host/include/generic/host/atomic128: Fix compilation problem with Clang 17
[qemu/kevin.git] / target / sparc / ldst_helper.c
blob09066d548785b8351403d26e654dca23f44592dc
1 /*
2 * Helpers for loads and stores
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "tcg/tcg.h"
24 #include "exec/helper-proto.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "asi.h"
29 //#define DEBUG_MMU
30 //#define DEBUG_MXCC
31 //#define DEBUG_UNASSIGNED
32 //#define DEBUG_ASI
33 //#define DEBUG_CACHE_CONTROL
35 #ifdef DEBUG_MMU
36 #define DPRINTF_MMU(fmt, ...) \
37 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #endif
42 #ifdef DEBUG_MXCC
43 #define DPRINTF_MXCC(fmt, ...) \
44 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #endif
49 #ifdef DEBUG_ASI
50 #define DPRINTF_ASI(fmt, ...) \
51 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
52 #endif
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
56 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
59 #endif
61 #ifdef TARGET_SPARC64
62 #ifndef TARGET_ABI32
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
64 #else
65 #define AM_CHECK(env1) (1)
66 #endif
67 #endif
69 #define QT0 (env->qt0)
70 #define QT1 (env->qt1)
72 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
73 /* Calculates TSB pointer value for fault page size
74 * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
75 * UA2005 holds the page size configuration in mmu_ctx registers */
76 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
77 const SparcV9MMU *mmu, const int idx)
79 uint64_t tsb_register;
80 int page_size;
81 if (cpu_has_hypervisor(env)) {
82 int tsb_index = 0;
83 int ctx = mmu->tag_access & 0x1fffULL;
84 uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
85 tsb_index = idx;
86 tsb_index |= ctx ? 2 : 0;
87 page_size = idx ? ctx_register >> 8 : ctx_register;
88 page_size &= 7;
89 tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
90 } else {
91 page_size = idx;
92 tsb_register = mmu->tsb;
94 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
95 int tsb_size = tsb_register & 0xf;
97 uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
99 /* move va bits to correct position,
100 * the context bits will be masked out later */
101 uint64_t va = mmu->tag_access >> (3 * page_size + 9);
103 /* calculate tsb_base mask and adjust va if split is in use */
104 if (tsb_split) {
105 if (idx == 0) {
106 va &= ~(1ULL << (13 + tsb_size));
107 } else {
108 va |= (1ULL << (13 + tsb_size));
110 tsb_base_mask <<= 1;
113 return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
116 /* Calculates tag target register value by reordering bits
117 in tag access register */
118 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
120 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
123 static void replace_tlb_entry(SparcTLBEntry *tlb,
124 uint64_t tlb_tag, uint64_t tlb_tte,
125 CPUSPARCState *env)
127 target_ulong mask, size, va, offset;
129 /* flush page range if translation is valid */
130 if (TTE_IS_VALID(tlb->tte)) {
131 CPUState *cs = env_cpu(env);
133 size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
134 mask = 1ULL + ~size;
136 va = tlb->tag & mask;
138 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
139 tlb_flush_page(cs, va + offset);
143 tlb->tag = tlb_tag;
144 tlb->tte = tlb_tte;
147 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
148 const char *strmmu, CPUSPARCState *env1)
150 unsigned int i;
151 target_ulong mask;
152 uint64_t context;
154 int is_demap_context = (demap_addr >> 6) & 1;
156 /* demap context */
157 switch ((demap_addr >> 4) & 3) {
158 case 0: /* primary */
159 context = env1->dmmu.mmu_primary_context;
160 break;
161 case 1: /* secondary */
162 context = env1->dmmu.mmu_secondary_context;
163 break;
164 case 2: /* nucleus */
165 context = 0;
166 break;
167 case 3: /* reserved */
168 default:
169 return;
172 for (i = 0; i < 64; i++) {
173 if (TTE_IS_VALID(tlb[i].tte)) {
175 if (is_demap_context) {
176 /* will remove non-global entries matching context value */
177 if (TTE_IS_GLOBAL(tlb[i].tte) ||
178 !tlb_compare_context(&tlb[i], context)) {
179 continue;
181 } else {
182 /* demap page
183 will remove any entry matching VA */
184 mask = 0xffffffffffffe000ULL;
185 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
187 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
188 continue;
191 /* entry should be global or matching context value */
192 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
193 !tlb_compare_context(&tlb[i], context)) {
194 continue;
198 replace_tlb_entry(&tlb[i], 0, 0, env1);
199 #ifdef DEBUG_MMU
200 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
201 dump_mmu(env1);
202 #endif
207 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
208 uint64_t sun4v_tte)
210 uint64_t sun4u_tte;
211 if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
212 /* is already in the sun4u format */
213 return sun4v_tte;
215 sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
216 sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
217 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
218 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
219 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
220 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
221 TTE_SIDEEFFECT_BIT);
222 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
223 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
224 return sun4u_tte;
227 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
228 uint64_t tlb_tag, uint64_t tlb_tte,
229 const char *strmmu, CPUSPARCState *env1,
230 uint64_t addr)
232 unsigned int i, replace_used;
234 tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
235 if (cpu_has_hypervisor(env1)) {
236 uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
237 uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
238 uint32_t new_ctx = tlb_tag & 0x1fffU;
239 for (i = 0; i < 64; i++) {
240 uint32_t ctx = tlb[i].tag & 0x1fffU;
241 /* check if new mapping overlaps an existing one */
242 if (new_ctx == ctx) {
243 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
244 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
245 if (new_vaddr == vaddr
246 || (new_vaddr < vaddr + size
247 && vaddr < new_vaddr + new_size)) {
248 DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
249 new_vaddr);
250 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
251 return;
257 /* Try replacing invalid entry */
258 for (i = 0; i < 64; i++) {
259 if (!TTE_IS_VALID(tlb[i].tte)) {
260 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
261 #ifdef DEBUG_MMU
262 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
263 dump_mmu(env1);
264 #endif
265 return;
269 /* All entries are valid, try replacing unlocked entry */
271 for (replace_used = 0; replace_used < 2; ++replace_used) {
273 /* Used entries are not replaced on first pass */
275 for (i = 0; i < 64; i++) {
276 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
278 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
279 #ifdef DEBUG_MMU
280 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
281 strmmu, (replace_used ? "used" : "unused"), i);
282 dump_mmu(env1);
283 #endif
284 return;
288 /* Now reset used bit and search for unused entries again */
290 for (i = 0; i < 64; i++) {
291 TTE_SET_UNUSED(tlb[i].tte);
295 #ifdef DEBUG_MMU
296 DPRINTF_MMU("%s lru replacement: no free entries available, "
297 "replacing the last one\n", strmmu);
298 #endif
299 /* corner case: the last entry is replaced anyway */
300 replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
303 #endif
305 #ifdef TARGET_SPARC64
306 /* returns true if access using this ASI is to have address translated by MMU
307 otherwise access is to raw physical address */
308 /* TODO: check sparc32 bits */
309 static inline int is_translating_asi(int asi)
311 /* Ultrasparc IIi translating asi
312 - note this list is defined by cpu implementation
314 switch (asi) {
315 case 0x04 ... 0x11:
316 case 0x16 ... 0x19:
317 case 0x1E ... 0x1F:
318 case 0x24 ... 0x2C:
319 case 0x70 ... 0x73:
320 case 0x78 ... 0x79:
321 case 0x80 ... 0xFF:
322 return 1;
324 default:
325 return 0;
329 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
331 if (AM_CHECK(env1)) {
332 addr &= 0xffffffffULL;
334 return addr;
337 static inline target_ulong asi_address_mask(CPUSPARCState *env,
338 int asi, target_ulong addr)
340 if (is_translating_asi(asi)) {
341 addr = address_mask(env, addr);
343 return addr;
346 #ifndef CONFIG_USER_ONLY
347 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
349 /* ASIs >= 0x80 are user mode.
