 11);
10561 float64 r64;
10562 uint64_t r64_val;
10563 int64_t r64_exp;
10564 uint64_t r64_frac;
10566 /* Deal with any special cases */
10567 if (float64_is_any_nan(f64)) {
10568 float64 nan = f64;
10569 if (float64_is_signaling_nan(f64, fpst)) {
10570 float_raise(float_flag_invalid, fpst);
10571 nan = float64_maybe_silence_nan(f64, fpst);
10573 if (fpst->default_nan_mode) {
10574 nan = float64_default_nan(fpst);
10576 return nan;
10577 } else if (float64_is_infinity(f64)) {
10578 return float64_set_sign(float64_zero, float64_is_neg(f64));
10579 } else if (float64_is_zero(f64)) {
10580 float_raise(float_flag_divbyzero, fpst);
10581 return float64_set_sign(float64_infinity, float64_is_neg(f64));
10582 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
10583 /* Abs(value) < 2.0^-1024 */
10584 float_raise(float_flag_overflow | float_flag_inexact, fpst);
10585 if (round_to_inf(fpst, f64_sbit)) {
10586 return float64_set_sign(float64_infinity, float64_is_neg(f64));
10587 } else {
10588 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
10590 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
10591 float_raise(float_flag_underflow, fpst);
10592 return float64_set_sign(float64_zero, float64_is_neg(f64));
10595 r64 = call_recip_estimate(f64, 2045, fpst);
10596 r64_val = float64_val(r64);
10597 r64_exp = extract64(r64_val, 52, 11);
10598 r64_frac = extract64(r64_val, 0, 52);
10600 /* result = sign : result_exp<10:0> : fraction<51:0> */
10601 return make_float64(f64_sbit |
10602 ((r64_exp & 0x7ff) << 52) |
10603 r64_frac);
10606 /* The algorithm that must be used to calculate the estimate
10607 * is specified by the ARM ARM.
10609 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
10611 /* These calculations mustn't set any fp exception flags,
10612 * so we use a local copy of the fp_status.
10614 float_status dummy_status = *real_fp_status;
10615 float_status *s = &dummy_status;
10616 float64 q;
10617 int64_t q_int;
10619 if (float64_lt(a, float64_half, s)) {
10620 /* range 0.25 <= a < 0.5 */
10622 /* a in units of 1/512 rounded down */
10623 /* q0 = (int)(a * 512.0); */
10624 q = float64_mul(float64_512, a, s);
10625 q_int = float64_to_int64_round_to_zero(q, s);
10627 /* reciprocal root r */
10628 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
10629 q = int64_to_float64(q_int, s);
10630 q = float64_add(q, float64_half, s);
10631 q = float64_div(q, float64_512, s);
10632 q = float64_sqrt(q, s);
10633 q = float64_div(float64_one, q, s);
10634 } else {
10635 /* range 0.5 <= a < 1.0 */
10637 /* a in units of 1/256 rounded down */
10638 /* q1 = (int)(a * 256.0); */
10639 q = float64_mul(float64_256, a, s);
10640 int64_t q_int = float64_to_int64_round_to_zero(q, s);
10642 /* reciprocal root r */
10643 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
10644 q = int64_to_float64(q_int, s);
10645 q = float64_add(q, float64_half, s);
10646 q = float64_div(q, float64_256, s);
10647 q = float64_sqrt(q, s);
10648 q = float64_div(float64_one, q, s);
10650 /* r in units of 1/256 rounded to nearest */
10651 /* s = (int)(256.0 * r + 0.5); */
10653 q = float64_mul(q, float64_256,s );
10654 q = float64_add(q, float64_half, s);
10655 q_int = float64_to_int64_round_to_zero(q, s);
10657 /* return (double)s / 256.0;*/
10658 return float64_div(int64_to_float64(q_int, s), float64_256, s);
10661 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
10663 float_status *s = fpstp;
10664 float32 f32 = float32_squash_input_denormal(input, s);
10665 uint32_t val = float32_val(f32);