350 * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
351 * ASIs <= 0x2f are super mode.
353 if (asi < 0x80
354 && !cpu_hypervisor_mode(env)
355 && (!cpu_supervisor_mode(env)
356 || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
357 cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
360 #endif /* !CONFIG_USER_ONLY */
361 #endif
363 #if defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)
364 static void do_check_align(CPUSPARCState *env, target_ulong addr,
365 uint32_t align, uintptr_t ra)
367 if (addr & align) {
368 cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
371 #endif
373 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
374 defined(DEBUG_MXCC)
375 static void dump_mxcc(CPUSPARCState *env)
377 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
378 "\n",
379 env->mxccdata[0], env->mxccdata[1],
380 env->mxccdata[2], env->mxccdata[3]);
381 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
382 "\n"
383 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
384 "\n",
385 env->mxccregs[0], env->mxccregs[1],
386 env->mxccregs[2], env->mxccregs[3],
387 env->mxccregs[4], env->mxccregs[5],
388 env->mxccregs[6], env->mxccregs[7]);
390 #endif
392 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
393 && defined(DEBUG_ASI)
394 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
395 uint64_t r1)
397 switch (size) {
398 case 1:
399 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
400 addr, asi, r1 & 0xff);
401 break;
402 case 2:
403 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
404 addr, asi, r1 & 0xffff);
405 break;
406 case 4:
407 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
408 addr, asi, r1 & 0xffffffff);
409 break;
410 case 8:
411 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
412 addr, asi, r1);
413 break;
416 #endif
418 #ifndef CONFIG_USER_ONLY
419 #ifndef TARGET_SPARC64
420 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
421 bool is_write, bool is_exec, int is_asi,
422 unsigned size, uintptr_t retaddr)
424 SPARCCPU *cpu = SPARC_CPU(cs);
425 CPUSPARCState *env = &cpu->env;
426 int fault_type;
428 #ifdef DEBUG_UNASSIGNED
429 if (is_asi) {
430 printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
431 " asi 0x%02x from " TARGET_FMT_lx "\n",
432 is_exec ? "exec" : is_write ? "write" : "read", size,
433 size == 1 ? "" : "s", addr, is_asi, env->pc);
434 } else {
435 printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
436 " from " TARGET_FMT_lx "\n",
437 is_exec ? "exec" : is_write ? "write" : "read", size,
438 size == 1 ? "" : "s", addr, env->pc);
440 #endif
441 /* Don't overwrite translation and access faults */
442 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
443 if ((fault_type > 4) || (fault_type == 0)) {
444 env->mmuregs[3] = 0; /* Fault status register */
445 if (is_asi) {
446 env->mmuregs[3] |= 1 << 16;
448 if (env->psrs) {
449 env->mmuregs[3] |= 1 << 5;
451 if (is_exec) {
452 env->mmuregs[3] |= 1 << 6;
454 if (is_write) {
455 env->mmuregs[3] |= 1 << 7;
457 env->mmuregs[3] |= (5 << 2) | 2;
458 /* SuperSPARC will never place instruction fault addresses in the FAR */
459 if (!is_exec) {
460 env->mmuregs[4] = addr; /* Fault address register */
463 /* overflow (same type fault was not read before another fault) */
464 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
465 env->mmuregs[3] |= 1;
468 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
469 int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
470 cpu_raise_exception_ra(env, tt, retaddr);
474 * flush neverland mappings created during no-fault mode,
475 * so the sequential MMU faults report proper fault types
477 if (env->mmuregs[0] & MMU_NF) {
478 tlb_flush(cs);
481 #else
482 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
483 bool is_write, bool is_exec, int is_asi,
484 unsigned size, uintptr_t retaddr)
486 SPARCCPU *cpu = SPARC_CPU(cs);
487 CPUSPARCState *env = &cpu->env;
489 #ifdef DEBUG_UNASSIGNED
490 printf("Unassigned mem access to " HWADDR_FMT_plx " from " TARGET_FMT_lx
491 "\n", addr, env->pc);
492 #endif
494 if (is_exec) { /* XXX has_hypervisor */
495 if (env->lsu & (IMMU_E)) {
496 cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
497 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
498 cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
500 } else {
501 if (env->lsu & (DMMU_E)) {
502 cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
503 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
504 cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
508 #endif
509 #endif
511 #ifndef TARGET_SPARC64
512 #ifndef CONFIG_USER_ONLY
515 /* Leon3 cache control */
517 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
518 uint64_t val, int size)
520 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
521 addr, val, size);
523 if (size != 4) {
524 DPRINTF_CACHE_CONTROL("32bits only\n");
525 return;
528 switch (addr) {
529 case 0x00: /* Cache control */
531 /* These values must always be read as zeros */
532 val &= ~CACHE_CTRL_FD;
533 val &= ~CACHE_CTRL_FI;
534 val &= ~CACHE_CTRL_IB;
535 val &= ~CACHE_CTRL_IP;
536 val &= ~CACHE_CTRL_DP;
538 env->cache_control = val;
539 break;
540 case 0x04: /* Instruction cache configuration */
541 case 0x08: /* Data cache configuration */
542 /* Read Only */
543 break;
544 default:
545 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
546 break;
550 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
551 int size)
553 uint64_t ret = 0;
555 if (size != 4) {
556 DPRINTF_CACHE_CONTROL("32bits only\n");
557 return 0;
560 switch (addr) {
561 case 0x00: /* Cache control */
562 ret = env->cache_control;
563 break;
565 /* Configuration registers are read and only always keep those
566 predefined values */
568 case 0x04: /* Instruction cache configuration */
569 ret = 0x10220000;
570 break;
571 case 0x08: /* Data cache configuration */
572 ret = 0x18220000;
573 break;
574 default:
575 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
576 break;
578 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
579 addr, ret, size);
580 return ret;
583 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
584 int asi, uint32_t memop)
586 int size = 1 << (memop & MO_SIZE);
587 int sign = memop & MO_SIGN;
588 CPUState *cs = env_cpu(env);
589 uint64_t ret = 0;
590 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