10666 uint32_t f32_sbit = 0x80000000 & val;
10667 int32_t f32_exp = extract32(val, 23, 8);
10668 uint32_t f32_frac = extract32(val, 0, 23);
10669 uint64_t f64_frac;
10670 uint64_t val64;
10671 int result_exp;
10672 float64 f64;
10674 if (float32_is_any_nan(f32)) {
10675 float32 nan = f32;
10676 if (float32_is_signaling_nan(f32, s)) {
10677 float_raise(float_flag_invalid, s);
10678 nan = float32_maybe_silence_nan(f32, s);
10680 if (s->default_nan_mode) {
10681 nan = float32_default_nan(s);
10683 return nan;
10684 } else if (float32_is_zero(f32)) {
10685 float_raise(float_flag_divbyzero, s);
10686 return float32_set_sign(float32_infinity, float32_is_neg(f32));
10687 } else if (float32_is_neg(f32)) {
10688 float_raise(float_flag_invalid, s);
10689 return float32_default_nan(s);
10690 } else if (float32_is_infinity(f32)) {
10691 return float32_zero;
10694 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
10695 * preserving the parity of the exponent. */
10697 f64_frac = ((uint64_t) f32_frac) << 29;
10698 if (f32_exp == 0) {
10699 while (extract64(f64_frac, 51, 1) == 0) {
10700 f64_frac = f64_frac << 1;
10701 f32_exp = f32_exp-1;
10703 f64_frac = extract64(f64_frac, 0, 51) << 1;
10706 if (extract64(f32_exp, 0, 1) == 0) {
10707 f64 = make_float64(((uint64_t) f32_sbit) << 32
10708 | (0x3feULL << 52)
10709 | f64_frac);
10710 } else {
10711 f64 = make_float64(((uint64_t) f32_sbit) << 32
10712 | (0x3fdULL << 52)
10713 | f64_frac);
10716 result_exp = (380 - f32_exp) / 2;
10718 f64 = recip_sqrt_estimate(f64, s);
10720 val64 = float64_val(f64);
10722 val = ((result_exp & 0xff) << 23)
10723 | ((val64 >> 29) & 0x7fffff);
10724 return make_float32(val);
10727 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
10729 float_status *s = fpstp;
10730 float64 f64 = float64_squash_input_denormal(input, s);
10731 uint64_t val = float64_val(f64);
10732 uint64_t f64_sbit = 0x8000000000000000ULL & val;
10733 int64_t f64_exp = extract64(val, 52, 11);
10734 uint64_t f64_frac = extract64(val, 0, 52);
10735 int64_t result_exp;
10736 uint64_t result_frac;
10738 if (float64_is_any_nan(f64)) {
10739 float64 nan = f64;
10740 if (float64_is_signaling_nan(f64, s)) {
10741 float_raise(float_flag_invalid, s);
10742 nan = float64_maybe_silence_nan(f64, s);
10744 if (s->default_nan_mode) {
10745 nan = float64_default_nan(s);
10747 return nan;
10748 } else if (float64_is_zero(f64)) {
10749 float_raise(float_flag_divbyzero, s);
10750 return float64_set_sign(float64_infinity, float64_is_neg(f64));
10751 } else if (float64_is_neg(f64)) {
10752 float_raise(float_flag_invalid, s);
10753 return float64_default_nan(s);
10754 } else if (float64_is_infinity(f64)) {
10755 return float64_zero;
10758 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
10759 * preserving the parity of the exponent. */
10761 if (f64_exp == 0) {
10762 while (extract64(f64_frac, 51, 1) == 0) {
10763 f64_frac = f64_frac << 1;
10764 f64_exp = f64_exp - 1;
10766 f64_frac = extract64(f64_frac, 0, 51) << 1;
10769 if (extract64(f64_exp, 0, 1) == 0) {
10770 f64 = make_float64(f64_sbit
10771 | (0x3feULL << 52)
10772 | f64_frac);
10773 } else {
10774 f64 = make_float64(f64_sbit
10775 | (0x3fdULL << 52)
10776 | f64_frac);
10779 result_exp = (3068 - f64_exp) / 2;
10781 f64 = recip_sqrt_estimate(f64, s);
10783 result_frac = extract64(float64_val(f64), 0, 52);
10785 return make_float64(f64_sbit |
10786 ((result_exp & 0x7ff) << 52) |
10787 result_frac);
10790 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
10792 float_status *s = fpstp;
10793 float64 f64;
10795 if ((a & 0x80000000) == 0) {