591 uint32_t last_addr = addr;
592 #endif
593 MemOpIdx oi;
595 do_check_align(env, addr, size - 1, GETPC());
596 switch (asi) {
597 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
598 /* case ASI_LEON_CACHEREGS: Leon3 cache control */
599 switch (addr) {
600 case 0x00: /* Leon3 Cache Control */
601 case 0x08: /* Leon3 Instruction Cache config */
602 case 0x0C: /* Leon3 Date Cache config */
603 if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
604 ret = leon3_cache_control_ld(env, addr, size);
606 break;
607 case 0x01c00a00: /* MXCC control register */
608 if (size == 8) {
609 ret = env->mxccregs[3];
610 } else {
611 qemu_log_mask(LOG_UNIMP,
612 "%08x: unimplemented access size: %d\n", addr,
613 size);
615 break;
616 case 0x01c00a04: /* MXCC control register */
617 if (size == 4) {
618 ret = env->mxccregs[3];
619 } else {
620 qemu_log_mask(LOG_UNIMP,
621 "%08x: unimplemented access size: %d\n", addr,
622 size);
624 break;
625 case 0x01c00c00: /* Module reset register */
626 if (size == 8) {
627 ret = env->mxccregs[5];
628 /* should we do something here? */
629 } else {
630 qemu_log_mask(LOG_UNIMP,
631 "%08x: unimplemented access size: %d\n", addr,
632 size);
634 break;
635 case 0x01c00f00: /* MBus port address register */
636 if (size == 8) {
637 ret = env->mxccregs[7];
638 } else {
639 qemu_log_mask(LOG_UNIMP,
640 "%08x: unimplemented access size: %d\n", addr,
641 size);
643 break;
644 default:
645 qemu_log_mask(LOG_UNIMP,
646 "%08x: unimplemented address, size: %d\n", addr,
647 size);
648 break;
650 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
651 "addr = %08x -> ret = %" PRIx64 ","
652 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
653 #ifdef DEBUG_MXCC
654 dump_mxcc(env);
655 #endif
656 break;
657 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
658 case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
660 int mmulev;
662 mmulev = (addr >> 8) & 15;
663 if (mmulev > 4) {
664 ret = 0;
665 } else {
666 ret = mmu_probe(env, addr, mmulev);
668 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
669 addr, mmulev, ret);
671 break;
672 case ASI_M_MMUREGS: /* SuperSparc MMU regs */
673 case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
675 int reg = (addr >> 8) & 0x1f;
677 ret = env->mmuregs[reg];
678 if (reg == 3) { /* Fault status cleared on read */
679 env->mmuregs[3] = 0;
680 } else if (reg == 0x13) { /* Fault status read */
681 ret = env->mmuregs[3];
682 } else if (reg == 0x14) { /* Fault address read */
683 ret = env->mmuregs[4];
685 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
687 break;
688 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
689 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */
690 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */
691 break;
692 case ASI_KERNELTXT: /* Supervisor code access */
693 oi = make_memop_idx(memop, cpu_mmu_index(env, true));
694 switch (size) {
695 case 1:
696 ret = cpu_ldb_code_mmu(env, addr, oi, GETPC());
697 break;
698 case 2:
699 ret = cpu_ldw_code_mmu(env, addr, oi, GETPC());
700 break;
701 default:
702 case 4:
703 ret = cpu_ldl_code_mmu(env, addr, oi, GETPC());
704 break;
705 case 8:
706 ret = cpu_ldq_code_mmu(env, addr, oi, GETPC());
707 break;
709 break;
710 case ASI_M_TXTC_TAG: /* SparcStation 5 I-cache tag */
711 case ASI_M_TXTC_DATA: /* SparcStation 5 I-cache data */
712 case ASI_M_DATAC_TAG: /* SparcStation 5 D-cache tag */
713 case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
714 break;
715 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
717 MemTxResult result;
718 hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
720 switch (size) {
721 case 1:
722 ret = address_space_ldub(cs->as, access_addr,
723 MEMTXATTRS_UNSPECIFIED, &result);
724 break;
725 case 2:
726 ret = address_space_lduw(cs->as, access_addr,
727 MEMTXATTRS_UNSPECIFIED, &result);
728 break;
729 default:
730 case 4:
731 ret = address_space_ldl(cs->as, access_addr,
732 MEMTXATTRS_UNSPECIFIED, &result);
733 break;
734 case 8:
735 ret = address_space_ldq(cs->as, access_addr,
736 MEMTXATTRS_UNSPECIFIED, &result);
737 break;
740 if (result != MEMTX_OK) {
741 sparc_raise_mmu_fault(cs, access_addr, false, false, false,
742 size, GETPC());
744 break;
746 case 0x30: /* Turbosparc secondary cache diagnostic */
747 case 0x31: /* Turbosparc RAM snoop */
748 case 0x32: /* Turbosparc page table descriptor diagnostic */
749 case 0x39: /* data cache diagnostic register */
750 ret = 0;
751 break;
752 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
754 int reg = (addr >> 8) & 3;
756 switch (reg) {
757 case 0: /* Breakpoint Value (Addr) */
758 ret = env->mmubpregs[reg];
759 break;
760 case 1: /* Breakpoint Mask */
761 ret = env->mmubpregs[reg];
762 break;
763 case 2: /* Breakpoint Control */
764 ret = env->mmubpregs[reg];
765 break;
766 case 3: /* Breakpoint Status */
767 ret = env->mmubpregs[reg];
768 env->mmubpregs[reg] = 0ULL;
769 break;
771 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
772 ret);
774 break;
775 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
776 ret = env->mmubpctrv;
777 break;
778 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
779 ret = env->mmubpctrc;
780 break;
781 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
782 ret = env->mmubpctrs;
783 break;
784 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
785 ret = env->mmubpaction;
786 break;
787 case ASI_USERTXT: /* User code access, XXX */
788 default:
789 sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
790 ret = 0;
791 break;
793 case ASI_USERDATA: /* User data access */
794 case ASI_KERNELDATA: /* Supervisor data access */
795 case ASI_P: /* Implicit primary context data access (v9 only?) */
796 case ASI_M_BYPASS: /* MMU passthrough */
797 case ASI_LEON_BYPASS: /* LEON MMU passthrough */
798 /* These are always handled inline. */
799 g_assert_not_reached();
801 if (sign) {
802 switch (size) {
803 case 1:
804 ret = (int8_t) ret;
805 break;
806 case 2:
807 ret = (int16_t) ret;
808 break;
809 case 4:
810 ret = (int32_t) ret;
811 break;
812 default:
813 break;
816 #ifdef DEBUG_ASI
817 dump_asi("read ", last_addr, asi, size, ret);
818 #endif
819 return ret;
822 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
823 int asi, uint32_t memop)
825 int size = 1 << (memop & MO_SIZE);
826 CPUState *cs = env_cpu(env);
828 do_check_align(env, addr, size - 1, GETPC());
829 switch (asi) {
830 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
831 /* case ASI_LEON_CACHEREGS: Leon3 cache control */
832 switch (addr) {
833 case 0x00: /* Leon3 Cache Control */
834 case 0x08: /* Leon3 Instruction Cache config */
835 case 0x0C: /* Leon3 Date Cache config */
836 if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
837 leon3_cache_control_st(env, addr, val, size);
839 break;
841 case 0x01c00000: /* MXCC stream data register 0 */
842 if (size == 8) {
843 env->mxccdata[0] = val;
844 } else {
845 qemu_log_mask(LOG_UNIMP,
846 "%08x: unimplemented access size: %d\n", addr,
847 size);
849 break;
850 case 0x01c00008: /* MXCC stream data register 1 */
851 if (size == 8) {
852 env->mxccdata[1] = val;
853 } else {
854 qemu_log_mask(LOG_UNIMP,
855 "%08x: unimplemented access size: %d\n", addr,
856 size);
858 break;
859 case 0x01c00010: /* MXCC stream data register 2 */
860 if (size == 8) {
861 env->mxccdata[2] = val;
862 } else {
863 qemu_log_mask(LOG_UNIMP,
864 "%08x: unimplemented access size: %d\n", addr,
865 size);
867 break;
868 case 0x01c00018: /* MXCC stream data register 3 */
869 if (size == 8) {
870 env->mxccdata[3] = val;
871 } else {
872 qemu_log_mask(LOG_UNIMP,
873 "%08x: unimplemented access size: %d\n", addr,
874 size);
876 break;
877 case 0x01c00100: /* MXCC stream source */
879 int i;
881 if (size == 8) {
882 env->mxccregs[0] = val;
883 } else {
884 qemu_log_mask(LOG_UNIMP,
885 "%08x: unimplemented access size: %d\n", addr,
886 size);
889 for (i = 0; i < 4; i++) {
890 MemTxResult result;
891 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
893 env->mxccdata[i] = address_space_ldq(cs->as,
894 access_addr,
895 MEMTXATTRS_UNSPECIFIED,
896 &result);
897 if (result != MEMTX_OK) {
898 /* TODO: investigate whether this is the right behaviour */
899 sparc_raise_mmu_fault(cs, access_addr, false, false,
900 false, size, GETPC());
903 break;
905 case 0x01c00200: /* MXCC stream destination */
907 int i;
909 if (size == 8) {
910 env->mxccregs[1] = val;
911 } else {
912 qemu_log_mask(LOG_UNIMP,
913 "%08x: unimplemented access size: %d\n", addr,
914 size);
917 for (i = 0; i < 4; i++) {
918 MemTxResult result;
919 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
921 address_space_stq(cs->as, access_addr, env->mxccdata[i],
922 MEMTXATTRS_UNSPECIFIED, &result);
924 if (result != MEMTX_OK) {
925 /* TODO: investigate whether this is the right behaviour */
926 sparc_raise_mmu_fault(cs, access_addr, true, false,
927 false, size, GETPC());
930 break;
932 case 0x01c00a00: /* MXCC control register */
933 if (size == 8) {
934 env->mxccregs[3] = val;
935 } else {
936 qemu_log_mask(LOG_UNIMP,
937 "%08x: unimplemented access size: %d\n", addr,
938 size);
940 break;
941 case 0x01c00a04: /* MXCC control register */
942 if (size == 4) {
943 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
944 | val;
945 } else {
946 qemu_log_mask(LOG_UNIMP,
947 "%08x: unimplemented access size: %d\n", addr,
948 size);
950 break;
951 case 0x01c00e00: /* MXCC error register */
952 /* writing a 1 bit clears the error */
953 if (size == 8) {
954 env->mxccregs[6] &= ~val;
955 } else {
956 qemu_log_mask(LOG_UNIMP,
957 "%08x: unimplemented access size: %d\n", addr,
958 size);
960 break;
961 case 0x01c00f00: /* MBus port address register */
962 if (size == 8) {
963 env->mxccregs[7] = val;
964 } else {
965 qemu_log_mask(LOG_UNIMP,
966 "%08x: unimplemented access size: %d\n", addr,
967 size);
969 break;
970 default:
971 qemu_log_mask(LOG_UNIMP,
972 "%08x: unimplemented address, size: %d\n", addr,
973 size);
974 break;
976 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
977 asi, size, addr, val);
978 #ifdef DEBUG_MXCC
979 dump_mxcc(env);
980 #endif
981 break;
982 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
983 case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
985 int mmulev;
987 mmulev = (addr >> 8) & 15;
988 DPRINTF_MMU("mmu flush level %d\n", mmulev);
989 switch (mmulev) {
990 case 0: /* flush page */
991 tlb_flush_page(cs, addr & 0xfffff000);
992 break;
993 case 1: /* flush segment (256k) */
994 case 2: /* flush region (16M) */
995 case 3: /* flush context (4G) */
996 case 4: /* flush entire */
997 tlb_flush(cs);
998 break;
999 default:
1000 break;
1002 #ifdef DEBUG_MMU
1003 dump_mmu(env);
1004 #endif
1006 break;
1007 case ASI_M_MMUREGS: /* write MMU regs */
1008 case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
1010 int reg = (addr >> 8) & 0x1f;
1011 uint32_t oldreg;
1013 oldreg = env->mmuregs[reg];
1014 switch (reg) {
1015 case 0: /* Control Register */
1016 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1017 (val & 0x00ffffff);
1018 /* Mappings generated during no-fault mode
1019 are invalid in normal mode. */
1020 if ((oldreg ^ env->mmuregs[reg])
1021 & (MMU_NF | env->def.mmu_bm)) {
1022 tlb_flush(cs);
1024 break;
1025 case 1: /* Context Table Pointer Register */
1026 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1027 break;
1028 case 2: /* Context Register */
1029 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1030 if (oldreg != env->mmuregs[reg]) {
1031 /* we flush when the MMU context changes because
1032 QEMU has no MMU context support */
1033 tlb_flush(cs);
1035 break;
1036 case 3: /* Synchronous Fault Status Register with Clear */
1037 case 4: /* Synchronous Fault Address Register */
1038 break;
1039 case 0x10: /* TLB Replacement Control Register */
1040 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1041 break;
1042 case 0x13: /* Synchronous Fault Status Register with Read
1043 and Clear */
1044 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1045 break;
1046 case 0x14: /* Synchronous Fault Address Register */
1047 env->mmuregs[4] = val;
1048 break;
1049 default:
1050 env->mmuregs[reg] = val;
1051 break;
1053 if (oldreg != env->mmuregs[reg]) {
1054 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1055 reg, oldreg, env->mmuregs[reg]);
1057 #ifdef DEBUG_MMU
1058 dump_mmu(env);
1059 #endif
1061 break;
1062 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1063 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */
1064 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */
1065 break;
1066 case ASI_M_TXTC_TAG: /* I-cache tag */
1067 case ASI_M_TXTC_DATA: /* I-cache data */
1068 case ASI_M_DATAC_TAG: /* D-cache tag */