10796 return 0xffffffff;
10799 f64 = make_float64((0x3feULL << 52)
10800 | ((int64_t)(a & 0x7fffffff) << 21));
10802 f64 = recip_estimate(f64, s);
10804 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
10807 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
10809 float_status *fpst = fpstp;
10810 float64 f64;
10812 if ((a & 0xc0000000) == 0) {
10813 return 0xffffffff;
10816 if (a & 0x80000000) {
10817 f64 = make_float64((0x3feULL << 52)
10818 | ((uint64_t)(a & 0x7fffffff) << 21));
10819 } else { /* bits 31-30 == '01' */
10820 f64 = make_float64((0x3fdULL << 52)
10821 | ((uint64_t)(a & 0x3fffffff) << 22));
10824 f64 = recip_sqrt_estimate(f64, fpst);
10826 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
10829 /* VFPv4 fused multiply-accumulate */
10830 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
10832 float_status *fpst = fpstp;
10833 return float32_muladd(a, b, c, 0, fpst);
10836 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
10838 float_status *fpst = fpstp;
10839 return float64_muladd(a, b, c, 0, fpst);
10842 /* ARMv8 round to integral */
10843 float32 HELPER(rints_exact)(float32 x, void *fp_status)
10845 return float32_round_to_int(x, fp_status);
10848 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
10850 return float64_round_to_int(x, fp_status);
10853 float32 HELPER(rints)(float32 x, void *fp_status)
10855 int old_flags = get_float_exception_flags(fp_status), new_flags;
10856 float32 ret;
10858 ret = float32_round_to_int(x, fp_status);
10860 /* Suppress any inexact exceptions the conversion produced */
10861 if (!(old_flags & float_flag_inexact)) {
10862 new_flags = get_float_exception_flags(fp_status);
10863 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10866 return ret;
10869 float64 HELPER(rintd)(float64 x, void *fp_status)
10871 int old_flags = get_float_exception_flags(fp_status), new_flags;
10872 float64 ret;
10874 ret = float64_round_to_int(x, fp_status);
10876 new_flags = get_float_exception_flags(fp_status);
10878 /* Suppress any inexact exceptions the conversion produced */
10879 if (!(old_flags & float_flag_inexact)) {
10880 new_flags = get_float_exception_flags(fp_status);
10881 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10884 return ret;
10887 /* Convert ARM rounding mode to softfloat */
10888 int arm_rmode_to_sf(int rmode)
10890 switch (rmode) {
10891 case FPROUNDING_TIEAWAY:
10892 rmode = float_round_ties_away;
10893 break;
10894 case FPROUNDING_ODD:
10895 /* FIXME: add support for TIEAWAY and ODD */
10896 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
10897 rmode);
10898 case FPROUNDING_TIEEVEN:
10899 default:
10900 rmode = float_round_nearest_even;
10901 break;
10902 case FPROUNDING_POSINF:
10903 rmode = float_round_up;
10904 break;
10905 case FPROUNDING_NEGINF:
10906 rmode = float_round_down;
10907 break;
10908 case FPROUNDING_ZERO:
10909 rmode = float_round_to_zero;
10910 break;
10912 return rmode;
10915 /* CRC helpers.
10916 * The upper bytes of val (above the number specified by 'bytes') must have
10917 * been zeroed out by the caller.
10919 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10921 uint8_t buf[4];
10923 stl_le_p(buf, val);
10925 /* zlib crc32 converts the accumulator and output to one's complement. */
10926 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10929 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10931 uint8_t buf[4];
10933 stl_le_p(buf, val);
10935 /* Linux crc32c converts the output to one's complement. */
10936 return crc32c(acc, buf, bytes) ^ 0xffffffff;