1069 case ASI_M_DATAC_DATA: /* D-cache data */
1070 case ASI_M_FLUSH_PAGE: /* I/D-cache flush page */
1071 case ASI_M_FLUSH_SEG: /* I/D-cache flush segment */
1072 case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1073 case ASI_M_FLUSH_CTX: /* I/D-cache flush context */
1074 case ASI_M_FLUSH_USER: /* I/D-cache flush user */
1075 break;
1076 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1078 MemTxResult result;
1079 hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1081 switch (size) {
1082 case 1:
1083 address_space_stb(cs->as, access_addr, val,
1084 MEMTXATTRS_UNSPECIFIED, &result);
1085 break;
1086 case 2:
1087 address_space_stw(cs->as, access_addr, val,
1088 MEMTXATTRS_UNSPECIFIED, &result);
1089 break;
1090 case 4:
1091 default:
1092 address_space_stl(cs->as, access_addr, val,
1093 MEMTXATTRS_UNSPECIFIED, &result);
1094 break;
1095 case 8:
1096 address_space_stq(cs->as, access_addr, val,
1097 MEMTXATTRS_UNSPECIFIED, &result);
1098 break;
1100 if (result != MEMTX_OK) {
1101 sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1102 size, GETPC());
1105 break;
1106 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1107 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1108 Turbosparc snoop RAM */
1109 case 0x32: /* store buffer control or Turbosparc page table
1110 descriptor diagnostic */
1111 case 0x36: /* I-cache flash clear */
1112 case 0x37: /* D-cache flash clear */
1113 break;
1114 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1116 int reg = (addr >> 8) & 3;
1118 switch (reg) {
1119 case 0: /* Breakpoint Value (Addr) */
1120 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1121 break;
1122 case 1: /* Breakpoint Mask */
1123 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1124 break;
1125 case 2: /* Breakpoint Control */
1126 env->mmubpregs[reg] = (val & 0x7fULL);
1127 break;
1128 case 3: /* Breakpoint Status */
1129 env->mmubpregs[reg] = (val & 0xfULL);
1130 break;
1132 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1133 env->mmuregs[reg]);
1135 break;
1136 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1137 env->mmubpctrv = val & 0xffffffff;
1138 break;
1139 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1140 env->mmubpctrc = val & 0x3;
1141 break;
1142 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1143 env->mmubpctrs = val & 0x3;
1144 break;
1145 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1146 env->mmubpaction = val & 0x1fff;
1147 break;
1148 case ASI_USERTXT: /* User code access, XXX */
1149 case ASI_KERNELTXT: /* Supervisor code access, XXX */
1150 default:
1151 sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1152 break;
1154 case ASI_USERDATA: /* User data access */
1155 case ASI_KERNELDATA: /* Supervisor data access */
1156 case ASI_P:
1157 case ASI_M_BYPASS: /* MMU passthrough */
1158 case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1159 case ASI_M_BCOPY: /* Block copy, sta access */
1160 case ASI_M_BFILL: /* Block fill, stda access */
1161 /* These are always handled inline. */
1162 g_assert_not_reached();
1164 #ifdef DEBUG_ASI
1165 dump_asi("write", addr, asi, size, val);
1166 #endif
1169 #endif /* CONFIG_USER_ONLY */
1170 #else /* TARGET_SPARC64 */
1172 #ifdef CONFIG_USER_ONLY
1173 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1174 int asi, uint32_t memop)
1176 int size = 1 << (memop & MO_SIZE);
1177 int sign = memop & MO_SIGN;
1178 uint64_t ret = 0;
1180 if (asi < 0x80) {
1181 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1183 do_check_align(env, addr, size - 1, GETPC());
1184 addr = asi_address_mask(env, asi, addr);
1186 switch (asi) {
1187 case ASI_PNF: /* Primary no-fault */
1188 case ASI_PNFL: /* Primary no-fault LE */
1189 case ASI_SNF: /* Secondary no-fault */
1190 case ASI_SNFL: /* Secondary no-fault LE */
1191 if (!page_check_range(addr, size, PAGE_READ)) {
1192 ret = 0;
1193 break;
1195 switch (size) {
1196 case 1:
1197 ret = cpu_ldub_data(env, addr);
1198 break;
1199 case 2:
1200 ret = cpu_lduw_data(env, addr);
1201 break;
1202 case 4:
1203 ret = cpu_ldl_data(env, addr);
1204 break;
1205 case 8:
1206 ret = cpu_ldq_data(env, addr);
1207 break;
1208 default:
1209 g_assert_not_reached();
1211 break;
1212 break;
1214 case ASI_P: /* Primary */
1215 case ASI_PL: /* Primary LE */
1216 case ASI_S: /* Secondary */
1217 case ASI_SL: /* Secondary LE */
1218 /* These are always handled inline. */
1219 g_assert_not_reached();
1221 default:
1222 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1225 /* Convert from little endian */
1226 switch (asi) {
1227 case ASI_PNFL: /* Primary no-fault LE */
1228 case ASI_SNFL: /* Secondary no-fault LE */
1229 switch (size) {
1230 case 2:
1231 ret = bswap16(ret);
1232 break;
1233 case 4:
1234 ret = bswap32(ret);
1235 break;
1236 case 8:
1237 ret = bswap64(ret);
1238 break;
1242 /* Convert to signed number */
1243 if (sign) {
1244 switch (size) {
1245 case 1:
1246 ret = (int8_t) ret;
1247 break;
1248 case 2:
1249 ret = (int16_t) ret;
1250 break;
1251 case 4:
1252 ret = (int32_t) ret;
1253 break;
1256 #ifdef DEBUG_ASI
1257 dump_asi("read", addr, asi, size, ret);
1258 #endif
1259 return ret;
1262 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1263 int asi, uint32_t memop)
1265 int size = 1 << (memop & MO_SIZE);
1266 #ifdef DEBUG_ASI
1267 dump_asi("write", addr, asi, size, val);
1268 #endif
1269 if (asi < 0x80) {
1270 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1272 do_check_align(env, addr, size - 1, GETPC());
1274 switch (asi) {
1275 case ASI_P: /* Primary */
1276 case ASI_PL: /* Primary LE */
1277 case ASI_S: /* Secondary */
1278 case ASI_SL: /* Secondary LE */
1279 /* These are always handled inline. */
1280 g_assert_not_reached();
1282 case ASI_PNF: /* Primary no-fault, RO */
1283 case ASI_SNF: /* Secondary no-fault, RO */
1284 case ASI_PNFL: /* Primary no-fault LE, RO */
1285 case ASI_SNFL: /* Secondary no-fault LE, RO */
1286 default:
1287 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1291 #else /* CONFIG_USER_ONLY */
1293 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1294 int asi, uint32_t memop)
1296 int size = 1 << (memop & MO_SIZE);
1297 int sign = memop & MO_SIGN;
1298 CPUState *cs = env_cpu(env);
1299 uint64_t ret = 0;
1300 #if defined(DEBUG_ASI)
1301 target_ulong last_addr = addr;
1302 #endif
1304 asi &= 0xff;
1306 do_check_asi(env, asi, GETPC());
1307 do_check_align(env, addr, size - 1, GETPC());
1308 addr = asi_address_mask(env, asi, addr);
1310 switch (asi) {
1311 case ASI_PNF:
1312 case ASI_PNFL:
1313 case ASI_SNF:
1314 case ASI_SNFL:
1316 MemOpIdx oi;
1317 int idx = (env->pstate & PS_PRIV
1318 ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1319 : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1321 if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1322 #ifdef DEBUG_ASI
1323 dump_asi("read ", last_addr, asi, size, ret);
1324 #endif
1325 /* exception_index is set in get_physical_address_data. */
1326 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1328 oi = make_memop_idx(memop, idx);
1329 switch (size) {
1330 case 1:
1331 ret = cpu_ldb_mmu(env, addr, oi, GETPC());
1332 break;
1333 case 2:
1334 ret = cpu_ldw_mmu(env, addr, oi, GETPC());
1335 break;
1336 case 4:
1337 ret = cpu_ldl_mmu(env, addr, oi, GETPC());
1338 break;
1339 case 8:
1340 ret = cpu_ldq_mmu(env, addr, oi, GETPC());
1341 break;
1342 default:
1343 g_assert_not_reached();
1346 break;
1348 case ASI_AIUP: /* As if user primary */
1349 case ASI_AIUS: /* As if user secondary */
1350 case ASI_AIUPL: /* As if user primary LE */
1351 case ASI_AIUSL: /* As if user secondary LE */
1352 case ASI_P: /* Primary */
1353 case ASI_S: /* Secondary */
1354 case ASI_PL: /* Primary LE */
1355 case ASI_SL: /* Secondary LE */
1356 case ASI_REAL: /* Bypass */
1357 case ASI_REAL_IO: /* Bypass, non-cacheable */
1358 case ASI_REAL_L: /* Bypass LE */
1359 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1360 case ASI_N: /* Nucleus */
1361 case ASI_NL: /* Nucleus Little Endian (LE) */
1362 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */
1363 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1364 case ASI_TWINX_AIUP: /* As if user primary, twinx */
1365 case ASI_TWINX_AIUS: /* As if user secondary, twinx */
1366 case ASI_TWINX_REAL: /* Real address, twinx */
1367 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1368 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1369 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1370 case ASI_TWINX_N: /* Nucleus, twinx */
1371 case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1372 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1373 case ASI_TWINX_P: /* Primary, twinx */
1374 case ASI_TWINX_PL: /* Primary, twinx, LE */
1375 case ASI_TWINX_S: /* Secondary, twinx */
1376 case ASI_TWINX_SL: /* Secondary, twinx, LE */
1377 /* These are always handled inline. */
1378 g_assert_not_reached();
1380 case ASI_UPA_CONFIG: /* UPA config */
1381 /* XXX */
1382 break;
1383 case ASI_LSU_CONTROL: /* LSU */
1384 ret = env->lsu;
1385 break;
1386 case ASI_IMMU: /* I-MMU regs */
1388 int reg = (addr >> 3) & 0xf;
1389 switch (reg) {
1390 case 0:
1391 /* 0x00 I-TSB Tag Target register */
1392 ret = ultrasparc_tag_target(env->immu.tag_access);
1393 break;
1394 case 3: /* SFSR */
1395 ret = env->immu.sfsr;
1396 break;
1397 case 5: /* TSB access */
1398 ret = env->immu.tsb;
1399 break;
1400 case 6:
1401 /* 0x30 I-TSB Tag Access register */
1402 ret = env->immu.tag_access;
1403 break;
1404 default:
1405 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1406 ret = 0;
1408 break;
1410 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1412 /* env->immuregs[5] holds I-MMU TSB register value
1413 env->immuregs[6] holds I-MMU Tag Access register value */
1414 ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1415 break;
1417 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1419 /* env->immuregs[5] holds I-MMU TSB register value
1420 env->immuregs[6] holds I-MMU Tag Access register value */
1421 ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1422 break;
1424 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1426 int reg = (addr >> 3) & 0x3f;
1428 ret = env->itlb[reg].tte;
1429 break;
1431 case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1433 int reg = (addr >> 3) & 0x3f;
1435 ret = env->itlb[reg].tag;
1436 break;
1438 case ASI_DMMU: /* D-MMU regs */
1440 int reg = (addr >> 3) & 0xf;
1441 switch (reg) {
1442 case 0:
1443 /* 0x00 D-TSB Tag Target register */
1444 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1445 break;
1446 case 1: /* 0x08 Primary Context */
1447 ret = env->dmmu.mmu_primary_context;
1448 break;
1449 case 2: /* 0x10 Secondary Context */
1450 ret = env->dmmu.mmu_secondary_context;
1451 break;
1452 case 3: /* SFSR */
1453 ret = env->dmmu.sfsr;
1454 break;
1455 case 4: /* 0x20 SFAR */
1456 ret = env->dmmu.sfar;
1457 break;
1458 case 5: /* 0x28 TSB access */
1459 ret = env->dmmu.tsb;
1460 break;
1461 case 6: /* 0x30 D-TSB Tag Access register */
1462 ret = env->dmmu.tag_access;
1463 break;
1464 case 7:
1465 ret = env->dmmu.virtual_watchpoint;
1466 break;
1467 case 8:
1468 ret = env->dmmu.physical_watchpoint;
1469 break;
1470 default:
1471 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1472 ret = 0;
1474 break;
1476 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1478 /* env->dmmuregs[5] holds D-MMU TSB register value
1479 env->dmmuregs[6] holds D-MMU Tag Access register value */
1480 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1481 break;
1483 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1485 /* env->dmmuregs[5] holds D-MMU TSB register value
1486 env->dmmuregs[6] holds D-MMU Tag Access register value */
1487 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1488 break;
1490 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1492 int reg = (addr >> 3) & 0x3f;
1494 ret = env->dtlb[reg].tte;
1495 break;
1497 case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1499 int reg = (addr >> 3) & 0x3f;
1501 ret = env->dtlb[reg].tag;
1502 break;
1504 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1505 break;
1506 case ASI_INTR_RECEIVE: /* Interrupt data receive */
1507 ret = env->ivec_status;
1508 break;
1509 case ASI_INTR_R: /* Incoming interrupt vector, RO */
1511 int reg = (addr >> 4) & 0x3;
1512 if (reg < 3) {
1513 ret = env->ivec_data[reg];
1515 break;
1517 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1518 if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1519 /* Hyperprivileged access only */
1520 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1522 /* fall through */
1523 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1525 unsigned int i = (addr >> 3) & 0x7;
1526 ret = env->scratch[i];
1527 break;
1529 case ASI_MMU: /* UA2005 Context ID registers */
1530 switch ((addr >> 3) & 0x3) {
1531 case 1:
1532 ret = env->dmmu.mmu_primary_context;
1533 break;
1534 case 2:
1535 ret = env->dmmu.mmu_secondary_context;
1536 break;
1537 default:
1538 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1540 break;
1541 case ASI_DCACHE_DATA: /* D-cache data */
1542 case ASI_DCACHE_TAG: /* D-cache tag access */
1543 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1544 case ASI_AFSR: /* E-cache asynchronous fault status */
1545 case ASI_AFAR: /* E-cache asynchronous fault address */
1546 case ASI_EC_TAG_DATA: /* E-cache tag data */
1547 case ASI_IC_INSTR: /* I-cache instruction access */
1548 case ASI_IC_TAG: /* I-cache tag access */
1549 case ASI_IC_PRE_DECODE: /* I-cache predecode */
1550 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1551 case ASI_EC_W: /* E-cache tag */
1552 case ASI_EC_R: /* E-cache tag */
1553 break;
1554 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1555 case ASI_ITLB_DATA_IN: /* I-MMU data in, WO */
1556 case ASI_IMMU_DEMAP: /* I-MMU demap, WO */
1557 case ASI_DTLB_DATA_IN: /* D-MMU data in, WO */
1558 case ASI_DMMU_DEMAP: /* D-MMU demap, WO */
1559 case ASI_INTR_W: /* Interrupt vector, WO */
1560 default:
1561 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1562 ret = 0;
1563 break;
1566 /* Convert to signed number */
1567 if (sign) {
1568 switch (size) {
1569 case 1:
1570 ret = (int8_t) ret;
1571 break;
1572 case 2:
1573 ret = (int16_t) ret;
1574 break;
1575 case 4:
1576 ret = (int32_t) ret;
1577 break;
1578 default:
1579 break;
1582 #ifdef DEBUG_ASI
1583 dump_asi("read ", last_addr, asi, size, ret);
1584 #endif
1585 return ret;
1588 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1589 int asi, uint32_t memop)
1591 int size = 1 << (memop & MO_SIZE);
1592 CPUState *cs = env_cpu(env);
1594 #ifdef DEBUG_ASI
1595 dump_asi("write", addr, asi, size, val);
1596 #endif
1598 asi &= 0xff;
1600 do_check_asi(env, asi, GETPC());
1601 do_check_align(env, addr, size - 1, GETPC());
1602 addr = asi_address_mask(env, asi, addr);
1604 switch (asi) {
1605 case ASI_AIUP: /* As if user primary */
1606 case ASI_AIUS: /* As if user secondary */
1607 case ASI_AIUPL: /* As if user primary LE */
1608 case ASI_AIUSL: /* As if user secondary LE */
1609 case ASI_P: /* Primary */
1610 case ASI_S: /* Secondary */
1611 case ASI_PL: /* Primary LE */
1612 case ASI_SL: /* Secondary LE */
1613 case ASI_REAL: /* Bypass */
1614 case ASI_REAL_IO: /* Bypass, non-cacheable */
1615 case ASI_REAL_L: /* Bypass LE */
1616 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1617 case ASI_N: /* Nucleus */
1618 case ASI_NL: /* Nucleus Little Endian (LE) */
1619 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */
1620 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1621 case ASI_TWINX_AIUP: /* As if user primary, twinx */
1622 case ASI_TWINX_AIUS: /* As if user secondary, twinx */
1623 case ASI_TWINX_REAL: /* Real address, twinx */
1624 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1625 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1626 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1627 case ASI_TWINX_N: /* Nucleus, twinx */
1628 case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1629 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1630 case ASI_TWINX_P: /* Primary, twinx */
1631 case ASI_TWINX_PL: /* Primary, twinx, LE */
1632 case ASI_TWINX_S: /* Secondary, twinx */
1633 case ASI_TWINX_SL: /* Secondary, twinx, LE */
1634 /* These are always handled inline. */
1635 g_assert_not_reached();
1636 /* these ASIs have different functions on UltraSPARC-IIIi
1637 * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1639 case 0x31:
1640 case 0x32:
1641 case 0x39:
1642 case 0x3a:
1643 if (cpu_has_hypervisor(env)) {
1644 /* UA2005
1645 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1646 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1647 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1648 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1650 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1651 env->dmmu.sun4v_tsb_pointers[idx] = val;
1652 } else {
1653 goto illegal_insn;
1655 break;
1656 case 0x33:
1657 case 0x3b:
1658 if (cpu_has_hypervisor(env)) {
1659 /* UA2005
1660 * ASI_DMMU_CTX_ZERO_CONFIG
1661 * ASI_DMMU_CTX_NONZERO_CONFIG
1663 env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1664 } else {
1665 goto illegal_insn;
1667 break;
1668 case 0x35:
1669 case 0x36:
1670 case 0x3d:
1671 case 0x3e:
1672 if (cpu_has_hypervisor(env)) {
1673 /* UA2005
1674 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1675 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1676 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1677 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1679 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1680 env->immu.sun4v_tsb_pointers[idx] = val;
1681 } else {
1682 goto illegal_insn;
1684 break;
1685 case 0x37:
1686 case 0x3f:
1687 if (cpu_has_hypervisor(env)) {
1688 /* UA2005
1689 * ASI_IMMU_CTX_ZERO_CONFIG
1690 * ASI_IMMU_CTX_NONZERO_CONFIG
1692 env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1693 } else {
1694 goto illegal_insn;
1696 break;
1697 case ASI_UPA_CONFIG: /* UPA config */
1698 /* XXX */
1699 return;
1700 case ASI_LSU_CONTROL: /* LSU */
1701 env->lsu = val & (DMMU_E | IMMU_E);
1702 return;
1703 case ASI_IMMU: /* I-MMU regs */
1705 int reg = (addr >> 3) & 0xf;
1706 uint64_t oldreg;
1708 oldreg = env->immu.mmuregs[reg];
1709 switch (reg) {
1710 case 0: /* RO */
1711 return;
1712 case 1: /* Not in I-MMU */
1713 case 2:
1714 return;
1715 case 3: /* SFSR */
1716 if ((val & 1) == 0) {
1717 val = 0; /* Clear SFSR */
1719 env->immu.sfsr = val;
1720 break;
1721 case 4: /* RO */
1722 return;
1723 case 5: /* TSB access */
1724 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1725 PRIx64 "\n", env->immu.tsb, val);
1726 env->immu.tsb = val;
1727 break;
1728 case 6: /* Tag access */
1729 env->immu.tag_access = val;
1730 break;
1731 case 7:
1732 case 8:
1733 return;
1734 default:
1735 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1736 break;
1739 if (oldreg != env->immu.mmuregs[reg]) {
1740 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1741 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1743 #ifdef DEBUG_MMU
1744 dump_mmu(env);
1745 #endif
1746 return;
1748 case ASI_ITLB_DATA_IN: /* I-MMU data in */
1749 /* ignore real translation entries */
1750 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1751 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1752 val, "immu", env, addr);
1754 return;
1755 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1757 /* TODO: auto demap */
1759 unsigned int i = (addr >> 3) & 0x3f;
1761 /* ignore real translation entries */
1762 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1763 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1764 sun4v_tte_to_sun4u(env, addr, val), env);
1766 #ifdef DEBUG_MMU
1767 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1768 dump_mmu(env);
1769 #endif
1770 return;
1772 case ASI_IMMU_DEMAP: /* I-MMU demap */
1773 demap_tlb(env->itlb, addr, "immu", env);
1774 return;
1775 case ASI_DMMU: /* D-MMU regs */
1777 int reg = (addr >> 3) & 0xf;
1778 uint64_t oldreg;
1780 oldreg = env->dmmu.mmuregs[reg];
1781 switch (reg) {
1782 case 0: /* RO */
1783 case 4:
1784 return;
1785 case 3: /* SFSR */
1786 if ((val & 1) == 0) {
1787 val = 0; /* Clear SFSR, Fault address */
1788 env->dmmu.sfar = 0;
1790 env->dmmu.sfsr = val;
1791 break;
1792 case 1: /* Primary context */
1793 env->dmmu.mmu_primary_context = val;
1794 /* can be optimized to only flush MMU_USER_IDX
1795 and MMU_KERNEL_IDX entries */
1796 tlb_flush(cs);
1797 break;
1798 case 2: /* Secondary context */
1799 env->dmmu.mmu_secondary_context = val;
1800 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1801 and MMU_KERNEL_SECONDARY_IDX entries */
1802 tlb_flush(cs);
1803 break;
1804 case 5: /* TSB access */
1805 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1806 PRIx64 "\n", env->dmmu.tsb, val);
1807 env->dmmu.tsb = val;
1808 break;
1809 case 6: /* Tag access */
1810 env->dmmu.tag_access = val;
1811 break;
1812 case 7: /* Virtual Watchpoint */
1813 env->dmmu.virtual_watchpoint = val;
1814 break;
1815 case 8: /* Physical Watchpoint */
1816 env->dmmu.physical_watchpoint = val;
1817 break;
1818 default:
1819 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1820 break;
1823 if (oldreg != env->dmmu.mmuregs[reg]) {
1824 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1825 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1827 #ifdef DEBUG_MMU
1828 dump_mmu(env);
1829 #endif
1830 return;
1832 case ASI_DTLB_DATA_IN: /* D-MMU data in */
1833 /* ignore real translation entries */
1834 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1835 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1836 val, "dmmu", env, addr);
1838 return;
1839 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1841 unsigned int i = (addr >> 3) & 0x3f;
1843 /* ignore real translation entries */
1844 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1845 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1846 sun4v_tte_to_sun4u(env, addr, val), env);
1848 #ifdef DEBUG_MMU
1849 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1850 dump_mmu(env);
1851 #endif
1852 return;
1854 case ASI_DMMU_DEMAP: /* D-MMU demap */
1855 demap_tlb(env->dtlb, addr, "dmmu", env);
1856 return;
1857 case ASI_INTR_RECEIVE: /* Interrupt data receive */
1858 env->ivec_status = val & 0x20;
1859 return;
1860 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1861 if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1862 /* Hyperprivileged access only */
1863 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1865 /* fall through */
1866 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1868 unsigned int i = (addr >> 3) & 0x7;
1869 env->scratch[i] = val;
1870 return;
1872 case ASI_MMU: /* UA2005 Context ID registers */
1874 switch ((addr >> 3) & 0x3) {
1875 case 1:
1876 env->dmmu.mmu_primary_context = val;
1877 env->immu.mmu_primary_context = val;
1878 tlb_flush_by_mmuidx(cs,
1879 (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1880 break;
1881 case 2:
1882 env->dmmu.mmu_secondary_context = val;
1883 env->immu.mmu_secondary_context = val;
1884 tlb_flush_by_mmuidx(cs,
1885 (1 << MMU_USER_SECONDARY_IDX) |
1886 (1 << MMU_KERNEL_SECONDARY_IDX));
1887 break;
1888 default:
1889 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1892 return;
1893 case ASI_QUEUE: /* UA2005 CPU mondo queue */
1894 case ASI_DCACHE_DATA: /* D-cache data */
1895 case ASI_DCACHE_TAG: /* D-cache tag access */
1896 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1897 case ASI_AFSR: /* E-cache asynchronous fault status */
1898 case ASI_AFAR: /* E-cache asynchronous fault address */
1899 case ASI_EC_TAG_DATA: /* E-cache tag data */
1900 case ASI_IC_INSTR: /* I-cache instruction access */
1901 case ASI_IC_TAG: /* I-cache tag access */
1902 case ASI_IC_PRE_DECODE: /* I-cache predecode */
1903 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1904 case ASI_EC_W: /* E-cache tag */
1905 case ASI_EC_R: /* E-cache tag */
1906 return;
1907 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1908 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1909 case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1910 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1911 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1912 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1913 case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1914 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1915 case ASI_INTR_R: /* Incoming interrupt vector, RO */
1916 case ASI_PNF: /* Primary no-fault, RO */
1917 case ASI_SNF: /* Secondary no-fault, RO */
1918 case ASI_PNFL: /* Primary no-fault LE, RO */
1919 case ASI_SNFL: /* Secondary no-fault LE, RO */
1920 default:
1921 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1922 return;
1923 illegal_insn:
1924 cpu_raise_exception_ra(env, TT_ILL_INSN, GETPC());
1927 #endif /* CONFIG_USER_ONLY */
1928 #endif /* TARGET_SPARC64 */
1930 #if !defined(CONFIG_USER_ONLY)
1932 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1933 vaddr addr, unsigned size,
1934 MMUAccessType access_type,
1935 int mmu_idx, MemTxAttrs attrs,
1936 MemTxResult response, uintptr_t retaddr)
1938 bool is_write = access_type == MMU_DATA_STORE;
1939 bool is_exec = access_type == MMU_INST_FETCH;
1940 bool is_asi = false;
1942 sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1943 is_asi, size, retaddr);
1945 #endif